
Citation: Mohammed, W.W.;

Al-Askar, F.M.; Cesarano, C.;

El-Morshedy, M. On the Dynamics of

Solitary Waves to a

(3+1)-Dimensional Stochastic

Boiti–Leon–Manna–Pempinelli

Model in Incompressible Fluid.

Mathematics 2023, 11, 2390. https://

doi.org/10.3390/math11102390

Academic Editor: Denis Borisov

Received: 14 April 2023

Revised: 19 May 2023

Accepted: 19 May 2023

Published: 22 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On the Dynamics of Solitary Waves to a (3+1)-Dimensional
Stochastic Boiti–Leon–Manna–Pempinelli Model in
Incompressible Fluid
Wael W. Mohammed 1,2,* , Farah M. Al-Askar 3 , Clemente Cesarano 4 and M. El-Morshedy 5

1 Department of Mathematics, Collage of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3 Department of Mathematical Science, Collage of Science, Princess Nourah bint Abdulrahman University,

P.O. Box 84428, Riyadh 11671, Saudi Arabia; famalaskar@pnu.edu.sa
4 Section of Mathematics, International Telematic University Uninettuno, 00186 Roma, Italy;

c.cesarano@uninettunouniversity.net
5 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz

University, Al-Kharj 11942, Saudi Arabia; m.elmorshedy@psau.edu.sa
* Correspondence: wael.mohammed@mans.edu.eg

Abstract: We take into account the stochastic Boiti–Leon–Manna–Pempinelli equation (SBLMPE),
which is perturbed by a multiplicative Brownian motion. By applying He’s semi-inverse method
and the Riccati equation mapping method, we can acquire the solutions of the SBLMPE. Since
the Boiti–Leon–Manna–Pempinelli equation is utilized to explain incompressible liquid in fluid
mechanics, the acquired solutions may be applied to explain a lot of fascinating physical phenomena.
To address how Brownian motion effects the exact solutions of the SBLMPE, we present some
2D and 3D diagrams.
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1. Introduction

Nonlinear wave propagation is one of the most significant natural phenomena, and
there is a developing interest in studying nonlinear waves in dynamical systems. Nonlinear
evolution equations (NEEs) have many applications in engineering and the sciences, such
as in plasma physics, astrophysics, electrochemistry, cosmology, fluid dynamics, acoustics,
and electromagnetic theory. In soliton theory, the issue of solitary wave solutions for NEEs
is addressed by a number of well-known techniques, including (G′/G)-expansion [1,2],
the tanh–sech method [3,4], the exp(−φ(ς))-expansion method [5], the extended auxiliary
function [6], ansatz method [7], Hirota’s method [8], the perturbation method [9,10], and
the Jacobi elliptic function [11], etc.

Moreover, real-world phenomena are not typically deterministic, as actual systems
cannot be completely isolated from their surroundings. For this reason, stochastic effects
must consider these differential equations. The equations that are impacted by random
factors are called stochastic partial differential equations (SPDEs). There has been a lot
of study on these types of models in recent decades. SPDEs are used more and more in
materials sciences, finance, information systems, biophysics, mechanical and electrical
engineering, condensed matter climate, and physics system modeling to develop math-
ematical models of complex phenomena [12–14]. Recently, the exact solutions for some
SPDEs, for instance, [15–20], have been obtained.
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For this reason, stochastic effects in PDEs must be taken into consideration. Here, we con-
sider the (3+1)-dimensional stochastic Boiti–Leon–Manna–Pempinelli equation (SBLMPE),
induced by multiplicative noise:

d(By + Bz) + [Byxxx + Bzxxx − 3(Bx(By + Bz))x]dt = γ(By + Bz)dW, (1)

where B(x, y, z, t) is an analytic function; W is Brownian motion (BM); γ represents the
noise intensity. The BM {W(τ)}τ≥0 is a stochastic process and satisfies the following: (1)
W(τ) is continuous for τ ≥ 0; (2) W(τ2)−W(τ1) is independent for τ2 > τ1; (3) W(0) = 0;
(4) W(τ2)−W(τ1) has a Gaussian distribution with mean 0 and variance τ2− τ1 for τ2 > τ1.

Boiti et al. [21] discovered Equation (1) with γ = 0 while investigating
a Korteweg–de Vries equation using weak Lax pair relations. It is employed to explain
incompressible liquid in fluid mechanics. As a result, a lot of authors have studied different
analytical solutions to Equation (1) with γ = 0, including the extended tanh function [22],
the Bäcklund transformation method [23], the modified exponential function [24], the
auxiliary equation method [25], Hirota’s direct method [26], ansatz functions and bilinear
form [27], (G′/G)-expansion [28], He’s semi-inverse method [29], the general bilinear
form [30], and the modified hyperbolic tangent function [31]. Moreover, the analytical
solutions of the (2+1)-dimensional BLMP equation were acquired in works [32–35] and
the integrability of the (2+1)-dimensional BLMP equation was proved in [36]. Meanwhile,
the stochastic solutions to Equation (1) have not addressed until now.

Our novelty of this study is to acquire the analytical stochastic solutions of SBLMPE (1)
forced by Brownian motion. To obtain these solutions, we utilize two methods, namely the
generalizing Riccati equation mapping method and He’s semi-inverse method. The stochas-
tic term in Equation (1) makes the solutions very accurate and useful for characterizing
various important physical processes, and physicists would do well to consider them. More-
over, we offer some of graphs in MATLAB to explore the influence of noise on the solution
of SBLMPE (1). To the best of our knowledge, this equation has never been investigated
with a random term.

This is a brief summary of this article: The wave equation of SBLMPE (1) is obtained in
Section 2. Achieving exact solutions for the SBLMPE is the focus of Section 3. In Section 4,
we examine how Brownian motion effects the solutions of SBLMPE. Finally, the paper’s
conclusions are laid out.

2. Wave Equation for SBLMPE

The next transformation is employed to derive the SBLMPE (1) wave equation:

B(x, y, z, t) = V(ζ)e(γW(t)− 1
2 γ2t), ζ = ζ1x + ζ2y + ζ3z + ζ4t, (2)

where the function V is deterministic and continuous in its domain; ζ1, ζ2, ζ3 and ζ4 are
undefined constants. We observe that

Bx = ζ1V ′e(γW(t)− 1
2 γ2t), Bz = ζ3V ′e(γW(t)− 1

2 γ2t),

Bzx = ζ1ζ3V ′′e(γW(t)− 1
2 γ2t), Bxx = ζ2

1V ′′e(γW(t)− 1
2 γ2t),

Byxxx = ζ2ζ3
1V ′′′′e(γW(t)− 1

2 γ2t), Bzxxx = ζ3ζ3
1V ′′′′e(γW(t)− 1

2 γ2t),

(By + Bz)t = (ζ2 + ζ3)[ζ4V ′′ + γV ′Wt]e(γW(t)− 1
2 γ2t). (3)

Inserting Equation (3) into Equation (1) yields

ζ4V ′′ + ζ3
1V ′′′′ − 6ζ2

1V ′V ′′e(γW(t)− 1
2 γ2t) = 0. (4)

When we consider the expectations on both sides, we arrive at

ζ4V ′′ + ζ3
1V ′′′′ − 6ζ2

1V ′V ′′e(−
1
2 γ2t)EeγW(t) = 0. (5)
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Since W(t) is Brownian motion, then EeγW(t) = e(
1
2 γ2t); Equation (5) turn into

V ′′′′ + `1V ′′ + 2`2V ′V ′′ = 0, (6)

where
`1 =

ζ4

ζ3
1

and `2 =
−3
ζ1

. (7)

Integrating Equation (6) yields

V ′′′ + `1V ′ + `2(V ′)2 = 0, (8)

where we ignored the integral constant.

3. Exact Solutions of SBLMPE

He’s semi-inverse method (HSI-method) and the generalizing Riccati equation map-
ping method (GREM-method) are used to find the solutions to Equation (8). Consequently,
the solutions to the SBLMPE (1) are found.

3.1. HSI-Method

We derive the next variational formulations by using the HSI-method, which is de-
scribed in [37–39]:

J(V) =
∫ ∞

0
{1

2
(V ′′)2 − 1

2
`1(V ′)2 +

1
3
`2(V ′)3}dζ. (9)

Following the form given by [40], we assume the solution to (6) as

V(ζ) = Ksech(ζ), (10)

where K is an unidentified constant. Plugging Equation (10) into Equation (9), we attain

J =
1
2
K2

∫ ∞

0
[sech2(ζ) tanh4(ζ) + sech4(ζ) tanh2(ζ) + sech6(ζ)

−`1sech2(ζ) tanh2(ζ) +
2
3
`2Ksech3(ζ) tanh3(ζ)]dζ

=
1
2
K2

∫ ∞

0
[(sech2(ζ)− `1sech2(ζ) tanh2(ζ) +

2
3
`2Ksech3(ζ) tanh3(ζ)]dζ

=
K2

2
− `1
K2

6
− 2

45
`2K3.

Making J stationary related to K, as follows:

∂J
∂K = (1− 1

3
`1)K−

2
15

`2K2 = 0. (11)

Solving Equation (11) yields

K =
15− 5`1

2`2
.

Therefore, the solution of Equation (6) is

V(ζ) = 15− 5`1

6`2
sech(ζ).
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Now, the solution of SBLMPE (1) is

B(x, y, z, t) =
5ζ4 − 15ζ3

1
18ζ2

1
sech(ζ1x + ζ2y + ζ3z + ζ4t)e(γW(t)− 1

2 γ2t). (12)

Analogously, we can perform the same thing with the solution to Equation (6) as

V(ζ) = N sech(ζ) tanh2(ζ).

Repeating the previous procedures, we arrive at

N =
11(1199− 213`1)

1456`2
.

So, the solution of SBLMPE (1) is

B(x, y, z, t) =
11(1199− 213`1)

1456`2
sech(ζ) tanh2(ζ)e(γW(t)− 1

2 γ2t), (13)

where ζ = ζ1x + ζ2y + ζ3z + ζ4t.

3.2. GREM Method

In this subsection, we use the GREM method [35]. Let V = V(ζ) be the solution of the
next generalized Riccati equation:

V ′ = sV2 + rV + p, (14)

where s, r, p are constants. Utilizing Equation (14), we have

V ′′′ = 6s3V4 + 12rs2V3 + (8ps2 + 7sr2)V2 + (r3 + 8rsp)V + (r2 + 2sp2). (15)

Plugging Equations (14) and (15) into (8), we obtain

(6s3 + s2`2)V4 + (12rs2 + 2rs`2)V3 + (8ps2 + 7sr2 + s`1 + 2ps`2 + r2`2)V2

+(r3 + 8rsp + r`1 + 2pr`2)V + (r2 + 2sp2 + p`1 + p2`2) = 0
.

By setting each coefficient of V k to zero, we attain

6s3 + s2`2 = 0,

12rs2 + 2rs`2 = 0,

8ps2 + 7sr2 + s`1 + 2ps`2 + r2`2 = 0,

r3 + 8rsp + r`1 + 2pr`2,

and
r2 + 2sp2 + p`1 + p2`2 = 0.

After working out these equations, we obtain

s =
−`2

6
, r = 0, and p =

−3`1

2`2
. (16)

dV
V2 + ( p

s )
= sdζ. (17)

There are various families depending on p and s as follows:
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Family I: If ps > 0, then we have five different solutions to Equation (14):

V1(ζ) =

√
p
s

tan
(√

psζ
)

, for
−π

2
< ζ <

π

2
,

V2(ζ) = −
√

p
s

cot
(√

psζ
)

, for 0 < ζ < π,

V3(ζ) =

√
p
s

(
tan(

√
4psζ)± sec(

√
4psζ)

)
, for 0 < ζ <

π

2
,

V4(ζ) = −
√

p
s

(
cot(

√
4psζ)± csc(

√
4psζ)

)
, for 0 < ζ <

π

2
,

V5(ζ) =
1
2

√
p
s

(
tan(

1
2
√

psζ)− cot(
1
2
√

psζ)
)

, for 0 < ζ <
π

2
.

Thus, by using Equation (2), SBLMPE (1) has the trigonometric function solution:

B1(x, y, z, t) =
√

p
s

tan
(√

psζ
)

e(γW(t)− 1
2 γ2t), for

−π

2
< ζ <

π

2
, (18)

B2(x, y, z, t) = −
√

p
s

cot
(√

psζ
)

e(γW(t)− 1
2 γ2t), for 0 < ζ < π, (19)

B3(x, y, z, t) =
√

p
s

(
tan(

√
4psζ)± sec(

√
4psζ)

)
e(γW(t)− 1

2 γ2t), for 0 < ζ <
π

2
, (20)

B4(x, y, z, t) = −
√

p
s

(
cot(

√
4psζ)± csc(

√
4psζ)

)
e(γW(t)− 1

2 γ2t), for 0 < ζ <
π

2
, (21)

B5(x, y, z, t) =
1
2

√
p
s

(
tan(

1
2
√

psζ)− cot(
1
2
√

psζ)
)

e(γW(t)− 1
2 γ2t), for 0 < ζ <

π

2
, (22)

where ζ = ζ1x + ζ2y + ζ3z + ζ4t, respectively.
Family II: If ps < 0, then we have five different solutions to Equation (14):

V6(ζ) = −
√
−p

s
tanh

(√
−psζ

)
, for ζ ∈ R,

V7(ζ) = −
√
−p

s
coth

(√
−psζ

)
, for ζ ∈ R− {0},

V8(ζ) = −
√
−p

s

(
tanh(

√
−4psζ + c)± isech(

√
−4psζ)

)
, for ζ ∈ [0, ∞),

V9(ζ) = −
√
−p

s

(
coth(

√
−4psζ)± csch(

√
−4psζ)

)
, for ζ ∈ R− {0},

V10(ζ) =
−1
2

√
−p

s

(
tanh(

1
2
√
−psζ + c) + coth(

1
2
√
−psζ)

)
, for ζ ∈ R− {0}.

Thus, by using Equation (2), SBLMPE (1) has the hyperbolic function solution:

B6(x, y, z, t) = −
√
−p

s
tanh

(√
−psζ

)
e(γW(t)− 1

2 γ2t), for ζ ∈ R, (23)
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B7(x, y, z, t) = −
√
−p

s
coth

(√
−psζ

)
e(γW(t)− 1

2 γ2t), for ζ ∈ R− {0}, (24)

B8(x, y, z, t) = −
√
−p

s

(
tanh(

√
−4psζ)± isech(

√
−4psζ)

)
e(γW(t)− 1

2 γ2t), (25)

for ζ ∈ [0, ∞),

B9(x, y, z, t) = −
√
−p

s

(
coth(

√
−4psζ)± csch(

√
−4psζ)

)
e(γW(t)− 1

2 γ2t), (26)

for ζ ∈ R− {0},

B10(x, y, z, t) =
−1
2

√
−p

s

(
tanh(

1
2
√
−psζ) + coth(

1
2
√
−psζ)

)
e(γW(t)− 1

2 γ2t), (27)

for ζ ∈ R− {0}. Where ζ = ζ1x + ζ2y + ζ3z + ζ4t, respectively.
Family III: If p = 0, s 6= 0, then the solution of Equation (14) is

V15(ζ) =
−1
sζ

,

Then, we obtain the rational function solution of SBLMPE (1) as

B15(x, y, z, t) =
( −1

s(ζ1x + ζ2y + ζ3z + ζ4t)

)
e(γW(t)− 1

2 γ2t). (28)

4. Impacts of Brownian Motion

We now investigate the impact of BM on the obtained solution of the SBLMPE (1).
Many graphs illustrating the performance of different solutions are given. Let us fix the
parameters ζ1 = 1, ζ2 = −ζ3 = 1, ζ4 = −2, y = z = 1, t ∈ [0, 3], and x ∈ [0, 4] for some
solutions that have been found, such as (12), (13), and (23), so that we can study them
further. In Figures 1–3, we can see the impact of noise on the solutions:

(a) γ = 0 (b) γ = 1

(c) γ = 2 (d) γ = 0, 1, 2

Figure 1. (a–c) introduce 3D shape of solution given in Equation (12) for several γ = 0, 1, 2;
(d) shows 2D shape for these values of γ.



Mathematics 2023, 11, 2390 7 of 9

(a) γ = 0 (b) γ = 1

(c) γ = 2 (d)γ = 0, 1, 2

Figure 2. (a–c) introduce 3D shape of solution given in Equation (13) for various γ = 0, 1, 2;
(d) shows 2D shape for these values of γ .

(a) γ = 0 (b) γ = 1

(c) γ = 2 (d)γ = 0, 1, 2

Figure 3. (a–c) introduce 3D shape of solution given in Equation (23) for various γ = 0, 1, 2;
(d) shows 2D shape for these values of γ.
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It can be seen from Figures 1–3 that there exist several solutions, such as bright,
periodic, kink, and so on, when the noise has disappeared (i.e., at γ = 0). After a few
modest transit patterns, the surface gets much flatter when noise is presented and the
intensity is raised. This was confirmed using a 2D graph. This implies that the SBLMPE
solutions are affected by Brownian motion and are stabilized at zero.

5. Conclusions

Real-world phenomena are not typically deterministic because actual systems cannot
be completely isolated from their surroundings. For this reason, it is essential to consider
stochastic effects when solving these differential equations. Therefore, we considered
here a stochastic Boiti–Leon–Manna–Pempinelli equation (SBLMPE) that is perturbed by a
multiplicative noise. The solution of the SBLMPE was achieved by using the Riccati equa-
tion mapping and He’s semi-inverse methods. Since the Boiti–Leon–Manna–Pempinelli
equation is utilized to explain incompressible liquid in fluid mechanics, the discovered
solutions can be employed to explain a broad range of fascinating physical phenomena.
We constructed some 2D and 3D diagrams using Matlab to demonstrate the impact of
Brownian motion on the analytical solutions of the SBLMPE. Finally, we deduced that
Brownian motion stabilized the solutions of SBLMPE at around zero.
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