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Abstract: In reality, sellers face challenges in obtaining perfect demand information. Demand is
influenced not only by price but also by behavioral factors such as reference effects, which complicate
optimal pricing for enterprises. To address this problem, we propose a dynamic pricing model that
incorporates demand learning and considers consumer reference effects. Using the Bayesian method
and based on historical sales and prices, sellers can learn about demand patterns. We analyze the
model to determine the existence of an optimal solution and provide an algorithm to solve it. Our
numerical simulation demonstrates that the total consumer demand and the impact of price on
demand remain relatively stable over time. However, the factors influencing the reference effects
exhibit greater variability. Sellers can also gain insights into market demand through their learning
behavior in each phase and adjust production based on market size. For instance, our simulation
shows an increase in market demand over time, allowing the seller to adjust the production plan
according to the demand change.

Keywords: dynamic pricing; demand learning; Bayesian updating; reference effect
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1. Introduction

At the macro level, economic growth mainly relies on investment, exports, and con-
sumption [1,2], while at the micro level, revenue management is the main means for
enterprises to achieve revenue growth. Dynamic pricing, one of the most powerful revenue
management techniques, has been widely applied in various industries, such as airlines,
hotels, fashion, and retail [3]. The accurate prediction of demand is crucial for effective
dynamic pricing strategies, leading many scholars to develop different demand models [4].
However, these models assume that sellers possess complete market information and fully
understand the market demand, implying a determinate demand function. For example,
in the classic linear demand function, this underlying assumption implies that the seller
knows the specific values of all parameters of the demand function [5,6]. In reality, acquir-
ing complete information on the market size is impractical for sellers, many of which often
have a limited understanding of market size and product demand. This uncertainty poses
pricing challenges for the seller. To address this, some scholars have proposed parametric
demand learning [7–9]. However, most of these studies focus on one-time parameter esti-
mation and develop price strategies based on a deterministic demand function, neglecting
the dynamic nature of the learning process. In the retail industry, sellers are increasingly
recognizing the need for gradual adjustment in demand estimation throughout the entire
sales period [10]. Therefore, this paper focuses on dynamic pricing within the context of
dynamic demand learning.

Whether a demand learning strategy can achieve good performance depends on
the following three main points: First, the data source of learning plays a crucial role
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as the quality of the data directly impacts the learning outcomes. When the correlation
between the data and the real demand is weak, the effectiveness of demand learning
is compromised. Secondly, the parameter updating mechanism or learning method is
essential. Since demand learning spans the entire sales period, each learning method will
obtain parameter estimates, and it is vital to reasonably update them. Bayesian rule, a
widely employed learning method, offers many advantages. It exhibits strong convergence
properties, enables learning with limited data, and achieves more accurate results as the
dataset grows. Additionally, the Bayesian model enhances interpretability, facilitating a
clear understanding of underlying principles. Therefore, we adopt the Bayesian method
for demand learning. The third point pertains to the construction of the demand model. If
the established demand model fails to fully capture the factors influencing demand, the
learning results will inevitably deviate from the real demand.

Historical prices and sales as an excellent data source for demand learning. Using such
data offers several advantages. First, historical sales can be regarded as price experiments
in a real business environment, providing direct insights into the relationship between
price and demand. Second, these data do not entail additional costs for sellers to acquire.
In contrast, conducting market research or questionnaire surveys often incur additional
costs. Finally, the advancements in information technology have facilitated the storage and
analysis of historical data.

In addition to data, another critical aspect of demand learning is understanding the
factors that influence market demand. In the realm of dynamic pricing, two key factors
affecting market demand during a sales period are the current price of the product and its
historical prices. The impact of the current price on demand is evident. Meanwhile, his-
torical prices impact product demand through consumer reference price effects (hereafter
referred to as reference effects). Specifically, a product’s historical prices shape consumers’
price expectations, serving as reference prices. When the current price exceeds their expec-
tations, their willingness to purchase decreases. Conversely, when the current price is lower
than expected, they are more willing to purchase the product. Numerous studies emphasize
the importance of reference effects in demand estimation and revenue management for
businesses, especially within the retail industry [11,12]. Mazumdar et al. [13] conducted
a literature review on reference prices, examining their formation, usage, and impact on
the purchase decisions of consumers. The findings indicated that reference prices have a
crucial effect on enterprise management decisions. Cornelsen, Mazzocchi, and Smith [14]
provided evidence of consumer reference effects by analyzing household-level data en-
compassing food prices and purchases. They found significant biases in pricing strategies
when reference effects were not considered. Mehra, Sajeesh, and Voleti studied how the
reference price in the non-durable goods market affects a firm’s product positioning and
pricing strategy [15].

Based on the above analysis and findings, this paper investigates the problem of
how a monopolistic seller determines the optimal prices for multiple sales periods in the
presence of demand uncertainty and consumer reference price effects. Specifically, at the
beginning of each period, the seller has only a rough estimate of the parameters of the
demand function. Using deterministic dynamic programming, the seller solves for the
optimal price at that time and conducts sales based on the solved price. At the end of the
period, the seller re-estimates the demand function parameters using the Bayesian method
while simultaneously initiating the process of solving for the next period’s optimal price.
This iterative process continues until the end of the sales period.

The contribution of this paper is three-fold. First, it examines the demand learning
and reference price jointly. Unlike the existing literature, this paper adopts a dynamic
learning process. Precisely, sellers can use the data generated during each sales period
(i.e., prices and sales) for demand learning and update previous learning results. This dy-
namic approach closely aligns with real-world business applications. Second, we propose
an effective algorithm for approximating Bayesian dynamic programming. This enables
sellers to make precise real-time price adjustments. Finally, this paper shows that reference
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price-influencing factors exhibit greater variation compared to price-influencing factors
in demand learning. This indicates weaker heterogeneity in price sensitivity among con-
sumers compared to reference prices. Therefore, exploring mechanisms for heterogeneous
reference price formation is crucial for both businesses and academia.

The remainder of this paper is organized as follows: Section 2 reviews the relevant
literature. Section 3 introduces the dynamic pricing model incorporating reference price and
extending it to the case of uncertain demand, that is, dynamic pricing based on the reference
effect and demand learning. Section 4 describes the approximate solution algorithm for the
proposed model. Section 5 presents numerical analysis and discussions, while Section 6
concludes the study.

2. Literature Review

Two research streams are related to our work: dynamic pricing with uncertain demand
and dynamic pricing with reference price effects.

Depending on the form of the demand function, the current literature on uncertain
demand can be divided into two categories. One category focuses on demand functions
where price is the only variable, while another considers demand as a function of price
and other non-price variables, which are collectively referred to as covariates. In the case
of the former, three main research approaches are prevalent. The first approach involves
employing statistical methods, such as classical maximum likelihood or least-squares
estimators, for parameter estimation [16,17]. Keskin and Zeevi [18] used the greedy least-
squares (GILS) method to address a multi-product, limited inventory dynamic pricing
problem with partially known demand distribution but unknown linear demand function
parameters. Their semi-shortsighted optimal approximation strategy proved that the
expected return loss rate log(T) results from this strategy and provides sufficient conditions
for the progressive optimization of any strategy. Den-Boer and Zwart [19] investigated
the dynamic pricing problem with uncertain demand function parameters under limited
inventory. They employed maximum likelihood estimation to calculate the unknown
parameters of the demand function, utilizing price, demand, and inventory data for each
sales period. Due to the endogenous learning characteristics, the calculated price strategy
yielded an expected revenue loss of O([log]2 (T)).

The second approach involves employing the Bayesian framework. Aoki [20] was the
first to apply this framework in the study of demand learning, and subsequent scholars
have built upon his research [21,22]. Harrison et al. [23] investigated dynamic pricing in
financial services, where the parameters of the underlying demand model are unknown,
but the seller can learn these parameters by observing the outcomes of each sales attempt.
Ghate [24] focused on the dynamic auction–design problem, where the seller faced un-
certainty regarding the market response. They formulated the problem as a Bayesian
Markovian decision process, where the seller learned more about the demand by observ-
ing the number of posted bids. Uncertainty in demand at the individual consumer level,
reflected in the unknown consumer’s arrival rate, has also received scholarly attention.
For example, Mason and Välimäki [25] analyzed the optimal selling of an asset when
demand is uncertain, with the seller acquiring knowledge of the arrival rate through a
Bayesian approach.

The third approach involves utilizing online learning methods. This method employs
price experiments to gather data, estimates parameters based on the data, and finally
solves the optimization problem using the estimated parameters. A notable characteristic
of this method is the trade-off it strikes between exploration and exploitation. Keskin
and Zeevi [26] studied a dynamic pricing problem where a seller encounters an unknown
demand model that can change over time. Yang et al. [27] designed an algorithm to
facilitate synchronized dynamic pricing, allowing competitive firms to estimate their
demand functions through observations and adjust their pricing strategies accordingly.

In reality, various factors beyond price influence demand, including product attributes
and customer characteristics. Qiang and Bayati [28] considered linear demand as a function
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of price and additional information, such as demand covariates, including marketing expen-
diture, geographic information, customer socio-economic characteristics, macroeconomic
indicators, and weather information. When the seller sells a large number of products,
Javanmard and Nazerzadeh [29] assumed that consumers make purchase decisions based
on a general choice model incorporating product features and their own characteristics,
with unknown model parameters. Cohen et al. [30] posited that the demand function is
determined by a linear combination of multiple product attributes, with unknown coef-
ficient values that the seller can learn through a feasible collection. Chen and Jiang [31]
employed the GILS method to segment the market into high- and low-quality product
markets, where the seller lacked advanced knowledge of customer demand information for
quality. They found that, under demand uncertainty, a high-quality firm may yield higher
profits when initially setting prices. Ban and Keskin [32] examined dynamic pricing at the
individual customer level, with customers encoding their personalized characteristics as a
d-dimensional feature vector. The personalized demand model’s parameters depended on
s out of the d features. The seller could learn the relationship between customer features
and product demand through sales observations.

The above literature review demonstrates a wealth of research on demand uncer-
tainty; however, it does not consider the impact of certain behavioral factors of consumers
on demand.

In the field of dynamic pricing with reference effects, researchers have proposed
various mechanisms for forming reference prices based on the different relationships
between the reference and the historical prices. Popescu and Wu [33] investigated the
dynamic pricing problem for a single monopoly producer facing consumers with reference
effects. They assumed that the reference price is an exponential smoothing of historical
prices, influenced by all historical prices. The authors theoretically proved that the price
strategy converges to a steady state and provided numerical results indicating that the
steady state price value decreases with customers’ memory and is sensitive to the reference
effect. Yang et al. [34] extended Popescu and Wu’s [33] research by examining the dynamic
pricing problem for a single monopoly producer under limited inventory and random
demand, in which the consumers’ arrival in each period is subject to a Poisson distribution
and the consumers’ reference price is also an exponential smoothing of historical prices.
They explore how the reference effect influences the initial price, pricing trend, price
dispersion, and expected revenue, along with the fixed pricing (FP), dynamic pricing (DP),
and dynamic pricing with reference (DPR) policies. However, alternative reference price
update mechanisms have been proposed. Nasiry and Popescu [35] suggested that the
reference price update of consumers is determined by the maximum (minimum) historical
price of the product and the price of the latest period (known as the peak-to-end law).
They established a single-product dynamic pricing model based on the peak-to-end law
and found that, if loss-averse consumers are anchored at a low price, the steady price
range widens. Bi et al. [36] extended Nasiry and Popescu’s [35] model to multiple products
and showed that manufacturers can lower consumers’ reference price by reducing the
price of core products, thereby attracting more customers. Additionally, Bi et al. [37]
considered consumers’ reference effect as a linear combination of prices within the memory
window. They assumed that these memory factors are random variables subject to Markov
first-order stochastic processes and studied the dynamic pricing problem for monopoly
sellers. Drawing on prospect theory, consumers feel a “gain” (“loss”) when the reference
price is greater (less) than the current price, and they react asymmetrically to these two
situations (i.e., they exhibit loss-avoidance behavior). This is an aspect that has received a
lot of attention in the literature with regard to reference prices [38–41]. Dynamic pricing
models that integrate reference effects with other consumer behaviors have also attracted
the interest of several scholars in recent years. For example, Chen et al. [42] investigated
dynamic pricing where consumers exhibit both reference effects and strategic behavior.

Some scholars have jointly explored dynamic pricing based on demand learning and
reference price effects. In a discrete dynamic pricing scenario, Cao et al. [43] assumed that
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the customer arrival rate is unknown to the seller and is influenced by the reference price.
They found that overlooking the reference price effect could result in substantial revenue
losses. Den and Keskin [44] designed a policy involving gradual changes in the selling
price to control the evolution of the reference price. They used accumulated sales data to
strike a balance between learning and earnings, employing, for instance, an online learning
framework. However, our study differs from both of these two studies. We incorporate the
reference effect into the linear demand model in a continuous dynamic pricing scenario,
where the parameters of the demand function are unknown to the seller and are updated
using the Bayesian method.

3. Model

This section describes the main setup of the study. To provide a better understanding
of the dynamic pricing problem based on demand learning and reference effects, we first
introduce the dynamic pricing problem with reference effects and then develop a model
that considers the seller’s demand learning behavior. Before presenting the model, we
define its notation, as shown in Table 1.

Table 1. Symbol Description.

Notation Description

t Time period, where 1 ≤ t ≤ T
θ Demand function impact factor
c Per unit cos t of product, c > 0
α Consumer′s memory factor, 0 ≤ α < 1
γ Discount factor and 0 < γ ≤ 1

D(pt, rt) Demand in period t
p(θ) Probability density function of θ
Ht Set of the prior information in period t
pt Product price in period t, where pt ∈ [p, p]
rt Reference price in period t, where rt ∈ [p, p]

Π(pt, rt) Profit in period t
V(pt, rt) Total profit in the previous t periods

3.1. Dynamic Pricing Model Based on Consumer Reference Effect

According to the assumptions of Popescu and Wu [33], as well as Nasiry and Popescu [35],
the seller in this study operates in a monopoly and continues to provide a product to the
market. Owing to the existence of the reference effect, consumers’ purchase decisions
are influenced by current and historical prices, i.e., the reference effect affects demand.
In the aforementioned studies, the influence of the reference effect on demand takes the
following form:

D(p, r) = D(p, p) + R(p− r, r) (1)

Generally, D(p, r) is a non-negatively bounded and continuous function with de-
creases in price p and reference price r. The reference effect R(x, r) decreases in x and is
twice differentiable in x and r. R(x, r) > 0 for x < 0, R(x, r) < 0 for x > 0, and R(x, r) = 0
for x = 0.

For example, Nasiry and Popescu [35] assumed that the reference effect affects demand
linearly, namely:

D(p, r) = (β0 + β1 · p) + β2 ·max{p− r, 0}+ β3 ·min{p− r, 0} (2)

where β0 is the total market volume, β1 is the price influencing factor, and β2 and β3 are
the reference price influencing factors. β0 > 0, β1, β2, β3 ≤ 0. If β2 < β3, consumers are
loss-averse. Conversely, consumers are loss-seeking if β2 > β3, which means the difference
between the same price and the reference price generates more “loss” than “gain;” therefore,
the effect on demand is different. When β2 = β3, consumers are loss-neutral, then the
demand function is a smooth curve.
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The vector form of Equation (2) is as follows:

D(p, r) = (β0, β1, β2, β3) · (1, p, max{p− r, 0}, min{p− r, 0})′
= θ · (1, p, max{p− r, 0}, min{p− r, 0})′. (3)

The single-term profit of the seller is as follows:

∏(p, r) = (p− c)[D(p, p) + R(p− r)] = π(p) + (p− c)R(p− r) (4)

As in Bi et al. [28], π(p) is non-monotonic and concave in p, whereas (p− c)R(p− r)
is concave in p and supermodular in (p, r).

If the demand function is linear, the single-term profit can be written as follows:

∏(p, r) = (p− c)[(β0 + β1 · p) + β2 ·max{p− r, 0}+ β3 ·min{p− r, 0}] (5)

Considering the seller’s long-term profit, the description of the dynamic pricing model
with the reference effect is as follows:

V(r0) = max
pt∈[p,p]

∑∞
t=1 γtE(∏(pt, rt))

s.t. rt+1 = g(pt, rt).
(6)

where E(·) denotes the expectation, r0 is the initial state variable, and the constraint
represents the update rule for the reference price. The current reference price rt is a function
of the previous price. In Popescu and Wu [33], the reference price is a weighted average of
the historical price, where more recent prices are assigned a large weight. In Nasiry and
Popescu’s [35] study, the reference price is a linear combination of prices in the memory
window. In this study, we adopted the same reference price update rule as Popescu and
Wu [33], as follows:

rt+1 = αrt + (1− α)pt (7)

where α ∈ [0, 1) is the memory factor. Larger values of α represent a longer-term memory,
and the reference price depends strongly on historical prices.

In Model (6), pt is the decision variable and rt is the only state variable. The goal is to
find the price for each period of pt to make the entire sales cycle more profitable. Combined
with Equation (7), the Bellman equation of Model (6) can be written as follows:

V(rt) = max
pt∈[p,p]

∏(pt, rt) + γV(rt+1)

s.t. rt+1 = αpt + (1− α)rt.
(8)

Using the first order condition for profit maximization and the envelope theorem,
we can derive that the steady-state price p∗ of the Bellman Equation (6) must satisfy the
following equation:

π′(p)
1− γ

=
(p− c)λ(p)

1− αγ
(9)

where π′(p) refers to the part of the single-period profit that is only affected by price
and λ(p) refers to the partial derivative of R(x, r) when x = 0 (see Popescu and Wu [33]
for details).

3.2. Dynamic Pricing Model Based on Seller Demand Learning and Consumer Reference Effect

This section introduces a dynamic pricing model that considers the reference effect
and demand learning. A distinct feature of our model is that the seller does not have
prior knowledge of the coefficients of the demand function; namely, θ in Equations (2) and
(3) is not invariant. However, the seller can learn these coefficients based on historical
information, such as sales and prices. The seller’s goal is to maximize expected total
discounted profit. To facilitate the analysis, we made several assumptions.
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Assumption 1. The demand function is a linear combination of price and reference price, as follows:

D(pt, rt) = (β0,t, β1,t, β2,t) · (1, pt, pt − rt)
′ + εt = θt · (1, pt, pt − rt)

′ + εt = d(pt, rt; θt) + εt (10)

where {εt} is a sequence of independent, identically distributed random variables with a mean of
zero and finite variance. θt = (β0,t, β1,t, β2,t) ∈ Θ. In this study, we do not consider the asymmetry
between “gain” and “loss”.

Although the demand function coefficients are unknown, the seller knows the a priori proba-
bility density function for θ, which is denoted by f0(θ). In the first period, the seller sets the price
according to f0(θ) and the initial reference price r0, while consumers observe p1 and make their
purchase decisions. At the beginning of the second period, the seller updates θ based on p1, D1, and
f1(θ), sets p2, and continues until the end of the entire sales period (we assume that selling occurs
over T discrete time periods). For convenience, D(pt, rt) is used instead of Dt in this study. We denote
information from the t-th selling period as Ht = {Dt−1, pt−1, Ht−1} and H0 = {r0, f0(θ)}. Following
Aoki [20], the seller uses the Bayesian method to update the coefficients. Specifically,

f (θ|Ht+1) =
f (θ|Ht) f (Dt|Ht, pt, θ)

f (Dt|Ht, pt)
=

f (θ|Ht) f (Dt|pt, θ)

f (Dt|Ht, pt)
(11)

where f (θ|Ht+1) represents the posterior probability density function of θ at the beginning of the t +
1-th period, and f (θ|H0) =

f0(θ) f (D0|p0,θ )∫
Θ f0(θ) f (D0|p0,θ )dθ

.

Assumption 2. εt obeys a Gaussian distribution with mean zero and standard deviation σ.

According to Assumption 2, we can derive the following:

f (Dt|pt, θ) =
1√
2πσ

exp(− 1
2σ2 [Dt − d(θ, pt, rt)]

2)

Additionally, based on Aoki’s [20] analysis, if f0(θ) does not satisfy the known statistical
distribution, the size of the set Ht will increase with time and the computation of the posterior
probability Equation (11) will be very large. Therefore, we put forward the following assumption.

Assumption 3. f0(θ) satisfies the normal distribution density function with mean µ0 and covariance Λ0.

By repeating the calculation of Equation (11), we obtain

θt =
1

σ2 ΛtCtXt + ΛtΛ−1
0 µ0 (12)

where Xt =

 D(p1, r1)
...

D(pt−1, rt−1)

, Ct =

p1 − r1 · · · pt−1 − rt−1
p1 · · · pt−1
1 · · · 1

,

σ2Λ−1
t = σ2Λ−1

t−1 +

pt−1 − rt−1
pt−1

1

(pt−1 − rt−1, pt−1, 1), and σ2Λ−1
0 =

λ1 λ4 λ5
λ4 λ2 λ6
λ5 λ6 λ3

 .

Moreover, λ1, · · · , λ6 are constant. Therefore, we rewrite Equation (12) as:

θt = (I − Kt)

θt−1 +
Λt−1

σ2

pt−1 − rt−1
pt−1

1

D(pt−1, rt−1)

 (13)

where Kt =

Λt−1
σ2


(pt−1 − rt−1)

2 (pt−1 − rt−1) · pt−1 pt−1 − rt−1

(pt−1 − rt−1) · pt−1 (pt−1)
2 pt−1

pt−1 − rt−1 pt−1 1



1+(pt−1−rt−1,pt−1,1)
Λt−1

σ2


pt−1 − rt−1

pt−1
1


and I are unit matrices.

Equation (13) shows the final demand function coefficient update mechanism.
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Based on Assumptions 1–3, the stochastic dynamic pricing model based on demand learning
and reference effects is expressed as follows:

E(V(r0|H0 )) = max
pt∈[p,p]

T
∑

t=1
γtΠ(pt, rt; θt) = max

pt∈[p,p]

T
∑

t=1
γt(pt − c)(θt · (1, pt, pt − rt)

′)

s.t. rt+1 = αpt + (1− α)rt

θt = (I − Kt)

θt−1 +
Λt−1

σ2

 pt−1 − rt−1
pt−1

1

D(pt−1, rt−1)

 .

(14)

4. Model Analysis and Solution
In this section, we discuss a solution to the dynamic pricing model based on the reference effect

and demand learning.
The Bellman equation for Model (14) is as follows:

E(V(rt|Ht )) = (pt − c)(θt · (1, pt, pt − rt)
′) + γE(V(rt+1|Ht+1 ))

s.t. E(V(rT+1|HT+1 )) = 0.
(15)

In the last period, the seller had information D1(p1, r1; θ1), · · · , DT−1(pT−1, rT−1; θT−1) about
the demand realized in the past sales period with the realized price information p1, p2, · · · , pT−1 and
θT−1. The seller can compute θT using Equation (13). Thus, the optimal price can be solved as

p∗T = argmax
pT

E
[
(pT − c)(θT · (1, pT , pT − rT)

′)|HT

]
In the penultimate period, the optimal prices pT−1 and PT are chosen to maximize

E
[
(pT−1 − c)(θT−1 · (1, pT−1, pT−1 − rT−1)

′) + VT |HT−1

]
E
[
(pT−1 − c)(θT−1 · (1, pT−1, pT−1 − rT−1)

′)
]

is a function of the (pT−1, rT−1; θT−1). E(VT |HT−1 )

can also be considered a function of (pT−1, rT−1; θT−1). At time T − 1, the seller knows rT−1 and
θT−1; thus, the optimal prices pT−1 and PT can be deduced.

Returning to the above analysis in the first period, we find that an optimal solution exists.
However, we cannot obtain a specific form of the E(V(rt|Ht )), and it is difficult to find the optimal
solution. Therefore, we propose a numerical method to obtain an approximate solution. Specifically,
in each period t, the seller updates an θt and fixes it. Then, Model (14) becomes a non-random
dynamic programming model, and we solve pt using inverse recursion according to the Bellman
equation. Given (pt, θt), the seller observes Dt and updates θt to θt+1 and repeats the procedure until
the end of the time horizon. The specific Algorithm 1 is as follows:

Algorithm 1. Compute p∗t and θt.

Initialization r0, p0, θ0, Λ0/σ2, α, γ, c, T
for t = 1, 2, · · · , T do
compute rt = αpt−1 + (1− α)rt−1,
for k = T, T − 1, · · · , t do
compute V(rk) = (pk − c)(θt · (1, pk, pk − rk)

′) + γV(rk+1)
p∗t = argmax

pt∈[p,p]
V(rt)

Dt = θt · (1, p∗t , p∗t − rt)
′

end for

update θt+1 = (I − Kt+1)

θt +
Λt
σ2

pt − rt
pt
1

D(pt, rt)


end for

5. Numerical Simulation
To present the results more intuitively, in this section, we conduct numerical simulations for

Model (14) under the given parameters and conditions and show the simulation results. Considering
that there will not be an infinite number of prices set by the seller in practice but only a choice within
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a finite number, we assume that the decision variable pt will only fluctuate within a finite number of
prices belonging to a discrete, deterministic set.

5.1. Numerical Simulation Results
Given the parameters β0,0 = 100, β1,0 = −20, β2,0 = −50, α = 0.5, γ = 0.95, p0 = 4.2, r0 = 4.2,

pt ∈ [4.2, 5], c = 4, T = 6 and Λ0/σ2 = [500,−50, 40;−50, 10, 400; 40, 400, 20], based on the value
iteration and compression mapping theorems, we first obtain the price and reference price for each
period set by the seller. As shown in Figure 1, although the decision variables are limited to a finite
set of values, the decision variables (prices) of the model in this study do not converge monotonically
to a single value but rather fluctuate back and forth. This is in contrast to the short-term results
observed by Popescu and Wu [33]. As illustrated in Figure 2, compared with the decision variable pt,
the state variable rt is monotonic and increases with time in this simulation.
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Based on the derived and reference prices and the two previous assumptions, this study will
further simulate how the demand function coefficients β0, β1, β2 are updated. Figures 3–5 illustrate
the update of these coefficients. With a demand-learning seller, the change in market aggregates in
each period is not significant, and the gap between the first and sixth issues is only 2.5 units (see
Figure 3). In other words, consumers do not react strongly to more “intelligent” sellers. The change
in the price impact factor for each period is also insignificant (see Figure 4), with only 1.5 units.
However, compared with the total demand impact coefficient and the price impact factor, the change
in the reference effect utility impact factor is significant, with 7 units. The demand-learning seller
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learns the demand function by observing changes in product demand caused by the reference effect
impact factors. Figure 6 shows that market demand increases over time.
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5.2. Discussion
In this subsection, we will discuss the numerical simulation results. First, although the seller

has been updating the values of β0 (i.e., market size) and β1 (i.e., price sensitivity) throughout the
sales period, the changes are relatively flat. This indicates that the seller’s decisions are based on
prior knowledge of these parameters, resulting in minimal deviation from the optimal outcome.
We can use market segmentation theory to explain why the changes of β0 and β1 parameters are
relatively flat. Before selling the product, the seller determines their target market and product
positioning. According to market segmentation theory, when the target market is defined, the initial
market scale (i.e., β0) is established, and product positioning provides a clear understanding for
consumers, helping them clarify the substitutability of products, which, in turn, affects consumers’
price sensitivity (i.e., β1). The process of target market determination and product positioning
mentioned above is the process through which the seller obtains prior information about β0 and β1.
Therefore, the changes in β0 and β1 during the seller’s learning process occur gradually. For example,
in China, Pinduoduo.com and JD.com are two well-known online shopping platforms. Although
many people intuitively feel that JD.com’s retail prices are higher than those on Pinduoduo.com,
consumers who have previously chosen to shop on JD.com do not tend to shift to the Pinduoduo.com
platform. This implies that the demand for products on JD.com has not changed significantly. This
phenomenon can be attributed to the initial differences in target audiences for the two platforms.
JD.com’s primarily caters to high-value customers, while Pinduoduo.com focuses on attracting
low-value customers.

The second result of the numerical simulation reveals that the variation in the influencing factor
(i.e., β2) of the reference effect surpasses the variations of β0 and β1. This highlights the potential
for significant decision losses if sellers solely make decisions based on prior information regarding
β2. The reference effect, as a consumer’s behavioral characteristic at the individual level, exhibits
evident heterogeneity, which has been overlooked in the literature when constructing the reference
price formation mechanism. Consequently, obtaining reasonable prior information through measures
such as target market and product positioning becomes challenging. However, to some extent, this
underscores the necessity of learning about the influencing factors of reference effects and prompts
further exploration of heterogeneous reference price formation mechanisms.

Finally, considering supply chain management, it is necessary for sellers to engage in demand
learning. By updating the parameters of the demand function at the end of each period, accurate
demand forecasts for the next period can be generated. The predicted results can then be communi-
cated to upstream production enterprises through the supply chain, enabling timely adjustments to
production plans and optimizing revenue across the entire supply chain.

6. Conclusions
This study summarizes previous research on dynamic pricing problems with reference effects

and proposes a model to address this problem. The existing literature has primarily assumed constant
parameters in dynamic pricing problems with a reference effect. It has also overlooked consumer
behavioral factors in their dynamic pricing models based on seller demand learning. Drawing on this
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analysis, we first presented a dynamic pricing problem considering both seller demand learning and
the consumer reference effect. In Section 4, we introduced a model that incorporates these factors
and provided theoretical proof of its solution. We outlined the algorithmic steps for analyzing the
numerical solution and presented a specific numerical example along with its analysis. Through
the numerical analysis, we observed that, with the consumer reference effect, the total consumer
demand and the effect of price on demand slightly change in each period, whereas the reference
effect influences factor changes more, indicating that the seller can learn about the change in product
demand by monitoring the reference effect influence factor. The management implications of the
above findings for enterprises are as follows: First, conducting market and product positioning before
the formal product launch is necessary. This can help reduce demand uncertainty. Second, it is
advisable for enterprises to adjust prices as early as possible. This is because increasing the frequency
of price adjustments can accelerate the seller’s learning about the impact of reference effects on
demand. Consequently, it leads to more stable demand predictions in subsequent periods.

While this study contributes to the field of dynamic pricing, it is not without limitations. For
example, we focus on dynamic pricing based on demand learning in a monopolistic environment,
while, in reality, sellers face intense competition, and their demands are influenced by competitors’
reactions. Therefore, constructing a reasonable demand learning model and solving it remains a
challenging problem. In addition, this paper does not consider the loss aversion behavior in the
consumers’ reference effects.

It is worth noting that this study specifically introduces the reference effect as an example of a
consumer behavioral factor into the model. Researchers have the opportunity to incorporate other
consumer behavioral factors, such as consumer inertia and strategic behavior. Furthermore, the
demand-learning problem presented in this study is model-driven, lacking historical sales data for
the product. Conversely, the existing literature has focused on data-driven problems, as seen in the
work of Li and Wu [45]. Thus, exploring the integration of historical data into the problem addressed
in this study warrants further investigation.
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