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Abstract: This paper presents a review of both classical and modern results pertaining to partial
inverse spectral problems for differential operators. Such problems consist in the recovery of dif-
ferential expression coefficients in some part of the domain (a finite interval or a geometric graph)
from spectral characteristics, while the coefficients in the remaining part of the domain are known a
priori. Usually, partial inverse problems require less spectral data than complete inverse problems.
In this review, we pay considerable attention to partial inverse problems on graphs and to the unified
approach based on the reduction of partial inverse problems to Sturm-Liouville problems with entire
analytic functions in a boundary condition. We not only describe the results of selected studies but
also compare them with each other and establish interconnections.
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1. Introduction

This paper contains an overview of results pertaining to partial inverse spectral prob-
lems for ordinary differential operators. Such problems consist in the recovery of differential
expression coefficients on some part of the domain (a finite interval or a geometric graph)
from spectral characteristics, while the coefficients on the remaining part of the domain are
known a priori. Usually, partial inverse problems require fewer spectral data than complete
inverse problems. In the literature, partial inverse problems are also called half-inverse
problems, Hochstadt–Lieberman-type problems, inverse problems with mixed data, and
incomplete inverse problems.

We begin with some classical results regarding complete inverse spectral problems. The
greatest success in inverse spectral theory has been achieved for the second-order Sturm-
Liouville (one-dimensional Schrödinger) equation (see the monographs [1–5] and the refer-
ences therein):

−y′′ + q(x)y = λy, x ∈ (0, 1), (1)

where the function q(x) is usually called the potential, and λ is the spectral parameter. In 1946,
Borg [6] proved that the potential q(x) is uniquely specified by the two spectra {λn,j}n≥1 and
j = 0, 1 of the boundary value problems for Equation (1) subject to the boundary conditions

y(0) = y(j)(1) = 0, j = 0, 1.

In their seminal paper [7], Gelfand and Levitan developed a constructive method
for solving the inverse Sturm-Liouville problem. This method allowed the authors to
obtain the necessary and sufficient conditions of the inverse problem’s solvability. Since
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then, inverse spectral theory has been developing all over the world for various classes of
differential operators with applications in classical and quantum mechanics, geophysics,
nanotechnology, acoustics, electronics, and other fields of science and engineering.

In 1978, Hochstadt and Lieberman [8] proved that, if the potential q(x) of the Sturm-
Liouville (Schrödinger) Equation (1) is known a priori on the half-interval

(
1
2 , 1
)

, then,
in contrast to the Borg problem, the spectrum {λn,0}n≥1 alone is sufficient for the unique

specification of q(x) on
(

0, 1
2

)
. Thus, knowledge of the potential on part of the interval

reduces the amount of spectral data needed for the operator reconstruction. The Hochstadt–
Lieberman problem was the first partial inverse problem. Later on, various generalizations
of this problem were considered by Hald [9], Gestezy and Simon [10], Horváth [11,12],
and other scholars. Constructive methods and solvability conditions for the Hochstadt–
Lieberman problem have been obtained by Sakhnovich [13], Hryniv and Mykytyuk [14],
Buterin [15,16], and Martinyuk and Pivovarchik [17,18].

In recent years, considerable attention has been paid by mathematicians and physi-
cists to the inverse transmission eigenvalue problem, which has applications in acoustics.
In [19], McLaughlin and Polyakov presented an inverse transmission problem statement,
which generalized the Hochstadt–Lieberman problem. The investigation of the McLaughlin–
Polyakov problem continued in [20–23] and other studies, offering a series of new results
in the theory of partial inverse problems.

A variety of partial inverse problems arise for differential operators on geometrical
graphs, also called quantum graphs. Such operators are used to model various processes
in graph-like structures and networks in organic chemistry, mesoscopic physics, nanotech-
nology, hydrodynamics, waveguide theory, and other applications (see, e.g., the mono-
graphs [24,25] and the references therein). A basic introduction to quantum graphs can be
found in [26]. There is an extensive literature on inverse spectral problems for differential
operators on graphs (see the survey [27] on this topic). In this review, we focus on partial
inverse problems. Such problems on graphs arise when differential operator coefficients
(for example, Sturm-Liouville potentials) are known a priori for part of the graph. These
coefficients can be obtained by either measurements or a reconstruction method. In the
second case, the solution of partial inverse problems can be used as an auxiliary step in
solving complete inverse problems on graphs.

The first results on partial inverse problems on graphs were obtained by Pivovarchik [28],
Yurko [29], and Yang et al. [30–32]. However, the results of these papers were limited
to uniqueness theorems for the Sturm-Liouville (Schrödinger) operators on graphs of an
elementary structure (star-shaped graphs and simple graphs with loops). Later on, Bon-
darenko developed a constructive method to solve partial inverse problems on graphs of
various types. Using this method, a number of new results have been obtained for differen-
tial operators and pencils on star-shaped graphs [33–36], simple graphs with cycles [37,38],
tree graphs (graphs without cycles) [39], and even graphs of an arbitrary geometrical struc-
ture [40,41]. These results included not only uniqueness theorems but also constructive
algorithms for the solution, solvability, and stability of partial inverse problems.

Following the investigation of partial inverse problems on graphs, a unified approach
to various classes of partial inverse problems arose [41–44]. This approach was based on the
reduction of a partial inverse problem on either an interval or a graph to an inverse problem
for a differential operator on an “unknown” interval with entire analytic functions in one
of the boundary conditions. In [41–44], an inverse problem theory was created for Sturm-
Liouville operators with entire functions in a boundary condition. This theory included
the necessary and sufficient conditions of uniqueness, constructive methods for a solution,
global solvability, local solvability, and stability. These results have been applied to the
Hochstadt–Lieberman problem, the inverse transmission eigenvalue problem, and partial
inverse problems on graphs. Later on, this approach was developed in [45] for differential
pencils and in [46] for Sturm-Liouville operators with polynomial boundary conditions.
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In addition, it is worth mentioning that partial inverse problems have been consid-
ered for other types of operators, in particular, for integro-differential operators [47–49],
functional-differential operators with a constant delay [50–52], higher-order differential
operators [53,54], and matrix Sturm-Liouville operators [55,56].

The goal of this review was to summarize classical and recent work on partial inverse
problems. Below, we describe some features of this review. Since the amount of literature
on partial inverse problems is enormous, this review includes only the results of selected
papers, which, in the author’s opinion, could help the reader to form a general picture.
Most attention was paid to partial inverse problems on geometrical graphs and the unified
approach, which has been investigated by the author in recent years. However, we also
paid attention to classical results and different modern directions of research. In view
of the huge amount of information available, we focused on describing the results of the
selected papers. Unfortunately, we could not provide a full description of the methods by
which these results were obtained. Nevertheless, the reader can find more details in the
referenced literature. In this review, we compare the results for different problems and
establish connections between them.

The paper is organized as follows. In Section 2, we consider the Hochstadt–Lieberman
problem and its generalizations on intervals. Section 2.1 is devoted to the uniqueness
theorems, and Section 2.2 focuses on constructive methods and solvability conditions.
Section 2.3 is concerned with the inverse transmission eigenvalue problem (mostly the
McLaughlin–Polyakov problem). In Section 3, we describe the known results on partial
inverse problems for differential operators on graphs. Star-shaped graphs are considered
in Section 3.1, simple graphs with loops in Section 3.2, and graphs of a general structure
in Section 3.3. Section 4 is concerned with the unified approach to various classes of partial
inverse problems. In Section 4.1, the inverse spectral theory of the Sturm-Liouville problem
with entire functions in a boundary condition is presented. In Section 4.2, this theory is
applied to partial inverse problems. In Section 5, we consider partial inverse problems for
classes of operators other than Sturm-Liouville operators and pencils. Section 6 contains
the conclusions.

Here, we present a few remarks about notations. When describing the results, we
mostly preserve the notations of the original papers. Therefore, the notations included
throughout the review can have different meanings. The symbol λ usually denotes the
spectral parameter, unless stated otherwise. In the formulations of the uniqueness theorems,
along with one problem (e.g., problem L), we often consider another problem (e.g., L̃) of
the same form but with different coefficients. If a symbol α denotes an object related to
the problem without a tilde, then the symbol α̃ denotes the analogous object related to the
problem with a tilde. In addition, all the boundary value problems in this review were
considered on finite intervals or compact graphs, so their spectra are countable sets of
eigenvalues.

2. Hochstadt–Lieberman Problem and Generalizations
2.1. Uniqueness Theorems

Let us begin with the famous result of Hochstadt and Lieberman [8]. They considered
the Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ (0, 1),

y(0) cos α + y′(0) sin α = 0, y(1) cos β + y′(1) cos β = 0,

 (2)

where q ∈ L1(0, 1) and α, β ∈ [0, π). The Hochstadt–Lieberman problem is
formulated as follows:

Problem 1 ([8]). Suppose that the potential q(x) on
(

1
2 , 1
)

and the constants α and β are known

a priori. Given the spectrum {λn}n≥1 of the problem (2), find q(x) on
(

0, 1
2

)
.
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Hochstadt and Lieberman proved the following uniqueness theorem for Problem 1:

Theorem 1 ([8]). Let {λn}n≥1 be the spectrum of the problem (2), and let {λ̃n}n≥1 be the spectrum
of a similar problem with an integrable potential q̃(x). Suppose that q(x) = q̃(x) on

(
1
2 , 1
)

, and

λn = λ̃n, n ≥ 1. Then, q(x) = q̃(x) a.e. on (0, 1).

Hald [9] generalized Hochstadt and Lieberman’s findings to the Sturm-Liouville
problem with discontinuity. In addition, Hald showed that the coefficient in the left
boundary condition is also uniquely specified by the spectrum.

Theorem 2 ([9]). Consider the eigenvalue problem

−y′′ + q(x)y = λy, x ∈ (0, π),

with the boundary conditions

y′(0)− hy(0) = y′(π) + Hy(π) = 0

and the jump conditions

y(d+) = ay(d−), y′(d+) = a−1y(d−) + by(d−),

where q is an integrable function; 0 < d < π
2 ; a > 0; and |a− 1|+ |b| > 0. Let {λn}n≥0 be the

eigenvalues. Consider the eigenvalue problem with a, b, d, h, H, λ, and q replaced by ã, b̃, d̃, h̃, H̃, λ̃,
and q̃, respectively. If λn = λ̃n, H = H̃, and q = q̃ a.e. on

(
π
2 , π

)
, then a = ã, b = b̃, d = d̃,

h = h̃, and q = q̃ a.e. on (0, π).

Gesztesy and Simon [10] investigated a case where the potential q(x) on an interval
(0, a), a > 1

2 is known. Then, the potential is uniquely determined by a fractional part
of the spectrum.

Theorem 3 ([10]). Let σ(H) denote the spectrum of the operator H = − d2

dx2 + q in L2(0, 1) with
the boundary conditions

y′(0) + h0y(0) = 0, y′(1) + h1y(1) = 0, h0, h1 ∈ R.

Then, q on
[
0, π

2 + α
2
]

for some α ∈ (0, 1); h0; and a subset S ⊆ σ(H) satisfying

#{λ ∈ S : λ ≤ λ0} ≥ (1− α)#{λ ∈ σ(H) : λ ≤ λ0}+
α

2
(3)

for all sufficiently large λ0 ∈ R uniquely determine h1 and q on [0, 1].

The uniqueness of recovering the Sturm-Liouville potential from parts of spectra
described by conditions analogous to (3) was also investigated in [57–59].

Horváth [11] noticed that, to recover the potential q(x), one can use eigenvalues of
several spectra σj = σ(q, αj, β), j = 1, . . . , N of the Sturm-Liouville problems

−y′′ + q(x)y = λy, x ∈ (0, π),

y(0) cos αj + y′(0) sin αj = 0, y′(π) cos β + y(π) sin β = 0.

 (4)

The following main result of [11] generalized Theorem 3 of Gestezy and Simon.

Theorem 4 ([11]). Suppose that λ
(j)
n ∈ σj is known for n ∈ Sj and let

nj(t) = #{n ∈ Sj : λ
(j)
n < t2}, t ≥ 0.



Mathematics 2023, 11, 2408 5 of 44

Let 0 ≤ a < π, 0 ≤ γ ≤ 1, and suppose that there exist t0 > 0 and δ > 0 such that, for
t ≥ t0,

N

∑
j=1

nj(t) ≥

 2(1− a
π )
{

γ[t + 1
2 ] + (1− γ)([t] + 1

2 )
}
+ O(t−δ), if sin β 6= 0,

2(1− a
π )
{

γ[t + 1
2 ] + (1− γ)([t] + 1

2 )
}
− 1 + O(t−δ), if sin β = 0.

Then, q on (0, a) and the eigenvalues
{

λ
(j)
n : n ∈ Sj

}
, j = 1, . . . , N, determine q

a.e. on (0, π).

An analogous result was obtained in [11] for Dirac operators.
The disadvantage of Theorems 3 and 4 is that their conditions are sufficient but not

necessary for the unique specification of the potential by part of the spectrum. In [12],
Horváth obtained the necessary and sufficient conditions for the uniqueness of a solution
for the following inverse problem in terms of closed exponential systems.

Problem 2 ([12]). Given the eigenvalues {λn}n≥1, where each λn belongs to the spectrum
σ(q, αn, β) of the Sturm-Liouville problem (4), find the potential q.

For definiteness, we provide the results of [12] for sin β = 0.

Theorem 5 ([12]). Let 1 ≤ p ≤ ∞, q ∈ Lp(0, π), and 0 ≤ a < π, and let λn ∈ σ(q, αn, 0) be
real numbers with λn 6→ −∞. Then, β = 0, q on (0, a) and the eigenvalues λn determine q in
Lp(0, π), and

e(Λ) =
{

e±2iµx, e±2i
√

λnx : n ≥ 1
}

(5)

is closed in Lp(a− π, π − a) for µ 6= ±
√

λn. Note that, if the sequence e(Λ) is closed for at least
one µ 6= ±

√
λn, then it is closed for any such value of µ.

Furthermore, in [12], Horváth noticed that Problem 2 was closely related to the recon-
struction of the potential q(x) from the values of the Weyl function at a countable set of
points. Let v(x, λ) denote the solution to the following initial value problem:

−v′′ + q(x)v = λv, x ∈ (0, π), v(π, λ) = sin β, v′(π, λ) = − cos β.

Then, the Weyl function is defined as follows:

mβ(λ) =
v′(0, λ)

v(0, λ)
.

According to the classical results [1,6], the Weyl function mβ(λ) uniquely specifies the
potential q(x). Horváth [12] obtained the following necessary and sufficient conditions for
the uniqueness of the potential reconstruction using the values {mβ(λn)}n≥1.

Problem 3 ([12]). Given the values {mβ(λn)}n≥1, find q.

Theorem 6 ([12]). Let 1 ≤ p ≤ ∞ and λn, n ≥ 1 be different arbitrary real numbers with
λn 6→ −∞. Let β = 0, q, q̃ ∈ Lp(0, π) and consider the Weyl functions m0(λ), and m̃0(λ),
defined by q and q̃, respectively. Then, the relation

m0(λn) = m̃0(λn), n ≥ 1 (6)

implies that m0(λ) ≡ m̃0(λ) if and only if the system e(Λ) defined by (5) is closed in Lp(−π, π).

Note that both sides of (6) are allowed to be infinite. Results analogous to
Theorems 5 and 6 for the case sin β 6= 0 can also be found in [12].
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The results of Horváth [11,12] motivated the further study of Problem 2 and its analogs.
In particular, Horváth and Kiss [60,61] investigated the stability of the problem. Horváth
and Sáfár [62] obtained the necessary and sufficient conditions for the uniqueness of the
potential reconstruction on a subinterval by some of the eigenvalues and norming constants.

Note that the Hochstadt–Lieberman problem and the abovementioned generalizations
deal with cases in which the potential is known on the right-hand (left-hand) subinterval,
as in Figure 1. Naturally, the following question arises: if the potential is known on either
the middle subinterval, as in Figure 2, or the boundary subintervals, as in Figure 3, then is
the potential on the remaining part of the interval uniquely specified by the spectrum or
any other spectral data?

0 1aunknown known

Figure 1. Hochstadt–Lieberman-type problems.

0 1knownunknown unknown

Figure 2. When q(x) is known on the middle subinterval.

0 1unknownknown known

Figure 3. When q(x) is unknown on the middle subinterval.

The question regarding the case in Figure 2 was answered by Guo and Wei [63]. Let
us formulate their result. Let L denote the Sturm-Liouville operator −y′′ + q(x)y subject to
the boundary conditions

y′(0)− hy(0) = 0, y′(1) + Hy(1) = 0,

where q ∈ L1(0, 1) is a real-valued function, and h, H ∈ R. Let σ(L) = {λn}n≥0 be
the spectrum of L, and let ψ(x, λ) be the solution of the Sturm-Liouville equation under
the initial conditions ψ(1, λ) = 1, ψ′(1, λ) = −H. For a set A = {xn}n≥0 of positive
reals, define

NA(t) := {n ∈ N∪ {0} : xn ≤ t}.

Theorem 7 ([63]). Let [a1, a2] ⊂ [0, 1] with a1 ≤ 1
2 and a1 + a2 ≥ 1, where the two equalities do

not occur simultaneously. Then, q on [a1, a2] together with the subset S of σ(L) and the interior

spectral data
ψ(a2, λn)

ψ′(a2, λn)
for λn ∈ S′, S′ ⊂ S, where the subsets S and S′ satisfy

NS(t) ≥ 2a1Nσ(t)− a1, NS′(t) ≥ 2(1− a2)Nσ(t) + a2 − 1

for all sufficiently large values of t, uniquely determine h, H, and q a.e. on [0, 1].

Thus, given the potential q(x) on an interior subinterval [a1, a2], some part of the
spectrum together with additional spectral data related to the point a2 uniquely spec-
ify the operator. It is interesting that, in Theorem 7, [a1, a2] can be an arbitrarily small
interval containing 1

2 .
The case in Figure 3, to the best of the author’s knowledge, remains an open problem.

2.2. Solvability Conditions and Constructive Solution

The results of the previous subsection were concerned only with the uniqueness
theorems. In this subsection, we consider constructive methods for solving the Hochstadt–
Lieberman problem and the existence of its solution.
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The first results in this direction were obtained by Sakhnovich [13]. He considered the
Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ [0, 1], (7)

y(0) = y(1) = 0, (8)

where the potential q(x) is real-valued and continuous. Let y(x, λ) denote the solution
of Equation (7) satisfying the initial conditions y(0, λ) = 0, y′(0, λ) = 1. The main result
of [13] was the following theorem, which provided sufficient conditions for solvability of
the Hochstadt–Lieberman problem.

Theorem 8 ([13]). Let the given functions h(t), t ∈ [0, 1], and p(x), x ∈ [0, 1
2 ] satisfy the

following conditions:

1. The function h(t) has a bounded derivative, and h(0) = 0.
2. The function p(x) is bounded on the segment [0, 1

2 ].
3. The following inequality holds:

sup
0≤t≤1

|h′(t)|+ 1
4

sup
0≤x≤ 1

2

|p(x)| < 1
2

. (9)

Then, there exists a bounded function q(x), x ∈ [0, 1], such that

q(x) = p(x), x ∈ [0, 1
2 ], (10)

and the corresponding function y(1, λ) has the form

y(1, λ) =
sin
√

λ√
λ

+
∫ 1

0

sin
√

λt√
λ

h(t) dt. (11)

It is important to note that y(1, λ) is the characteristic function of the problem (7)–(8),
that is, the zeros of y(1, λ) coincide with the eigenvalues {λn}n≥1 of (7)–(8). Using the
eigenvalues {λn}n≥1, one can construct the function y(1, λ) using Hadamard’s factorization
theorem and then find the function h(t) satisfying (11) using the Fourier transform. Thus,
Theorem 8 provides the sufficient conditions for the existence of the potential q(x) that
satisfies (10) and has the given spectrum {λn}n≥1.

Theorem 8 is proved by a constructive method that finds the potential q(x) from
p(x) and h(x) via approximations. For the convergence of these approximations, the
inequality (9) is crucial. Thus, the result of [13] has a local nature.

The necessary and sufficient conditions for the Hochstadt–Lieberman problem’s solv-
ability, to the best of the author’s knowledge, were obtained for the first time by Hryniv
and Mykytyuk [14]. They considered the Sturm-Liouville equation (Equation (1)) with the
potential q of class W−1

2 (0, 1). In this case, it is convenient to write the Sturm-Liouville
differential expression −y′′ + q(x)y as `σ(y) = −(y[1])′ − σy′, where q = σ′, σ ∈ L2(0, 1),
and y[1] := y′ − σy is the quasi-derivative. Let us use the notation Re L2(0, a) for the class
of real-valued functions of L2(0, a), a > 0. For σ ∈ Re L2(0, 1) and h ∈ R, let Tσ,h denote
the operator in L2(0, 1) that acts as Tσ,hy = `σ(y) on the domain

dom Tσ,h =
{

y ∈W1
1 (0, 1) : y[1] ∈W1

1 (0, 1), `σ(y) ∈ L2(0, 1), y[1](0) = 0, y[1](1) = hy(1)
}

.

The operator Tσ,h is self-adjoint, and its spectrum is a countable set of real simple
eigenvalues {λ2

n}n≥0 satisfying {(λn − n)}n≥0 ∈ l2. Using the shift σ(x) := σ(x) + cx,
h := h− c, one can achieve the positivity λn > 0, n ≥ 0. In [14], the following analog of the
Hochstadt–Lieberman problem was considered:
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Problem 4 ([14]). Given a function σ0(x), x ∈ (0, 1
2 ) and reals {λn}n≥0, find a function σ ∈

Re L2(0, 1) and h ∈ R such that σ(x) = σ0(x) a.e. on (0, 1
2 ) and the spectrum of Tσ,h coincides

with {λ2
n}n≥0.

In order to formulate the results of [14], one needs some additional definitions. Let
L denote the set of all strictly increasing sequences Λ = {λn}n≥0, in which λn > 0 and
{(λn − πn)}n≥0 ∈ l2. Let us fix an arbitrary Λ = {λn} ∈ L and denote by ΠΛ the set of all
real-valued functions ψ ∈ L2(0, 1) of the form

ψ(x) =
∞

∑
n=0

(αn cos(λnx)− cos(πnx)) +
1
2

, (12)

where {αn}n≥0 is a sequence of positive numbers such that {(αn − 1)}n≥0 ∈ l2.
For σ0 ∈ Re L2(0, 1

2 ), let y0(x, λ) denote the solution of the initial value problem

`σ0(y0) = λ2y0, x ∈ (0, 1
2 ), y0(0, λ) = 1, y[1]0 (0, λ) = 0.

Let K(x, t) be the transformation operator kernel (see the details in [14]):

cos λx = y0(x, λ) +
∫ x

0
K(x, t)y0(t, λ) dt.

The necessary and sufficient conditions for the solvability of Problem 4 are provided
by the following theorem:

Theorem 9 ([14]). Assume that Λ = {λn}n≥0 ∈ L, σ0 ∈ Re L2(0, 1
2 ) and

φ0(2x) := −1
2

σ0(x) +
∫ x

0
K2(x, t) dt, x ∈ (0, 1

2 ).

1. Problem 4 is solvable for the mixed spectral data (σ0, Λ) if and only if φ0 ∈ ΠΛ.
2. If φ0 ∈ ΠΛ, then the solution of Problem 4 is unique, that is, there exists a unique σ ∈

Re L2(0, 1) and a unique h ∈ R such that σ is an extension of σ0 and the spectrum of Tσ,h
coincides with Λ2 = {λ2

n}n≥0.

As corollaries of Theorem 9, Hryniv and Mykytuyk [14] also obtained some results
for the case of the regular potential q ∈ L2(0, 1). The proof of Theorem 9 is based on the
transformation operator method (see [1,2]). Note that the numbers αn in Expansion (12) for
φ0(x) equal the weight numbers ‖yn‖−2

L2(0,1), where {yn(x)}n≥0 are the eigenfunctions of the

operator Tσ,h corresponding to the eigenvalues {λ2
n}n≥0. Hence, the requirement φ0 ∈ ΠΛ

means that the weight numbers are positive and have the asymptotics {(αn − 1)}n≥0 ∈ l2,
which is valid by necessity. Roughly speaking, the method of [14] reduced Problem 4 to the
classical inverse problem using the spectral data {λ2

n, αn}n≥0 and required the necessary
and sufficient conditions for the solvability of the latter problem. Such conditions in the
case of a singular potential of class W−1

2 (0, 1) were obtained in [64].

Theorem 10 ([64]). For the numbers {λ2
n, αn}n≥0 to be the spectral data of a positive Sturm-

Liouville operator Tσ,h with σ ∈ Re L2(0, 1) and h ∈ R, it is necessary and sufficient that
Λ = {λn}n≥0 ∈ L, αn > 0 for n ≥ 0 and {(αn − 1)}n≥0 ∈ l2.

An alternative approach to the solution of the Hochstadt–Lieberman problem was
developed in parallel by Buterin [15,16] and by Martinyuk and Pivovarchik [17]. In [15],
Buterin considered the Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ (0, π), (13)

y′(0)− hy(0) = 0, y′(π) + Hy(π) = 0, (14)



Mathematics 2023, 11, 2408 9 of 44

where q ∈ L1(0, π).
Let S(x, λ), ϕ(x, λ), and ψ(x, λ) denote, respectively, the solutions of Equation (13)

satisfying the initial conditions

S(0, λ) = 0, S′(0, λ) = 1, ϕ(0, λ) = 1, ϕ′(0, λ) = h, ψ(π, λ) = 1, ψ′(π, λ) = −H.

Then, the eigenvalues {λn}n≥0 of the boundary value problem (13)–(14) coincide with
the zeros of the characteristic function ∆(λ) = ϕ′(π, λ) + Hϕ(π, λ). Thus,

∆0(λ) = ψ(0, λ), ∆1(λ) = −ψ′(π/2, λ), ∆0
1(λ) = ψ(π/2, λ),

Θ(λ) = ϕ(π/2, λ), Ξ(λ) = ϕ′(π/2, λ). (15)

The main idea of [15] consists in the fact that, if the potential q(x) on (0, π/2) is
known, then the functions Θ(λ) and Ξ(λ) can be found. Thus, using the following relations
between the characteristic functions,

∆0
1(λ) = ∆0(λ)Θ(λ)− ∆(λ)S(π/2, λ),

− ∆1(λ) = ∆0(λ)Ξ(λ)− ∆(λ)S′(π, λ),

one can find ∆0
1(λ) and ∆1(λ) by the interpolation of entire functions and recover the

potential q(x) and the coefficient H from the Weyl function M(λ) = −∆1(λ)

∆0
1(λ)

for the

interval (π/2, π). Indeed, the zeros of the functions ∆1(λ) and ∆0
1(λ) are the two spectra

of the Borg problem on this interval.
Let {ξn}n≥0 and {θn}n≥0 denote the zeros of the entire functions Ξ(λ) and Θ(λ),

respectively. If these zeros are simple, the Hochstadt–Lieberman problem can be solved by
the following constructive algorithm:

Method 1 ([15]). Suppose that the spectrum {λn}n≥0, the coefficient h, and the potential q(x) on
the interval (0, π/2) are given. We must find q(x) on (π/2, π) and H.

1. Find ∆(λ) by the formula

∆(λ) = π(λ0 − λ)
∞

∏
n=1

λn − λ

n2 .

2. Construct the functions Θ(λ) and Ξ(λ) using (15) and find their zeros θn, ξn, n ≥ 0.
3. Calculate the numbers

d(ξn) = ∆(ξn)S′(π/2, ξn) +
√

ξn sin(
√

ξnπ/2),

d0(θn) = −∆(θn)S(π/2, θn)− cos(
√

θnπ/2).

4. By interpolation, find the functions

d(λ) =
∞

∑
n=0

d(ξn)
Ξ(λ)

(λ− ξn)Ξ′(ξn)
, d0(λ) =

∞

∑
n=0

d0(θn)
Θ(λ)

(λ− θn)Θ′(θn)
.

5. Let ∆1(λ) = −
√

λ sin(
√

λπ/2) + d(λ), ∆0
1(λ) = cos(

√
λπ/2) + d1(λ).

6. Recover q(x) on (π/2, π) and H from the Weyl function M(λ) = −
∆0

1(λ)

∆1(λ)
.

Note that Method 1 does not require the self-adjointness of the problem (13)–(14) and
so works for complex-valued potentials q(x), h, and H. The last step of Method 1 in the
non-self-adjoint case can be implemented by an algorithm presented in [65]. Method 1 is
also valid for multiple eigenvalues {ξn} and {θn} after minor modifications.
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In [16], Buterin generalized Method 1 to quadratic differential pencils of the form

y′′ + (ρ2 − 2ρq1(x)− q0(x))y = 0, x ∈ (0, π),

y′(0)− (h1ρ + h0)y(0) = 0, y′(π) + (H1ρ + H0)y(π) = 0,

where ρ is the spectral parameter; qj(x) ∈W j
1[0, 1] are complex-valued functions; hj, Hj ∈ C;

j = 0, 1; h1 6= ±i; and H1 6= ±i. The half-inverse problem of [16] consists in the recovery
of the coefficients q0, q1, H0, and H1 from the spectrum {ρn}, while q0 and q1 on (0, π/2),
h0, and h1 are known a priori. A similar problem for the quadratic differential pencil with
another type of boundary conditions was investigated in [66].

An analogous approach was used by Martinyuk and Pivovarchik [17] to obtain the
necessary and sufficient conditions of the Hochstadt–Lieberman problem’s solvability. They
considered the Sturm-Liouville problem

−y′′ + q(x)y = λy, x ∈ (0, a), y(0) = y(a) = 0

in the following equivalent form:

−y′′j + qj(x)yj = λ2yj, x ∈ [0, a/2], j = 1, 2, (16)

yj(0) = 0, j = 1, 2, y1(a/2) = y2(a/2), y′1(a/2) + y′2(a/2) = 0. (17)

The boundary value problem (16)–(17) can be treated as the Sturm-Liouville problem
on a two-edge star-shaped graph with the standard matching conditions in the interior
vertex (see Figure 4). In the Hochstadt–Lieberman problem, the potential q1 on the first edge
is known, and the potential q2 on the second edge must be recovered from the spectrum
{λk}k∈Z0 of the boundary value problem (16)–(17), Z0 := Z \ {0}.

a/2

00

known unknown

Figure 4. Two-edge graph.

The authors of [17] assumed that qj ∈ L2(0, a/2) and denoted by sj(λ, x), j = 1, 2 the
solutions of the corresponding Equation (16) satisfying the initial conditions sj(λ, 0) = 0,
s′j(λ, 0) = 1.

Theorem 11 ([17]). Let a real-valued function q1 ∈ L2(0, a/2) be given, together with a set
{λk}k∈Z0 of numbers that satisfy the conditions:

1. λk = −λk,
2. −∞ < λ2

1 < λ2
2 < · · · < λ2

k < . . . ,

3. λk =
πk
a

+
K
πk

+
βk
k

.

Here, K ∈ R, and {βk}k∈Z0 ∈ l2.

If the function
s2(
√

λ, a/2)
s′2(
√

λ, a/2)
belongs to the Nevanlinna class, then there exists a real-valued

function q2(x) ∈ L2[0, a/2] such that the spectrum of the problems (16) and (17) generated by q1
and q2 coincides with {λk}k∈Z0 .

It is supposed in Theorem 11 that the functions s2(λ, a/2) and s′2(λ, a/2) are recovered
from q1 and {λk}k∈Z0 by a procedure analogous to Method 1. Note that the conditions
of Theorem 11 are not only sufficient but also necessary. Indeed, the conditions 1–3 are

the standard properties of Sturm-Liouville eigenvalues, and the function
s2(
√

λ, a/2)
s′2(
√

λ, a/2)
is
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the Weyl function of the Sturm-Liouville problem on the second edge, which belongs to
the Nevanlinna class by necessity. In fact, Martinyuk and Pivovarchik [17] reduced the
Hochstadt–Lieberman problem to the classical inverse problem using the Weyl function on a
subinterval corresponding to the second edge and then imposed an additional requirement
of belonging to the Nevanlinna class. Analogous results for the Robin boundary conditions
were obtained in [18].

Thus, both Theorems 9 and 11 pertaining to the necessary and sufficient conditions pro-
posed by Hryniv and Mykytyuk [14] and by Martinyuk and Pivovarchik [17], respectively,
contain some a posteriori conditions, which have to be checked after the implementation
of several steps of a constructive procedure for solution. It seems that such conditions are
unavoidable for Hochstadt–Lieberman-type problems.

Additionally, numerical techniques for solving the Hochstadt–Lieberman problem
were developed by Rundell and Sacks [67]. An overview of some other work on the
Hochstadt-Leiberman problems on an interval can be found in [68].

2.3. McLaughlin–Polyakov Problem

In this section, we consider the so-called transmission eigenvalue problem

−y′′ + q(x)y = λy, x ∈ (0, 1), (18)

y(0) = 0, y(1) cos ρa− y′(1)
sin ρa

ρ
= 0, ρ =

√
λ, (19)

where q is a real-valued potential of L2(0, 1) and a ≥ 0. The boundary condition at x = 1
has a non-linear and even non-polynomial dependence on the spectral parameter λ.

The problem (18)–(19) arise in connection with the investigation of the acoustic inverse
scattering problem in a non-homogeneous medium (see [19]). Transmission eigenvalues are
the eigenvalues k2 of the boundary value problem

∆u + k2n(x)u = 0, x ∈ B1,
∆v + k2v = 0, x ∈ B1,
u(x) = v(x), x ∈ ∂B1,
∂
∂r (u(x)− v(x)) = 0, x ∈ ∂B1,

(20)

where B1 is the ball in R3 of radius 1 centered at the origin, ∂B1 is its boundary, n(x) > 0 is
the refractive index, and ∂

∂r is the normal derivative. The inverse transmission eigenvalue
problems consist in the recovery of the function n(x) (related to the speed of sound in acous-
tics) from the transmission eigenvalues. In spherically symmetric cases, the problem (20)
can be reduced to the one-dimensional form (18)–(19) using the separation of variables and
subsequent transforms (see [19]).

Difficulties in the investigation of the problem (18)–(19) are caused by the non-
regularity of its boundary conditions in the Birkhoff and Stone senses (see [69]). Therefore,
the transmission problem involves more complex spectral behavior than the classical
Sturm-Liouville problems.

McLaughlin and Polyakov [19] showed that, for a 6= 1, the transmission eigenvalue
problem has a subspectrum {λn}n≥1 with the asymptotics

√
λn =

πn
1− a

+
ω0

πn
+

κn

n
, ω0 :=

1
2

∫ 1

0
q(x)dx, n ≥ 1, (21)

Furthermore, λn ∈ R for a sufficiently large n. Buterin and Yang [70] suggested
that an eigenvalue sequence {λn}n≥1 possessing these properties should be called an
almost real subspectrum. Note that a finite number of the first eigenvalues in an almost real
subspectrum may be complex and/or multiple. Since the potential q(x) is real-valued, then,
without a loss of generality, we can assume that an almost real subspectrum is symmetrical
with respect to the real axis, that is, values λ and λ are only contained in the sequence
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{λn}n≥1 simultaneously and have the same multiplicity. An almost real subspectrum can
be non-unique. The results of this section are valid for any almost real subspectrum.

In [19], an investigation of the following inverse transmission eigenvalue problem was
initiated.

Problem 5 ([19]). Given an almost real subspectrum {λn}n≥1 and the potential q(x) on the
interval (α, 1), where α := min{|a− 1|/2, 1}, find q(x) on (0, α).

We call Problem 5 the McLaughlin–Polyakov problem. Obviously, if a = 0, then the
McLauglin-Polyakov problem coincides with the Hochstadt–Lieberman problem, and an
almost real subspectrum coincides with the whole spectrum. McLaughin and Polyakov [19]
proved the uniqueness theorem for the solution of Problem 5.

Theorem 12 ([19]). Suppose that a ≥ 0, a 6= 1. If λn = λ̃n for n ≥ 1 and q(x) = q̃(x) a.e. on
(α, 1), then q(x) = q̃(x) a.e. on (0, α).

Note that, for a ≥ 3, an almost real subspectrum uniquely specifies the potential on
the whole interval (0, 1), and some part of an almost real subspectrum is sufficient for
a > 3. The investigation of Problem 5 was continued by McLauglin et al. in [20] for a ≥ 3
and in [21] for a ∈ (0, 1) ∪ (1, 3). The authors of [20,21] developed numerical methods for
reconstructing the potential based on the ideas of Rundell and Sacks [67]. However, they
did not study the existence and stability of the solution.

In [22], Bondarenko and Buterin proved the following theorem on the local solvability
and stability of the McLaughlin–Polyakov problem:

Theorem 13 ([22]). Fix a ∈ [0, 1)∪ (1, 3]. For any real-valued potential q ∈ L2(0, 1), there exists
δ > 0 such that, for any sequence {λ̃n}n≥1 symmetric with respect to the real axis and an arbitrary
real-valued function q1 ∈ L2(α, 1) satisfying∫ 1

α
q1(x) dx =

∫ 1

α
q(x) dx,

the closeness

Λ :=

√
∞

∑
n=1
|λn − λ̃n|2 ≤ δ, Q := ‖q− q1‖L2(α,1) ≤ δ

implies the existence of a unique function q̃(x) ∈ L2(0, 1) such that q̃(x) = q1(x) a.e. on (α, 1)
and {λ̃n}n≥1 is an almost real subspectrum of the boundary value problems (18) and (19) with q(x)
replaced by q̃(x). Moreover, the following estimate holds:

‖q− q̃‖L2(0,α) ≤ C(Λ + Q),

where C does not depend on {λ̃n}n≥1 and q1(x).

Theorem 13 represents the first existence result for the inverse transmission eigenvalue
problem. Furthermore, for a = 0, it provides the first full stability result for the Hochstadt–
Lieberman problem, in which perturbations of both the spectrum and the potential on
(1/2, 1) are taken into account. In addition, Theorem 13 implies the minimality of the
McLaughlin–Polyakov data in the case a ∈ [0, 1) ∪ (1, 3]. For a > 3, the stability does not
hold, since Problem 5 is overdetermined. The proof of Theorem 13 is constructive. Later
on, by relying on the ideas of [22], a unified approach to partial inverse problems was
developed (see Section 4).

In [23], the methods of Bondarenko and Buterin [22] were used to obtain further
stability results for Problem 5. It is worth mentioning that inverse transmission eigenvalue
problems were studied using statements other than the McLaughlin–Polyakov statement
in [69–74] and other papers.
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3. Partial Inverse Problems on Graphs

In this section, we consider generalizations of the Hochstadt–Lieberman problem on
metric graphs. We treat the boundary value problems on graphs as differential systems.
The geometrical graph structure is used only for defining the matching conditions. In
interior graph vertices, the problems in this section mostly feature the standard matching
conditions, which, from a physical viewpoint, express Kirchoff’s law in electrical circuits,
the balance of tension in elastic string networks, etc.

3.1. Star-Shaped Graphs

The majority of results on partial inverse problems for metric graphs have been
obtained for star-shaped graphs. We start with the complete inverse problem statement for
the Sturm-Liouville equations on such a graph.

Let G be a star-shaped graph containing m ≥ 3 edges {ej}m
j=1 of equal lengths π.

Each edge ej joins the internal vertex v0 with the boundary vertex vj. For each edge ej, we
introduce the parameter xj ∈ [0, π]. The value xj = 0 corresponds to the boundary vertex
vj, and the value xj = π corresponds to the internal vertex v0 (see Figure 5).

v0

v4

v3

vm

v1

v2

e4

e3

em

e1

e2

...

0

π π

0

π

0

π

0

π

0

Figure 5. Star-shaped graph.

On the graph G, consider the Sturm-Liouville equations

−y′′j (xj) + qj(xj)yj(xj) = λyj(xj), xj ∈ (0, π), j = 1, m, (22)

with real-valued potentials qj ∈ L2(0, π), j = 1, m, and the standard matching conditions at
the internal vertex:

y1(π) = yj(π), j = 2, m,
m

∑
j=1

y′j(π) = 0. (23)

Let Λ and Λk, k = 1, m, denote the spectra of the boundary value problems L and Lk,
k = 1, m, respectively, for Equation (22), subject to the matching conditions (23) and the
following boundary conditions:

L : yj(0) = 0, j = 1, m, (24)

Lk : y′k(0) = 0, yj(0) = 0, j = 1, m \ k.

The spectra Λ and Λk, k = 1, m, are countable sets of real eigenvalues.
The complete inverse Sturm-Liouville problem on graph G is formulated as follows:

Problem 6 ([75]). Given the spectra Λ and Λk, k = 1, m− 1, find the potentials {qj}m
j=1.
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Problem 6 is a special case of the well-studied inverse spectral problems for Sturm-
Liouville operators on trees (see [27,75]). In [75], the uniqueness of the inverse problem
solution was proved, and a constructive algorithm for its solution based on the method
of spectral mappings [4] was developed. Note that, for the recovery of the potentials on
the whole graph, a sufficiently large amount of spectral data must be used (m spectra). To
the best of the author’s knowledge, the minimality of these data is an open question. In
addition, the following question arises:

Can the amount of spectral data for reconstruction be reduced if the potentials on some edges
are given a priori?

The first partial inverse problems on graphs were considered by Pivovarchik [28]. He
studied the Sturm-Liouville problem (22)–(24) on a three-edge star graph (m = 3) with
real-valued non-negative potentials qj ∈ L2(0, π), j = 1, 2, 3. In addition, for j = 1, 2, 3,
the spectrum of the Sturm-Liouville Equation (22) on the edge ej subject to the boundary
conditions yj(0) = yj(π) = 0 is denoted by Sj. The main results of [28] were concerned
with the following inverse problem:

Problem 7 ([28]). Given the spectra Λ and Sj, j = 1, 2, 3, find qj for j = 1, 2, 3.

A disadvantage of Problem 7 is that the spectra Sj, which carry information not from
the whole graph but from the separate edges, are used for reconstruction. Nevertheless, as
a corollary of the main results, the uniqueness of the solution was proved in [28] for the
following partial inverse problem:

Problem 8 ([28]). Given the potentials q1 and q2 and the spectrum Λ, find q3.

In fact, Problem 8 is overdetermined. Yang [30] showed that, for the unique recovery of
the potential on one edge, the fractional part 2

m of the spectrum is sufficient if the potentials
on all the other edges are supposed to be known. In [30], a Sturm-Liouville problem on a
star-shaped graph G with general boundary conditions was considered:

yj(0, λ) cos αj + y′j(0, λ) sin αj = 0, αj ∈ [0, π), j = 1, m.

For simplicity, we formulate the results of Yang [30] for the Dirichlet boundary
conditions (24).

Consider the Sturm-Liouville problem L presented by (22)–(24) with real-valued po-
tentials of class L1(0, π). For each j = 1, m, let Sj(xj, λ) denote the solution of Equation (22)
satisfying the initial conditions Sj(0, λ) = 0, S′j(0, λ) = 1. The eigenvalues of L coincide
with the zeros of the characteristic function

∆(λ) :=
m

∑
j=1

S′j(π, λ)
m

∏
k=1
k 6=j

Sk(π, λ) (25)

and can be denoted as {λnk}n≥1, k=1,m (counting with multiplicities), so that the following
asymptotic relations hold:

√
λn1 = n− 1

2
+ O

(
n−1

)
, (26)√

λnk = n + O
(

n−1
)

, k = 2, m. (27)

The partial inverse problem of [30] is formulated as follows:

Problem 9 ([30]). Suppose that the potentials {qj}m
j=2 are known a priori. Given a subspectrum

Ω := {λnk}n≥1, k=1,2, find q1.
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In view of symmetry, one can replace the potential q1 with an arbitrary qj, j = 2, m,
and the eigenvalues {λn2}n≥1 with a sequence {λnk}n≥1 containing an arbitrary fixed
k = 3, m in the problem statement. Note that the subspectrum Ω can contain a finite
number of multiple eigenvalues. Furthermore, Ω is not uniquely determined by the
asymptotics (26) and (27), so any suitable subspectrum can be considered. Obviously, in the
case m = 2, Ω is the whole spectrum, and Problem 9 turns into the Hochstadt–Lieberman
problem.

In [30], the following uniqueness theorem for Problem 9 was proved:

Theorem 14 ([30]). Let Ω = {λnk}n≥1, k=1,2 be a subspectrum of problem L satisfying the
asymptotics (26)–(27) and the condition Ω ∩Sj = ∅ for j = 2, m. If qj(x) = q̃j(x) a.e. on (0, π)

for j = 2, m and Ω = Ω̃, then q1(x) = q̃1(x) a.e. on (0, π).

The condition Ω ∩Sj = ∅ is crucial for the uniqueness. Suppose that this condition
is violated, that is, there exist j ∈ {2, . . . , m} and λ0 such that λ0 ∈ Ω ∩Sj. Obviously,
λ0 ∈ Sj implies Sj(π, λ0) = 0. Taking (25) into account, we conclude that Si(π, λ0) = 0,
and so λ0 ∈ Si for some i 6= j. Thus, λ0 is the eigenvalue of the two Dirichlet problems for
separate edges ei and ej. If i 6= 1, this eigenvalue carries no information about the potential
q1. In [42], the validity of Theorem 14 was proved for complex-valued potentials {qj}m

j=1

and the condition Ω∩Sj = ∅, j = 2, m, replaced by the following less restrictive condition:

Condition 1. For every λnk ∈ Ω, there do not exist indices i and j such that 2 ≤ i, j ≤ m, i 6= j
and Si(π, λnk) = Sj(π, λnk) = 0.

It is worth mentioning the paper by Yurko [29] in which uniqueness was studied for
the following partial inverse problem.

Problem 10 ([29]). Suppose that {qj}m
j=2 are known a priori and q1 is known on the subinterval

(b, π), where b < π. Given part of the spectrum Λ of the problem (22)–(24), find q1 on (0, b).

The investigation of Problem 9 was continued by Bondarenko [33]. In [33], a con-
structive algorithm for solution was developed, and the local solvability and stability
were proved. In order to formulate the results of [33], we needed the following precise
eigenvalue asymptotics:

Theorem 15 ([76]). The eigenvalues {λnk}n≥1, k=1,m (counting with multiplicities) of the bound-
ary value problem L with real-valued potentials qj ∈ L2(0, π), j = 1, m, can be numbered so that

√
λn1 = n− 1

2
+

ω̂

πn
+

κn1

n
, (28)√

λnk = n +
zk−1
πn

+
κnk
n

, k = 2, m, (29)

where {κnk}n∈N ∈ l2, k = 1, m, ω̂ = 1
m

m
∑

j=1
ωj, ωj =

1
2

π∫
0

qj(x) dx and {zk}m−1
k=1 are the roots of

the characteristic polynomial

P(z) =
d
dz

m

∏
k=1

(z−ωk).

In [33], the following theorem regarding the local solvability and stability of Problem 9
was proved.

Theorem 16 ([33]). Suppose that the boundary value problem L of the forms (22) and (24) with
potentials qj ∈ L2(0, π), j = 1, m and its subspectrum {λnk}n≥1, k=1,m satisfy the following
assumptions:
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1. All the eigenvalues {λnk}n∈N, k=1,2 are distinct;
2. λnk > 0, n ∈ N, k = 1, 2;
3. Sj(π, λnk) 6= 0, j = 1, m, n ∈ N, k = 1, 2;
4. z1 6= ωj, j = 1, m;
5. S1(π, 0) 6= 0, S′1(π, 0) 6= 0.

Then, there exists ε0 > 0 such that, for arbitrary real numbers {λ̃nk}n∈N, k=1,2 satisfying(
∞

∑
n=1

∑
k=1,2

(
n
(
λ1/2

nk − λ̃1/2
nk
))2
)1/2

< ε, ε ≤ ε0,

there exists a unique real function q1 ∈ L2(0, π), which is the solution of Problem 9 for
{λ̃nk}n∈N, k=1,2 and qj, j = 2, m. Moreover, the following estimate holds:

‖q1 − q̃1‖L2(0,π) < Cε,

where the constant C depends only on L and ε0.

Let us show that Theorem 16 implies the minimality of the spectral data of Problem 9.
Suppose that problem L and the subspectrum Ω = {λnk}n≥1, k=1,2 satisfy the hypothesis
of Theorem 16 and exclude one eigenvalue: Ω− := Ω \ {λ11}. Then, the subspectrum
Ω− does not uniquely specify q1 if {qj}m

j=2 are fixed. Indeed, for any real number λ̃11

sufficiently close to λ11, Problem 9 with the data Ω− ∪ {λ̃11} has a solution q̃1 6= q1. Thus,
there are two potentials, q1 and q̃1, corresponding to the subspectrum Ω−.

In [34], the boundary value problem (22)–(23) on a star-shaped graph G was considered
with complex-valued potentials qj ∈ L2(0, π) and conditions of different types (Robin and
Dirichlet) in the boundary vertices:

y′j(0)− hjyj(0) = 0, j = 1, p, yj(0) = 0, j = p + 1, m, (30)

where 1 ≤ p < m and {hj}
p
j=1 are complex constants.

In [34], the following asymptotic formulas were obtained for the eigenvalues
{λnk}n∈N, k=1,m of the boundary value problem (22), (23), and (30):√

λn1 = n− 1 +
α

π
+

σ

πn
+

κn1

n
, {κn1} ∈ l2,√

λn2 = n− α

π
+

σ

πn
+

κn2

n
, {κn2} ∈ l2,√

λnk = n− 1
2
+

zk
πn

+
κnk
n

, k ∈ I3, κn3 = o(1),√
λnk = n +

tk
πn

+
κnk
n

, k ∈ I4, κn4 = o(1),

where α, σ, zk, and tk are certain constants, and I3 and I4 are fixed sets of indices such that
I3 ∪ I4 = 3, m, I3 ∩ I4 = ∅, |I3| = p− 1, and |I4| = m− p− 1. To be precise, we assumed
that 3 ∈ I3 and 4 ∈ I4 if these sets are nonempty.

The author of [34] was concerned with the following partial inverse problem for all
possible cases depending on p and 1 ≤ k1 < k2 ≤ 4:

Problem 11 ([34]). Let the potentials qj, j = 2, m, the coefficients hj, j = 2, p, and the sequence
{λnk}n∈N, k∈{k1,k2} of the eigenvalues of L be given. Find the potential q1 and the coefficient h1.

The results of [34] included:

• Eigenvalue asymptotics;
• Uniqueness;
• A constructive solution.
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The proof technique of [34] was derived from the study of the Riesz basis property for
the sequences {sin(n + β)t}n≥1 and {1} ∪ {cos(n + β)t}n≥1 [77].

In [35], the Sturm-Liouville problem L with singular potentials was considered on a
star-shaped graph with different edge lengths {dj}m

j=1:

`jyj = −(y
[1]
j )′ − σj(xj)y

[1]
j − σ2

j (xj)yj, xj ∈ (0, dj), σj ∈ L2(0, dj), j = 1, m, (31)

with standard matching conditions

y1(d1) = yj(dj), j = 2, m,
m

∑
j=1

y[1]j (dj) = 0,

and Dirichlet boundary conditions

yj(0) = 0, j = 1, m.

Fix an integer p, 1 ≤ p < m. Let {λn}n∈T , T ⊆ N be some subset of the spectrum.

Problem 12 ([35]). Given the potentials {σj}m
j=p+1, the subspectrum {λn}n∈T , and the sequence

{ωk}k≥1, find {σj}
p
j=1.

The numbers {ωk}k≥1 are defined as follows. For j = 1, m, let Sj(xj, λ) be the solution

of Equation (31) on the edge ej satisfying the initial conditions Sj(0, λ) = 0, S[1]
j (0, λ) = 1,

and let {λnj}n≥1 be the zeros of Sj(dj, λ). Since the function σj is real-valued, then the zeros
of {λnj}n≥1 are real and distinct as the eigenvalues of the corresponding operator.

Assume that the functions Sj(dj, λ) and j = 1, p do not have any common zeros.

Let {µk}k≥1 denote the union
p⋃

j=1
{λnj}n≥1 by arranging the numbers in increasing order:

µk < µk+1, k ∈ N. In view of our assumption, for every k ∈ N, there exists exactly one index
j =: ωk ∈ {1, . . . , p}, such that µk ∈ {λnj}n≥1. The sequence {ωk}k≥1 is used as additional
data for the partial inverse problem.

Using a subspectrum {λn}n∈T , it is possible to recover only the sum of the Weyl

functions
p
∑

j=1
Mj(λ) for separate edges {ej}

p
j=1. In order to find Mj(λ) separately, one also

needs {ωk}k≥1.
Impose the assumptions:
(A1) Sj(dj, λn) 6= 0, j = 1, m, n ∈ T.
(A2) The functions Sj(dj, λ) and j = 1, p do not have any common zeros.
(A3) λn 6= λk, n 6= k, n, k ∈ T.
(A4) λn > 0, n ∈ T.
(A5) λnj > 0, n ∈ N, j = 1, p.
In [35], three approaches to uniqueness for the solution of Problem 12 were suggested.

The first approach was based on the estimate of the infinite product

∆T(λ) := ∏
n∈T

(
1− λ

λn

)
.

Theorem 17 ([35]). Suppose that σj = σ̃j in L2(0, dj) for j = p + 1, m, {λn}n∈T = {λ̃n}n∈T̃ ,
and ωk = ω̃k, k ≥ 1. Moreover, let the assumptions (A1)–(A5) hold for both problems L and L̃
and the corresponding subspectra, and let the estimate

|∆T(λ)| ≥ C|λ|(1−2p)/2 exp(2l|Im
√

λ|), |λ| ≥ λ∗, arg λ = ϕ, (32)



Mathematics 2023, 11, 2408 18 of 44

be valid, where ϕ ∈ (0, 2π) and λ∗ > 0 are fixed numbers, l :=
p
∑

j=1
dj. Then, σj = σ̃j in L2(0, dj)

for j = 1, p.

The second approach relied on the ideas of Gesztesy and Simon [10] and
generalized Theorem 3.

Theorem 18 ([35]). Suppose that σj = σ̃j in L2(0, dj) for j = p + 1, m, {λn}n∈T = {λ̃n}n∈T̃ ,
and ωk = ω̃k, k ∈ N. Moreover, let the assumptions (A1)–(A5) hold for both problems L and L̃
and the corresponding subspectra, and for all sufficiently large t > 0, we have

#{n ∈ T : λn < t} ≥ α#{n ∈ N : λn < t}+ β,

where

L =
m

∑
j=1

dj, α =
2l
L

, β =
1
2
(α(m− 1)− 2p + 1).

Then, σj = σ̃j in L2(0, dj) for j = 1, p.

The third approach of [35] was based on the construction of a special sequence of
vector functions in the Hilbert space L2(0, l)⊕ L2(0, l). The completeness of this sequence
implies the uniqueness of the partial inverse problem solution.

3.2. Simple Graphs with Loops

The study of partial inverse problems on graphs with loops began with [31,32] for
graph G presented in Figure 6. Graph G has the vertices {vj}r

j=0 and the edges {ej}r+r1
j=1 ,

where ej = [vj, v0] for j = 1, r are boundary edges and ej for j = r + 1, r1 are loops.

v0

v1

v2vr

er+1

er+r1

e1

e2

er

...

...

Figure 6. Graph with loops.

The Sturm-Liouville problem on G is given by the equations

−y′′j + qj(x)yj = λyj, x ∈ (0, 1), j = 1, r + r1,

subject to the matching conditions in the internal vertex v0:

yj(1) = yi(0), j = 1, r + r1, i = r + 1, r1 + 1,
r+r1

∑
j=1

y′j(1) =
r+r1

∑
i=r+1

y′i(0),

and the boundary conditions in the vertices vj, j = 1, r. In [31], the Robin boundary
conditions y′j(0)− hjyj(0) = 0, j = 1, r were considered and, in [32], the Dirichlet boundary

conditions yj(0) = 0, j = 1, r. The potentials {qj}r+r1
j=1 were assumed to be real-valued

and integrable.
In [31,32], the uniqueness theorems for the solution of the following partial inverse

problem were proved:
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Problem 13 ([31,32]). Suppose that the potentials {qj}r+r1
j=2 on (0, 1) and the potential q1 on the

subinterval (b, 1), b < 1 are known a priori. Given a subspectrum, find q1 on (0, b).

In [31], the constants {hj}r
j=2 of the boundary conditions were assumed to be known,

and h1 had to be recovered together with q1 on (0, b). Problem 13 was studied under a
separation condition and the completeness condition of a cosine system. These conditions
guaranteed the uniqueness of the solution.

Yang and Bondarenko [37] investigated a partial inverse problem on a lasso
graph (see Figure 7).

e1e2
l1 00

l2

Figure 7. Lasso graph.

In [37], the following Sturm-Liouville problem on a lasso graph with singular poten-
tials qj = W−1

2 (0, lj), qj = σ′j , j = 1, 2 was considered:

`jyj = −(y
[1]
j )′ − σj(xj)y

[1]
j − σ2

j (xj)yj = λyj, σj ∈ L2(0, lj), j = 1, 2,

y1(0) = 0, y1(l1) = y2(0) = y2(l2), y[1]1 (l1)− y[1]2 (0) + y[1]2 (l1) = 0,

where y[1]j = y′j − σjyj, j = 1, 2, l1 = m ∈ N, l2 = 1.

Problem 14 ([37]). Given the function σ1, the subspectrum Λ, and the signs Ω, find the func-
tion σ2.

The signs Ω in the problem statement are defined as follows. Let S2(x, λ) and C2(x, λ)

be the solutions of equation `2y2 = λy2 under the initial conditions S2(0, λ) = C[1]
2 (0, λ) =

0, S[1]
2 (0, λ) = C2(0, λ) = 1. Define

h(λ) := S2(1, λ), H(λ) := C2(1, λ)− S[1]
2 (1, λ), d(λ) := C2(1, λ) + S[1]

2 (1, λ)− 2.

The zeros {νn}n≥1 of h(λ) are the eigenvalues of the Dirichlet boundary value problem:

`2y2 = λy2, y2(0) = y2(1) = 0.

The zeros {µn}n∈Z of d(λ) are the eigenvalues of the periodic problem:

`2y2 = λy2, y2(0) = y2(1), y[1]2 (0) = y[1]2 (1).

Let ωn := sign H(νn) and Ω := {ωn}n≥1. The partial inverse problem on the lasso
graph (Problem 14) is reduced to the following periodic inverse problem on a finite interval:

Problem 15 ([37]). Given the sequences {νn}n≥1 and {µn}n∈Z and the sequence of signs Ω,
construct the function σ2.

In [37], the solution of Problem 15 was obtained for the case of singular potentials
q ∈W−1

2 (0, 1). Thus, [37] contained the following results for the partial inverse problem:

• Eigenvalue asymptotics;
• Uniqueness;
• Algorithm;
• The solution of the inverse periodic problem with a singular potential.
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Bondarenko and Shieh [38] studied partial inverse problems for a quadratic differential
pencil on the graph with a cycle presented in Figure 8.

vm

v1

v2

vm−1

e1
e2

em−1

em

Figure 8. Graph with a cycle.

In [38], the following boundary value problem with nonlinear dependence on the
spectral parameter λ was considered:

−y′′j + qj(xj)yj + 2λpj(xj)yj = λ2yj, xj ∈ (0, π), j = 1, m,

yj(0) = 0, j = 1, m− 1,

ym(0) = yj(π), j = 1, m, y′m(0) =
m

∑
j=1

y′j(π),

where pj ∈ AC[0, π] and qj ∈ L1(0, π), j = 1, m, are complex-valued functions. The
following two partial inverse problems were studied.

Problem 16 ([38]). Given the functions {pj}m
j=2 and {qj}m

j=2 and a subspectrum Λ, find p1

and q1.

Problem 17 ([38]). Let the functions {pj}m−1
j=1 and {qj}m−1

j=1 , a subspectrum Λ, and the sequence
of signs Ω be given. Find pm and qm.

In Problem 17, Ω is the sequence of signs for the auxiliary periodic problem
(see [38] for details). The results of [38] included:

• Eigenvalue asymptotics;
• Uniqueness;
• A constructive solution.

In [38], methods of working with multiple eigenvalues and vector-functional se-
quences containing exponents were developed. An important role in the proofs was played
by the Riesz basicity of exponential systems {exp(iλkt)} in L2(−π, π). Later on, these
methods were generalized to graphs of an arbitrary structure (see [40]).

3.3. Graphs of a General Structure

The analysis of partial inverse problems on star-shaped graphs and simple graphs
with loops showed that such problems present specific features for each case. Therefore, it
is difficult to obtain results for graphs of a general structure. Until now, only the following
cases have been studied:

• The reconstruction of the potentials on an arbitrary tree graph (graph without cycles)
by several spectra, while the potential on one edge is known a priori (see [78]).

• The reconstruction of the potential on one boundary edge of an arbitrary graph
using part of the spectrum, while the potentials on all other edges are known a
priori (see [40,41]).

• For a tree graph, the reconstruction of the potentials on a connected subtree from
parts of several spectra, while the potentials on the remaining edges are known a
priori (see [39]).

In this section, we briefly describe these results.
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Proceeding to the statement of the Sturm-Liouville problem on a graph of a general
structure, let G be a graph with a set of vertices V and edges {ej}m

j=1 with the corresponding
lengths {Tj}m

j=1. The graph may contain cycles, loops, and multiple edges. For each edge

ej, j = 1, m, introduce the parameter xj ∈ [0, Tj]. Let us denote the ends of ej as w2j−1
and w2j so that xj = 0 corresponds to w2j−1 and xj = Tj to w2j. Every vertex v of the
graph G can be considered as the equivalence class of all the ends wj incident to this vertex:
v = {wj1 , wj2 , . . . , wjr}. The number of elements in this class is called the degree of the vertex.
We assume that the graph G does not have vertices of degree 2. Otherwise, the two edges
incident to such vertices could be merged into one edge. The vertices of degree 1 are called
the boundary vertices, and the others are called the internal vertices. An edge incident to a
boundary vertex is called a boundary edge. Let ∂G and intG denote the sets of the boundary
vertices and the internal vertices, respectively, V = ∂G ∪ intG.

A function on the graph G is a vector function y = [yj]
m
j=1 with components yj = yj(xj),

xj ∈ [0, Tj]. A function y belongs to a class A (G) if yj ∈ A [0, Tj] for j = 1, m, where
A = L1, AC, etc. In order to define matching and boundary conditions, one needs the
following notations:

y|w2j−1
= yj(0), y|w2j

= yj(Tj),
y′|w2j−1

= −y′j(0), y′|w2j
= y′j(Tj),

j = 1, m.

For v ∈ ∂G, we write y(v) and y′(v) for y|wk
and y′|wk

, respectively, where wk ∈ v.
Bondarenko and Shieh [78] considered the Sturm-Liouville equations

−y′′j + qj(xj)yj = λyj, xj ∈ (0, Tj), j = 1, m, (33)

on a tree graph G (a graph without cycles) with the potential q = [qj]
m
j=1 ∈ L1(G) and the

standard matching conditions

y|wj
= y|wk

, wj, wk ∈ v (continuity conditions)

∑
wj∈v

y′|wj
= 0 (Kirchhoff’s condition)

 v ∈ intG. (34)

Let L0 and Lk, vk ∈ ∂G, be the boundary value problems for the system (33) with the
matching conditions (34) and the following conditions in the boundary vertices:

L0 : y(vi) = 0, vi ∈ ∂G,

Lk : y′(vk) = 0, y(vi) = 0, vi ∈ ∂G\{vk}.

The problems Lk have discrete spectra, which are the countable sets of eigenvalues
Λk = {λks}s≥1, k = 0 or vk ∈ ∂G.

Fix a vertex vr ∈ ∂G as a root of the tree G. Let er be the edge incident to vr. Then, the
uniqueness theorem for the complete inverse problem on the tree is formulated as follows:

Theorem 19 ([75]). The spectra Λ0 and Λk, k ∈ ∂G \ {vr}, uniquely determine the potential q on
the whole tree G.

Thus, if the number of boundary vertices is b, then b spectra are required for the
recovery of the potentials. Bondarenko and Shieh [78] assumed that the potential q f is
known a priori on one edge e f and proved that the remaining potentials can be uniquely
recovered from (b− 1) spectra. If an internal edge e f is removed, then the tree G splits into
two parts. Let us denote them by P1 and P2 and their sets of boundary vertices by ∂P1 and
∂P2, respectively.

Theorem 20 ([78]). Let the potential q f on an edge e f ( f 6= r) be known.
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1. If e f is a boundary edge, the spectra Λ0 and Λk, vk ∈ ∂G \ {v f , vr}, uniquely determine the
potential q on the whole graph G.

2. If e f is an internal edge, the spectra Λ0 and Λk vk ∈ ∂G \ {vr1, vr2}, where vr1 ∈ ∂P1 and
vr2 ∈ ∂P2, uniquely determine the potential q on the whole graph G.

Theorem 20 was proved by a constructive method, developing from the ideas of [75].
The case of the internal edge e f is the most difficult. It is crucial that the two end vertices of
the internal edge e f have degrees of at least 3. Consequently, Theorem 20 cannot be applied
to an interval with the potential given on a middle subinterval.

Bondarenko [39] investigated another type of partial inverse problem on a tree G.
The edge lengths Tj in [39] were assumed to be equal π. The Sturm-Liouville equation
presented in Equation (33) was considered with the singular potentials qj ∈ W−1

2 (0, π),
j = 1, m. Therefore, Equation (33) was represented in the form

−(y[1]j )′ − σj(xj)y
[1]
j − σ2

j (xj)yj = λyj, x ∈ (0, Tj), j = 1, m, (35)

where qj = σ′j , σj ∈ L2(0, Tj), y[1]j = y′j − σjyj, j = 1, m.
Let {γj}m

j=1 be some real constants. In order to define the matching conditions, one
uses the following notations:

y|w2j−1
= yj(0), y|w2j

= yj(Tj),

y[1]|w2j−1
= −y[1]j (0), y[1]|w2j

= y[1]j (Tj) + γjyj(Tj),
j = 1, m. (36)

For v ∈ ∂G, y(v) and y[1](v) are written for y|wk
and y[1]|wk

, respectively, where wk ∈ v.
Let us divide the set of the boundary vertices into two disjoint subsets:

∂G = VD ∪ VN , VD ∩ VN = ∅.

Thus, in [39], the boundary value problem L for the Sturm-Liouville equation pre-
sented in Equation (35) was considered subject to the matching conditions

y|wj
= y|wk

, wj, wk ∈ v

∑
wj∈v

y[1]|wj
= 0

 v ∈ intG (37)

and the boundary conditions

y(v) = 0, v ∈ VD, y[1](v) = 0, v ∈ VN . (38)

Let the tree G be divided into two subtrees Gknown and Gunknown with a common vertex
w ∈ intG (see Figure 9). Let Eknown and Eunknown denote the edge sets of Gknown and
Gunknown, respectively. Let {vk}b

k=1 denote the boundary vertices ∂Gunknown \ {w}. For
each k = 1, b, let Lk denote the boundary value problem (35), (37) with the boundary
conditions (38) for v ∈ ∂G \ {vk} and y(vk) = 0 if vk ∈ VN , or y[1](vk) = 0 if vk ∈ VD. In
other words, if the problem L has the Dirichlet boundary condition in vk, then Lk has the
Neumann boundary condition, and vice versa.
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w

Gunknown

Gknown

Figure 9. Tree graph.

Problem 18 ([39]). Suppose that the functions σj on the edges ej ∈ Eknown and the constants
{γj}m

j=1 are known a priori. Given some subspectra of the problems L and Lk for k = 1, b− 1, find
σj for all ej ∈ Eunknown.

Note that, in view of Theorem 19, the full spectra of L and Lk for k = 1, b− 1 determine
the potentials on the whole tree G. Strictly speaking, Yurko [75] proved Theorem 19 for
regular potentials qj ∈ L2(0, Tj). For singular potentials qj ∈ W−1

2 (0, Tj), similar results
were obtained by Vasiliev [79].

In [39], it was shown that, if the potentials σj are known on Eknown, then only part of
the spectra can be used for reconstruction. Sufficient conditions for the uniqueness were
formulated in terms of completeness for some special vector functional sequences, which
were constructed using the known functions σj and the given subspectra. Furthermore, the
uniqueness conditions in terms of the eigenvalue asymptotics were obtained. In addition,
in [39], a constructive algorithm for solving Problem 18 was developed. This algorithm
allows one to reduce the partial inverse problem to a complete inverse problem for the
“unknown” subtree.

Proceeding to general graphs containing cycles, for such graphs, partial inverse prob-
lems were investigated only for case in which a potential is unknown on one edge. Let
G be a graph of an arbitrary structure with arbitrary edge lengths {Tj}m

j=1. In [40], Sturm-
Liouville differential equations with quadratic dependence on the spectral parameter λ
were considered on the graph G:

−y′′j (xj) + (qj(xj) + 2λpj(xj)− λ2)yj(xj) = λyj(xj), xj ∈ (0, Tj), j = 1, m, (39)

where y = [yj]
m
j=1, p = [pj]

m
j=1, and q = [qj]

m
j=1 are complex-valued functions on G, y ∈

W2
2 (G), p ∈ AC(G), q ∈ L1(G).

Let γjk be some complex numbers, defined for the ends wj ∈ v, v ∈ intG, k = 1, 4,
γjk 6= 0 for k = 1, 2. Define the linear forms

Uj(y) := y′|wj
+ (λγj3 + γj4)y|wj

.

Thus, in [40], the differential pencil L given by Equation (39) subject to the following
conditions was considered:

γj1y|wj
= γk1y|wk

, wj, wk ∈ v, v ∈ intG,

∑
wj∈v

γj2Uj(y) = 0, v ∈ intG,

y|wj
= 0, wj ∈ v, v ∈ ∂G.

For certainty, we assume that e1 is a boundary edge.

Problem 19 ([40]). Suppose that {pj}m
j=2, {qj}m

j=2, and {γjk} are known a priori. Given a
subspectrum Λ′ of the pencil L, find p1 and q1 (see Figure 10).
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unknown

known

Figure 10. Graph of an arbitrary structure.

In [40], Problem 19 was studied under a separation condition, which generalized Con-
dition 1 for a star-shaped graph. For a general graph, the separation condition had a compli-
cated technical formulation, so we omit it here. The results of [40] for Problem 19 included:

• Uniqueness in the general case;
• A constructive solution for rationally dependent edge lengths.

In particular, the recovery of the coefficients p1 and q1 from the whole spectrum Λ
of the pencil L was investigated. The characteristic function of L satisfies the following
asymptotic relation:

∆(λ) = λr(∆0(λ) + O
(
|λ|−1 exp(M|Im λ|)

)
), |λ| → ∞,

where r ∈ Z, M =
m
∑

j=1
Tj, and ∆0(λ) is a polynomial of cos(λTj) and sin(λTj), j = 1, m,

∆0(λ) = O(exp(M|Im λ|)). In [40], the following regularity condition was imposed:

|∆0(iτ)| ≥ C exp(M|τ|), τ ∈ R, |τ| ≥ τ∗, (40)

for some τ∗ > 0. Under the conditions in (40) and the separation condition, the
spectrum Λ uniquely specifies p1 and q1 if T1 < M/2 or T1 = M/2, r = −2
(see Theorem 2 in [40] for details). In other words, the length of the “unknown” edge has
to be less than or equal to the total length of the graph for the unique determination of the
pencil coefficients on this edge by the spectrum.

In the case of rationally dependent edge lengths Tj = πnj, nj ∈ N, j = 1, m, the
spectrum Λ of the regular pencil L contains subsequences of eigenvalues {λnk}n∈Z, k = 1, s,
satisfying the asymptotic relation

λnk = 2n + βk + o(1), |n| → ∞.

It was shown in [40] that one can choose a certain number of such subsequences to
uniquely recover p1 and q1. The constructive method of [40] developed the ideas of [33,38]
and other papers. This method was based on the reduction of the partial inverse problem
(Problem 19) to a complete inverse problem for the Sturm-Liouville quadratic pencil on the
interval (0, T1).

The most complete results for a partial inverse problem on an arbitrary graph were
obtained in [41] for the boundary value problem given by (35), (37), and (38):

−(y[1]j )′ − σj(xj)y
[1]
j − σ2

j (xj)yj = λyj, x ∈ (0, Tj), j = 1, m,

y|wj
= y|wk

, wj, wk ∈ v, ∑
wj∈v

y[1]|wj
= 0, v ∈ intG,

y(v) = 0, v ∈ VD, y[1](v) = 0, v ∈ VN ,

 (41)

where y|wk
are defined by (36), with γj = 0. The edge lengths were assumed to be rationally

dependent: Tj = 2πnj, nj ∈ N, j = 1, m.
For certainty, assume that v1 is a boundary vertex corresponding to the end

w1 ∼ x1 = 0 of the edge e1 and v1 ∈ VD.
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Problem 20 ([41]). Suppose that the functions {σj}m
j=2 are known a priori. Given a subspectrum

Λ, find σ1 (see Figure 10).

In [41], the following results were obtained for Problem 20:

• A uniqueness theorem;
• A constructive solution;
• Sufficient conditions for global solvability;
• Local solvability and stability.

Let us formulate a uniqueness theorem for Problem 20. For this purpose, one first needs
to construct the characteristic function of the Sturm-Liouville problem on an arbitrary graph.
For each fixed j = 1, m, introduce the solutions Cj(xj, λ) and Sj(xj, λ) of Equation (35)
satisfying the initial conditions

Cj(0, λ) = S[1]
j (0, λ) = 1, C[1]

j (0, λ) = Sj(0, λ) = 0.

Every solution [yj]
m
j=1 of system (35) can be represented in the form

yj(xj, λ) = aj(λ)Cj(xj, λ) + bj(λ)Sj(xj, λ), j = 1, m, (42)

with some coefficients aj(λ) and bj(λ) independent of x. Substituting (42) into (37) and (38),
one obtains the system of linear equations S with respect to aj(λ) and bj(λ), j = 1, m. The
determinant ∆(λ) of this system is the characteristic function of L, that is, the spectrum of
the problem (41) coincides with the zeros of ∆(λ).

The characteristic function can be represented in the form

∆(λ) = S1(T1, λ)∆K(λ) + S[1]
1 (T1, λ)∆Π(λ), (43)

where ∆K(λ) and ∆Π(λ) are the determinants of the linear systems obtained from S

by the replacements S1(T1, λ) 7→ 1, S[1]
1 (T1, λ) 7→ 0 and S1(T1, λ) 7→ 0, S[1]

1 (T1, λ) 7→ 1,
respectively. Note that our construction defines the functions ∆(λ), ∆Π(λ), and ∆K(λ)
uniquely up to the sign, which depends on the order of equations and variables in the
system S . However, it is possible to fix such signs so that Formula (43) is valid. Clearly,
the functions ∆(λ), ∆K(λ), and ∆Π(λ) are entire, and ∆K(λ) and ∆Π(λ) do not depend on
σ1.

The separation condition for Problem 20 reads as follows:

Condition 2. For each λ ∈ Λ, ∆Π(λ) 6= 0 or ∆K(λ) 6= 0.

Condition 2 is essential, since otherwise, if ∆Π(λ) = ∆K(λ) = 0, then (43) readily
implies ∆(λ) = 0, but such an eigenvalue λ is related to the “known” part of the graph
(see Figure 10) and carries no information on σ1.

The spectrum of the problem (41) consists of eigenvalue subsequences with the asymptotics√
λnk = n + rk +κnk, {κnk} ∈ l2, (44)

where k = 1, N, N := 2
m
∑

j=1
nj, nj =

Tj
2π , n ∈ N or n ∈ N ∪ {0} depending on k, and

{rk}N
k=1 ⊆ [0, 1). Furthermore, for each rk 6= 0, there exists rs = 1− rk. The numbers

{rk}N
k=1 depend on the graph structure and not on {σj}m

j=1. The asymptotics (44) are
obtained by the reduction of the Sturm-Liouville problem to the matrix form.

Let us impose the following condition on the subspectrum Λ in Problem 20:

Condition 3. Λ = {λnk}n≥0, k∈K, where λnk satisfies the asymptotics in (44) and a subset
K ⊆ {1, . . . , N} fulfills the following conditions:
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1. All the values {rk}k∈K from (44) are distinct.
2. rk 6∈ {0, 1

2}, k ∈ K.
3. For each k ∈ K, there exists s ∈ K such that rk + rs = 1.
4. |K| = 4n1.

Note that Λ is non-uniquely determined by K, and any finite number of eigenvalues
in Λ can be chosen arbitrarily. In particular, Λ can contain a finite number of multi-
ple eigenvalues. The condition |K| = 4n1 connects the length of the “unknown” edge
T1 = 2πn1 with the “size” of the subspectrum, which is used for the reconstruction. The
following theorem asserts the uniqueness of the solution to Problem 20.

Theorem 21 ([41]). Let Λ be a subspectrum of the problem in (41) satisfying Conditions 2 and 3.
If σj = σ̃j in L2(0, Tj) for j = 2, m and Λ = Λ̃ (with respect to multiplicities), then σ1 = σ̃1
in L2(0, T1).

The proof of Theorem 21, the constructive solution, and the study of the solvability
and stability of the partial inverse problem in [41] were based on the unified approach,
which is described in the next section.

4. Unified Approach

In this section, we describe a unified approach to partial inverse problems on intervals
and graphs that was developed in [41–44] and subsequent studies. This approach allows
one to reduce a partial inverse problem to a complete inverse problem on an “unknown”
part of an interval or graph. The central role in the reduction technique is played by a special
vector functional sequence {vn}n≥0 in the Hilbert spaceH = L2(0, l)⊕ L2(0, l), where l is
the length of an “unknown” subinterval. The completeness and the Riesz basis property of
this sequence imply uniqueness and a constructive solution to the corresponding partial
inverse problem, respectively. The unified approach also allows one to obtain the solvability
conditions and stability of partial inverse problems.

The initial ideas behind this approach appeared in [22,33], studies of the inverse
transmission eigenvalue problem and a partial inverse Sturm-Liouville problem on a
star-shaped graph, respectively. Later on, Bondarenko [42,43] noticed that partial inverse
problems for various classes of differential operators can be represented as Sturm-Liouville
problems with entire analytic functions in one of the boundary conditions, and an inverse
spectral theory for such problems was created. As corollaries of this general theory, both
well-known and novel results for the Hochstast-Lieberman problem and its generalizations
have been deduced.

In Section 4.1, we provide the inverse spectral theory of the Sturm-Liouville equation
with entire functions in a boundary condition, mostly based on the results of [42,43].
In Section 4.2, applications to partial inverse problems are discussed.

4.1. Sturm-Liouville Problem with Entire Functions in a Boundary Condition

Consider the following Sturm-Liouville problem R(q, f1, f2):

−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, π), (45)

y(0) = 0, f1(λ)y′(π) + f2(λ)y(π) = 0, (46)

where q(x) is a complex-valued potential of L2(0, π), and f1(λ) and f2(λ) are entire analytic
functions of the spectral parameter λ.

Let S(x, λ) denote the solution of Equation (45) satisfying the initial conditions
S(0, λ) = 0, S′(0, λ) = 1. The spectrum of R(q, f1, f2) consists of the eigenvalues, which
coincide with the zeros of the entire characteristic function

∆(λ) := f1(λ)S′(π, λ) + f2(λ)S(π, λ). (47)
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Depending on the functions f1(λ) and f2(λ), the spectrum can be at most count-
able or coincide with the whole complex plane. If there is no additional informa-
tion on f1(λ) and f2(λ), then one cannot study specific properties of the spectrum
(e.g., eigenvalue asymptotics). However, one can consider the following inverse problem:

Problem 21 ([42,43]). Suppose that the functions f1(λ) and f2(λ) are known a priori. Given
a subspectrum {λn}n≥1 of the problem R(q, f1, f2) and the number ω := 1

2

∫ π
0 q(x) dx,

find the potential q.

In [42,43], Problem 21 was studied under certain restrictions on {λn}n≥1 that guaran-
teed the uniqueness and existence of the solution, etc. Note that, in applications to partial
inverse problems, the number ω can usually be found from the eigenvalue asymptotics.
However, in general cases, it has to be given.

Introduce the notations

s(x, λ) =
√

λ sin(
√

λx), c(x, λ) = cos(
√

λx).

Then, the sine-type solution S(x, λ) can be represented in terms of the
transformation operator:

S(x, λ) =
s(x, λ)

λ
+

1
λ

∫ x

0
K (x, t)s(t, λ) dt. (48)

Let η1(λ) := S(π, λ) and η2(λ) := S′(π, λ). Applying differentiation and integration
by parts in (48), one can easily obtain the following standard relations:

η1(λ) =
s(π, λ)

λ
− ωc(π, λ)

λ
+

1
λ

∫ π

0
K(t)c(t, λ) dt, (49)

η2(λ) = c(π, λ) +
ωs(π, λ)

λ
+

1
λ

∫ π

0
N(t)s(t, λ) dt, (50)

where
K(t) = Kt(π, t), N(t) = Kx(π, t), K, N ∈ L2(0, π). (51)

The pair of functions {K, N} from (49) and (50) is called the Cauchy data of the potential
q. This name was chosen because the eigenvalue problem for Equation (45) with the
boundary conditions y(0) = y(π) = 0 is related to the initial value (Cauchy) problem

utt − uxx + q(x)u = 0, 0 ≤ |t| ≤ x ≤ π,

u(π, t) = K (π, t), ux(π, t) = Kx(π, t), −π ≤ t ≤ π,

where K (x, t) = −K (x,−t) for t < 0. This problem has the unique solu-
tion u(x, t) ≡ K (x, t). The initial data of the Cauchy problem are the functions
{K (π, t), Kx(π, t)}, which are related to K(t) and N(t) by (51).

The method of [42,43] was based on the reduction of Problem 21 to the following
auxiliary inverse problem.

Problem 22. Given the Cauchy data {K, N}, find the potential q.

Problem 22 is equivalent to classical inverse spectral problems. Indeed, using the
Cauchy data, one can construct S(π, λ) and S′(π, λ) via (49) and (50) and the Weyl function

M(λ) := −S′(π, λ)

S(π, λ)
, which uniquely specifies q (see, e.g., [4]). Thus, the uniqueness of

Problem 22’s solution follows from the classical result obtained by Borg [6]. Its constructive
solution can be obtained by the standard methods (see [4]). Some numerical techniques for
the reconstruction of the potential using the Cauchy data are described in [67].
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For simplicity, we assume that λn 6= 0 for n ≥ 1 and the eigenvalues {λn}n≥1 are
simple, that is, λn 6= λm for n 6= m. In [42,43], results were provided for the general case of
multiple eigenvalues.

Introduce the complex Hilbert space of vector functions

H := L2(0, π)⊕ L2(0, π) =
{

h = [h1, h2] : hj ∈ L2(0, π), j = 1, 2
}

with the following scalar product and norm:

(g, h)H :=
∫ π

0
(g1(t)h1(t) + g2(t)h2(t)) dt, ‖h‖H =

√
(h, h)H,

g, h ∈ H, g = [g1, g2], h = [h1, h2].

Substituting the representations (49) and (50) into (47) and letting λ = λn, one derives
the relation

(u, vn)H = wn (52)

for n ≥ 1, where

u(t) := [N(t), K(t)], vn(t) = v(t, λn), wn = w(λn), n ≥ 1, (53)

v(t, λ) := [ f1(λ)s(t, λ), f2(λ)c(t, λ)], (54)

w(λ) := − f1(λ)(λc(π, λ) + ωs(π, λ))− f2(λ)(s(π, λ)−ωc(π, λ)). (55)

Since the function S(π, λ) is analytical at λ = 0, one obtains an additional relation of
the form (52) for n = 0 from (49) with

v0(t) := [0, 1], w0 := ω. (56)

In [42], the following conditions were introduced:
(COMPLETE)—the sequence {vn}n≥0 is complete inH.
(BASIS)—the sequence {vn}n≥0 is an unconditional basis inH.
Clearly, the condition (BASIS) implies (COMPLETE). It was shown in [42]

that the condition (COMPLETE) is necessary and sufficient for the uniqueness of
Problem 21’s solution.

Theorem 22 ([42]). Let {λn}n≥1 and {λ̃n}n≥1 be subspectra of the problems R(q, f1, f2) and
R(q̃, f1, f2), respectively. Suppose that R(q, f1, f2) and {λn}n≥1 satisfy the condition (COM-
PLETE), and let λn = λ̃n, n ≥ 1, ω = ω̃. Then, q = q̃ in L2(0, π).

Theorem 23 ([42]). Let {λn}n≥1 be a subspectrum of the problem R(q, f1, f2). Suppose that the
sequence {vn}n≥0 is incomplete inH. Then, there exists a complex-valued function q̃ ∈ L2(0, π),
q̃ 6= q such that ω = ω̃, and {λn}n≥1 is a subspectrum of R(q̃, f1, f2).

Under the condition (BASIS), the following constructive algorithm for solving
Problem 21 was obtained in [42]:

Method 2 ([42]). Let the functions f j(λ), j = 1, 2, the subspectrum {λn}n≥1, and the number ω
be given. One must construct the potential q.

1. Using f j(λ), j = 1, 2, {λn}n≥1, and ω, construct the vector functions {vn}n≥0 and the
numbers {wn}n≥0 using Formulas (53)–(56).

2. For the basis {vn}n≥0, find the biorthonormal basis {v∗n}n≥0, that is, (vn, v∗k )H = δnk,
n, k ≥ 0.

3. Construct the element u ∈ H satisfying (52) using the formula

u =
∞

∑
n=0

wnv∗n.
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4. Using the elements of u(t) = [N(t), K(t)], solve Problem 22 with the Cauchy data and find q.

It is worth noting that, in the case of simple eigenvalues {λn}n≥1, Problem 21 is a
special case of Problem 2, which was studied by Horváth [12]. Indeed, the numbers {λn}n≥1
can be treated as the eigenvalues of different boundary value problems for Equation (45)
subject to the boundary conditions

y(0) = 0, y′(π) cos βn + y(π) sin βn = 0, βn := arctan
f2(λn)

f1(λn)
.

On the other hand, using the given data of Problem 21, one can easily find the values
of the Weyl function in the points {λn}n≥1:

M(λn) = −
S′(π, λn)

S(π, λn)
=

f2(λn)

f1(λn)
.

Thus, Problem 21 is closely related to the problem of potential reconstruction from
the values {M(λn)}n≥1 (see Problem 3). The uniqueness of this problem solution was
studied by Horváth [12]. A constructive solution is provided by Method 2 with necessary
modifications. Namely, in the definitions of vn and wn, one should replace f1(λn) with 1 and
f2(λn) with M(λn). Thus, to the best of the author’s knowledge, a constructive algorithm
for the recovery of the potential q from the values {M(λn)}n≥1 of the Weyl function at a
countable set of points was obtained for the first time in [42]. Effective numerical algorithms
for this reconstruction were developed by Kravchenko and Torba [80]. The technique of [80]
was based on the representations of the Sturm-Liouville equation solutions as Neumann
series of Bessel functions. The methods of [80] can be applied to various classes of partial
inverse problems.

Proceeding with the results of [42], in applications to partial inverse problems, it can
be difficult to verify the conditions (COMPLETE) and (BASIS). Therefore, the following
easily verified conditions are introduced (for convenience, let λ0 = 0):

(COMPLETE C)—the sequence {cos(
√

λnt)}n≥0 is complete in L2(0, 2π).
(BASIS C)—the sequence {cos(

√
λnt)}n≥0 is a Riesz in L2(0, 2π).

(SEPARATION)—for every n ≥ 1, there exists f1(λn) 6= 0 or f2(λn) 6= 0.
(ASYMPTOTICS)—Im ρn = O(1), n → ∞, and {ρ−1

n }n≥n0 ∈ l2, where ρn :=
√

λn,
arg ρn ∈

[
−π

2 , π
2
)
.

Theorem 24 ([42]).

1. (SEPARATION) and (COMPLETE C) together imply (COMPLETE).
2. (SEPARATION), (ASYMPTOTICS), and (BASIS C) together imply (BASIS).

Thus, one can replace the condition (COMPLETE) in Theorem 22 with (SEPARATION)
and (COMPLETE C) and the condition (BASIS) in Method 2 with (SEPARATION),
(ASYMPTOTICS), and (BASIS C). The results remain valid.

The investigation of Problem 21 was continued in [43], which studied the solvability
and stability of the inverse problem. In particular, the following sufficient conditions for
the global solvability of Problem 21 were obtained:

Theorem 25 ([43]). Let f j(λ), j = 1, 2, be entire functions, and let {λn}n≥1 and ω be complex
numbers such that the sequence {vn}n≥0 constructed by them satisfies the condition (BASIS) and{

wn
‖vn‖H

}
∈ l2. Then, following Method 2, one can construct the functions K, N ∈ L2(0, π). If the

zeros {θnj}n≥1, j = 1, 2, of the corresponding functions ηj(λ), j = 1, 2, defined by (49) and (50)
are real and interlace in the sense

θn2 < θn1 < θn+1,2, n ∈ N, (57)
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then there exists a unique real-valued function q ∈ L2(0, π) such that the sequence {λn}n≥1 is a
subspectrum of R(q, f1, f2) and 1

2

∫ π
0 q(x) dx = ω.

Note that the interlacing property (57) appears from the necessary and sufficient
conditions for the solvability of the classical Borg problem:

Theorem 26 ([4]). For sequences {θnj}n≥1, j = 1, 2, of real numbers to be the spectra of the
corresponding problems Lj(q), j = 1, 2, for Sturm-Liouville Equation (45) with a real-valued
potential q ∈ L2(0, π) subject to the boundary conditions y(0) = y(j−1)(π) = 0, it is necessary
and sufficient to have the asymptotics√

θnj = n− j− 1
2

+
ω

πn
+

κnj

n
, n ∈ N, j = 1, 2, {κnj} ∈ l2,

and the interlacing property (57).

In fact, Problem 21 is reduced to the Borg problem by Method 2, and then the a
posteriori condition (57) is imposed. Analogous a posteriori conditions appeared in the
papers of Hryniv and Mykytyuk [14] and Martinyuk and Pivovarchik [17] for the Hochstadt–
Lieberman problem (see Theorems 9 and 11). As already mentioned in Section 2.2, such
conditions seem to be unavoidable for the solvability of partial inverse problems.

Furthermore, in [43], the local solvability and stability of Problem 21 were obtained.
In order to formulate these results, one needs the following additional condition:

(ESTIMATES)—there exist constants aj > 0, j = 1, 2, 3, and {αn}n≥1 such that

| f j(ρ
2)| ≤ a1|ρn|αn+j−1, j = 1, 2, |ρ− ρn| ≤

a2

|ρn|
,

|w(ρ2)| ≤ a1|ρn|αn+1, |ρ− ρn| ≤
a2

|ρn|
,

| f1(λn)|2 + |λn|−1| f2(λn)|2 ≥ a3|λn|αn , n ≥ 1.

Although these estimates look complicated, they naturally appear in applications
involving partial inverse problems on graphs, the inverse transmission eigenvalue prob-
lem, etc.

Theorem 27 ([43]). Let R(q, f1, f2) be a fixed boundary value problem of the form (45) and (46),
and let {λn}n≥1 be a fixed subspectrum of R(q, f1, f2). Suppose that the conditions (BASIS),
(ASYMPTOTICS), and (ESTIMATES) are fulfilled. Then, there exists ε > 0 (depending on
R(q, f1, f2) and {λn}n≥1) such that, for every complex sequence {λ̃n}n≥1 satisfying the estimate

Ξ :=

(
∞

∑
n=1

(|ρn|+ 1)−2|ρn − ρ̃n|2
)1/2

≤ ε, ρ̃n :=
√

λ̃n, (58)

there exists a complex-valued function q̃ ∈ L2(0, π) such that ω = ω̃, and {λ̃n}n≥1 is a subspec-
trum of the corresponding problem R(q̃, f1, f2). Moreover,

‖q− q̃‖L2(0,π) ≤ CΞ, (59)

where the constant C depends only on R(q, f1, f2), {λn}n≥1 and not on {λ̃n}n≥1.

Note that here, Theorem 27 was formulated for simple eigenvalues {λn}n≥1. However,
in [43], it was proved for the general case of multiple eigenvalues. The multiplicities in the
sequences {λn}n≥1 and {λ̃n}n≥1 may be distinct, since the groups of multiple eigenvalues
in {λn}n≥1 may split into smaller groups under a small perturbation. This effect was taken
into account in [43]. The proof of Theorem 27 relies on Method 2 and the local solvability
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and stability of Problem 22 using the Cauchy data, which was proved in [42]. In addition,
note that Theorem 27 contains no a posteriori conditions of the type (57).

Thus, for Problem 21, the following results have been obtained:

• The necessary and sufficient conditions of uniqueness;
• A constructive solution;
• Simple sufficient conditions for uniqueness and the algorithm;
• Sufficient conditions for the global solvability;
• Local solvability and stability.

Below, we discuss the studies on inverse problems with entire functions in the
boundary conditions for other types of operators. The Sturm-Liouville problem anal-
ogous to (45) and (46) with the Robin boundary condition y′(0) − hy(0) = 0 was
considered in [44]. However, in [44], proofs were provided only for simple eigenvalues.
Moreover, in the proof of the local solvability and stability theorem, reduction to the Borg
problem by the two spectra was used. Unfortunately, the application of the Borg theorem
in [44] allows us to obtain only the stability estimate ‖q − q̃‖ ≤ CΞ1/p, where p is the
maximal eigenvalue multiplicity in the Borg problem (see [44] for details). The reduction
to the inverse problem using the Cauchy data allows us to obtain a better estimate (59)
without the power 1/p.

In [41], the inverse problem analogous to Problem 21 was studied for a singular
potential q ∈ W−1

2 (0, π), and the results were applied to a partial inverse problem on an
arbitrary graph (see Section 3.3 for details).

Kuznetsova [45] studied the inverse problem for the differential pencil

−y′′ + q(x)y + 2λp(x)y = λ2y, x ∈ (0, π),

y(0) = 0, f1(λ)y[1](π) + f2(λ)y(π) = 0,

where q ∈ W−1
2 (0, π), p ∈ L2(0, π), y[1] = y′ − σy, q = σ′, σ ∈ L2(0, π). The results

of [45] included:

• Uniqueness;
• A constructive solution;
• Simple sufficient conditions for uniqueness and the algorithm;
• Application to Hochstadt–Lieberman-type problems.

Bondarenko and Chitorkin [46] investigated the inverse problem for the Sturm-
Liouville equation (45) subject to the boundary conditions

p1(λ)y′(0) + p2(λ)y(0) = 0, f1(λ)y′(π) + f2(λ)y(π) = 0,

where p1(λ) and p2(λ) are relative prime polynomials of the spectral parameter λ, and
f1(λ) and f2(λ) are entire functions. In [46], the uniqueness of the inverse problem solu-
tion was studied, and the results were applied to Hochstadt–Lieberman-type problems
with polynomial dependence on λ not only in the boundary conditions but also in the
discontinuity conditions inside the interval.

4.2. Applications to Partial Inverse Problems

In this subsection, we show how partial inverse problems can be reduced to Problem 21
with entire functions in the boundary conditions. As examples, we consider the following
partial inverse problems:

• The Hochstadt–Lieberman problem (Problem 1);
• The McLaughlin–Polyakov problem (Problem 5);
• A partial inverse problem on a star-shaped graph (Problem 9);
• A partial inverse problem on a graph of an arbitrary structure (Problem 20).
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We start with the application to the Hochstadt–Lieberman problem, which is described
in [42]. Consider the following eigenvalue problem:

−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, 2π), (60)

y(0) = y(2π) = 0, (61)

with a complex-valued potential q ∈ L2(0, 2π). Let {λn}n≥1 denote the eigenvalues of
the problems presented in (60) and (61), counted with their multiplicities and numbered
according to their asymptotics√

λn =
n
2
+

ω2π

πn
+ o
(

n−1
)

, n→ ∞, (62)

where ω2π := 1
2

∫ 2π
0 q(x) dx. The Hochstadt–Lieberman problem in this case is formulated

as follows:

Problem 23 ([42]). Suppose that the potential q(x) is known a priori for x ∈ (π, 2π). Given the
spectrum {λn}n≥1 (counting with multiplicities), find the potential q(x) for x ∈ (0, π).

Let us show that Problem 23 can be reduced to Problem 21 with entire functions in the
boundary condition. Let S(x, λ) and ψ(x, λ) denote the solution of Equation (60) satisfying
the initial conditions

S(0, λ) = 0, S′(0, λ) = 1, ψ(2π, λ) = 0, ψ′(2π, λ) = −1.

The eigenvalues of (60) and (61) coincide with the zeros of the characteristic function

∆(λ) = ψ(π, λ)S′(π, λ)− ψ′(π, λ)S(π, λ). (63)

Comparing (63) with (47), one can conclude that the eigenvalue problems presented
in (60) and (61) are equivalent to the problem R(q, f1, f2) given by (45) and (46) with

f1(λ) := ψ(π, λ), f2(λ) := −ψ′(π, λ). (64)

Note that these functions f j(λ), j = 1, 2, are entire in the λ-plane and can be constructed
by the known part of the potential q(x), x ∈ (π, 2π). The constant ω can also be found
using the given data of Problem 23 by the formula

ω = ω2π −
1
2

∫ 2π

π
q(x) dx,

where ω2π can be determined from the asymptotics in (62). Thus, Problem 23 is reduced
to Problem 21.

Suppose that the eigenvalues {λn}n≥1 of the problem (60)–(61) are simple. Then,
one can easily show that the conditions (BASIS C), (SEPARATION), (ASYMPTOTICS), and
(ESTIMATES) of the previous subsection hold. Therefore, Theorems 22 and 24 imply the
following corollary:

Corollary 1 ([42]). Let {λn}n≥1 and {λ̃n}n≥1 be the spectra of the boundary value problems of
the form (60) and (61) with potentials q and q̃, respectively. Suppose that q(x) = q̃(x) a.e. on
(π, 2π) and λn = λ̃n for all n ≥ 1. Then, q(x) = q̃(x) a.e. on (0, π). In other words, the solution
of Problem 23 is unique. This solution can be found using Method 2, taking (64) into account.

Obviously, the uniqueness of Corollary 1 is similar to the Hochstadt–Lieberman
theorem (Theorem 1) for complex-valued potentials. Method 2 generalizes the algorithms
of Buterin [16,65] (see Method 1) and Martinyuk and Pivovarchik [17] for solving the
Hochstadt–Lieberman problem.
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Theorem 27 implies the following corollary on the local solvability and stability of the
Hochstadt–Lieberman problem:

Corollary 2. For any complex-valued function q ∈ L2(0, 2π), there exists ε > 0 such that, for
any complex sequence {λ̃n}n≥1 close to the spectrum {λn}n≥1 of the problem (60)–(61) in the
sense (58), there exists a complex-valued function q̃ ∈ L2(0, 2π) such that q(x) = q̃(x) a.e. on
(π, 2π) and {λ̃n}n≥1 is the spectrum of the problem (60)–(61) with the potential q̃. Moreover,
‖q− q̃‖L2(0,π) ≤ CΞ, where the constant C depends only on q.

It is worth noting that, since the potential q(x) in (60) is complex-valued, a finite
number of eigenvalues can be multiple. In this case, Corollaries 1 and 2 remain valid,
and Method 2 is also valid with necessary technical modifications (see [42,43] for details).
Therefore, to the best of the author’s knowledge, Theorem 27 provides the first results on
the local solvability and stability of the Hochstadt–Lieberman problem in the general case
of a complex-valued potential with eigenvalues that are not necessarily simple. Theorem 25
can also be transferred to the Hochstadt–Lieberman problem.

An analogous reduction can be applied to Hochstadt–Lieberman-type inverse prob-
lems with the discontinuity conditions

y(d+) = ay(d−), y′(d+) = a−1y(d−) + by(d−),

and/or polynomial dependence on the spectral parameter in the boundary conditions
(see, e.g., [9,81]). If all the discontinuities and the polynomial dependence lie on the
“known” part of the interval, then such a partial inverse problem can be similarly reduced
to Problem 21 for (45) and (46). The opposite case requires a separate investigation, which
can be implemented analogously.

Proceeding to the McLaughlin–Polyakov problem (Problem 5), the reduction of this
problem to Problem 21 was briefly described in [43]. We present it here in more detail.

Suppose that a ∈ [0, 1) ∪ (1, 3]. Let yj(x, λ), j = 1, 2, denote the solutions of
Equation (18) satisfying the initial conditions

y1(1, λ) = y′2(1, λ) = 0, −y′1(1, λ) = y2(1, λ) = 1.

Obviously, the function

ξ(x, λ) := y2(x, λ)
sin ρa

ρ
− y1(x, λ) cos ρa. (65)

for each λ ∈ C is the only solution (up to a constant multiplier) of Equation (18) sat-
isfying the boundary condition (19) at x = 1. Therefore, for every eigenvalue λn of
the boundary value problem (18)–(19), the corresponding eigenfunction has the form
S(x, λn) = cnξ(x, λn), where cn is a constant. Consequently, the transmission eigenvalues
coincide with the zeros of the characteristic function

∆(λ) :=
∣∣∣∣ S(x, λ) ξ(x, λ)
S′(x, λ) ξ ′(x, λ)

∣∣∣∣.
For x = α, we have

∆(λ) = S(α, λ)ξ ′(α, λ)− S′(α, λ)ξ(α, λ).

Comparing this relation with (47), one can conclude that the transmission eigenvalue
problem can be represented as a Sturm-Liouville problem on the interval (0, α) with the
entire functions

f1(λ) := −ξ(α, λ), f2(λ) := ξ ′(α, λ) (66)
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in the right-hand boundary condition. The only difference from the problem (45)–(46) is
the interval length α instead of π. With this technical difference in mind, the McLaughlin–
Polyakov problem is equivalent to Problem 21 with the functions f j(λ), j = 1, 2, defined
by (66) and with an almost real subspectrum {λn}n≥1. The number ω = 1

2

∫ α
0 q(x) dx can

be found using the asymptotics (21) and the known potential q on the subinterval (α, 1):

ω = lim
n→+∞

((1− a)
√

λn − πn)πn− 1
2

∫ 1

α
q(x) dx.

It can be shown that, in the case of the simple subspectrum {λn}n≥1, the conditions
(BASIS C), (SEPARATION), (ASYMPTOTICS), and (ESTIMATES) of Section 4.1 hold. For the
case of multiple eigenvalues, all the results are valid with some technical modifications.
Consequently, the uniqueness theorem of McLaughlin and Polyakov (Theorem 12) can
be easily deduced as a corollary of Theorems 22 and 24. The solution of the McLaughlin–
Polyakov problem can be found using Method 2, taking the relation (66) into account and
replacing π with α. Theorem 25 implies the following corollary on the global solvability of
the McLaughlin–Polyakov problem:

Corollary 3. Let numbers a ∈ [0, 1) ∪ (1, 3], ω ∈ R, and a real-valued function q̃ ∈ L2(α, 1)
be fixed. For a sequence {λn}n≥1 to be an almost real subspectrum of the transmission eigen-
value problem (18)–(19) with a potential q ∈ L2(0, 1) such that q(x) = q̃(x) a.e. on (α, 1) and
1
2

∫ 1
0 q(x) dx = ω0, the following conditions are necessary and sufficient:

1. {λn}n≥1 satisfies the asymptotics (21).
2. The zeros {θnj}n≥1, j=1,2 of the functions ηj(λ), j = 1, 2, defined by (49) and (50) using the

functions K, N ∈ L2(0, α), which are constructed by Method 2, are real and interlace in the
sense of (57).

Note that the global solvability of the inverse transmission eigenvalue problem was
also investigated by Buterin et al. [69]. However, in [69], another problem statement was
considered. The potential was not assumed to be known a priori on the subinterval (α, 1).

In addition, one can apply Theorem 27 to obtain the local solvability and stability of
the McLaughlin–Polyakov problem. However, this result would be weaker than that of
Theorem 13 proposed by Bondarenko and Buterin [22], because Theorem 27 does not allow
one to take perturbations of the potential q(x) on (α, 1) into account.

It is worth mentioning that the transmission eigenvalue problem (18)–(19) can be
represented as the following boundary value problem on the three-edge graph in Figure 11:

−y′′j (xj) + qj(xj)yj(xj) = λyj(xj), xj ∈ (0, Tj), j = 1, 2, 3,

y1(0) = 0, y1(T1) = y2(0), y′1(T1) = y′2(0),

y2(T2) = y3(0), y′2(T2) = −y′3(0), y3(T3) = 0,

T1 := α, T2 := 1− α, T3 := a, q1(x) := q(x), q2(x) := q(x + α), q3(x) := 0.

0 α 1unknown known q = 0

e3e2e1

Figure 11. Graph representation of the transmission eigenvalue problem.

In order to model the condition y′(1) cos ρa− y′(1)
sin ρa

ρ
= 0, one can add a dummy

edge of length a with a zero potential. Note that the matching conditions at the vertex
joining e2 and e3 are non-standard and irregular. Nevertheless, the methods for partial
inverse problems on graphs can also be used for the McLaughlin–Polyakov problem.
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Next, consider Problem 9 for the Sturm-Liouville problem L of the form (22)–(24) on a
star-shaped graph. In contrast to [33], we suppose that the potentials {qj}m

j=1 are complex-
valued. Recall that the characteristic function of problem L is given by Formula (25):

∆(λ) :=
m

∑
j=1

S′j(π, λ)
m

∏
k=1
k 6=j

Sk(π, λ).

Comparing (25) with (47), one can easily see that the eigenvalue problem L on the
star-shaped graph is equivalent to the problem (45) and (46) with q = q1 and with the
following entire functions in the boundary condition:

f1(λ) :=
m

∏
k=2

Sk(π, λ), f2(λ) :=
m

∑
j=2

S′j(π, λ)
m

∏
k=2
k 6=j

Sk(π, λ).

Suppose that a subspectrum Ω = {λnk}n≥1, k=1,2 satisfying the asymptotics (28) and (29)
and Condition 1 is given together with the potentials {qj}m

j=2. Then, Condition 1 implies
the separation condition f1(λnk) 6= 0 or f2(λnk) 6= 0 for n ≥ 1, k = 1, 2. The number
ω = ω1 can be found from the asymptotics (28). The functions f1(λ) and f2(λ) can be
constructed using the potentials {qj}m

j=2. Thus, Problem 9 is reduced to Problem 21 by the
subspectrum Ω. In [43], the results of Section 4.1 were applied to this problem, and so
the results of [30,33] were generalized to the case of complex-valued potentials. Certain
other conditions of [30,33] were weakened. In particular, the local solvability and stability
theorem (generalizing Theorem 16) was proved in the following form:

Theorem 28 ([43]). Let {qj}m
j=1 be fixed complex-valued functions of L2(0, π), and let

{λnk}n≥1, k=1,2 be eigenvalues of the problem L satisfying the asymptotic relations (28) and (29).
Suppose that Condition 1 holds and z2 6= ωj, j = 2, m. Then, there exists ε > 0 (depending on
{qj}m

j=1 and {λnk}n≥1, k=1,2) such that, for any sequence {λ̃nk}n≥1, k=1,2 satisfying the estimate

Ξ :=

(
∞

∑
n=1

2

∑
k=1

(|λnk|+ 1)|
√

λnk −
√

λ̃nk|2
)1/2

≤ ε,

there exists a unique complex-valued function q̃1 ∈ L2(0, π) such that {λnk}n≥1, k=1,2 is a subspec-
trum of the problem L̃ with q̃1 instead of q1. Moreover, ‖q1 − q̃1‖L2(0,π) ≤ CΞ, where the constant
C depends only on {qj}m

j=1 and {λnk}n≥1, k=1,2.

An analogous reduction was applied to Problem 20 on an arbitrary graph with an
unknown potential on a boundary edge in [41]. The characteristic function for the corre-
sponding boundary value problem in (41) is given by Formula (43):

∆(λ) = S1(T1, λ)∆K(λ) + S[1]
1 (T1, λ)∆Π(λ).

Consequently, the problem in (41) can be represented in the form

−(y[1](x))′ − σ(x)y[1](x)− σ2(x)y(x) = λy(x), x ∈ (0, T),

y(0) = 0, f1(λ)y[1](T) + f2(λ)y(T) = 0,

 (67)

where σ := σ1, y[1] = y′ − σy, T := T1, f1(λ) := ∆Π(λ), f2(λ) := ∆K(λ).
In [41], an inverse spectral theory for the problem (67) was created analogously to

the theory in Section 4.1. Consequently, the results for the partial inverse problem on an
arbitrary graph (Problem 20), which were described in Section 3.3, were obtained.
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5. Other Types of Operators

This section deals with partial inverse problems for other classes of operators different
from Sturm-Liouville differential operators and pencils. Namely, we consider the known
results for the following types of operators:

• Integro-differential operators;
• Functional differential operators with a constant delay;
• Higher-order differential operators;
• Matrix Sturm-Liouville operators.

The most complete results in this direction have been obtained for integro-differential
operators with an integral term in the form of convolution. Wang and Wei [47] studied a
partial inverse problem for the integro-differential equation

−y′′ + q(x)y +
∫ x

0
M(x− t)y(t) dt = λy, x ∈ (0, π), (68)

with the Robin boundary conditions

y′(0)− hy(0) = 0, y′(π) + Hy(π) = 0, (69)

where q(x) and M(x) are real-valued functions of L2(0, π), and h and H are real constants.
The spectrum of the problem (68)–(69) is denoted by σ(L) = {λn}n≥0.

The following Gestezy–Simon-type uniqueness theorem was proved
for the problem (68)–(69):

Theorem 29 ([47]). Suppose that a ∈ [0, π), h = h̃, M(x) = M̃(x) a.e. on (0, a),
and q(x) = q̃(x) on (0, π). Then, for any ε > 0, if a subspectrum S ⊆ σ(L) ∩ σ(L̃) satisfies

#{λn ∈ S : |λn| ≤ t} ≥
(

1− a
π

)
#{λn ∈ σ(L) : |λn| ≤ t}+ a

2π
− 1

2
+ ε,

where t ≥ t0, t0 is a positive constant, then H = H̃ and M(x) = M̃(x) a.e. on (a, π).

However, the results of [47] are limited to uniqueness. Later on, Buterin and Sat [48]
studied not only uniqueness but also reconstruction and subspectrum characterization
for an integro-differential operator half-inverse problem. In [48], the integro-differential
Equation (68) was considered subject to the Dirichlet boundary conditions

y(0) = y(π) = 0. (70)

The functions q(x) and (π − x)M(x) were assumed to be complex-valued and belong
to L2(0, π).

Buterin and Sat [48] studied the following inverse problem:

Problem 24 ([48]). Given the even subspectrum {λ2n}n≥1, find the function M(x) on (π/2, π),
provided that M(x) on (0, π/2) and the potential q(x) are known.

Buterin and Sat also proved the following theorem, which provides the uniqueness of
the solution and the even subspectrum characterization of Problem 24.

Theorem 30 ([48]). Let arbitrary complex-valued functions q(x) ∈ L2(0, π) and
f (x) ∈ L2(0, π/2) be given and fixed. Then, for any sequence of complex numbers {µn}n≥1
of the form

µn =

(
2n +

A
2n

+
κn

n

)2
, A =

1
2π

∫ π

0
q(x) dx, {κn} ∈ l2, n ≥ 1, (71)
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there exists a unique (up to a set of measure zero) function M(x) such that (π − x)M(x) ∈
L2(0, π), M(x) = f (x) on (0, π/2), and {µn}n≥1 is the even subspectrum (i.e., λ2n = µn) of the
boundary value problem (68)–(70).

Moreover, Buterin and Sat [48] provided a constructive algorithm for solving
Problem 24. The method of [48] was based on the technique created by Buterin for solving
inverse problems for integro-differential operators (see [82] and the references therein).

The results of [48] showed the principal difference between differential and integro-
differential operators. In half-inverse problems for integro-differential operators, the given
mixed data (eigenvalues and operator coefficients on a subinterval) are independent of
each other. In Problem 24, one can take arbitrary numbers satisfying the eigenvalue
asymptotics (71) and an arbitrary function M(x) on (0, π/2) and reconstruct M(x) on
(π/2, π). In Hochstadt–Lieberman-type problems for differential operators, the spectrum
and the potential q(x) on a subinterval are related to each other. This relationship implies
hard-to-verify conditions in the characterization theorems (see, e.g., Theorems 9 and 11).

It is worth mentioning that Sat and Yilmaz [49] attempted to study a partial inverse
problem of another kind for the integro-differential operator (68)–(70). Namely, they
assumed that the kernel M(x) is known on (0, π) and the potential q(x) is known on the
half-interval (π/2, π) and investigated the recovery of q(x) on the interval (0, π/2) from
the spectrum. However, the results of [49] were wrong, and the proofs contained mistakes.
Namely, the estimate O

(
1
ρ2

)
after Formula (2.10) in [49] was incorrect. Therefore, the

problem of recovering q(x) on a subinterval while M(x) is known remains open.
Bondarenko and Yurko [50] studied the following partial inverse problem for a Sturm-

Liouville-type operator with a constant delay. Let {λn,j}n≥1, j = 0, 1, denote the eigenvalues
of the corresponding boundary value problems

−y′′(x) + q(x)y(x− a) = λy(x), 0 < x < π, (72)

y(0) = y(j)(π) = 0, (73)

where a ∈
[

π
3 , π

2
)
, q(x) is a complex-valued potential of L2(0, π), and q(x) = 0 a.e. on (0, a).

Problem 25 ([50]). Assume that q(x) is known a priori for x ∈
[ 3a

2 , π − a
2
]
. Given subspectra

{λnk ,j}k≥1, j = 0, 1, find q(x) on (a, π) (see Figure 12).

0 πa 3a
2

π − a
2

q = 0 unknown known unknown

Figure 12. Partial inverse problem with delay.

Note that Problem 25 is different from the Hochstadt–Lieberman problem, since the
potential q(x) is given on an interior subinterval. However, for differential operators with
a constant delay, the statement of Problem 25 appears to be natural.

Bondarenko and Yurko [50] proved the following uniqueness theorem and obtained a
constructive algorithm for finding the solution of Problem 25.

Theorem 31 ([50]). Suppose that the sequences {cos nkx}k≥0 (n0 := 0) and
{

sin
(

nk − 1
2

)
x
}

k≥1

are complete in L2(0, π − a), q(x) = q̃(x) a.e. on
[ 3a

2 , π − a
2
]

and λnk ,j = λ̃nk ,j, k ≥ 1, j = 0, 1.
Then, q(x) = q̃(x) a.e. on (a, π).

Djurić and Vladičić [51] considered the boundary value problem (72)–(73) in the case
a ∈

(
π
3 , 2π

5
)

and noticed that the two full spectra {λn,j}n≥1, j = 0, 1, uniquely specify the
potential on not only the boundary subintervals

(
a, 3a

2
)

and (π− a
2 , π), but also the interior
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subinterval (π − a, 2a) (see Figure 13). In this case, knowledge of the potential on the
subintervals

( 3a
2 , π − a

)
and (π − a, 2a) is unnecessary.

0 πa 3a
2

π − a
2

π − a 2aq = 0

Figure 13. The potential recovered by Djurić and Vladičić.

Theorem 32 ([51]). The spectra {λn,j}n≥1, j = 0, 1, uniquely determine the potential q(x) on the
set
(
a, 3a

2
)
∪ (π − a, 2a) ∪

(
π − a

2 , π
)
.

Moreover, the following uniqueness theorem for a partial inverse problem was proved.

Theorem 33 ([51]). Assume that the potential is known on the set
( 3a

2 , π
2 + a

4
)

as well as the
integral

∫ π−a
π/2+a/4 q(x) dx. Then, the spectra {λn,j}n≥1, j = 0, 1, uniquely determine the potential

q(x) on (a, π).

In [52], Buterin et al. conducted a comprehensive study of inverse spectral problems
for quadratic differential pencils with delays of the form

y′′(x) + ρ2y(x) = q0(x)y0(x− a0) + 2ρq1(x)y1(x− a1), x ∈ (0, π), (74)

where ρ is the spectral parameter, a0 ∈
[

π
3 , π

)
, a1 ∈

[
π
2 , π

)
, a0 + a1 ≥ π, qν ∈ Wν

2 [aν, π],
qν(x) = 0 on (0, aν), and

∫ π
a1

q1(x) dx = 0. Let {ρn,j} denote the spectra of the boundary

value problems for Equation (74) subject to the boundary conditions y(0) = y(j)(π) = 0,
j = 0, 1. In particular, Buterin et al. [52] generalized Theorem 32 to the pencil in (74).

Theorem 34 ([52]). Let both spectra {ρn,j}, j = 0, 1, be specified. Then, the function q0(x) is

uniquely determined a.e. on
(

a, 3a0
2

)
∪ (π − a0, 2a0) ∪

(
π − a0

2 , π
)
, while q1(x) is uniquely

determined on [a1, π].

Theorem 33 was also generalized (see [52] for details).
Next, let us consider the higher-order differential equation

y(n) +
n−2

∑
k=0

pk(x)y(k) = λy, n > 2, x ∈ (0, T), (75)

on a finite interval (T < ∞) and the half-line (T = ∞). The general theory of inverse spectral
problems for Equation (75) was created by Yurko [53]. In Section 4 of [53], Yurko considered
partial inverse problems that consisted in the recovery of part of the coefficients {pκj}N

j=1

(κ = {κj}N
j=1 ⊆ {0, 1, . . . , n− 2}) from the Weyl functions {Mi(λ)}N

i=1, which were defined
using suitable boundary conditions (see [53] for details). The other coefficients {pk}k 6∈κ
were assumed to be known a priori and integrable on either the finite or infinite interval
(0, T). The unknown coefficients {pk}k∈κ were assumed to be piece-wise analytic functions.
The partial inverse problem was considered under a specific information condition, which
guaranteed its unique solvability. The solution was constructed by the method of standard
models.

Recently, Chen et al. [54] attempted to study the Hochstadt–Lieberman-type inverse
problem for the fourth-order differential equation
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y(4) + q(x)y = λ4y, x ∈ (0, 1), q ∈ L1(0, 1), (76)

subject to the boundary conditions

y(0) = y′(0) = 0, y(1) = y′(1) = 0. (77)

The inverse problem of [54] consists in the recovery of the potential q(x) on the half-
interval (1/2, 1) from the eigenvalues {λk} of (76) and (77), while the potential q(x) on
(0, 1/2) is known a priori. However, the main result of [54] (Theorem 1.1) was wrong. In
particular, the authors of [54] asserted that, for any sequence {λk}k∈Z\{0} satisfying the
conditions λ−k = λk, 0 < λ4

1 ≤ λ4
2 ≤ · · · ≤ λ4

N < λ4
N+1 < . . . , and the asymptotics

λk =

(
k− 1

2

)
π + βk, {βk} ∈ l2, (78)

there exists a corresponding potential q of class L1. However, the asymptotics (78) are not
precise. For example, Polyakov [83] recently obtained more precise eigenvalue asymptotics,
implying that not every sequence satisfying (78) together with the other conditions of [54]
can be a spectrum of the problem (76) and (77) with potential q ∈ L1(0, 1). This was not
the only mistake of [54]. Furthermore, it is surprising that, in the Hochstadt–Lieberman-
type theorem in [54], the eigenvalues {λk} and the potential q(x) on (0, 1/2) are not
related to each other. For the second-order case, there is such a relationship (see, e.g.,
Theorems 9 and 11). Nevertheless, the problem stated in [54] is a challenging issue for
future investigation.

Malamud [55,56] proved the following analog of the Hochstadt–Lieberman theorem
for the matrix Sturm-Liouville equations

−y′′ + Q(x)y = λ2y, −ỹ′′ + Q̃(x)ỹ = λ2ỹ, x ∈ (0, 1), (79)

where Q(x) and Q̃(x) are (n× n) matrix functions. Let In denote the (n× n) unit matrix.

Theorem 35 ([55,56]). Let the entries of Q(x) and Q̃(x) be complex-valued functions of L1(0, 1),
and let Q(x) = Q̃(x) for a.a. x ∈ [1/2, 1]. Let Y(x, λ) and Ỹ(x, λ) be the (n × n) matrix
solutions of the initial value problems

Y(0, λ) = Ỹ(0, λ) = In, Y′(0, λ) = H1, Ỹ′(0, λ) = H̃1

for the first and second equations in (79), respectively. If

Y′(1, λ) + H2Y(1, λ) = Ỹ′(1, λ) + H2Ỹ(1, λ) = 0, λ ∈ C,

for some (n× n) complex matrix H2, then H1 = H̃1 and Q(x) = Q̃(x) for a.a. x ∈ [0, 1].

Theorem 35 shows that the monodromy matrix Y′(1, λ) + H1Y(1, λ) uniquely deter-
mines the matrix potential Q(x) on the half-interval [0, 1/2] if Q(x) is known on [1/2, 1].

6. Conclusions

In this review, we considered selected results on partial inverse spectral problems for
differential operators.

The most complete results were obtained for the Hochstadt–Lieberman problem.
Several constructive methods were developed that allowed researchers to obtain numerical
algorithms for solutions and the necessary and sufficient conditions for the solvability
of half-inverse problems. The uniqueness of the inverse problem solution was studied
fairly completely for cases in which the potential is known a priori on a subinterval (0, a).
Some results have also been obtained for the known potential on an interior subinterval
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(a, b) ⊂ (0, 1). However, cases in which the potential is unknown on an interior subinterval
and is known on some boundary subintervals remain open.

For differential operators on geometrical graphs, the most simple situation occurs
when the potential is unknown only on a boundary edge or even on part of a boundary
edge. Such partial inverse problems can be reduced to inverse problems on an interval
with entire functions in a boundary condition using the unified approach. These entire
functions are constructed by the operator coefficients on the “known” part of the graph.
Therefore, for this kind of problems, uniqueness, constructive solutions, global solvability,
local solvability, and stability have been obtained even on graphs of an arbitrary geometrical
structure. Analogous ideas can be applied to cases in which the potential is unknown on a
boundary subgraph. Cases in which the potential is known on some interior edges of the
graph have also been considered. For the unknown potential on an interior part of a graph,
the question is open, as with the case of the interval.

In addition, there have been several attempts to study partial inverse problems for non-
local operators, higher-order differential operators, and differential systems. However, the
results of these studies are fragmentary, and they do not form a general picture. Some ideas
are easily transferred from Hochstadt–Lieberman problems for differential operators to
other types of operators. However, for functional differential operators with a delay, higher-
order differential operators, and other types of operators, fundamentally new problem
statements appear to be natural and, consequently, different methods are required for
their investigation.

In conclusion, we formulated several open problems.

Problem 26. Determine the potential q(x) of the Sturm-Liouville equation −y′′ + q(x)y = λy
on an interior subinterval (a, b) ⊂ (0, 1) from fewer spectral data than are used for the complete
inverse problem, while q(x) is known on (0, 1) \ (a, b) (see Figure 3).

Problem 27. Investigate the solvability and stability of the inverse Sturm-Liouville partial in-
verse problem on the interval (0, 1) in the case of a known potential on an interior subinterval
(see Figure 2) using the spectral data of Guo and Wei [63] or any other spectral data.

Problem 28. Study partial Sturm-Liouville inverse problems on graphs in case where the potentials
are known on an interior subgraph. Determine the spectral data that are sufficient for the unique
reconstruction of the potentials on the whole graph. This problem is open even for simple graphs
(star-shaped graphs, lasso graphs, and trees).

Problem 29. Investigate the solvability and stability of partial inverse problems on graphs for cases
in which the potentials are known on a boundary part of the graph. These issues have been studied
only for an unknown potential on one edge.

Problem 30. Construct an inverse problem theory for the Sturm-Liouville equation with
entire analytical functions in one of the boundary conditions (45)–(46) and discontinuity
conditions of the form

y(d+) = ay(d−), y′(d+) = a−1y(d−) + by(d−)

at one or several points inside the interval. Note that the investigation of this problem will open up the
possibility of studying a wide class of partial inverse problems with discontinuities. Inverse Sturm-
Liouville problems with discontinuities in interior points appear in electronics when constructing
the parameters of heterogeneous electric lines with desirable technical charateristics [84] and in
geophysical models of the Earth’s oscillations [9].

Problem 31. Study the reconstruction of the potential q(x) of the integro-differential equation

−y′′ + q(x)y +
∫ x

0
M(x− t)y(t) dt = λy
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on a half-interval from spectral data under the assumption that M(x) is known.

Problem 32. Suppose that the coefficients {pk}n−2
k=0 of the higher-order differential equation

y(n) +
n−2

∑
k=0

pk(x)y(k) = λy, n > 2, x ∈ (0, 1),

are known on the half-interval (0, 1/2). How many spectral data are sufficient for the unique
specification of these coefficients on (1/2, 1)? In particular, one can study this half-inverse problem
for the fourth-order differential equation

y(4) − (p(x)y′)′ + q(x)y = λy. (80)

Note that this equation is important for mechanical applications, since the Euler-Bernoulli
equation (a(x)u′′)′′ = µb(x)u, which describes beam vibrations, can be reduced to the form of (80)
(see [85]).

Thus, the theory of partial inverse spectral problems still poses many challenges.
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