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Abstract: Any small environmental changes in the driving environment of a traffic vehicle can
become a risk factor directly leading to major safety incidents. Therefore, it is necessary to assist
drivers in automatically detecting risk factors during the driving process using algorithms. However,
besides making it more difficult for drivers to judge environmental changes, the performance of
automatic detection networks in low illumination scenarios can also be greatly affected and cannot be
used directly. In this paper, we propose a risk factor detection model based on deep learning in low
illumination scenarios and test the optimization of low illumination image enhancement problems.
The overall structure of this model includes dual discriminators, encoder–decoders, etc. The model
consists of two main stages. In the first stage, the input low illumination scene image is adaptively
converted into a standard illumination image through a lighting conversion module. In the second
stage, the converted standard illumination image is automatically assessed for risk factors. The
experiments show that the detection network can overcome the impact of low lighting and has high
detection accuracy.

Keywords: neural network; risk factor detection; low illumination images; artificial intelligence;
deep learning

MSC: 68T45

1. Introduction

Risk factors encountered by vehicles used for transportation in the driving environ-
ment can directly lead to major safety incidents, posing significant risks to traffic safety.
Therefore, it is necessary to use algorithms to assist drivers in automatically detecting risk
factors during driving.

Prior to this study, work related to high dynamic range (HDR) involved low illumi-
nation image processing, which needs to collect the same scene under various lighting
conditions and then align and merge the results into a highly reproducible image output.
This method has a certain reference value, but it cannot handle a single low illumination
input, which is different from the application scenario in this method. Among the tra-
ditional techniques used for low illumination image detection and processing, the most
representative methods are the adaptive histogram equalization (AHE), optical neural
network, and multi-scale optical neural network model [1].

With the rapid development of deep learning in the field of computer vision, object
detection based on deep learning has shown good performance in standard scenes [2–4],
such as scenes with good lighting conditions, and can meet the requirements of assisting
drivers in the automatic detection of risk factors while driving in standard scenes [5,6].
However, this method is not suitable for special scenes. For example, in low illumination
scenarios, the accuracy of object detection will be greatly reduced. The main reason for
this limitation is that most of the simulation scenes used in algorithm design are standard
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scenes [7–10], which makes them unable to adapt to changes and interference caused by low
illumination scenes in target texture, structure, and color characteristics [11,12]. However,
in real life, the probability of low illumination scenes appearing is relatively high (such as
night scenes), and low illumination scenes can have a more serious impact on the driver’s
judgment. Therefore, it is of great significance to propose an automatic detection algorithm
for low illumination object detection. Section 2 of this article introduces and discusses the
current mainstream research content of the two basic tasks of conversion and detection.
Section 3 introduces the process and specific content of our method. Section 4 presents
our experimental results and analyses them. Section 5 summarizes the entire article and
outlines our next plans.

To solve the above problems, we propose a risk factor detection model based on deep
learning in low illumination scenarios and test the optimization of low illumination image
enhancement. The overall structure includes a dual discriminator, encoder–decoder, etc.
The model consists of two main stages [13,14]. In the first stage, the input low illumination
scene image is adaptively converted into a standard illumination image through a lighting
conversion module. In the second stage, the converted standard illumination image is
automatically detected for risk factors. Experiments have shown that risk factors can be
detected in low illumination scenarios with high detection accuracy. Our main contributions
are summarized as follows:

(1) We propose an adaptive enhanced detection network structure for low illumination
object detection, which effectively integrates dual discriminators, encoding decoders,
and attention mechanisms.

(2) We designed the lighting conversion stage as the first stage of the global model, which
can be applied to the standardized training of pairwise image data to achieve adaptive
enhancement of low illumination image data, thus preventing input images with spa-
tially varying lighting conditions from experiencing overexposure or underexposure
problems after enhancement.

(3) We designed the risk factor detection phase as the second phase of the global model.
This part of the model is mainly based on the Transformer algorithm, adopts an
encoder–decoder structure, and is subjected to lightweight processing, which can
effectively process the adaptive enhanced image output in the first stage. On this
basis, optimization is carried out for small target detection and the entire detection
process to improve the overall automatic detection performance of risk factors.

(4) We demonstrated the adaptive conversion effect of the first stage model on images
of whole or partial regions through comparative experiments and demonstrated
through ablation experiments that the detection performance of the second stage
can be improved after adaptive conversion in the first stage. Based on quantitative
experiments, it was shown that the second-stage detection model is generally superior
to the mainstream CNN (convolutional neural network) and that the first stage can
overcome the impact of low illumination in whole or partial region on detection.
The global network can be used for low illumination object detection and has good
detection performance.

2. Related Works

In terms of deep learning, there is generally less demand for low illumination scene
object detection in the industry, so there is little work discussing or implementing the
two tasks of illumination conversion and object detection through a single method. At
the same time, in terms of illumination conversion, existing deep learning methods have
high requirements for the dataset, and most of them need to process normal illumination
images to form a one-to-one correspondence between low illumination images and normal
illumination images [15,16]. For example, the authors in [17] proposed an end-to-end
framework that applies Retinex theory to deep networks. In HDR, deep learning methods
have also emerged for multi-frame low-light enhancement [18,19]. In terms of detection,
due to the good detection performance of Transformer [20] in the field of computer vision,
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the research focus of detection models has gradually shifted from CNN-class models to
Transformer-class models. However, in the process of designing relevant models, all models
are currently focused on conventional illuminance, and mainstream methods are unable to
overcome the impact of illuminance, resulting in generally poor detection results in low
illumination scenarios.

This section starts with the generation of adversarial networks and transformers
corresponding to transformation and detection tasks in order to introduce the relevant
research content adopted by current mainstream solutions.

2.1. Generate Adversarial Networks

A basic generative adversarial network consists of a generator (G) and a discrimina-
tor (D), which achieve dynamic equilibrium through game confrontation. From a macro
perspective, the generator (G) is used to generate images with the aim of bringing the
generated images closer to real images [21–23]. The discriminator (D) is used to distinguish
whether its input is a generated fake image or a real image, with the aim of distinguishing
between the generated image and the real image. These images grow together in confronta-
tion and eventually reach a Nash equilibrium state, making the generated results roughly
equivalent to the real image.

Figure 1 shows the basic structure of a standard generated adversarial network. Here,
G is represented as a parameterized neural network. The input is the noise variable z,
which generates a sample G(z) that follows a specific distribution through G. If we assume
that the real data follow a distribution, the real samples sampled from the data and G(z)
are input into D, which determines whether the input samples come from the real data.
The goal of D is to classify input samples reasonably. That is, the sample G(z) generated
by G is classified as the fake class, and the real data sample is classified as the real class.
On the other hand, G’s goal is to generate samples that can deceive D and be classified as
real by D. Thus, there is an adversarial relationship between the two; this is the core idea
behind generating adversarial networks. The main idea in the training process is to fix
one network and train the other. After several iterations, Nash equilibrium was achieved.
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Figure 1. The basic structure of standard generative adversarial networks.

From a mathematical point of view, the goal of a network is to make the two distribu-
tions close together for the distribution of real data and the generation distribution with
parameterization to concretize the abstract problem of generating data equal to real data.
First, one can take n samples from the generated distribution and then use the maximum
likelihood function to evaluate the parameters.

When fixing the generating network to make the discriminant network complete the
training goal, the specific operation is to bring the likelihood function into the likelihood
function when the likelihood function is maximum. This network can be regarded as
a fixed discriminant network used to train the generating network. Then, we can obtain the
Jensen–Shannon divergence (JSD) between the real distribution and generated distribution
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after resolving the total objective function. The above process can concretize the goal,
transforming it from an abstract problem of narrowing the gap between the real distribution
and generated distribution into a specific problem of narrowing the JSD between the two
distributions. Therefore, the objective function for generating adversarial networks can be
expressed as follows:

min
G

max
D

V(G, D) = min
G

max
D

Ex∼Po [logD(x)] + Ez∼P2(z)[log(1− D(G(z)))]. (1)

2.2. Transformer

Transformer is a deep learning neural network [20] that is primarily used in natural
language processing but also has significant potential for computer vision applications.
Transformer defect detection offers good global characteristics and uses a self-attention
mechanism to extract intrinsic features of defects, allowing it to effectively obtain global
information and map it to multiple spaces through multiple heads, with strong model
expression ability.

Transformer splits the input image into multiple sequences of element blocks in
which each element block can be meaningfully associated with other element blocks, thus
achieving a better understanding of the overall image. This neural network uses multiple
levels of attention mechanisms to allow each element block in the input sequence to have
meaningful associations with other element blocks. Transformer is different from the
previous SOTA model in that it allows all tasks to be analyzed at the same time using
parallel task processing instead of serial processing. Meanwhile, common image description
models based on the encoder–decoder system use CNN to extract deep features to encode
hidden semantics contained in the image and then use RNN to decode semantics from
the encoded deep features and generate image descriptions. However, Transformer has
separate encoder and decoder structures. The encoder is mainly used to read element
blocks in the input sequence and then establish connections with other element blocks
through attention mechanisms. The decoder is used to generate output sequences and can
use attention mechanisms to use the encoder’s output to generate better results.

3. Methods
3.1. Overall Framework Description

The goal of risk factor detection in low illumination scenes based on deep learning
is to find potentially dangerous objects in the image and predict their category labels and
bounding boxes. This process is essentially a set prediction problem, as the predicted
objects do not require sorting. Before making predictions, it is necessary to overcome the
impact of low illumination on detection accuracy. Thus, the whole structure of the model
consists of two stages: light conversion and risk factor detection.

The purpose of the lighting conversion phase (I) design is to adaptively complete the
conversion process from low lighting conditions to standard lighting. This module is based
on the generation-game idea of generative adversarial networks and performs adaptive
lighting restoration and enhancement on image data that are not properly paired [24–26],
thus completing the transformation of lighting scenes. The purpose of the risk factor
detection phase (II) design is to automatically detect risk factors in converted standard
illumination images. This module is based on Transformer-class detection algorithms,
adopts an encoder–decoder structure, and performs lightweight processing on the model
according to requirements, thereby ensuring a certain degree of accuracy while accelerating
detection speed and improving the overall automatic detection performance of the risk
factors. Through the above steps, our method can overcome the interference caused by
low illumination on detection and fill the application gap of the detection model in low
illumination scenarios. This method is highly inclusive for input data and does not require
paired low illumination samples. Simultaneously, this technique is suitable for low-light
regional data and can intelligently improve selective areas without the problem of excessive
exposure, commonly seen in traditional methods, leading to increased usability.
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Figure 2 shows the overall workflow framework of the designed method, with
three types of validation experiments (E1, E2, and E3), each of which incurs corresponding
losses. Among them, E1 is used to compare the effects of the first-stage conversion, which
generates loss of light conversion. E3 is used to demonstrate the effectiveness of using
the second stage for detection, which results in loss detection. E2 is used to compare the
effectiveness of second-stage detection after first-stage conversion, resulting in ablation
detection loss. Experimental results and analysis are detailed in the experimental section.
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3.2. Light Conversion

The lighting conversion part, which is in the first stage of the entire process, can
train image data that are not standardized in pairs [27,28] without requiring low and
normal illumination image data to correspond to each other in order to achieve adaptive
enhancement of low illumination image data. This prevents input images with spatially
varying lighting conditions from experiencing regional overexposure or underexposure
after enhancement.

The core of this section is based on the adversarial game theory of generating ad-
versarial networks [29–31]. Using a basic discriminator generator structure, the model
can adapt to enhancement based on the illumination level of each region of the input
image and use self-feature loss to constrain the perceptual similarity of the transformation
process, thereby ensuring that the image content features do not change before and after
enhancement [32]. At this stage, a series of optimizations was created for multi-scale image
synthesis and adaptive enhancement based on the basic core algorithms, including a U-net
structure generator with an attention mechanism, a dual discriminator, and the loss of both
generation and self-functioning.

3.2.1. Generation Phase

The basic structure of the first phase consists of two parts: generation and discrimi-
nation. The two constrain each other through adversarial thinking, thereby learning and
shortening the geometric distribution distance of the same features of the image under low
and normal lighting and achieving dynamic balance during the training process.
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In the generation process, the generator structure is designed using a U-net structure
with an attention mechanism that can extract image features from multiple scales through
multiple iterations of downsampling. This structure preserves a large amount of texture
information in the image and can synthesize images containing multi-scale information,
resulting in higher-quality generated images. At the same time, in order to adaptively
enhance the illumination of low illumination images, we focus on enhancing the illumi-
nation of dark areas in the image, randomly sample small domain blocks from multiple
scales, and put the images into the discrimination stage for discrimination. To ensure the
consistency of features across scales, a self-regulatory attention mechanism is added as
a constraint. This mechanism adjusts the attention map size to fit the feature map and
multiplies it with all intermediate feature maps and output images to regularize the image
itself. The self-normalization attention map is used to extract the light distribution of the
input three-channel image as L and then perform normalization processing to (0, 1). Then,
we calculate the element difference 1-L of the light distribution of the normalized image,
which is used as the self-normalization attention map.

The overall structure of the designed generator is shown in Figure 3. It is mainly
composed of down convolution blocks and up convolution blocks, which are used to
extract multi-scale features from the image feature layer. The two modules contain a total
of eight convolutional blocks, with each block mainly composed of two joint convolutional
layers. Each joint convolutional layer includes 3 × 3 convolutional layers, activation layers,
and batch normalization layers. In the downsampling stage, a maximum pooling layer is
added; in the upsampling stage, a bilinear upsampling layer is used to replace the standard
deconvolution layer to improve the generation effect.
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3.2.2. Discrimination Phase

In the discriminator section, adversarial loss is used to represent and minimize the
distance between the true illumination distribution and normal illumination distribution.
However, in conventional models, when using a single discriminator to distinguish images,
the center of gravity of discrimination covers the entire image, which cannot realize the
adaptive enhancement of lighting conditions with spatial changes. For example, in a small
area with high illumination in a low illumination background, the training process cannot
adaptively enhance the low illumination of the background while slightly improving the
overall lighting conditions, i.e., enhancing the overall image illumination while preventing
local overexposure. Therefore, in the overall architecture design, the work of expanding the
discrimination stage not only discriminates against the overall image but also randomly
diverts attention to the details in the image to judge the enhancement effects of the details.

Therefore, in this study, a double-discriminator structure is designed and used ac-
cording to the appropriate requirements. In addition to the regular discriminator, random
clipping is performed from the output and true normal illumination images, and training is
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used to learn whether local image blocks are true normal illumination images or generated
enhanced illumination images. This process acts as a workflow for a new discriminator.
The basic structure of each discriminator consists of convolution, a fully connected layer,
and dense connected layer. The logical relationship between the two discriminators is
shown in Figure 4. The dual discriminator composed of the new discriminator and the
original discriminator can solve the problems of local overexposure and underexposure
and then realize adaptive enhancement of lighting conditions with spatial variation in
the image.
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3.2.3. Conversion Loss

The loss function of the first stage model algorithm is mainly composed of two parts: the
generated loss and the self-preserving loss feature. With a two-part restriction, the network
model can be guaranteed to develop in the desired direction during the training process.

Generation loss is generated by generators and discriminators over the course of coun-
terplay. Generation loss is used to describe the geometric distance between the generated
data distribution and the actual data distribution. The discriminator uses functions to
estimate the probability that the real data are more true than the generated data in order to
prompt the generators to generate false data that are more true than the real image and to
discriminate the quality of the generated samples using a double discriminator structure.
Discriminators typically measure the quality of the generated data by measuring the physi-
cal distance between the generated data and the real data. However, different references
correspond to different results. When we measure real data by using the generated data as
a reference, it can be expressed as:

DPR(xr , x f ) = σ(PB (xr )− E(x f∼ Pf ake)[PB(x f )]), (2)

Conversely, when we swap references and results, we can get formulas representing
the same physical distance but with different expressions, as shown in Equation (3) below;
this means we can further confirm the physical distance between the generated data and
the actual data through comparison.

DPR(xf , xr) = σ(PB(xf )− E(xr∼ Preal)[PB(xr)]), (3)
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where PB is the discriminator structure and represents the sample separately from the
true and biochemical distributions, and σ is an activation function, in which the sigmoid
function is used. In our method, we use this principle to design a bidirectional loss limiting
constraint, which can be expressed as:

lx∼y(x1, x2) = Ex∼y[(DPR(x1, x2)− 1)2], (4)

l′x∼y(x1, x2) = Ex∼y[DPR(x1, x2)
2], (5)

Thus, the loss function of the first discriminator (D) and generator (G) in the double
discriminator is expressed as

LD
1 = lxr∼Preal (xr, x f )+l′x f∼Pf ake(x f , xr), (6)

LG
1 = lx f∼Pf ake(x f , xr)+l′xr∼Preal (xr, x f ), (7)

Similarly, for the composite structure in the double discriminator, we select some areas
for separate comparison. After a lot of training, we can ensure that random slices can cover
most areas in the input image, thus ensuring the constraint on the conversion effect of local
low-light images:

LD
2 = lxr∼Preal−patches(xr)+l′x f∼Pf ake−patches(x f ), (8)

LG
2 = lxr∼Pf ake−patches(x f ), (9)

Loss of self-feature preservation is used to constrain perceived similarity. A common
practice is to model the spatial distance of features between images using a pre-trained
convolutional neural network to limit the feature distance between the extracted output
image and its ground truth.

To emphasize the effect of self-regulation, we ensure that image content features do
not change as much as possible before and after enhancement. We translate this problem
into a characteristic VGG distance between the input low light and its enhanced normal
light output. In this way, the distance between the outputs is limited by the loss of self-
characteristics, which is defined as

Lsel f (IL) =
1

Wi,j Hi,j
∑

Wi,j
x=1 ∑

Hi,j
y=1 (φi,j(IL)−φi,j(G(IL)))2, (10)

where IL is the initial input image and G(IL) is the enhanced image generated by the
generator; φi,j is the feature graph extracted from the pre-trained convolutional neural
network model VGG; i represents the ith largest pooled layer and j represents the jth
convolutional layer after the ith largest pooled layer; and Wi,j and Hi,j are the dimensions
of the extracted signature graph.

For the second discriminator in the double discriminator, the input and output image
clipping blocks are also constrained by self-characteristic loss, so the overall loss function
for this part of the light conversion model can be written as

Loss = L1
sel f+L2

sel f+LG
1 +LG

2 . (11)

3.3. Risk Factor Detection

The second stage of the entire process involves the automatic risk factor detection of
converted standard illumination images after the first stage of the process. This model
is mainly based on the Transformer algorithm and adopts an encoder–decoder structure.
The model is designed to be lightweight, according to the requirements of completing
optimization of the entire detection process and improving the overall automatic detection
performance of the risk factors.
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The overall model is an end-to-end framework with a basic structure consisting of
three parts: feature extraction, encoding–decoding [33,34], and prediction matching. The
detection model designed in this paper has a simpler pipeline than that used in main-
stream convolutional neural network class detection, which eliminates NMS and the
anchor [35–38]. Therefore, this model learns the position encoding and passes it on to
the input, simultaneously using the bounding box predictor instead of MLP for further
lightweight model processing. Through experiments, it was demonstrated that the de-
tection task can be completed with high detection accuracy. The basic structure of the
second stage risk factor detection model mainly consists of three stages: feature extraction,
encoding–decoding, and prediction matching, as shown in Figure 5.
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3.3.1. Feature Extraction Phase

The model’s feature extraction process, also known as the backbone network, is used
to extract high-latitude features of images. At the same time, the depth of the network
will directly affect the efficiency of feature extraction. However, if the network depth is
simply increased, the performance will quickly decline when the network reaches a certain
depth saturation. Thus, at this stage, the design adopts a residual layer structure to prevent
the problem of a gradient disappearance or explosion during the deep propagation of
information through the network, where each layer of information decreases or increases.
The residual layer structure adds a transfer branch, allowing the loss to propagate the model
gradient across network layers through the branch, thus alleviating network weakening
caused by the model depth.

In the feature extraction phase, the input is first propagated to the mean pooling layer
via ResNet-50; then, the 2048-dimensional feature map is converted into a 256-dimensional
feature map via the convolutional layer. Finally, position encoding is constructed by
encoding the position information of the input image.

3.3.2. Encoding–Decoding Phase

The encoding–decoding step processes the extracted image feature map and the
constructed position encoding of the preceding portion through the encoding decoder
structure. In the encoding preprocessing stage, serialize the input feature map and position
encoding, and then input them into the encoder–decoder to obtain Transformer-based
detection results. After the backbone, the self-attention mechanism performs global analysis
on the feature map because the last feature map performs significantly better at detecting
targets than the entire map. Therefore, performing self-attention on top of the feature
map will enable the network to better extract the relationships between different large
objects at different positions. Transformer performs better at detecting large targets than
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convolutional network models. Simultaneously incorporating positional encoding reflects
image information in both the x and y dimensions.

3.3.3. Predictive Matching Phase

The design of the prediction matching phase is mainly to solve the two problems
of prediction classification and matching position based on the input of the previous
phase. Therefore, the overall structure of this stage is designed into two branches: one for
predicting the target category and the other for predicting the bounding box. The prediction
category branch includes a connection layer and a hidden layer with a dimension of 512.
The predicted bounding box branch includes three connection layers and a hidden layer
with a dimension of 512. The output layer has a dimension of four, and a sigmoid layer is
added to ensure a positive final count. In the coding–decoding and prediction processes,
attention modules are introduced to optimize the detection process. The final FFN is then
calculated using a three-layer convolutional layer with the ReLU activation function and
hidden layers. We next standardize the center coordinates, height, and width of the FFN
prediction box and activate the box using the SoftMax function to obtain the prediction
class label.

3.3.4. Detection Loss

In the second stage, the training direction of the model constrained by the loss function
has two branches [39]. The first part is the category loss generated by classification, which
is a constraint of target classification predictions. The loss is calculated via cross entropy
using the image classification network. The second part is regression loss, which describes
the size and accuracy loss of target position box prediction and is used to constrain target
position matching during the training process. This loss includes the absolute value error
and the global intersection ratio error in calculating the center point coordinates and width
height parameters of the bounding box. Due to the need for a reference when calculating
the position, there is a prerequisite for calculating this loss. The classification of the target
must be the ground truth, that is, the loss of the target box is based on accurate classification
of the target.

The initial setting of the maximum number of detections for a single sample is
Localn = 100. In general, this maximum number of detections can be applied to actual
usage needs. During the decoding process, a prediction set p = Localn containing results
is generated based on the truth target set r. If the number of truth targets is less than the
maximum Localn detection number, the missing element number is filled with a non-target
identifier. Each truth element in the set includes the target class label and the truth box
position parameter. Afterwards, through training, a ranking was found to minimize the
distance between the two sets. This set can be expressed as the following equation, wherein
the matched consumption of Lmatch(ri,pσ(i)) is between the true value and the predicted
value. This method is more efficient than mainstream anchor box or prompt box matching
methods. Direct one-on-one matching between sets effectively eliminates the loss caused
by repeated matching:

σ = arg min∑N
i Lmatch(ri,pσ(i)) (12)

In the second stage, the loss function must calculate all matching pairs, which is mainly
a linear combination of the negative log likelihood of category predictions and prediction
box losses of the guess target’s location. This function can be expressed as the following
equation, where σbest is the optimal matching order, ai is the target class label, and when
the truth element is an objectless filling element, ai = ∅. Here, bi is a vector that defines the
box position parameters (box center coordinates, height, and width relative to image size),
and pσ(i)(ai) represents the probability of defining the category label as ai:

Lob(r, p)∑N
i=1 [−log pσ(i)(ai) + 1{ai 6=∅}Lbox(bi, bσbest(i))]. (13)
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4. Results
4.1. Data and Experimental Settings

The method proposed in this paper uses the Python deep learning toolkit. The training
and validation process of the experiment was carried out using a local host in the laboratory
with two Nvidia3090 GPUs, a Core i9 CPU, and 32 G memory modules.

In the first stage of the experiment, the model can be trained using unpaired low
illumination and conventional illumination images. As the core of this method involves
dealing with detection problems in low illumination scenes in addition to normal illumina-
tion images, low illumination images are also required during the training process, and the
proportion of low illumination images should be large enough. Due to the unique nature
of this requirement, public datasets cannot be used directly. In total, 897 low illumination
images and 1025 conventional illumination images were selected from the public dataset.
The requirements for images with different illuminance values are relatively broad and do
not need to correspond to each other. In order to demonstrate the performance of the dual
discriminator in this method, about 10% of low illumination images are regional low illu-
mination images. To ensure the experimental results, the established dataset was subjected
to data augmentation, followed by removing images between low and conventional illumi-
nation and converting all images to the PNG format, with a uniform resolution adjustment
of 600 * 400 pixels. The test process is used to select natural environmental images that
were not used in the training (overall low illumination or partial low illumination). The
first stage of training went through 100 iterations, with a learning rate of 1 × 10−4. Then,
after another 100 iterations, the learning rate linearly decayed to 0. During this process, we
used the Adam optimizer and set the batch size to 32.

The second stage of the model training process in this experiment used the publicly
available COCO dataset, which contains a total of 118 k real-type images for training, all
with annotations for truth detection boxes. Each image has a maximum of 63 detection
instances, with an average of seven detection instances. The test process used images
converted in the first stage, and in the comparison experiment, images before and after
conversion were used for comparison. In the second stage of the training experiment, the
Adam optimizer was used to set the initial learning rate as 1 × 10−4, the learning rate of
the backbone network as 1 × 105, and the weight attenuation as 1 × 10−4. The backbone
network used the ResNet model of imagenet pre-training.

The overall experimental design was divided into three parts (E1, E2, and E3). Ex-
periments E1 and E2 demonstrated the performance of this method in processing low
illumination images through visualization and comparison. The E3 experiment demon-
strated the detection performance of this method for risk factors in low illumination scenes
through quantitative results.

4.2. Conversion Effect Experiment (E1)

The conversion experiment results of the first stage model are shown in the figure
below. The first column is the random input natural environment illumination image, the
second column provides some details of the input image, the third column is the normal
illumination image converted using the first stage model, and the fourth column presents
some details of the normal illumination image.

The comparison of image details before and after the fourth line conversion shows
that our method can adapt to low illumination images for conversion work (Figure 6). For
areas with high illumination in the original image, the enhancement ratio will be reduced
to prevent local illumination from being too bright and leading to distortion. A comparison
of image details before and after conversion of the first three lines shows that the converted
image can help people or machines obtain more detailed information about the original
image hidden due to lighting problems.
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cant contrasting regions of the experimental outcomes. Based on these areas, we can evaluate the
conversion efficiency of the presented image).

At the same time, we conducted human subjective experiments commonly used in
the field of conversion for our method and the mainstream conversion method CycleGAN.
We randomly selected ten natural low illumination images and used CycleGAN and our
method’s conversion stage for illumination conversion. We obtained 10 converted outputs,
and then asked 10 subjects to independently compare these two outputs. Specifically, each
person randomly received two out of 20 outputs and scored them. The scoring criteria
reflected three aspects, with two points for each aspect and a maximum score of six points.
The three aspects were as follows: (1) Is the image clear and does the image not contain
any noise? (2) Are there no overexposed or underexposed areas in the image? (3) Are
there no abnormal colors or distorted textures in the image? Figure 7 shows the scores
of two output methods. Based on the results of the visual conversion experiments and
human subjective experiments, we concluded that this method outperforms the current
mainstream conversion methods in overcoming low illumination during the first stage.
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4.3. Ablation Detection Experiment (E2)

A comparison of detection and ablation experiment results using the first-stage con-
version is shown in Figure 8. The first and second columns show the detection results
and details after conversion, while the third and fourth columns show the pre conversion
effects and details. The comparison between the first and third lines shows that after the
first stage of adaptive transformation, this method can help detect objects that are not easily
detected due to the influence of lighting in the second stage of the experiment. Based
on the comparison of these three lines, it can be seen that after the first stage of adaptive
transformation, the probability of confirming the detected object was improved, especially
in the second line.
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4.4. Risk Factor Confusion Quantification Experiment (E3)

This experiment used a fuzzy matrix to summarize the test records of the selected
low illumination test set samples in the form of a matrix according to the true value and
predicted value. The rows of the matrix represent true values, the columns of the matrix
represent predicted values, the true values represent objectively existing risk factor targets
in the sample, and the predicted values represent the risk factor targets predicted by the
sample method. For each risk factor target, if it matched, it was recorded as True (0); if not,
it was recorded as False (1).

In this experiment, ten low-light images were randomly selected from the dataset.
After calculating the statistics for 55 risk factor targets, four different methods were used to
detect and verify them. For selection of the ten images, we first randomly selected eight
images from among the experimental images. To demonstrate the regional enhancement
effect of our dual discriminator on local low illumination images, we specifically added
two random local low illumination images. This process ensured that there were at least
two local low illumination images in each batch of experimental sets, thus preventing
small probability events, such as missing local low illumination images, from occurring
throughout the experimental set. In this process, the first confusion matrix of the four
combination methods was obtained. Next, we repeated the process for obtaining the
confusion matrix seven times. For statistical convenience, we proportionally expanded
or reduced the results based on the total number of batch targets and the total number of
benchmark targets (55), thereby ensuring that the proportion of results to the total number
of benchmark targets was approximately the same as the proportion of results to the total
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number of batch targets before the change. We then averaged the results eight times to
obtain the following average confusion matrix (Figure 9).
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The first column in the confusion matrix represents the number of targets predicted
to be dangerous targets (0), and the first row in the first column represents the number of
targets that are actually dangerous targets (0), namely TP (True Positive) Results. The second
row in the first column represents the number of actual non-hazardous targets (1), which
are FP (False Positive) results. The second column similarly represents the number of targets
predicted as non-hazardous targets (1), and different rows represent whether those targets
are actually hazardous targets, namely FN (False Negative) and TN (True Negative) results.
Thus, the true aliasing rate (TCr), mean true aliasing rate (mTCr), false aliasing efficiency
(FCr), and mean false aliasing efficiency (mFCr) can be expressed by a formula, where n
is the number of times the confusion matrix is experimentally obtained. In general, the
higher the true obfuscation rate, the lower the false obfuscation rate, which results in a low
proportion of targets representing obfuscation, indicating better detection performance:

TCr =
TP

TP + FN + FP + TN
, (14)

mTCr = (∑n
i=1

TP
TP + FN + FP + TN

)/n, (15)

FCr =
FP

TP + FP
, (16)

mFCr = (∑n
i=1

FP
TP + FP

)/n. (17)

The mean true confusion rate (mTCr) and mean false confusion rate (mFCr) of
eight confusion matrix experiments conducted using the four methods were recorded
in a table (Table 1), and the results were presented to two decimal places. As all 55 targets in



Mathematics 2023, 11, 2404 15 of 17

the experiment were actually dangerous targets (0), we determined that the false confusion
rate and true confusion rate combined to approximately 1. In comparison, we found that
the second-stage detection model was generally superior to mainstream convolutional
networks and that the first stage could overcome the impact of low illumination in the
whole or partial region upon detection.

Table 1. Comparison of the true confusion rate and false confusion rate of the four methods.

Ours (I) Ours (II) mTCr mFCr

Ours
√ √

0.85 0.15

Ours
√

0.55 0.45

CycleGAN
√

0.67 0.33

Fast RCNN 0.49 0.51

Deformable-DETR 0.53 0.47

5. Conclusions

In this paper, we used a two-stage deep learning model framework to solve the
adaptive detection problem for low illumination environments. The entire training process
has low requirements for training data and offers good operability and generalization.
The experimental results showed that our method can adaptively overcome the impact
of low illumination on detection in the first stage, while detection in the second stage
remained superior to that of mainstream convolutional detection models without adaptive
conversion conditions. By adding adaptive conversion conditions, there was a significant
improvement in detection under low illumination. In future work, we plan to combine
the algorithm with sensor innovation while also improving the overall robustness of the
detection model from other dimensions so that it can maintain good detection performance
in various extreme situations.
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