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Abstract: In the process of image restoration, it is usually necessary to solve large-scale inverse
problems, where the computational cost is very high for large or high-resolution images. The domain
decomposition method is one of the most effective algorithms to solve large-scale problems, which
can effectively decrease the computational cost. The cascadic multigrid method has a good effect
on the linear model of image restoration and can obtain high quality restored images. In this paper,
the overlapping domain decomposition method (DDM) with the cascadic multigrid method (CMG)
and the DDM with new extrapolation cascadic multigrid method (NECMG) are presented to solve
the image restoration problems of denoising and deblurring. We first divide the image problem into
some overlapping and independent subproblems. Then, each subproblem is solved independently
by CMG or NECMG with the edge-preserving operator. Numerical experiments show that the new
method is effective.

Keywords: overlapping domain decomposition method; cascadic multigrid method; new extrapolation
cascadic multigrid method; edge preserving; denoising and deblurring; reflexive
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1. Introduction

In many applications of image processing, the solution of the large-scale linear discrete
ill-posed equation or the least squares solution are required. Denoising and deblurring are
some of the most important and challenging tasks in image restoration. For recent works
on image denoising and deblurring for large scale linear discrete ill-condition equations
and least squares, see [1–3].

Consider the restoration of two-dimensional gray-scale images [4],

f̂ (x) =
∫

Ω
h(x, y)û(y)dy + η(x), (1)

where f̂ (x) is a blurry and noisy image, h(x, y) is the point spread function (PSF), η(x)
represents additive noise in the available data f (x), and û(y) is the clean image.

The discretized form of Equation (1) can be expressed as

f = Hû + e, (2)

where the noise is obtained by adding random a normally distributed vector e with mean 0
and standard deviation 1, and δ = ‖e‖. H represents the fuzzy operator, which is usually a
real symmetric block Teoplitiz matrix, û is the vector generated by the original image, and
f represents the blur- and noise-contaminated image vector.
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We would like to determine an approximate value of û when the blurry and noisy
image f̂ and the fuzzy operator H are known but the noise vector e is unknown. Ignoring
the noise vector e, Equation (2) can be expressed as,

Hu = f , (3)

where u is the solution we want to find.
Since the matrix H is a large-scale singular matrix, the linear discretization Equation (3)

is usually an ill-posed problem. Although we can solve Equation (3) directly by some
iterative methods, due to the loss of high-frequency information, these iterative methods
cannot accurately recover edges, which seriously affects the quality of image restoration.

In order to determine meaningful values of u(y), one of the classical methods of
replacing Equation (2) is the Tikhonov regularization model,

min
u

{∫
Ω

(
1
2

(∫
Ω

h(x, y)u(y)dy− f̂ (x)
)2

+ αψ(u(x))

)
dx

}
, (4)

where α > 0 is a regularization parameter and ψ(u(x)) is a regularization operator. The
choice of different regularization operators creates different image restoration models.

For the nonlinear Equation (4), refs. [5,6] propose the explicit and semi-implicit dis-
cretization schemes, which have a good preserving effect on the edges of images and
can provide high quality restoration of images; however, the amount of computation is
extremely high. In addition, the selection of regularization parameters and time intervals is
not easy.

In [4,7], the restoration Equation (3) is discussed in detail by using the cascadic multi-
grid method, which is effectively applied to the restoration of small- and medium-sized
images. For large-scale images, linear and nonlinear often require a lot of storage space and
computation time, which make the recovery process very difficult. In recent years, in order
to solve these problems, many scholars have extended domain decomposition methods [8]
to image restoration, achieving remarkable results for many kinds of restoration models.

Ref. [9] proposes a simple domain decomposition algorithm based on the waveform
relaxation of nonlinear diffusion equations for denoising images. It shows the feasibility
of the domain decomposition algorithm in image restoration. Ref. [10] proposes parallel
overlapping domain decomposition methods and shows the successful application of the
algorithm for the restoration of 1D signals and 2D images in interpolation/inpainting
problems, but the CPU time of this method is very long. Refs. [11,12] combine the domain
decomposition method with the graph cuts algorithm for total variation minimization.
This method improves the computation efficiency and greatly reduces the memory cost
and enables us to solve very large-scale image problems effectively. Ref. [13] combines the
domain decomposition method and the Bregman algorithm for image inpainting and image
deblurring. It accelerates the computation of subproblems by the nested Bregman iteration.
It turned out that the proposed new solution is up to three times faster than the iterative
algorithm currently used in domain decomposition methods. In [14], the meshfree finite
point method with parallel domain decomposition is investigated for image denoising. The
domain decomposition technique, which can be implemented in parallel, decreases the size
of the system of equations and significantly reduces the computational cost. In [15,16], a fast
algorithm based on overlapping domain decomposition technology is proposed to solve
larger image problems and perform more efficiently than traditional method in terms of
the restored image quality and CPU time. In [17], the image is denoised by the overlapping
domain decomposition method based on the successive subspace correction method and
parallel subspace correction method. This method shows the ability of processing large-
scale images. Ref. [18] presents a fast domain decomposition method for global image
smoothing. This method converges quickly after a few iterations and the runtime is much
shorter than conventional methods. Ref. [19] presents a parallel domain decomposition
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algorithm for large scale image denoising, which, compared with [10], greatly reduces the
calculation time.

The above methods have successfully solved the problem of large-scale image process-
ing, but most of them only denoise or deblur the input image. For large-scale images that
contain both noise and blur, we research a kind of quick and effective method.

The cascadic multigrid method is a unidirectional computation method from the
coarse grid level to the fine grid level. The solution to the coarse grid provides a better
initial value for the fine grid by interpolation methods, during which coarse grid correction
is not required. The solution of the fine grid is obtained only after interpolation and
iteration operations are used. The overlapping domain decomposition method has a strong
performance in dealing with large-scale problems. Ref. [20] introduces a new parallel
cascadic multigrid method. Ref. [21] introduces the multigrid domain decomposition
method. Inspired by their methods, combining the overlapping domain decomposition
method with the cascadic multigrid method, we propose a new algorithm for image
restoration. Our algorithm has the following advantages:

(1) The algorithm can not only improve the computational efficiency and achieve good
denoising and deblurring effects but also protect the image edge.

(2) The algorithm has a significantly faster convergence compared to when solving
the problem directly at the finest level. The image is subdivided into multiple overlapping
subimages, and each of the subimages is solved by the cascadic multigrid method or the
new extrapolation cascadic multigrid method.

(3) The algorithm is parallel, which greatly saves storage cost and improves the
computing efficiency.

The structure of this paper is as follows. In Section 2, we introduce the domain
decomposition method with cascadic multigrids and the domain decomposition method
with new extrapolated cascadic multigrids. Section 3 introduces the form and application
of the edge-preserving denoising operator. Section 4 introduces how to locally weight
the overlapped part of the subdomain. In Section 5, some numerical results are given. In
Section 6, a summary is presented.

2. Overlapping Domain Decomposition Method with Cascadic Multigrid

In this section, we propose an overlapping domain decomposition method with the
cascadic multigrid algorithm to solve the problem of image deblurring and denoising. The
advantages of this method are that it has a lower cost and can be extended on parallel
computers.

First, we divide the image domain into N non-overlapping subdomains denoted as
Ω = ∪i∈IΩi with I := {1, 2, . . . , N} and Ωi ∩ Ωj = ∅, i 6= j. Then, we extend each
subdomain into a larger subdomain Ωρ

i , including ρ columns or ρ rows pixels from its
neighboring subdomains. We can denote the overlapping size ρ as the distance between the
boundaries of Ωi and Ωρ

i . For any i ∈ I , we define the set of neighboring subdomains as

Ki :=
{

k ∈ I : Ωρ
i ∩Ωρ

k 6= ∅, k 6= i
}

. For any i ∈ I , QKi
i := ∪k∈Ki

(
Ωρ

i ∩Ωρ
k

)
denotes the

overlapping domain. Ωρ
i \ QKi

i denotes the non-overlapping domain. See Figure 1 for an
example.

Then, we apply the domain decomposition method to Equation (3). We can parallelly
solve the following subproblems,{

Hiun
i = fi, in Ωρ

i ,
un

i = un−1, on ∂Ωρ
i .

(5)
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Figure 1. Overlapping domain decomposition.

Let us denote the solution of Equation (5) as ũn
i . After solving the problem on each

subdomain, we will carry out the weighted processing (Equation (6)) for overlapped parts.
More details will be given in Section 4.

un
i =


ũn

i , Ωρ
i \Q

Ki
i ,

θũn
i +

(1−θ)

C
Ki
i −1

∑
k∈Ki

ũn
k∈Ωρ

k

ũn
k , QKi

i . (6)

Next, we obtain the iteration solution un in the following way,

un =
N

∑
i=1

EiRiun
i , (7)

where Ri is a restriction operator from Ωρ
i to Ωi and Ei is an extension operator from Ωi to

Ω. It can extend the subdomain to the entire domain. Either Ri or Ei is a matrix with only
elements 0 and 1.

Then, the above process is repeated until the following stopping rules were satisfied,∥∥un − un−1
∥∥

2
‖un‖2

< ε, (8)

where ε > 0 and is a given constant.
The framework of the domain decomposition method is given in Algorithm 1.
In Step (1), we can also solve the subproblem Hiui = fi by the cascadic multigrid

method.
For the sake of discussion, we let every ui be an m2 × 1 column vector, let m be an

integer, and set M = m2. Let W1 ⊂ · · · ⊂ Wl ⊂ · · · ⊂ WL be a nested subspace. The
subscript l indicates the number of the grid level, W1 denotes the coarsest grid level, and
WL indicates the finest grid level. Let u(l)

i be the representation of ui in Wl (l = 1, . . . , L).
Accordingly, we have M1 < · · · < Ml < · · · < ML = M. When M is odd, Ml−1 =
(
√

Ml+1)2

4 ; when M is even, Ml−1 = 1
4 Ml .
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Algorithm 1: Overlapping domain decompsition method (DDM) for image
restoration

Input: u0 , N , H, f .
Output: u = un.
for n = 1, . . . , until convergence do

(1) Solve the system Hiun
i = fi with mimimum residual method:

ũn
i := MR(Hi, fi), i = 1, . . . , N.

(2) Get un
i by Equation (6).

(3) un = ∑N
i=1 EiRiun

i .

(4) if ‖un−un−1‖2
‖un‖2

< ε then

u = un;
else

n = n + 1.
end

end

In the cascadic multigrid algorithm, the following linear system needs to be solved
iteratively at each Wl ,

H(l)
i u(l)

i = f (l)i , (9)

where H(l)
i is the representation of the fuzzy operator Hi in Wl .

Set ( f (l)i )(k) as the kth element of f (l)i , and we let

( f (l)i )(k) = ( f (l+1)
i )(2k−1), k = 1, . . . , Ml . (10)

We define the restriction operator R(l)
i which satisfies

f (l)i = R(l)
i f (l+1)

i (11)

when l = L, f (L)
i = fi.

H(l)
i is generated in the following way,

H(l)
i = R(l)

i H(l+1)
i R∗(l)i , (12)

when l = L, H(L)
i = Hi.

The prolongation operator P(l)
i is from level Wl to level Wl+1 for each l. Generally,

linear interpolation or quadratic interpolation is used as the prolongation operator.
We use S(l)

i to represent the smoother MR on level l in the ith subdomain. The smooth-
ing is terminated when the following stopping rule is satisfied.

Stopping rule: For a given δ ≥ 0, c > 1 is a constant and independent of δ. When

‖ f (l)i − H(l)
i u(l)

i ‖ ≤ cδ, (13)

the iteration is stopped. The number of iterations is denoted as m(l)
i .

Thus, the cascadic multigrid method (CMG) in this paper first determines an approx-
imate solution of H(1)

i u(1)
i = f (1)i in W1 using MR. Then, this iterative value is mapped

from W1 to W2 by the prolongation operators P(2)
i . A correction of this mapping in W2 is

iterated by MR and terminated with the stopping rule. The approximate solution u(1)
i in W2

is mapped into W3 by the prolongation operators P(3)
i . The computations are continued in

this manner until an approximate solution has been determined in the finest grid level WL.
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In our algorithm, quadratic interpolation is used as the prolongation operator P(l)
i .

The edge-preserving denoising operator is denoted as D(l)
i . The framework of the domain

decomposition method with cascadic multigrids is given in Algorithm 2.

Algorithm 2: Overlapping domain decomposition method with cascadic multi-
grid (DDM-CMG) for image restoration

Input: u0 , N , L, H, f .
Output: u = un.
for n = 1, . . . , until convergence do

(1) Solve the system Hiun
i = fi (i = 1, . . . , N) with CMG.

Give the initial iteration value u(0),n
i , we can get u(1),n

i := S(l),n
i u(0),n

i .
for l = 2, . . . , L do

(a) Prolongation: ū(l),n
i := P(l),n

i u(l−1),n
i ;

(b) Smoothing until Equation (13) holds: û(l),n
i := S(l),n

i ū(l),n
i ;

(c) Edge preserving denoising: ũ(l),n
i := D(l),n

i û(l),n
i ;

end

(2) ũn
i := û(L),n

i .
(3) Get un

i by Equation (6).
(4) un = ∑N

i=1 EiRiun
i .

(5) if ‖un−un−1‖2
‖un‖2

< ε then

u = un;
else

n = n + 1.
end

end

In [22], the new extrapolation cascadic multigrid method (NECMG) is proposed, which
can provide better initial values for the next level and has better convergence by using new
extrapolation formulas and quadratic interpolation.

Let us take the one-dimensional triplet grid Gl(l = 1, 2, 3) as an example to understand
the new extrapolation formulas and quadratic interpolation. The pixel at the ith node on Gl
is denoted as xl

i , and the corresponding pixel value is denoted by ul
i . Let Il be the node cell

on the grid level Gl and they are represented as follows,

I1 = (x1
i , x1

i+1) , I2 = (x2
i , x2

(i+1)/2, x2
i+1) , I3 = (x3

i , x3
(i+1)/4, x3

(i+1)/2, x3
(i+3)/4, x3

i+1).

The value at the corresponding node can be expressed as,

G1 = (u1
i , u1

i+1) , G2 = (u2
i , u2

(i+1)/2, u2
i+1) , G3 = (u3

i , u3
(i+1)/4, u3

(i+1)/2, u3
(i+3)/4, u3

i+1).

Our aim is to try to use the values at five nodes on G1 and G2 to provide a good initial
value on the finest grid G3.

(1) New extrapolation, u3= Π2(u1, u2).
u3

i = (5u2
i − u1

i )/4 ,
u3

i+1 = (5u2
i+1 − u1

i+1)/4 ,
u3

i+1/2 = u2
i+1/2 + [(u2

i − u1
i ) + (u2

i+1 − u1
i+1)]/8 .

(14)
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(2) Quadratic interpolation, u3 = P3(u1, u2, u3) .{
u3

i+1/4 = [(9u2
i + 12u2

i+1/2 − u2
i+1)− (3u1

i + u1
i+1)]/16,

u3
i+3/4 = [(9u2

i+1 + 12u2
i+1/2 − u1

i )− (3u1
i+1 + u1

i )]/16.
(15)

Based on Algorithm 2 with new extrapolation formulas and quadratic interpolation,
we present Algorithm 3.

In Algorithms 2 and 3, the smoothing is terminated also according to a stopping rule,
see [7,23] for more information.

Algorithm 3: Overlapping domain decomposition method with new extrapola-
tion cascadic multigrid (DDM-NECMG) for image restoration

Input: u0 , N , L, H, f .
Output: u = un.
for n = 1, . . . , until convergence do

(1) Solve Hiun
i = fi (i = 1, . . . , N) with NECMG.

(i) Given the initial value u(01),n
i on l = 1 and u(02),n

i on l = 2, we get

u(1),n
i := S(1),n

i u(01),n
i , u(2),n

i := S(2),n
i u(02),n

i .

(ii) Use the new extrapolation operator we update u(2),n
i := Π(2),n

i (u(1),n
i , u(2),n

i )
(iii) for l = 3, . . . , L do

(a) prolongation: ū(l),n
i := P(l),n

i u(l−1),n
i ;

(b) smoothing until Equation (13) holds: û(l),n
i := S(l),n

i ū(l),n
i ;

(c) edge preserving denoising: ũ(l),n
i := D(l),n

i û(l),n
i ;

end 2

ũn
i := û(L),n

i .
(3) Get un

i by Equation (6).
(4) un = ∑N

i=1 EiRiun
i .

(5) if ‖un−un−1‖2
‖un‖2

< ε then
u = un;

else
n = n + 1.

end
end

3. Edge-Preserving Denoising Operator

In this section, we introduce the edge-preserving denoising operator used in
Algorithms 2 and 3.

In nonlinear model 4, the discrete regularization term ψ(u(x)) is denoted by Ψ(u),
where the appropriate selection of the regularization operator Ψ(u) is crucial for the quality
of image restoration. The most classical model is the following nonlinear anisotropic
diffusion Equation (16),  Ψ(u) = div[z(|∇u|)∇u],

u(x, y, t)|t=0 = u0(x, y),
(16)

where u(x, y, t) is the image at moment t, z(|∇u|) ∈ [0, 1] is the diffusion coefficient, and
the diffusion coefficients are chosen as follows,

z(|∇u|) = 1

1 +
(
|∇u|

k

)2 , k for the threshold. (17)
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Set c(x, y) = z(|∇u|), then the finite difference discrete scheme of Equation (16) can
be expressed as:

um+1
(s,j) − um

(s,j)

τ
=

cm
(s+1,j) + cm

(s,j)

2

(
um
(s+1,j) − um

(s,j)

)
+

cm
(s−1,j) + cm

(s,j)

2

(
u(s−1,j) − um

(s,j)

)
+

cm
(s,j+1) + cm

(s,j)

2

(
um
(s,j+1) − um

(s,j)

)
+

cm
(s,j−1) + cm

(s,j)

2

(
um
(s,j−1) − um

(s,j)

)
,

(18)

where um
(s,j) represents the pixel value at (s, j) in the finite difference scheme.

Equation (18) can be expressed in matrix form as ,

um+1 = um + τA(um)um, (19)

where um and um+1 respectively denote the m and m + 1 time moment images.
Since the nonlinear Equation (19) has a good preserving effect on the edge of the

image, we apply it to the restoration of linear Equation (3) as an edge-preserving denoising
operator (D(l)

i ). Specifically, let us take τ = 0.1 and implement Equation (19) for ten
iterations.

4. Weight in the Overlapping Domains

In this section, we discuss the weight in the overlapping domains. In Section 2, we
introduce Equation (6), as follows,

un
i =


ũn

i , Ωρ
i \Q

Ki
i

θũn
i +

(1−θ)

C
Ki
i −1

∑
k∈Ki

ũn
k∈Ωρ

k

ũn
k , QKi

i ,

where QKi
i is defined as each distinct overlapping subdomain generated by Ωi ∩Ωρ

k for any
i ∈ I and k ∈ Ki. CKi

i is a constant which is defined as the number of different overlapping
subdomains in QKi

i . For example, let us take i = 1, see Figure 2.

QK1
1


Q1,2

1 , Ωρ
1 ∩Ωρ

2
Q1,4

1 , Ωρ
1 ∩Ωρ

4
Q1,2,4,5

1 , Ωρ
1 ∩Ωρ

2 ∩Ωρ
4 ∩Ωρ

5

, CK1
1


C1,2

1 = 2, Ωρ
1 ∩Ωρ

2
C1,4

1 = 2, Ωρ
1 ∩Ωρ

4
C1,2,4,5

1 = 4, Ωρ
1 ∩Ωρ

2 ∩Ωρ
4 ∩Ωρ

5

.

Thus, we can obtain un
1 in the subdomain Ωρ

1,

un
1 =


ũn

1 , Ωρ
1\Q

K1
1

θũn
1 + (1− θ)ũn

2 , Q1,2
1

θũn
1 + (1− θ)ũn

4 , Q1,4
1

θũn
1 +

(1−θ)
3 (ũn

2 + ũn
4 + ũn

5 ), Q1,2,4,5
1

(20)
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Figure 2. The overlapping domains Q1,2
1 , Q1,4

1 , and Q1,2,4,5
1 and nonoverlapping domain Ωρ

1\Q
K1
1 .

5. Numerical Examples

In this section, we give several numerical examples to show the effectiveness of our
algorithms.

The elements in the fuzzy operator Hi are defined by the following function,

h(s,j) =

 1
σ
√

2π
exp

(
− (s−j)2

2σ2

)
, if |s− j| 6 band,

0, other,

hi =
[

h(s,j)

]
s,j=1,...,M

,

Hi = hi ⊗ hi,

where ⊗ denotes the Kronecker product, M represents the dimensions of the subimage
matrix, σ represents the variance of the Gaussian point diffusion function, and the value of
band represents the half-bandwidth of the Toplitz matrix hi. The larger the values of σ and
band, the fuzzier the image generated.

The image restoration effect is measured by the following peak signal ratio,

PSNR(un, u) = 20 log10
255

‖un − u‖dB.

The three original images are shown in Figure 3. Let σ = 2 and band=11; then, we
obtain noise and blur images as shown in Figure 4. In our experiments, let ε = 10−4. We
check the effectiveness of Algorithms 1–3.

(a) Pirate 1083×1083 (b) Fairy 783×783 (c) Lena 543×543

Figure 3. Original images.
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(a) PSNR = 7.638 (b) PSNR = 12.2887 (c) PSNR = 9.459

Figure 4. Blurred and noisy images.

Tables 1–3 and Figures 5–7 show the numerical results of DDM, DDM-CMG, and
DDM-NECMG. From Figure 8, compared with PSNR and CPU time, DDM-CMG and
DDM-NECMG are superior to DDM, where DDM-NECMG is the best.

This shows that Algorithm 3 not only can achieve a good recovery effect in a very
short time, but also solves large resolution images effectively.

Table 1. Numerical results of Pirate 1083 × 1083.

Pirate
DDM DDM-CMG DDM-NECMG

PSNR Time (s) PSNR Time (s) PSNR Time (s)

Ω 14.111 8.776 16.401 7.400 16.504 4.325
Ωρ

1 23.167 0.781 25.198 0.796 24.851 0.438
Ωρ

2 22.999 0.781 24.948 0.656 25.208 0.312
Ωρ

3 21.769 0.937 23.745 0.562 23.995 0.374
Ωρ

4 23.106 0.781 25.062 0.796 24.637 0.374
Ωρ

5 22.113 0.783 24.026 0.656 23.862 0.374
Ωρ

6 22.578 1.093 24.742 0.609 24.821 0.312
Ωρ

7 22.927 0.937 24.795 0.750 24.949 0.312
Ωρ

8 22.212 0.468 24.324 0.656 24.662 0.374
Ωρ

9 21,966 1.250 23.857 0.515 24.119 0.312

Table 2. Numerical results of Fairy 783 × 783.

Fairy
DDM DDM-CMG DDM-NECMG

PSNR Time (s) PSNR Time (s) PSNR Time (s)

Ω 18.302 8.275 19.808 5.937 20.147 3.225
Ωρ

1 29.451 0.625 31.004 0.437 31.177 0.218
Ωρ

2 25.356 0.312 26.858 0.562 26.136 0.218
Ωρ

3 29.280 1.562 30.770 0.312 29.992 0.218
Ωρ

4 23.763 0.937 25.245 0.375 25.704 0.250
Ωρ

5 25.313 0.312 27.306 0.625 27.329 0.187
Ωρ

6 26.720 0.937 28.573 0.500 28.649 0.218
Ωρ

7 26.191 0.937 27.621 0.562 27.818 0.187
Ωρ

8 26.022 0.625 27.742 0.062 27.849 0.218
Ωρ

9 27.985 0.937 29.687 0.500 29.858 0.218
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Table 3. Numerical results of Lena 543 × 543.

Lena
DDM DDM-CMG DDM-NECMG

PSNR Time (s) PSNR Time (s) PSNR Time (s)

Ω 20.749 3.433 23.752 2.656 23.806 2.329
Ωρ

1 28.740 0.156 32.038 0.234 30.400 0.187
Ωρ

2 27.682 0.312 30.767 0.187 29.344 0.312
Ωρ

3 27.783 0.156 31.152 0.140 29.389 0.125
Ωρ

4 28.231 0.156 30.631 0.093 29.330 0.125
Ωρ

5 27.253 0.312 29.803 0.187 28.502 0.187
Ωρ

6 26.972 0.156 30.181 0.234 28.294 0.125
Ωρ

7 27.946 0.468 29.955 0.187 28.830 0.312
Ωρ

8 27.855 0.156 30.737 0.187 29.079 0.187
Ωρ

9 27.622 0.468 30.982 0.281 29.356 0.312

(a) DDM (b) DDM-CMG (c) DDM-NECMG

Figure 5. Recovery of Pirate 1083 × 1083.

(a) DDM (b) DDM-CMG (c) DDM-NECMG

Figure 6. Recovery of Fairy 783 × 783.

(a) DDM (b) DDM-CMG (c) DDM-NECMG

Figure 7. Recovery of Lena 543 × 543.
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(a) DDM (b) DDM-CMG

Figure 8. PSNR and CPU times of the three algorithms for different resolution images.

Next, we discuss the influence of the overlap size on image restoration. Taking Pirate
1083 × 1083 as an example, we introduce six different overlapping sizes and analyze them
by PSNR and CPU time. The numerical results are shown in Table 4.

From Table 4 and Figure 9, the overlapping domain decomposition method is superior
to the non-overlapping domain decomposition method on PSNR, see Figure 9a. However,
the CPU time will increase with the increase in overlap size, see Figure 9b. We use the
efficiency value (PSNR/CPU time) to represent the performance of the algorithms. By
Figure 9c, when ρ ∈ (0− 20], restoration efficiency is suggested.

Table 4. Numerical results for overlapping domains of different sizes

Pirate 1083 × 1083 ρ = 0 ρ = 20 ρ = 40 ρ = 60 ρ = 80 ρ = 100

PSNR (DDM) 13.386 14.101 14.141 14.181 14.242 14.259
PSNR (DDM-CMG) 15.830 16.402 16.456 16.541 16.556 16.567

PSNR (DDM-NECMG) 15.832 16.504 16.537 16.597 16.612 16.632

Time (DDM) 6.839 8.771 9.998 10.882 12.421 13.436
Time (DDM-CMG) 6.671 7.401 8.248 9.001 10.014 10.938

Time (DDM-NECMG) 3.516 4.325 4.729 5.515 6.078 6.512

(a) PSNR (b) Time (c) Efficiency

Figure 9. Recovery of different overlapping domain sizes.

6. Conclusions

In this paper, DDM-CMG and DDM-NECMG are proposed for image restoration
problems. The methods partition the image domain into some overlapping subdomains,
which can be solved in parallel by using the cascadic multigrid algorithm to reduce the
computational and storage requirements. The numerical results show that DDM-CMG
and DDM-NECMG can not only improve the computational efficiency but also achieve
better denoising and deblurring effects. Compared with the general domain decomposition
algorithm, our methods have fast convergence speeds and better recovery qualities.
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