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Abstract: In this work, a color image encryption and decryption algorithm for digital images is
presented. It is based on the modular discrete derivative (MDD), a novel technique to encrypt images
and efficiently hide visual information. In addition, Langton’s ant, which is a two-dimensional
universal Turing machine with a high key space, is used. Moreover, a deterministic noise technique
that adds security to the MDD is utilized. The proposed hybrid scheme exploits the advantages of
MDD and Langton’s ant, generating a very secure and reliable encryption algorithm. In this proposal,
if the key is known, the original image is recovered without loss. The method has demonstrated
high performance through various tests, including statistical analysis (histograms and correlation
distributions), entropy, texture analysis, encryption quality, key space assessment, key sensitivity
analysis, and robustness to differential attack. The proposed method highlights obtaining chi-square
values between 233.951 and 281.687, entropy values between 7.9999225223 and 7.9999355791, PSNR
values (in the original and encrypted images) between 8.134 and 9.957, the number of pixel change rate
(NPCR) values between 99.60851796% and 99.61054611%, unified average changing intensity (UACI)
values between 33.44672377% and 33.47430379%, and a vast range of possible keys > 5.8459× 1072.
On the other hand, an analysis of the sensitivity of the key shows that slight changes to the key do
not generate any additional information to decrypt the image. In addition, the proposed method
shows a competitive performance against recent works found in the literature.

Keywords: image encryption and decryption; modular discrete derivative; cellular automata;
Langton’s ant; deterministic noise; chaos theory; security

MSC: 68P25

1. Introduction

Image encryption corresponds to a set of cryptography techniques that are used to
protect confidential information contained in digital images from unauthorized access.
Cryptography emerged as a sub-discipline of both mathematics and computer science, and
it has been applied to different disciplines where information security is a key issue. In
digital image cryptography, there are specific requirements for the methods that must be
fulfilled to ensure the security of the information. For example, these methods must hide
the visual information of the encrypted image, generating a high entropy value. The key
space must be very large, preventing brute force techniques from being effective. Moreover,
the key sensitivity analysis must show a significant security level. The differential attack
test, a method used to learn about the secret key that encrypts pairs of plaintext and
ciphertext images, must be passed and preserve the visual quality of both the encrypted
and decrypted images [1]. In general, image encryption schemes are commonly composed
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of two stages: a permutation step to secure visual information and a diffusion operation
that changes the value of the pixels to obtain an avalanche effect. The use of both cellular
automata (CA) [1] and chaos theory [2] generates secure and robust encryption systems.
CA are mathematical systems that consist of cell grids that evolve over time according to a
set of rules, while chaotic systems are mathematical models that seemingly exhibit random
behavior, unpredictability, and ergodicity properties. These techniques can be combined to
create complex and unpredictable behaviors, making it difficult for an attacker to deduce
the original version of an image based on its encryption.

Currently, there are cryptographic image methods that use cellular automata and
chaos theory-based techniques. For example, Khayyat et al. [3] presented a new blockchain-
enabled method referred to as shark smell optimization (SSO), which is used in the Internet
of Things (IoT) environments, along with the Hopfield chaotic neural network (HCNN), to
guarantee secure encryption. The proposed SSO-HCNN cryptographic scheme employs a
composite chaotic map and the SSO algorithm to determine the best possible public and
secret keys of the system. HCNN is used in order to generate a self-diffusion chaotic matrix
in the diffusion phase, then the keys are used in XOR operations performed by the messy
image to obtain the encrypted image. The encryption of the pixel value in the image is
stored on the blockchain to guarantee the security and privacy of the images. Li et al. [4]
proposed an encryption algorithm that uses chaotic maps and CA to encrypt images. The
2D logistic-sine-coupling map and the logistic-sine-cosine map (LSCM) were initialized
with values calculated using SHA-256 of the original image. The diffusion process was
then carried out, followed by the key matrices being generated using chaotic maps during
the permutation process. The index matrices obtained by sorting each row or column of the
key matrices were used to scramble the diffused image. Subsequently, the scrambled image
through CA generated a cipher image. The resulting cipher image is resistant to various
attacks. Dong et al. [5] utilized two global rules from hybrid elementary cellular automata
(ECA) to improve the chaotic behavior of the pseudo-random coupled map lattice approach
based on the Chirikov standard map. This resulted in a nonlinear and irreversible model
that provides resistance against chosen plaintext/ciphertext attacks. The effectiveness of
the proposed scheme has been verified by testing its robustness and efficiency against
differential and statistical attacks. In [6], Rupa et al. took a large image and divided it into
smaller, pure image components. These components were then permuted using the cellular
automata rule and subjected to a second-level transformation involving cross-pattern
scanning and circular shift operations. The resulting scrambled image was then divided
into smaller, encrypted images. Lv et al. [7] used reversible Life-like cellular automata
with balanced rules. This algorithm adopts a classic confusion–diffusion structure at
the block level by encrypting the blocks into patterns resembling random noise through
the proposed CA. The resulting encryption method demonstrates satisfactory security
against image processing attacks and exhibits robustness in the face of data loss and
random noise. In [8], Kafetzis et al. described the use of a modified Renyi chaotic map, to
define a pseudo-random bit generator (PRBG). This PRBG, in combination with a finite
automaton, defines an encryption strategy for plain-text images. Overall, the proposed
algorithm uses a combination of chaotic and automaton-based techniques to encrypt gray-
scale images. Boudali et al. [9] proposed an algorithm that uses cellular automata and
chaotic logistic mapping with an approach to facilitate the progression of configurations
in ECA. This was in order to make the resulting encryption more random. The proposed
technique outperforms some existing image encryption algorithms. Overall, the algorithm
combines cellular automata and chaotic logistic mapping to create a secure and effective
method for encrypting multimedia data. In [10], Kang et al. designed cellular automata,
referred to as (n, m, k)-PC-MLCA (programmable complemented–maximum length cellular
automata). This algorithm is used to encrypt color images through two stages. In the first
stage of substitution, the (n, m, k)-PC-MLCA generates nonlinear sequences as encryption
keys. In the shuffling step, the image is processed at the row/column level and the block
unit is processed using 1D maximum length cellular automata (MLCA) to achieve faster
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encryption and decryption methods. In [11], Chong et al. attempted to encrypt color images
using cellular automata and deoxyribonucleic acid (DNA) sequences. They converted a
color image into DNA matrices by using cellular automata to break the correlation among
the various elements within the image. Then, the image was diffused using DNA operations
to hide the information. Roy et al. [12] proposed an algorithm referred to as IESCA; it
uses cellular automata, referred to as two-dimensional Moore cellular automata (MCA),
which is used in resource-constrained IoT devices. The random chaotic sequences are
generated by the system through local transformations that rely on the bit states of the
cellular automaton’s neighbors. It has a higher key space than other CA-based image
encryption techniques, and shows better efficiency in performance, computing time, and
against differential attacks. Kumar et al. [13] described an encryption algorithm using
one-dimensional ECA and the Henon chaotic map. The ECA was used to extract properties
that could be used in a cryptographic diffusion process, while the Henon chaotic map
was used in a keyed transposition cipher to produce a shuffled image, which has been
shown to be resistant to statistical attacks. In [14], Jeelani et al. used cellular automata
to scramble digital images. The performance of the algorithm was evaluated in terms
of the gray difference degree of the scrambled images. The algorithm’s robustness was
further assessed by analyzing the correlation coefficient and the rate of pixel change. These
measures helped determine the algorithm’s ability to withstand potential attacks and
maintain data integrity. Alexan et al. [15] described an algorithm in two stages. In the
initial phase, rule 30 cellular automata (RCA) was employed, followed by the utilization of
a Lorenz system in the subsequent phase. The effectiveness of the algorithm was assessed
using various metrics, and the findings demonstrate that it performs similarly to existing
schemes in the literature while providing the additional advantage of minimal processing
time. This characteristic is highly desirable for real-time applications in the image security
field.

In [16], Song et al. propose an encryption algorithm that uses the integer wavelet trans-
form to transform the original image into the frequency domain. To reorganize the pixel
positions within the image blocks, they employed a one-dimensional chaotic map. This
chaotic map was utilized to obtain diverse reversible cellular automata (RCA). The RCA
evolution of the image blocks was executed by using varying rules and iteration durations
based on the significance of the information contained within the image blocks. The image
was scrambled and diffused to reduce the blocking effect. In [17], Kang et al. use a combina-
tion of the You Only Look Once (YOLO) algorithm for extracting the region of interest from
the original image, the Chen system for encrypting the detected region of interest (ROI),
and a hardware-friendly CA for encrypting the entire image. Gan et al. [18] proposed using
a combination of compressive sensing (CS), the Game of Life (GoL), and a 5D memristive
hyperchaotic system to encrypt images. The process involves permuting, compressing,
and diffusing the plaintext image using the GoL-based scrambling method and CS. The
key matrix used in the diffusion process is generated by using chaotic sequences from
the 5D memristive hyperchaotic system, which is also used to construct the measurement
matrix and generate the initial cell matrix for GoL. In [19], Ping et al. used a combination
of cellular automata. During the scrambling stage, the image’s rows and columns were
simultaneously scrambled using a keystream generated by a 2D logistic-adjusted sine
map (LASM). In the diffusion stage, the scrambled image was divided into two identical
square-bit matrices, which were then encrypted using a CA. Choi et al. [20] combined a
generalized 3D chaotic Arnold’s cat map (ACM) with a PC-MLCA to encrypt color images.
The PC-MLCA was designed for hardware implementation; with its extended duration
and non-linear output, it provides an encryption key through a pseudo-random number
generator (PRNG). The image undergoes a simultaneous transformation of pixel positions
and color values using the generalized chaotic cat map. This approach enhances the image’s
resistance to noise and deletion attacks. In [21], Choi et al. proposed a combination of image
shuffling and 1D MLCA to encrypt color images. Image shuffling is used to resist distortion
and deletion attacks, and the 1D MLCA is used to shuffle the pixel positions of the image.
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Naskar et al. [22] employed a combination of key-based block ciphering, shuffling with
variable-sized blocks, and elementary cellular automata with a chaotic tent map to encrypt
images. The key streams used for ciphering individual blocks varied in size, showing a
dependency on the plaintext image and the previous key stream. The ciphered blocks
were then shuffled to increase diffusion. The resulting encrypted image had a low level of
correlation and a high rate of pixel change compared to the original image, indicating a
high level of security. Zhang et al. [23] used a combination of set partitioning in hierarchical
trees (SPIHT), cellular automata, and different chaotic systems to encrypt images in a
lossless manner. By integrating the encryption process with the data compression process,
it is possible to effectively encrypt a small portion of the data without compromising the
advantageous coding properties of SPIHT. In [24], Chai et al. suggested a fusion of an
ECA chaotic system with various parameters and block compressive sensing (BCS) as an
image encryption/compression approach. The plaintext image was first transformed using
discrete wavelet transform (DWT) to create four block matrices, representing different
frequency components of the image. Subsequently, ECA was utilized to disorder the block
matrices, changing the positions of their elements and increasing the confusion of the
algorithm. Following this, BCS was applied over the disordered matrices to compress
and encrypt them by utilizing measurement matrices. The proposed method provides
good security and robustness. Gen et al. [25] proposed an image encryption method by
incorporating a finite state machine (FSM) and block scrambling. The algorithm starts by
decomposing the original image into four frequency bands through the discrete wavelet
transform. Subsequently, a combination of zig-zag scanning curves and chaotic sequences
is employed to generate a scrambling matrix. This matrix is utilized to scramble the image
by using a combination of chaotic sequences, DNA coding, and automata. Finally, the
image is diffused using a key stream to improve security.

In the last decade, other works have shown that methods inspired by cellular automata
and chaos theory are very competitive in image encryption. In [26], Eslami and Kabirirad
used cellular automata as chaos generators in a block-based image encryption approach.
The proposed approach can identify subtle alterations in the encrypted image prior to the
decryption process. Qi et al. [27] presented a chaos-based image encryption method using
a 2D Henon–Chebyshev map (HCM). The random sequence generated by 2D HCM is used
to scramble the pixel positions, which are converted into DNA planes. Then, a 2D DNA-CA
is applied to update the DNA planes in each iteration of the 2D HCM stage. The authors
of [28] designed an image encryption scheme that incorporates the random fractional
discrete cosine transform (RFrDCT) and the Game of Life (GoL) based on chaos theory.
In [29], Mondal et al. suggested a chaotic skew tent map and a CA-based encryption image
method. The initial 128-bit sequence is generated from the chaotic skew tent map, which is
then utilized by CA to generate pseudo-random numbers. These numbers are then utilized
to shuffle the pixels of the plaintext image. Subsequently, the scrambled image is encrypted
by a random number obtained by the chaotic map. An image encryption method using the
logistic sine system (LSS), 2D CA, and an FSM-based DNA rule generator were proposed
by Khan et al. [30]. To generate the secret key and initial values for the LSS, the researchers
utilized the SHA-256 algorithm. The first stage of their encryption scheme employs the
Feistel structure-based bit inversion (FSBI) to modify the pixel values. They then utilize 2D
cellular automata with local rules using the structure-based Moore neighborhood. Finally,
the image is transformed using a generator of rules based on a DNA finite state machine.
In [31], Li et al. reported a mono-spectral image encryption method applied to multispectral
color information without dividing it into three color channels. The proposed method can
encrypt mono-spectral elemental images (EIs). In addition, linear CA and hyperchaotic
encoding methods encode the captured EIs. Seshadhri and Chandrasaker [32] developed an
image encryption approach in the hybrid domain based on a logistic map (LM), reversible
integer wavelet transform (RIWT), and ECA. Thus, the LM performs a permutation of
the pixel positions using CA in the spatial domain and by a random matrix generated
by the LM in the transformed domain by RIWT. Ben Slimane et al. [33] defined an image
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cryptosystem based on 2D LM and non-uniform CA using the SHA-2 algorithm. In [34],
Rajagopalan et al. proposed an encryption approach for color images by using chaotic
CA attractors. The authors encrypted the color bands using Lorenz, Lü, and CA based on
rule 42. Moreover, scrambling and XOR operations were used to improve security, and
the authors generated a random synthetic image to diffuse the three color channels. Ping
et al. [35] reported an image encryption technique that combines Life-like CA and the
theory of chaos. The method involves two stages: permutation and substitution. In the
permutation stage, a 2D LASM is employed. For the substitution stage, a Life-like cellular
automaton of second-order is utilized, employing a rule approach. In [36], Rajagopalan et al.
proposed an encryption system for color images using a key image triggered by hardware,
as well as the Lorenz, Lü, and cellular automata attractors for confusion and diffusion
processes. The method uses a key image generated using a ring oscillator circuit in the
cascade to facilitate pixel diffusion and secure image transfer server–client architectures.
Chai et al. [37] introduced an image encryption method that combines the memristive
chaotic system, CS, and ECA techniques. Initially, the plaintext image undergoes a DWT
to acquire the sparse coefficient matrix. Subsequently, the sparse coefficient matrix is
subjected to a zig-zag scrambling technique and the ECA algorithm. Finally, the scrambled
image is compressed using a measurement matrix generated by the memristive chaotic
system. Sharma and Kaur [38] reported an improved and hybrid cryptographic approach
that relies on altering the mixing matrix within the independent component analysis
(ICA) framework and incorporating the chaotic ACM method by using reversible cellular
automata. In [39], Hanis and Amutha presented an approach that compresses and encrypts
via a key generation algorithm using modified convolution and a chaotic logistic mapping
method. The proposal performs a double-image encryption scheme by truncating and
combining the four least significant bits. In addition, the resulting image is diffused
by cellular automata to increase security. Li et al. [40] presented a color image hybrid
encryption algorithm that uses cellular automata and a hyperchaotic system. The pixel
values of each color component were summed, and the resulting sum was used, along
with the secret keys, to generate the initial value for the logistic map used in encryption.
Bhardwaj and Sharma [41] presented encryption methods for images using 2D CA; they
used single and double layers to scramble the pixels. Moreover, the authors conducted a
performance analysis on both single-layer and double-layer 2D cellular automata. In [42],
Rajagopalan et al. reported a combination of software and hardware solutions for image
encryption. The proposed method uses an optic system and a dual combination of chaotic
cellular automata. On the one hand, the processes of confusion and diffusion of a grayscale
image are performed by a logistic map and optocoupler. On the other hand, the encryption
method is realized using a multifunctional data acquisition system (DAQ) to interface
with the optocoupler for random sequence generation. Liang et al. [43] showed an image
encryption algorithm based on a two-dimensional, two-state, and five-neighbor reversible
CA. In [44], Chai et al. reported an image encryption approach that utilizes the memristive
hyperchaotic system, CA, and DNA sequences. The SHA-256 hash algorithm was utilized
to generate the confidential key and the starting values for the chaotic system. Two DNA
rule matrices were used in the dynamic DNA encoding and 2D CA to encrypt the plaintext
image. Yaghouti et al. [45] presented an image encryption scheme based on a non-uniform
cellular automata framework. First, a chaos mapping approach performs the confusion
step over the image pixels. Then, a non-uniform cellular automaton creates the key image,
and random numbers from this image are selected for encryption using hyperchaotic
mapping. In [46], Burak introduced an image encryption method that utilizes a parallelized
implementation of the Game of Life and a chaotic system, leveraging the OpenMP standard.

Chaotic maps are used in chaos-based encryption algorithms as the main source of
randomness in pseudo-random number generators. In recent years, multi-parametric
maps have emerged as alternatives to chaotic maps using a single parameter, which can
be vulnerable to attacks through the phase space reconstruction technique. However,
these methods require research to define the areas of chaotic behavior, making it hard
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to determine the areas of chaotic behavior, i.e., the possible encryption keys. Moreover,
there is a degradation problem of chaotic dynamics when finite precision hardware is used
due to the rounding of results from arithmetic operations. Therefore, methods utilizing
chaotic maps with adaptive symmetry are proposed to develop encryption approaches
based on chaos theory. These methods offer wide parameter spaces, and the bifurcation
properties of the maps remain unchanged when rotating, compressing, or stretching the
phase spaces of the maps [47,48]. Thus, Tutueva et al. [47] proposed an adaptive Zaslavsky
web map through multi-parametric bifurcation analysis as a pseudo-random generator.
In [48], the authors proved that we could overcome some disadvantages of methods that
employ chaos-based cryptography using discrete maps with adaptive symmetry. Moreover,
Daoui et al. [49] proposed the multiparametric 1D tent map, which is an extension of a
chaotic tent map and consists of six control variables with a domain over an unlimited
range and generates a secure key space.

In [50], Nepomuceno et al. proposed the application of the concept of pseudo-orbit to
generate a random sequence. Instead of using chaotic systems directly, the authors used the
error that appeared due to the computer’s finite precision. This error was estimated as the
difference between two pseudo-orbits. Furthermore, there was swift progress in the field of
discrete fractional calculus, with numerous novel applications being researched. An exam-
ple is the fractional-order logistic map, which has been shown to have unique bifurcation
scenarios and chaotic dynamics in comparison to the whole-order system [51]. In addition,
elliptic curve cryptography is a recent, popular, and effective technique for public key cryp-
tography; it reduces the length of safe secret keys required for top-secret documents [52].
Thus, in [51], Askar et al. proposed a cryptosystem by combining the advantages of the
elliptic curve techniques and the complicated dynamics of the fractional-order map, by
generating an elliptic curve key exchange scheme. Al-Khedhairi and Elsonbaty [52] pro-
posed a fractional-order two-dimensional map and a secure encryption scheme of color
images. This scheme combines the associated chaotic pseudo-orbits with the advantages of
elliptic curves in public key cryptography.

Other works that use finite-precision error include [53], where Nardo et al. used it as a
source of randomness; they obtained the error by using two distinct interval extensions
to implement a chaotic system. The resulting sequence has met the criteria for being
considered a quality source of randomness by passing all NIST tests, which consist of
various random number generators and a set of practical tests designed to evaluate the
randomness of binary sequences. Moreover, in [54], Zhou et al. used finite precision by
selecting a chaotic system and obtaining the evolution error of two different trajectories of
the system to obtain a new chaotic signal that can be used for image encryption.

In this paper, we propose a color image encryption algorithm based on a chaotic
model. It uses a hybrid approach based on the modular discrete derivative (MDD), cyclic
permutation (CP), Langton’s ant (LA), and deterministic noise (DN), in order to achieve
an encrypted image with high-level security. The modular discrete derivative is a novel
technique used to increase the security of the encrypted image. It is based on a variant of the
discrete derivative used in many fields of science and engineering. Due to its characteristics,
MDD has the advantage of producing a significant visual impact on the encrypted image. In
addition, we used a variant of the deterministic noise and an improvement of Langton’s ant,
both previously reported in [1]. The deterministic noise and the modular discrete derivative
applied to an image hide its visual information, while Langton’s ant has the advantage of
having a large key space. We conducted multiple tests to examine the encrypted images
produced by our method and analyzed their level of security and visual encryption. These
tests included statistical analyses, correlation evaluation, entropy computing, entropy
quality, texture analysis, the key space universe computing, testing against differential
attacks, and an analysis of the key sensitivity.

The use of Langton’s ant in image encryption has been explored in only a few papers;
despite its potential as a competent method, it remains an underutilized method in this
context. This research aims to contribute to the existing literature by further exploring its
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strengths and weaknesses in image encryption. Moreover, this research introduces the use
of MDD for image encryption, which, to the best of our knowledge, has not been previously
studied. By testing the effectiveness of this method, our research seeks to demonstrate its
potential as a valuable addition to the existing set of image encryption techniques.

The remaining sections of this paper are structured as follows: Section 2.1 introduces
the image dataset used in this work. In Section 2.3, we introduce the concept of the modular
discrete derivative operation. Section 2.4 describes the algorithm of the image spatial
cyclic permutation. The automaton known as Langton’s ant is introduced in Section 2.5;
in Section 2.6, we present a deterministic noise algorithm. Later, in Sections 2.7 and 2.8,
we make use of the previous methods to propose image encryption and decryption algo-
rithms. We show the experimental results of the proposal in Section 3. A comparison with
other state-of-the-art work is given in Section 4. We discuss the results of our research in
Section 5. Finally, in Section 6, we conclude our paper and propose work to be developed
in subsequent research.

2. Materials and Methods
2.1. Dataset Description

We obtained the images used in this paper from two public image datasets: the USC-
SIPI dataset [55] and the University of Konstanz’s dataset [56]. They are composed of
four RGB images (Baboon.png, Lena.png, Peppers.png, and 4.1.03.png), and four gray-
scale images (Barbara.png, Boat.png, Cameraman.png, and Zelda.png); all of them have
dimensions of 512× 512 pixels. The images selected are the most used as test images in
cryptography methods; they are shown in Figure 1. Since our proposed algorithm uses
RGB images, we had to convert our gray-scale pictures into RGB images. We accomplished
this by replicating the matrix values of the original image and assigning them to each of
the three color channels.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Image dataset. (a) Baboon.png. (b) Lena.png. (c) Peppers.png. (d) 4.1.03.png. (e) Bar-
bara.png. (f) Boat.png. (g) Cameraman.png. (h) Zelda.png.

In addition, we used the RGB image arctichare.png with dimensions of 594× 400 pixels
(Figure 2a) [56]. We selected this image to test the proposed cryptography method on
images with large homogeneous areas.
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(a) (b) (c)

Figure 2. (a) Original image. (b) Tenth derivative. (c) Tenth derivative of the image with Gaussian
noise previously applied.

2.2. Overview of the Proposed Encryption System

The proposed encryption algorithm is composed of five steps, as shown in Figure 3,
and as listed below:

1. First deterministic noise;
2. Cyclic permutation;
3. Second deterministic noise;
4. Modular discrete derivative;
5. Langton’s ant.

We detail each method and the images used in the following sections.

Figure 3. The five steps of the encryption algorithm.

2.3. Modular Discrete Derivative

The discrete derivative is a term used to name an analog of the derivative of a continu-
ous function f (x) with respect to the variable x, but in a discrete domain. In other words,
the discrete derivative follows the same definition as the following derivative:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

,

except that in our discrete domain, instead of taking the limit as h approaches 0, we consider
h as 1. Therefore, the discrete derivative will be given by

f ′(x) = f (x + 1)− f (x).

However, for the intent of our algorithm, we will need to obtain the results in a specific
range; to achieve this, we will take the modulo n of the result of the discrete derivative.
Then, we can define the modular discrete derivative as shown in Equation (1):

f ′(x) = mod( f (x + 1)− f (x), n). (1)
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In particular, for a range between 0 and 255, for 8-bit images, we will use the modulo
n = 256, as shown in Equation (2):

f ′(x) = mod( f (x + 1)− f (x), 256) (2)

to obtain numbers in the interval that we want.
The modular discrete derivative can be used to describe the following process: let Kn

be the first r positive integers, and let An : Kn → Z, such that An(k) is the kth element of
a sequence. Let Kn+1 be the first r− 1 integers numbers, we will then use Equation (2) to
define An+1 : Kn+1 → Z, such that An+1(k) = A′n(k). In other words, if we have a sequence
of numbers determined by An, An+1 will determine its modular discrete derivative, using
modulo 256. To simplify, from now on, we will simply say that An is the nth derivative of A0.
It is trivial that if the cardinality of the domain of A0 is r, A0 will have, at most, r− 1 degrees
of derivatives. This whole procedure is illustrated in Figure 4. It should be noticed that if
we remove the gray numbers in Figure 4, the dark numbers can be used to recover the lost
numbers by doing the inverse procedure: An(k) = mod(An(k− 1) + An+1(k− 1), 256) |
k ≥ 2.

Figure 4. The lowest row is our initial sequence (A0(k) is the kth element of the sequence). The
following rows are the derivatives of the rows below them.

To apply the modular discrete derivative to an image, we take each color channel of
the image individually; for each one, we will change their dimensions from a M× N matrix
to a 1× MN matrix, which we can then treat as our initial sequence. At first, our idea
was to take all of the derivatives of the sequence to keep only the dark numbers shown
in Figure 4, but given the number of elements of our sequence, this would have taken a
lot of time. We noticed that it was possible to compute only a fraction of the triangle, as
illustrated in Figure 5, where only the first and second derivatives were calculated.

Figure 5. Instead of calculating all of the derivatives similar to before, in this case, we stop on the
second derivative.

The dark numbers of Figure 5 can be used to recover the initial sequence at the bottom.
Moreover, the amount of dark numbers is equal to the numbers in the initial sequence.
Therefore, our next step with the image would be to take the nth derivative of our sequence,
keep only the dark numbers, and transform them into an M× N matrix. After this is done
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to all of the channels of the image, we can join the results together to obtain an encrypted
image, which can then be decrypted by performing the inverse procedure mentioned before
to recover the missing information.

Figure 6 shows the results of taking the tenth derivative of the Lena image. We can see
that the MDD of the tenth order has a heavy visual impact on the encrypted image.

(a) (b)

Figure 6. (a) RGB image of Lena. (b) Tenth derivative.

It is evident that the resulting image appears as a random noise pattern. However, this
is not always the case. If an image has any areas with the exact same colors, the derivative
would be zero in them (and as a consequence, in the next derivatives as well). For example,
in Figure 2, we present an image with large homogeneous areas that are then transformed
into large black areas that reveal some of the shapes of the original image. To solve this, we
added Gaussian noise with a mean of 0 and variance of 0.0001 to the original image, this
noise is imperceptible to the human eye. When we apply the MDD, we obtain an encrypted
image that again looks similar to random noise and shows none of the original shapes.

While this solution is simple, it comes at the cost of sacrificing the original image:
random noise would make it impossible to obtain the exact original image, even if the
resulting decrypted image looks identical to the original (to the human eye). Hence, in
Section 2.6, we introduce a deterministic noise to replace the Gaussian noise Section 2.6.

An important aspect of MDD to highlight is its sensitivity to changes. If an image is
encrypted using MDD, and one pixel of the resulting image is altered, when conducting the
inverse algorithm, all pixels in the corresponding column below that pixel and all columns
to the right will be affected. Figure 7 shows two examples of this sensitivity.

(a) (b)
Figure 7. Results of encrypting Lena using MDD, modifying a pixel of the encryption, and decrypting
with the inverse MDD. (a) Pixel altered in column 256, row 100. (b) Pixel altered on column 1, row 100.

2.4. Image Spatial Cyclic Permutation

In mathematics, a permutation P(S) consists of the reordering of the members of a set
S into another sequence or linear order. For example, let S = {s0, s1, . . . , sL−1} be a finite
set composed of L elements, in Cauchy’s two-line notation [57], a particular permutation P
is shown as follows:
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P(S) =
(

s0 s1 s2 · · · sL−1 sL
sn sn−1 s2 · · · s1 s0

)
, (3)

where the list of elements of S is shown in row 1 and the corresponding image in row 2.
On the other hand, a cyclic permutation CP(S){k} is a permutation that shifts the ele-

ments of S by an offset, k ∈ Z and k 6= 0, generating a set where the elements, either the be-
ginning or the end, are inserted in the opposite direction while retaining the relative position
between them. This procedure can be expressed mathematically as si → si+k (mod L) [58].
Thus, when k ≥ 1 we obtain a right-cyclic permutation, and when k ≤ −1, we obtain a
left-cyclic permutation.

Therefore, the following permutation is a left-cyclic permutation with k = −1:

CP(S){k = −1} =
(

s0 s1 s2 · · · sL−1 sL
s1 s2 sL−1 · · · sL s0

)
. (4)

In a two-dimensional case, for example, a digital image A(x, y) of M× N pixels, a
cyclic permutation CP(A){kx, ky} could be applied to its spatial coordinates x and y, as
shown in Equation (5):

CP(A){kx, ky} = A
(

x + kx (mod N), y + ky (mod M)
)

, (5)

where kx and ky are the horizontal and vertical offsets, respectively.
When the cyclic permutation is applied over a multi-spectral digital image, e.g., an

RGB image, the process is performed on each channel to keep the image color unchanged.
To show the cyclic permutation process, in Figure 8, we can see some results. Thus,

Figure 8a shows a 512× 512× 3 image, Figure 8b,c show the results for the horizontal
left-cyclic permutation CP(A){kx = −200, ky = 0} and the cyclic permutation of elements
in an upward vertical direction CP(A){kx = 0, ky = 200}, respectively. Finally, Figure 8d
shows the result of a permutation that cyclically shifts elements in a vertical upward
direction, followed by another permutation that cyclically shifts elements in a horizontal
left direction over the image CP(A){kx = −300, ky = 300}.

(a) (b)

(c) (d)

Figure 8. A digital RGB image being modified by different cyclic permutations. (a) RGB image.
(b) Horizontal left-cyclic permutation result CP(A){kx = −200, ky = 0}. (c) Cyclic permutation of
elements in an upward vertical direction result CP(A){kx = 0, ky = 200}. (d) Vertical upward-cyclic
permutation in succession of a horizontal left-cyclic permutation result CP(A){kx = −300, ky = 300}.
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2.5. Langton’s Ant

Langton’s ant is a cellular automaton that was introduced by Christopher Langton
in 1986 [59]. It has garnered significant interest across multiple fields, including emergent
dynamics, Lorentz lattice gas, computational complexity, and cryptography. Its study stems
from the challenge of predicting the macroscopic behavior of the ant based on its initial
microscopic configuration [60].

Langton’s ant can be described as a two-dimensional universal Turing machine with
two notable characteristics: (i) A simple set of rules and (ii) a complex emergent behavior.
The ant navigates an infinite grid consisting of cells that can be in an OFF or ON state.
Initially, the ant is positioned on the grid and oriented in one of four directions: up, right,
down, or left. As it navigates the grid, the ant follows two rules: (i) if the current cell is
OFF, it turns 90 degrees clockwise, switches the cell state to ON, and moves to the next cell
in its path; (ii) conversely, if the current cell is ON, it turns 90 degrees counterclockwise,
switches the cell state to OFF, and moves forward to the next cell. Figure 9 shows the first
four iterations of the automaton.

(a) (b) (c) (d)

Figure 9. Langton’s ant taking the first four steps on a 3 × 3 grid with only one cell turned ON
initially. (a) First step. (b) Second step. (c) Third step. (d) Fourth step.

In the first few steps, the ant appears to have chaotic behavior; however, if placed on a
grid composed entirely of turned-OFF cells, the ant eventually reaches stable behavior in
the 104 steps known as “the highway”, as shown in Figure 10, giving rise to the highway
conjecture: “If the ant is placed on an infinite grid with either a finite amount of cells
turned ON or a finite amount of cells turned OFF, the highway structure must form
eventually” [60].

Figure 10. Langton’s ant (white cell) stuck in “The Highway” after 11,538 steps.

Evidently, these rules can only be applied to a grid of infinite extensions since the
behavior of the ant on an edge is not defined, as would be the case in a grid composed of a
digital image.

In the research conducted by Wang and Xu [61], the original rules of Langton’s ant
were employed. The authors generated the values of the grid by using an intertwining
logistic map and made adjustments to coordinates and rotation directions due to the finite
grid of a digital image.
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In this research, and as reported by Romero-Arellano et al. [1], when the ant crosses
an edge of the grid, it reappears on the opposite edge, creating a topological equivalence to
the ant moving on the surface of a torus. As a result, if “the highway” pattern emerges, it
will eventually be disrupted, and the ant’s motion will return to a state of chaos.

The reversibility of Langton’s ant is trivial. The process can be reversed by rotating
the ant 180 degrees and allowing it to take the same number of steps as it did initially, the
ant retraces its path and returns to its original configuration.

Unlike Wang and Xu [61], where Langton’s ant was applied to digital images using
the original set of rules, and as presented in work by Romero-Arellano et al. [1], we focused
on the gray level of the image. For an RGB image (with pixel values ranging from 0 to 255
in each color channel), we separated the color channels of the image and applied the ant to
each channel individually. Subsequently, we modified the rules of the ant to adapt them to
the 256 values of a gray-scale image: (i) if the ant was in an even pixel, it considered it as an
OFF cell, (ii) if the ant was in a pixel with an odd value, it considered it as an ON cell. To
switch the current state of the cell, the ant added an arbitrary odd integer, for example, 47,
to the pixel value, changing its parity. If the result was greater than or equal to 256, we took
its modulo as 256. After the ant was applied to all color channels, we combined the results
to obtain an encrypted image. In order to decrypt the image, the image was first separated
into its color channels. Then, the ant was placed at the final position it reached during
the encryption process. The ant was rotated 180 degrees and moved the same number of
steps it initially took during encryption, but instead of adding the odd integer (47) at each
iteration, we subtracted 47 and took modulo 256 if necessary.

In Figure 11, we show the results of applying this algorithm on the 512× 512 Lena
RGB image with a variety of iterations. The results show that the main disadvantage of
Langton’s ant is that a very large number of steps is needed to completely hide the visual
information of the image, and this amount increases with the size of the image.

(a) (b)

(c) (d)

Figure 11. A 512 × 512 RGB image modified by Langton’s ant with different amounts of itera-
tions. (a) Original RGB image. (b) Using 100,000 iterations. (c) Using 300,000 iterations. (d) Using
1,500,000 iterations.

In our proposal, we took the color channels of an RGB image, and then used Langton’s
ant on each one by giving it an initial coordinate, an upward orientation, and a number of
steps to walk. Then, we saved the final coordinates, final orientation, and the number of
steps as our decryption key.
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2.6. Deterministic Noise

In order to utilize the modular discrete derivative, we used a function that outputted
pseudo-random integers. These numbers were added to the image as noise. This method
is a slight modification of the deterministic noise method described by Romero-Arellano
et al. [1]. The working principle of the deterministic noise is as follows: Consider an RGB
image A with dimensions M× N × 3. We define three variables, s1, s2, and s3, according to
Equation (6):

sτ = mod

(
N

∑
i=1

M

∑
j=1

A(i, j, τ)(jN − N + i), M× N

)
, (6)

where i, j represent the row and column of each pixel, respectively, and τ = 1, 2, 3 represents
the color channel for RGB images.

Then, we define variables p1, p2, and p3 as shown in Equations (7)–(9).

p1 = s2 ∗ s3 + s1, (7)

p2 = s1 ∗ s3 + s2, and (8)

p3 = s2 ∗ s1 + s3. (9)

This ensures that applying the algorithm on two images that are almost identical,
except for the value of a bit, will give different outputs for s1, s2, and s3 and, consequently,
different values for p1, p2, and p3; therefore, a very different noise will be applied to each
image.

If p1 = p2, then we increment p2 by one unit. If p1 = p3, then we increment p3 by one
unit. Finally, if p2 = p3, then we increment p3 by one unit. In this way, we will make sure
that all of the values are different.

We now define a M× N RGB image B, which will represent the result of adding noise
to A. For each row i, we multiply p1, p2, and p3 by i to obtain the variables z1, z2, and z3,
respectively. Subsequently, we can calculate B(i, j, 1), B(i, j, 2), and B(i, j, 3) for the jth
element of the current row of A by using Equations (10)–(12):

B(i, j, 1) = mod
(

A(i, j, 1) +
⌊

z1 ∗ i + j
z2 + z3

⌋
, 256

)
, (10)

B(i, j, 2) = mod
(

A(i, j, 2) +
⌊

z2 ∗ i + j
z1 + z3

⌋
, 256

)
, and (11)

B(i, j, 3) = mod
(

A(i, j, 3) +
⌊

z3 ∗ i + j
z2 + z1

⌋
, 256

)
. (12)

Our use of modulo 256 is due to each color channel of the image being an 8-bit image;
therefore, we need the output to be in the range of 0 to 255. Before moving to the next
column, we will modify z1, z2, and z3 by first calculating some auxiliary variables, q1, q2,
and q3, which are defined in Equations (13)–(15):

q1 = mod
(⌊

z1 ∗ i + j
z2 + z3 + 1

⌋
, 256

)
, (13)

q2 = mod
(⌊

z2 ∗ i + j
z1 + z3 + 1

⌋
, 256

)
, and (14)

q3 = mod
(⌊

z3 ∗ i + j
z2 + z1 + 1

⌋
, 256

)
. (15)

Then we use Equation (16) to recalculate z1, z2, and z3:

zτ = mod(qτ + z′τ , 256) + 1, (16)

where τ = 1, 2, 3 and z′τ corresponds to the last value of zτ .
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We move to the next column and use the values of z1, z2, and z3 to apply Equations (10)–(12),
recalculate the values using Equations (13)–(16), move on to the next column, and repeat
until we finish the current row and move on to the row below. Each time we change rows,
we use p1, p2, and p3 again to calculate z1, z2, and z3, continuing with the algorithm until
we modify every pixel.

We show the results of using our deterministic noise on a completely black image of
dimensions 512× 512× 3 in Figure 12. The results show that there are areas that are almost
unaffected by the noise; the best areas are those after row 300 and before column 120. To
fix this issue, we altered the deterministic noise algorithm. If i < 300, we increase i by 300,
and for every 120 columns, we recalculate the values of z1, z2, and z3 as if we changed to a
new row. The resulting noise generated by this modified method can be seen in Figure 13.
As a consequence of this modification, a vertical pattern can be seen on the image every
120 columns.

(a) (b)

Figure 12. Applying the original deterministic noise. (a) Black image. (b) Black image with the noise
applied.

(a) (b)

Figure 13. Applying the modified deterministic noise. (a) Black image. (b) Black image with the
modified noise applied.

It is worth noting that when we are in any given column and recalculate the z1, z2, and
z3 values for the first time, we obtain three numbers in a range [1, 256], which completely
determine the rest of the values in the row. To be more detailed, after we obtain the first
value of the row, there exists 2563 possible sequences of values for the rest of the row. It is
also worth noting that if one set of parameters p1, p2, and p3 generates parameters z1, z2,
and z3 for row i, and a different triad of variables p′1, p′2, and p′3 gives as output for the
same row i an identical set of parameters, i.e., z1, z2, and z3, then the variables that will be
obtained for the following row are not necessarily also equal. In simpler terms, the results
of a row do not predetermine the results of the following rows. A counterexample is shown
in Figure 14, where we applied the deterministic noise to a black RGB image, one time with
the parameters p1, p2, and p3, and another time with another set of parameters, obtaining
identical values for the first row (except for the first pixel) and with different values for the
following rows.
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(a) (b)

Figure 14. Black 10× 10 RGB image with deterministic noise applied, using two different sets of
parameters. (a) Using p1 = 400, p2 = 417, and p3 = 20. (b) Using p1 = 403, p2 = 810, and p3 = 54.

Removing the noise is trivial. If the noise was generated using the parameters p1, p2,
and p3, then we used those parameters to perform the exact same algorithm but replaced
Equations (10)–(12) with Equations (17)–(19), respectively:

A(i, j, 1) = mod
(

B(i, j, 1)−
⌊

z1 ∗ i + j
z2 + z3

⌋
, 256

)
, (17)

A(i, j, 2) = mod
(

B(i, j, 2)−
⌊

z2 ∗ i + j
z1 + z3

⌋
, 256

)
, and (18)

A(i, j, 3) = mod
(

B(i, j, 3)−
⌊

z3 ∗ i + j
z2 + z1

⌋
, 256

)
. (19)

2.7. Encryption Algorithm

The proposed encryption algorithm consists of five distinct steps, each contributing
to the overall encryption process. The steps shown in Figure 3 outline the sequential
operations performed to transform the input data into an encrypted form, ensuring the
confidentiality and integrity of the information. The initial step of our proposal involves
applying the deterministic noise to the image, which will mitigate the issue with homo-
geneous zones mentioned in Section 2.3. Due to the vertical and horizontal patterns of
the deterministic noise, the second step is to shift the image 60 columns to the right and
60 rows down with the cyclic permutation, followed by applying the deterministic noise
again as the third step. Now that the image is free of homogeneous zones, the next step
is to apply the modular discrete derivative, which drastically changes the histogram of
the image and makes it look similar to random noise. Finally, Langton’s ant is applied
in the fifth step, which provides security to the algorithm by providing a large key space
(detailed in Section 3.6), takes advantage of the sensibility of MDD to the initial conditions
in the decryption process, and does not require a large number of steps since the image has
already been modified by the MDD to look similar to random noise. We position the ant on
the first column, this ensures that if, during the decryption process, the ant gives one more
or one less step than necessary, a pixel on the first column will have the wrong value, which
will generate wrong values for all columns to the left when the inverse MDD is applied.

To summarize, LA provides security, MDD hides the image, DN prepares the image
for MDD, and CP fixes any gaps left over by the DN.

Our proposal uses the following variables as parameters to achieve the image encryp-
tion: the degree of the derivative of MDD for each color channel, the row representing the
initial position for each of the three ants, their orientations, and the number of steps they
take.

2.8. Decryption Algorithm

In order to decrypt the resulting images, we use the inverse function of each of the
methods involved in the algorithm, as represented in Figure 15. To begin, we take the
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final coordinates and orientations of the ant on each color channel and let them walk the
same number of steps as the ones used to encrypt. Then we use the three degrees of the
derivatives used in step four. Moreover, we use the values of p1, p2, and p3 for step three.
We shift the image to 60 columns to the left and 60 rows up to revert to step two. Finally,
we use the values of p1, p2, and p3, corresponding to the inverse deterministic noise from
step one.

Figure 15. Decryption algorithm, divided into five steps.

3. Results and Security Analysis

The results obtained for the proposed encryption algorithm are presented in this
section. The results are divided into eight parts: Section 3.1 shows all of the images ob-
tained at each step of the encryption algorithm when encrypting Lena whilst Section 3.2
introduces a statistical analysis that compares the original image with its encrypted coun-
terpart. Additionally, it compares the histograms and presents the correlation coefficient.
Section 3.3 analyzes the entropy of the resulting encrypted image. Section 3.4 shows the
metrics obtained to measure the encryption quality. Section 3.5 presents the results of the
texture analysis. The key space universe of the proposed system is defined in Section 3.6.
Section 3.7 studies the strength of the algorithm against differential attacks. Section 3.8
presents an analysis of the sensitivity of the key. Finally, Section 3.9 presents the computa-
tional complexity of the algorithm.

The encryption and decryption results of the proposed scheme were obtained using a
PC equipped with an AMD Ryzen 5 3500U processor, with 12 GB of RAM, running at a
frequency of 2.1 GHz. Both encryption and decryption algorithms were implemented in
MATLAB. The encryption algorithm takes a time-consuming 4.3602 s, while the decryption
algorithm takes around 4.6642 s for RGB images with dimensions of 512× 512 pixels. These
times are obtained when using the fifth derivative of MDD and taking 5000, 5000, and
3000 steps with Langton’s ant in the bands corresponding to the colors red, green, and blue.

3.1. Encryption Results

The results of our encryption algorithm are shown in this section. We use the 512× 512 images
described in Section 2.1. Since the algorithm works with images with three channels, the
grayscale images were transformed into RGB images. The parameters used are as follows:
For the fourth step (MDD), we use the fifth derivative, for the fifth step (LA), the red
channel ant is positioned at row 96 and takes 3000 steps, the green channel ant is positioned
at row 120 and takes 5000 steps, and the blue channel ant is positioned at row 175 and takes
5000 steps.

Figure 16 shows the images obtained at each step of the encryption process using a
512× 512 RGB Lena image as input. For the rest of the dataset, similar results were ob-
tained. In the following sections, we will report the quantitative analyses for the encrypted
images using several image processing metrics, such as statistical metrics, entropy analysis,
encryption quality, and texture analysis. For RGB images, the metrics correspond to the
average value between the three metrics for each color channel.
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(a) (b) (c)

(d) (e) (f)

Figure 16. Images obtained at each step of the encryption scheme over the Lena image. (a) Original
image. (b) Step 1: First deterministic noise. (c) Step 2: Cyclic permutation. (d) Step 3: Second
deterministic noise. (e) Step 4: Modular discrete derivative. (f) Step 5: Langton’s ant.

3.2. Statistical Analysis

In this section, we present a statistical analysis to evaluate the proposed scheme. Firstly,
histograms of each channel are showcased for both the original and encrypted images.
Secondly, the correlation of neighboring pixels is analyzed to assess the degree of local
pixel dependence obtained in the results.

3.2.1. Histogram Analysis

In Figure 17, we show the histogram for each of the color channels of Lena, before and
after being encrypted.

(a) (b) (c)

(d) (e) (f)

Figure 17. Histograms of Lena’s channels, before and after encryption (a) Channel red, before
encryption. (b) Channel green, before encryption. (c) Channel blue, before encryption. (d) Channel
red, after encryption. (e) Channel green, after encryption. (f) Channel blue, after encryption.

Chi-square tests can be implemented to measure the uniformity of the resulting
histograms. Pearson’s chi-square (χ2) goodness of fit statistic for categorical data of the
histogram of an encrypted image histogram is computed by Equation (20):



Mathematics 2023, 11, 2396 19 of 35

χ2 =
L−1

∑
k=0

O(k)− E(k)
E(k)

, (20)

where L corresponds to the number of gray levels that are possible, i.e., 256 for an 8-
bit image; given a gray-level k, its observed frequency is represented by O(k), while its
expected frequency for the exact uniform distribution is represented with E(k), which
could be calculated as:

E(k) =
M× N

L
∀ k, (21)

with M and N representing the number of rows and columns of the gray-level image.
For gray-scale encrypted images of 8-bits, the chi-square test is passed if:

χ2 < χ2
α(d f ), (22)

where χ2
α(d f ) represents the critical chi-square value, α corresponds to the significance

level, and d f represents the degree of freedom of the chi-square distribution.
Assigning a significance level α = 0.05, a confidence interval containing 95% of values,

and fixing the degrees of freedom to d f = L− 1 = 255, the critical chi-square value is
defined as χ2

0.05(255) = 293.247 for intensity images of 8 bits.
Table 1 shows the chi-square scores of the ciphered images. Thus, chi-square values

less than 293.247 indicate a histogram of the encrypted image that is very close to a uniform
histogram, being robust to the histogram analysis.

Table 1. Chi-square values.

Image χ2 Remarks

Baboon 233.951 Passed

Lena 260.244 Passed

Peppers 257.839 Passed

4.1.03 281.687 Passed

Barbara 270.602 Passed

Boat 263.305 Passed

Cameraman 234.850 Passed

Zelda 261.809 Passed

3.2.2. Correlation Analysis

The 2D normalized cross-correlation (NCC), otherwise known as the correlation
coefficient, measures the similarity between two images, A(x, y) and B(x, y), as shown in
Equation (23):

NCC =

∑
x,y

(
A(x, y)− A

)(
B(x, y)− B

)
√√√√(∑

x,y

(
A(x, y)− A

)2
)(

∑
x,y

(
B(x, y)− B

)2
) , (23)

where A and B are the average intensity values of images A and B, respectively.
Thus, the 2D correlation coefficient is scaled within the range of [−1,+1], where −1 in-

dicates a maximum negative correlation, +1 indicates a maximum positive correlation, and
a correlation of 0 represents no association between the original image and its encryption.

In Table 2, we show the correlation coefficient obtained between the plaintext image
and ciphered image. Since the coefficient applies to images with one channel, we took the
average of the coefficient with each color channel.
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Table 2. Correlation coefficient values.

Image NCC

Baboon −5.07× 10−4

Lena −1.92× 10−5

Peppers +1.79× 10−3

4.1.03 −7.25× 10−4

Barbara +6.26× 10−4

Boat +2.97× 10−5

Cameraman +5.45× 10−4

Zelda +1.22× 10−3

While Section 3.2.1 shows the global decorrelation level for each color channel of the
encrypted image, this section focuses on the local correlation of neighboring pixels given a
particular direction, e.g., vertical, horizontal, and diagonal.

In a plaintext image, neighboring pixels exhibit significant correlations in vertical,
horizontal, and diagonal directions [62]. Conversely, during image encryption, the objective
is to minimize the correlation between the pixels in the ciphered image and the original
image.

We calculated the correlation between adjacent pixels by measuring the correlation
(Equation (23)) of a set of 1000 randomly chosen pairs of pixels against their correspond-
ing adjacent pixels in a specific direction (i.e., two horizontally, two vertically, and two
diagonally adjacent pixels) in the plain and corresponding encrypted images.

In Figure 18, we show the correlation distributions of each of the color channels of
Lena, in the vertical direction. Comparable results were achieved when examining the
horizontal and diagonal orientations; this shows that the direction in which the derivative
is taken does not have any significant impact on the final result.

(a) (b) (c)

(d) (e) (f)

Figure 18. Correlation distributions for each color channel of Lena in the vertical direction. (a) Red
channel, before encryption. (b) Green channel, before encryption. (c) Blue channel, before encryption.
(d) Red channel, after encryption. (e) Green channel, after encryption. (f) Blue channel, after
encryption.
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3.3. Entropy Analysis

One common metric used to measure the degree of disorder in a system is its entropy,
which can be used in the context of cryptography to measure the randomness of an
encrypted message.

Given an information source q, we can define its entropy Hq with Equation (24):

Hq =
R−1

∑
k=0

p(qk) log2
1

p(qk)
, (24)

where R stands for the total amount of symbols qk in source q, and the probability of
occurrence of each symbol qk is given by p(qk). Given an image with 8 bits per channel, it
will have a total of 256 possible symbols. If each one has the same probability of occurring,
the entropy of the image will be 8.

Table 3 shows the entropy values obtained for the ciphered images of the dataset used.
The 4.103 image generated the lowest value, while the Baboon image generated the highest
value. On the other hand, the Lena image obtained an entropy value of 7.999283079.

Table 3. Entropy values for the encrypted images.

Image Hq

Baboon 7.999355791

Lena 7.999283079

Peppers 7.999289444

4.1.03 7.999225223

Barbara 7.999256159

Boat 7.999275579

Cameraman 7.999352948

Zelda 7.999280102

3.4. Encryption Quality

Since a visual inspection of the encrypted image only incorporates a subjective mea-
surement, several literature works have introduced quantitative encryption quality metrics
using the deviation in the values of the pixels between the plain image and its encryp-
tion [63].

Therefore, the encryption quality is satisfactory when there is a high degree of max-
imum and irregular pixel deviations or alterations between the plaintext and encrypted
image. Thus, in [63], four encryption quality metrics were defined:

• Maximum deviation.
• Irregular deviation.
• Deviation from the uniform histogram.
• Peak signal-to-noise ratio.

3.4.1. Maximum Deviation

Maximum deviation (MD) for 8-bit gray-scale images is obtained by applying
Equation (25) [63]:

MD =
d(0) + d(255)

2
+

254

∑
k=1

d(k), (25)

where d represents the absolute difference in the original and encrypted histograms d(k)
is the difference in the amplitudes of these histograms for the intensity level k. d(0) and
d(255) correspond to the histograms at gray-level 0 and 255, respectively.
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Higher values of MD correspond to encrypted images that are more deviated from the
original images.

3.4.2. Irregular Deviation

Irregular deviation (ID) is another metric used to measure the encryption quality by
assuming that an effective encryption algorithm should uniformly randomize the input
pixel values [63]. Its efficacy is assessed by measuring the proximity of the histogram
deviation distribution to a uniform distribution.

First, the absolute difference (AD) between the plain image (A) and the encrypted
image (B) is calculated:

AD = |A− B|. (26)

Then, the histogram of AD, referred to h, is obtained, where h(k) corresponds to the
histogram value h at index k, and Mh defines the mean value of the histogram as is shown
in Equation (27):

Mh =
1

256

255

∑
k=0

h(k). (27)

Finally, the irregular deviation for an 8-bit image is calculated, as shown in Equation (28):

ID =
255

∑
k=0
|h(k)−Mh|. (28)

For smaller values of ID, we obtain better encryption qualities.

3.4.3. Deviation from the Uniform Histogram

In [63], a new encryption quality factor was proposed, which measures the deviation
between the ideal and uniform histogram from the histogram of the ciphered image.

Let hB be the histogram of the encrypted image B, where hB(k) is the frequency of
occurrence at gray level k; let E(k) be the frequency of gray level k in a uniform histogram,
as defined in Equation (21) for L = 256. Thus, the deviation from the uniform histogram
(DU) is obtained, as shown in Equation (29):

DU =
1

M× N

255

∑
k=0
|hB(k)− E(k)|. (29)

A better encryption quality is obtained for lower values of DU. A lower value indicates
that the histogram of the encrypted image deviates less from an ideal uniform histogram.

3.4.4. Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is another metric that could be used to evaluate
the quality of an encrypted image. It measures the changes in pixel values between
two images of 8 bits, the original image A and its encryption B. PSNR can be defined
mathematically, as given by Equation (30):

PSNR = 10 log10


2552

1
M×N ∑

x,y

(
A(x, y)− CB(x, y)

)2

. (30)

A better encryption quality is achieved for lower values of PSNR.
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3.4.5. Mean Square Error

In addition, the mean square error (MSE) is a statistical metric that is widely used
to evaluate the quality of an encryption algorithm [64]. It calculates the average squared
differences between the pixels of the plain image A and the encrypted image B, as shown
in Equation (31):

MSE =
1

M× N ∑
x,y

(
A(x, y)− B(x, y)

)2

. (31)

Similar to the PSNR, better encryption qualities are achieved for lower values of MSE.
In Table 4, we show the results of the encryption quality metrics on the dataset (using

the average of the results on each color channel).

Table 4. Encryption quality results of the dataset.

Image MD ID DU PSNR MSE

Baboon 143,366.500 16,4376.666 0.023 8.793 8614.279

Lena 204,618.666 159,758.000 0.024 8.682 8928.916

Peppers 199,269.333 138,798.000 0.025 8.134 10,111.045

4.1.03 338,220.000 209,675.333 0.026 9.957 6567.653

Barbara 131,537.833 165,227.333 0.025 8.810 8550.455

Boat 220,773.666 186,129.333 0.025 9.295 7647.103

Cameraman 255,633.833 158,272.000 0.024 8.412 9371.920

Zelda 211,912.000 172,643.333 0.025 8.882 8410.595

3.5. Texture Analysis

The texture analysis involves a set of techniques used to assess the frequency of
dissimilar combinations of gray levels within a particular spatial neighborhood or across
the entire image. [62]. The gray-level co-occurrence matrix (GLCM) involves a commonly
used texture measure of a gray-scale image A(x, y). This considers the spatial relationships
between the pixels of the image [65].

The GLCM matrix is calculated based on the frequency at which a pixel with value
p occurs in correlation with another pixel having an intensity value of q, as shown in
Equation (32):

GM(x, y) = C∆x,∆y(p, q) = ∑N
x=1 ∑M

y=1

{
1, if A(x, y) = p and A(x + ∆x, y + ∆y) = q
0, otherwise

, (32)

where C∆x,∆y(i, j) is the frequency with which two pixels with intensities p and q, at a
specific separation (∆x, ∆y), occur.

3.5.1. Homogeneity

Homogeneity is a texture metric that evaluates the closeness of the distribution of
pixels or how close the pixels are to each other [62,66]. Equation (33) shows the relation to
calculate Homogeneity:

Homogeneity = ∑
x,y

GM(x, y)
1 + |x− y| , (33)

where GM represents the GLCM matrix.
The lower values of Homogeneity represent a higher encryption quality.
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3.5.2. Contrast

Given a pixel and its surrounding neighborhood, the intensity contrast is calculated
as shown in Equation (34) [62,66], resulting in the Contrast metric. It must be as high as
possible:

Contrast = ∑
x,y
|x− y|2GM(x, y). (34)

3.5.3. Energy

Energy in GLCM measures uniformity, the smaller value of Energy refers to a higher
degree of disorder [62,66]. Energy can be calculated as shown in Equation (35):

Energy = ∑
x,y

GM(x, y)2. (35)

The lower values of Energy represent a higher encryption quality.
In Table 5, we show the results of the three metrics of GLCM (Homogeneity, Contrast,

and Energy) on the dataset (taking the average of the results of each color channel).

Table 5. Texture analysis results of our dataset.

Image Homogeneity Contrast Energy

Baboon 0.389632 10.476 0.0156291

Lena 0.389445 10.498 0.0156290

Peppers 0.389661 10.489 0.0156291

4.1.03 0.389301 10.473 0.0156289

Barbara 0.389297 10.517 0.0156285

Boat 0.389401 10.503 0.0156287

Cameraman 0.389018 10.519 0.0156297

Zelda 0.389550 10.480 0.0156290

3.6. Key Space

The key space of an encryption algorithm refers to the multitude of unique combina-
tions that can be used to attempt the decryption of the encoded information. The higher
the key space, the harder it is to decrypt with brute-force attacks.

The exact key space of the deterministic noise (KN) is not known, but as mentioned
in Section 2.6, the parameters p1, p2 and p3 can generate 256 different outcomes for each
column band of the first row of the image, and two different sets of parameters can generate
the same outcome for the first row, but with a different outcome for the second row;
therefore, the key space KN is unknown but it can be said that:

KN > 2563. (36)

Regarding the modular discrete derivative, it is trivial that, for a grayscale image of
dimensions M× N, the theoretical key space of the modular discrete derivative KD is equal
to the number of derivatives that it can have: M× N − 1; therefore, for an RGB image, the
key space is given by Equation (37):

KD = (M ∗ N − 1)3. (37)

Langton’s ant needs to be decrypted by having the correct coordinates for the ant’s
final position, its orientation, and the number of steps S it gave, which can be almost
arbitrarily large. The key space of Langton’s ant KL for an RGB image of dimensions
M× N is given by Equation (38):

KL = (4 ∗ S ∗M ∗ N)3. (38)
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Therefore, the key space K for an M× N RGB image is given by Equation (39):

K = K2
N ∗ KD ∗ KL., (39)

which gives us:
K > (262144 ∗ S ∗ (M2 ∗ N2 −M ∗ N))3. (40)

Assuming a 512× 512 RGB image with a maximum of 100 million steps, the key space
of the proposed encryption algorithm is larger than 5.8459× 1072.

3.7. Differential Attack

Two commonly used metrics to assess the strength of an encryption system against
differential attacks are the number of pixel change rate, known as NPCR, and the unified
average changing intensity, known as UACI [67].

Let A(x, y) and B(x, y) be two single-band images with dimensions M× N; we can
calculate their NPCR and UACI by applying Equations (41) and (43), respectively.

NPCR =
∑N

x=1 ∑M
y=1 D(x, y)

M× N
× 100, (41)

where

D(x, y) =

{
0 if A(x, y)− B(x, y) = 0
1 in any other case

(42)

and

UACI =
∑N

x=1 ∑M
y=1|A(x, y)− B(x, y)|
255(M× N)

× 100. (43)

If the resulting images from the encryption of two nearly identical images have an
NPCR close to 100% and a UACI greater than 33%, then we will say that the encryption
scheme is strong since a small change in the input of the algorithm produces a vastly
different output [67].

We tested these metrics on our proposed algorithm by taking an RGB picture named
A, then chose a random pixel from a random color channel, modified its value on its least
significant bit, and referred to the resulting picture B. Then we encrypted both A and B by
using the exact same parameters; we measure the similarity of the results by calculating
the average NPCR and UACI values for their corresponding color channels.

We tested each picture in our dataset a total of 100 times by using the parameters
mentioned in Section 3.1; we present the result of the averages for each picture in Table 6.

Table 6. NPCR and UACI results of the dataset.

Image NPCR (%) UACI (%)

Baboon 99.60844421 33.44672377

Lena 99.60851796 33.46184906

Peppers 99.61054611 33.46391676

4.1.03 99.61008962 33.45280907

Barbara 99.60963949 33.47430379

Boat 99.60962041 33.46398427

Cameraman 99.60861969 33.46164771

Zelda 99.61025492 33.45394059
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3.8. Key Sensitivity

To measure the sensitivity of the key, we performed an encryption of the Lena image
and subsequently decrypted it by using a slightly modified decryption key. A comparison
was made between the resulting image and the original image, and the NPCR was measured
(by averaging the NPCR values across the three color channels).

Starting with the first step of the algorithm, when we use the wrong key for the first
deterministic noise (modifying the least significant bit of p1), we compare the decrypted
image with the original image, and obtain an NPCR of 98.13868204%. Taking an incorrect
decryption key for the second deterministic noise (modifying the least significant bit
of p1), we obtain an NPCR of 98.16474914%. By performing one extra anti-derivative
on each color channel to decrypt the modular discrete derivative, we obtain an NPCR
of 99.60238138%, and by performing one less anti-derivative, we obtain an NPCR of
99.60810343%. Regarding Langton’s ant, using one extra step on each color channel, we
obtain an NPCR of 99.56118265%; positioning the ant in the wrong position (one row down)
on each color channel results in an NPCR of 99.71809387%; rotating the ant 180 degrees on
each color channel results in an NPCR of 99.56270853%. The images obtained using the
previously mentioned wrong decryption keys are shown in Figure 19.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. Resulting images from the key sensitivity test. (a) Correct decrypted image. (b) Incorrect
key for the first deterministic noise. (c) Incorrect key for the second deterministic noise. (d) One extra
anti-derivative for MDD. (e) One less anti-derivative for MDD. (f) Wrong amount of steps for LA.
(g) Wrong position for LA. (h) Wrong orientation for LA.

3.9. Computational Complexity

For an M× N RGB image, the computational complexity of both the deterministic
noise and the cyclic permutation is O(M ∗ N); MDD has a complexity of O(M ∗ N ∗ D),
where D stands for the degree used in MDD for the derivative; Langton’s ant has a
complexity of O(S), where S is the number of steps taken by the ant. In conclusion, the
computational complexity of our proposed method isO(3 ∗M ∗N + M ∗N ∗D+ S), which
can be simplified as: O(M ∗ N ∗ D + S).

4. Comparison with Other Works

We compared our proposed encryption algorithm with three recent works that are
also based on chaotic systems and cellular automata. Zhang et al. [23] use a combination
of set partitioning in hierarchical trees, cellular automata, and different chaotic systems to
encrypt images in a lossless manner. Roy et al. [12] proposed an algorithm referred to as
IESCA, which uses cellular automata, referred to as 2D Moore cellular automata, which is
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designed for use in resource-constrained IoT devices. The random chaotic sequences were
generated by the system through local transformations that relied on the bit states of the
cellular automaton’s neighbors. In their work, they explored a version of the algorithm by
using a periodic boundary for the neighborhood, as well as a null boundary. Dong et al. [5]
used hybrid elementary cellular automata composed of a combination of two global rules
from a hybrid ECA to improve the chaotic behavior of the Chirikov standard map-based
pseudo-random coupled map lattice model.

Tables 7–14 present various comparisons between the metrics obtained in our method
and the other algorithms mentioned previously. Specifically, the tables provide comparisons
for the chi-square value, entropy, MSE, PSNR, NPCR, UACI, key space, and encryption
time. The comparisons show that our proposed scheme is competitive with the recent
works found in the literature.

Table 7. Comparison of the chi-square results with other methods. Values highlighted in bold in each
row represent the best results for each image. All images have dimensions of 512× 512 pixels.

Image Proposal [23] [5] [12] [29]

Baboon 233.951 261.0619 237.3718 — —

Lena 260.244 248.3683 267.1725 — —

Peppers 257.839 243.0886 — — —

Barbara 270.602 244.3333 — — —

Boat 263.305 280.653 — — —

Table 8. Comparison of entropy results with other methods. Values highlighted in bold in each row
represent the best results for each image. All images have dimensions of 512× 512 pixels.

Image Proposal [23] [5]
[12]

[29]
Periodic Null

Baboon 7.9994 7.9992 — 7.9994 7.9919 7.9993

Lena 7.9993 7.9993 — 7.9997 7.9879 7.9993

Peppers 7.9993 7.9993 — 7.9971 7.9852 7.9998

Barbara 7.9993 7.9992 — — — 7.9994

Boat 7.9993 7.9992 — — — 7.9993

Table 9. Comparison of MSE between plaintext images and ciphered images with other methods.
Values highlighted in bold in each row represent the best results for each image. All images have
dimensions of 512× 512 pixels.

Image Proposal [23] [5]
[12]

[29]
Periodic Null

Baboon 8614.279 — — 7179 7129 —

Lena 8928.916 — — 7129 6967 —

Peppers 10,111.045 — — 9291 9398 —
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Table 10. Comparison of PSNR between plaintext images and ciphered images with other methods.
Values highlighted in bold in each row represent the best results for each image. All images have
dimensions of 512× 512 pixels.

Image Proposal [23] [5]
[12]

[29]
Periodic Null

Baboon 8.793 — — 9.57 9.68 29.54

Lena 8.682 — 8.68 9.68 9.75 28.58

Peppers 8.134 — — 8.45 8.46 28.50

Barbara 8.810 — — — — 29.19

Boat 9.295 — — — — 29.35

Table 11. Comparison of NPCR (%) between plaintext images and ciphered images with other
methods. Values highlighted in bold in each row represent the best results for each image. All images
have dimensions of 512× 512 pixels.

Image Proposal [23] [5]
[12]

[29]
Periodic Null

Baboon 99.6084 — — 99.7384 99.7138 99.6967

Lena 99.6085 — — 99.6347 99.6025 99.6881

Peppers 99.6105 — — 99.6284 99.4435 99.6937

Barbara 99.6096 — — — — 99.9799

Boat 99.9096 — — — — 99.7002

Table 12. Comparison of UACI (%) between plaintext images and ciphered images with other
methods. Values highlighted in bold in each row represent the best results for each image. All images
have dimensions of 512× 512 pixels.

Image Proposal [23] [5]
[12]

[29]
Periodic Null

Baboon 33.4467 — — 33.4105 32.9776 32.2756

Lena 33.4618 — — 33.4653 33.4243 37.5600

Peppers 33.4639 — — 33.4822 31.9396 30.8424

Barbara 33.4743 — — — — 34.6018

Boat 33.4639 — — — — 31.8961

Table 13. Comparison of the key space with other methods.

Proposal [23] [5] [12] [29]

>5.8459× 1072 ≈1.635× 10296 1.1579× 1077 >2.4179× 1024 ≈7.2057× 1016
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Table 14. Comparison of encryption time complexity with other methods.

Method Architecture RAM Platform Size Image (px) Time (s)

[23] 3.2 GHz Intel Core i5 8 GB Matlab 512× 512× 3 not given

[5] 3.4 GHz Intel Core i7 16 GB Matlab 512× 512 0.0134

[12] 1.2 GHz ARMv8 1 GB Python 512× 512 not given

[29] 2.2 GHz Intel
Pentium-B960 2 GB not given 512× 512 3.007

Proposal 2.1 GHz AMD Ryzen 5 12 GB Matlab 512× 512× 3 4.360

5. Discussion

After experimentation and testing, we found that using the first and second iterations
of MDD was not enough to obtain the full image encryption; therefore, it was necessary to
use the third derivative or higher. Regarding Langton’s ant, it can be used with any number
of iterations since the visual information of the image is hidden by the deterministic noise
and MDD, while LA is used to increase the security of the algorithm.

Time efficiency was not a primary consideration during the code development process,
so the algorithm was not suitable for stream video encryption/decryption given its encryp-
tion time. Future research could focus on optimizing the algorithm and implementing it in
a faster programming language, such as C.

Since we take the floor function in every calculation that involves a division, there is
no difference between using double (64 bits) and single (32 bits) precision numbers in these
calculations. However, the variables p1, p2, and p3 involved in the deterministic noise of
Section 2.6 can easily result in integers that are larger than the maximum sizes of single
precision integers; therefore, the algorithm cannot be implemented in systems with short
data types. Fortunately, the algorithm could potentially be modified to be compatible with
these systems by using modular arithmetic on the values of sτ to prevent the values of p1,
p2, and p3 from becoming too large.

Figure 17 illustrates the histograms of each color channel for Lena’s image before
and after being encrypted, allowing for a visual comparison between them, and showing
that in all cases, the encrypted histograms exhibit a uniform distribution, indicating no
resemblance to the original histograms.

Additionally, Table 1 shows the chi-square scores for the histograms of the encrypted
images, where chi-square values less than 293.247 are indicative that the resulting image
has a uniform histogram. Since the values obtained for the chi-square are less than 293.247,
they indicate a robust performance to the histogram analysis.

In Table 2, the correlation coefficient (the average for all color channels) between the
original and encrypted images is shown. As can be seen, the values are very small in all
cases.

In addition to the histogram flatness analysis, in Figure 18, we analyze the intensity
of local dependence among the surrounding pixels in a specific direction by measuring
the correlation distributions in the vertical direction for each channel in the RGB image.
Moreover, the results show that the original image presents a strong correlation among the
adjacent pixels, and encrypted channels display a weak correlation, implying random be-
havior. Testing the horizontal and diagonal directions gives similar results, demonstrating
that the direction of the derivative does not impact the final result.

We encrypted all of the images of the dataset and calculated the entropy value of each
one, which measures their level of randomness; for example, for an image with 256 gray
levels, the maximum entropy value is 8. From Table 3, we can see that the 4.103 image
generated the lowest value, the Baboon image generated the highest value, and the Lena
image generated an entropy value of 7.999283079.
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From the results shown in Figure 16, we can see that the encrypted Lena image presents
highly chaotic visual behavior. In addition to a visual inspection of the encrypted image,
we calculated some encryption quality metrics, which are based on the deviation in the
values of the pixels between the plain image and its encryption. Therefore, the encryption
quality is acceptable if pixel changes are maximum and irregular between the plain and
encrypted image. Thus, Table 4 shows four encryption quality measures: MD, ID, DU,
PSNR, and MSE Higher values for MD, ID, and MSE correspond to a better encryption
quality; smaller values of DU and PSNR are expected. From the results, good encryption
quality values were obtained over the dataset used.

Regarding texture analysis, using the GLCM, we calculated three texture metrics
(homogeneity, contrast, and energy) to assess the frequency of dissimilar combinations of
gray levels within a particular spatial neighborhood. Thus, Table 5 shows the results of
texture analysis conducted over the dataset by taking the average of each color channel.
We can see that homogeneity and energy present lower values and contrast presents higher
values for all images.

In Section 3.6, we calculated the key space of the proposed encryption method, which
represents the number of different combinations that can be tried with brute-force attacks
to decrypt an encrypted image. Thus, for a 512× 512 RGB image with S = 100× 106 steps,
the key space is larger than 5.8459× 1072. Therefore, an attacker would take 1.852× 1064

Gregorian years to test each possible key, using 0.1 s for each one.
We also calculated the NPCR and UACI metrics to analyze the strength of the algorithm

against differential attacks. Table 6 shows the results obtained for the dataset used; we
can see that the higher NPCR value was 99.61054611% for the Peppers image, and the
higher UACI value was 33.47430379 for the Barbara image, theoretically being 100% of
the maximum value for the NPCR value and 33% for the UACI value, indicating that the
proposed encryption approach has resistance against differential attacks. Moreover, the
analysis of the key sensitivity presented over the Lena image in Section 3.8 shows that if we
use a wrong key, which varies slightly from the correct one, we are not able to decrypt the
image. By modifying the least significant bit of p1 for the first deterministic noise, we obtain
an NPCR of 98.13868204% and an NPCR of 98.16474914% for the second deterministic
noise (by calculating the NPCR for each channel and taking the average). By applying one
extra anti-derivative on each color channel to decrypt the modular discrete derivative, we
obtain an NPCR of 99.60238138%, and by applying one less anti-derivative, we obtain an
NPCR of 99.60810343%. For Langton’s ant, by taking one extra step on each color channel,
we obtain an NPCR of 99.56118265%; positioning the ant in the wrong position (one row
down) on each color channel gives an NPCR of 99.71809387%; rotating the ant 180 degrees
on each color channel gives an NPCR of 99.56270853%.

It is relevant to mention that due to the characteristics of the modular discrete deriva-
tive, the deterministic noise, and Langton’s ant, and as reported in the sensitivity analysis,
if any bit of any pixel of the encrypted image is altered, for example, due to attacks on
image processing, the original image is not decrypted, showing a high-security level, but
a weak performance to recover the original image against intentional or unintentional
attacks.

Finally, we performed a comparison with other state-of-the-art works that used similar
techniques. Table 7 compares the chi-square values obtained with existing methods. We
can see that the proposed method obtained the best results on the Baboon and Boat images,
whereas Zhang et al. [23] obtained the best values for the Lena, Peppers, and Barbara images.
Regarding entropy results (Table 8), our proposed method obtained the best results for the
Baboon and Boat images, Roy et al. [12] obtained the best results for the Baboon and Lena
images, and Mondal et al. [29] obtained the best results for the Peppers, Barbara, and Boat
images. Regarding the MSE results, the results shown in Table 9 highlight that the best
results were obtained with our proposed encryption algorithm for all compared images
(Baboon, Lena, and Peppers), which were images where the authors reported results. For
the PSNR results (Table 10), our proposed method obtained lower values for all compared
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images; Dong et al. [5] obtained a low value only for the Lena image. The NPCR results
displayed in Table 11 indicate that we only obtained the highest value for the Boat image,
Roy et al. [12] obtained the highest value for the Baboon image, and Mondal et al. [29]
obtained the best values for the remaining images (Lena, Peppers, and Barbara). However,
for the UACI results (Table 12), we obtained the best results for the Baboon and Boat images,
Roy et al. [12] obtained the best result for the Peppers image, and Mondal et al. [29] obtained
the best results for the Lena and Barbara images. Table 13 shows that the proposal by
Zhang et al. [23] has the largest key space, which makes it the more robust proposal
against the brute force techniques. As the last comparison metric, Table 14 shows a
comparison of the encryption time. From these results, we can conclude that the proposed
encryption–decryption algorithm based on Langton’s ant, modular discrete derivative, and
deterministic noise, is competitive with the recent works found in the literature.

6. Conclusions

In this paper, we presented an image encryption system based on the modular discrete
derivative, a novel technique used to encrypt images. In addition, we continued the work
presented in [1] by improving the use of Langton’s ant as an image encryption method
and developing a variant of the novel deterministic noise of our previous work. On the
one hand, an advantage of Langton’s ant is its high key space, but at the cost of its small
impact on the visuals of the image. On the other hand, the modular discrete derivative
and the deterministic noise have the advantage of creating a significant visual impact on
the image, with the disadvantage of having a low key space. In the present work, we
managed to combine these methods to take advantage of their strengths and neutralize
their weaknesses.

This work contributes to the existing literature by further exploring the strengths and
weaknesses of Langton’s ant, a cellular automaton that has been explored in only a few
works on image encryption. Moreover, this research introduces the use of a modular discrete
derivative applied to image encryption, which, to our knowledge, has not been previously
studied. By testing the effectiveness of this method, our research demonstrated its potential as
a valuable addition to the existing image encryption techniques. Moreover, we found that it is
necessary to obtain at least the third derivative of the modular discrete derivative to obtain the
full image encryption. Regarding Langton’s ant, it can be used with any number of iterations
since the visual information of the image is hidden by the deterministic noise and MDD, while
Langton’s ant is used to increase the security of the algorithm.

Through several tests and experiments, we verified that the proposed algorithm is very
secure and reliable if the encryption key is known, being completely reversible, resulting in
decrypted images that are identical to the originals with a root mean square error (RMSE)
of zero. Our proposed algorithm shows competitive results when compared to the current
state of the art, as indicated by metrics such as chi-square, entropy, MSE, PSNR, NPCR,
UACI, and key space. However, due to the characteristics of these methods and the results
of the sensitivity analysis, if the encrypted image is altered in any way, for example, due to
an attacker, the original image is not decrypted, and the original image is lost. Thus, this
property represents a strength of the method, presenting a high-security level. However,
it is a weak point of the proposal, showing a low performance against intentional or
unintentional attacks.

In future work, we will explore new implementations of Langton’s ant, modular
discrete derivative, and deterministic noise, with better approximations of the key space
for the deterministic noise or optimization of the implementation of any of the methods
to make them more efficient. In addition, future research could focus on optimizing
the algorithm and implementing it in a faster programming language, such as C, for
applications such as stream video encryption/decryption. Finally, we will explore the
implementation of the proposed method in systems with short data types.
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Abbreviations
The following abbreviations are used in this manuscript:

AD absolute difference
ACM Arnold’s cat map
BCS block compressive sensing
CA cellular automata
CS compressive sensing
CP cyclic permutation
DAQ data acquisition system
DCT discrete cosine transform
DNA deoxyribonucleic acid
DN deterministic noise
DU deviation from the uniform histogram
DWT discrete wavelet transform
EIs elemental images
ECA elementary cellular automata
FSBI Feistel structure-based bit inversion
FSM finite state machine
GoL Game of Life
GLCM gray-level co-occurrence matrix
HCM Henon–Chebyshev map
HCNN Hopfield chaotic neural network
ICA independent component analysis
IoT Internet of Things
ID irregular deviation
LA Langton’s Ant
LM logistic map
LSS logistic sine system
LASM logistic-adjusted sine map
LSCM logistic-sine-cosine map
MD maximum deviation
MLCA maximum length cellular automata
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MSE mean square error
MDD modular discrete derivative
MCA Moore cellular automata
NCC normalized cross-correlation
NPCR number of pixel change rate
PSNR peak signal-to-noise ratio
PC-MLCA programmable complemented–maximum length cellular automata
PRBG pseudo-random bit generator
PRNG pseudo-random number generator
RFrDCT random fractional DCT
ROI region of interest
RIWT reversible integer wavelet transform
RMSE root mean square error
RCA rule cellular automata
SPIHT set partitioning in hierarchical trees
SSO shark smell optimization
UACI unified average changing intensity
YOLO You Only Look Once
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