
Citation: Wang, Y.; Wang, Y.; Han, Y.

A Variant Iterated Greedy Algorithm

Integrating Multiple Decoding Rules

for Hybrid Blocking Flow Shop

Scheduling Problem. Mathematics

2023, 11, 2453. https://doi.org/

10.3390/math11112453

Academic Editors: Ana M.

Madureira, Joao Ferreira and

André Santos

Received: 3 April 2023

Revised: 17 May 2023

Accepted: 23 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Variant Iterated Greedy Algorithm Integrating Multiple
Decoding Rules for Hybrid Blocking Flow Shop
Scheduling Problem
Yong Wang, Yuting Wang * and Yuyan Han *

School of Computer Science, Liaocheng University, Liaocheng 252059, China; 2110170110@stu.lcu.edu.cn
* Correspondence: wangyuting@lcu.edu.cn (Y.W.); hanyuyan@lcu.edu.cn (Y.H.);

Tel.: +86-156-6635-1136 (Y.W.); +86-188-6497-4734 (Y.H.)

Abstract: This paper studies the hybrid flow shop scheduling problem with blocking constraints
(BHFSP). To better understand the BHFSP, we will construct its mixed integer linear programming
(MILP) model and use the Gurobi solver to demonstrate its correctness. Since the BHFSP exists parallel
machines in some processing stages, different decoding strategies can obtain different makespan
values for a given job sequence and multiple decoding strategies can assist the algorithm to find the
optimal value. In view of this, we propose a hybrid decoding strategy that combines both forward
decoding and backward decoding to select the minimal objective function value. In addition, a hybrid
decoding-assisted variant iterated greedy (VIG) algorithm to solve the above MILP model. The main
novelties of VIG are a new reconstruction mechanism based on the hybrid decoding strategy and
a swap-based local reinforcement strategy, which can enrich the diversity of solutions and explore
local neighborhoods more deeply. This evaluation is conducted against the VIG and six state-of-
the-art algorithms from the literature. The 100 tests showed that the average makespan and the
relative percentage increase (RPI) values of VIG are 1.00% and 89.6% better than the six comparison
algorithms on average, respectively. Therefore, VIG is more suitable to solve the studied BHFSP.

Keywords: blocking; hybrid decoding; hybrid flow shop scheduling; iterated greedy

MSC: 93B28

1. Introduction

The flow shop scheduling problem (FSSP) is prevalent in a variety of industries,
including semiconductor, automobile, and textile [1–3]. To enhance production efficiency,
some identical parallel machines are considered in the flow shop. This production pattern
is hybrid or flexible and forms a new scheduling problem, called the hybrid flow shop
scheduling problem (HFSP). In HFSP, ‘stages’ refers to the processing centers or machining
operations. Each job must go through all stages in a predetermined sequence. Parallel
machines may exist in each processing stage, allowing HFSP to process multiple jobs
simultaneously. Therefore, HFSP has found wide applications in industries such as steel-
making, electronics production, and chemistry [3–6]. In the literature, FSSP has been
certified that it is an NP-hard problem [7]. However, HFSP is much more complex than
FSSP. Unlike FSSP, which only considers the ordering of jobs, HFSP requires a more
comprehensive approach that balances both job sequencing and machine assignment.

In HFSP, at least one processing stage contains identical parallel machines, and each
job can be assigned to any one of these parallel machines for processing. HFSP can be
divided into two types based on cost-related restrictions: those with infinite buffers and
those with finite buffers. The HFSP with infinite buffers cannot cause job blocking due
to sufficient buffers between stages that can deposit completed jobs. However, the HFSP
with finite buffers may result in job blocking because of finite intermediate buffers. The

Mathematics 2023, 11, 2453. https://doi.org/10.3390/math11112453 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11112453
https://doi.org/10.3390/math11112453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11112453
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11112453?type=check_update&version=2

Mathematics 2023, 11, 2453 2 of 25

term “blocking” refers to the situation where a completed job in the current stage is held
up on the machine because all parallel machines in the subsequent stage are busy [8]. The
blocking constraint may increase the complete time of jobs and reduce production efficiency.
Therefore, it is necessary to search for an optimal scheduling sequence that minimizes the
blocking of jobs. Based on this, the present study considers the absence of buffer constraints
in HFSP, resulting in the formation of a new problem known as the blocking HFSP (BHFSP).
Furthermore, the optimization objective of our study is the makespan. It is a very important
indicator for actual production. The shorter the makespan, the faster the jobs are completed.
A longer makespan, on the other hand, means that jobs are taking longer to complete,
which can result in delays and lower productivity. Therefore, by reducing the makespan,
manufacturers can enhance resource utilization and meet customer demands.

As mentioned above, when a blocked state occurs, the job is blocked on the current
machines until a machine is available in the next stage. Therefore, before designing
corresponding strategies for BHFSP, it is necessary to analyze the challenges of the problem.
The details are as follows:

(1) Due to there being no buffers between two adjacent stages, once a job is blocked on the
current stage, it cannot be processed until the machine at the next stage is available,
which may increase the wait time of jobs, prolong the completion time of jobs, and
reduce the production efficiency.

(2) The HFSP in production is often a large-scale problem, involving a large number of
jobs and machines, and it is difficult to generate an optimal scheduling solution in a
short time.

(3) The solution may fall into a local optimum when the job is blocked on the machine.
Therefore, it is crucial to design some appropriate and effective strategies to reduce
the blocking time.

The iterated greedy (IG) algorithm is an efficient and simple iterative method when
optimizing FSS problems [9,10]. It usually uses heuristics to obtain a better initial solution,
and then adopts a destruction and reconstruction strategy to enhance the quality of the
initial solution. The IG algorithm is a simple and practical heuristic algorithm that can
be applied to real-world problems. It is a single-objective optimization algorithm that
can be enhanced by utilizing previous search results to improve search efficiency and
accuracy. However, the limitation of the IG algorithm is also noticeable, as it is susceptible
to getting stuck in local optima during the iteration process. However, the IG algorithm still
performs well as long as we make appropriate improvements to IG based on the problem
characteristics. For example, the improved IG algorithm can effectively solve the blocking
FSSP by considering its specific characteristics [11]. To sum up, we propose a variant IG
(VIG) to optimize BHFSP. Our innovations are summarized as follows:

(1) We construct a mixed integer linear programming (MILP) model and adopt the Gurobi
solver to demonstrate its correctness.

(2) Two different decoding strategies have been designed to calculate the objective in
BHFSP. By adopting the hybrid decoding strategy, it is possible to find a smaller
maximum completion time.

(3) A new reconstruction mechanism based on forward and backward decoding strategies
is proposed to enrich the diversity of solutions.

(4) A swap-based local reinforcement strategy is developed to explore local neighbor-
hoods more deeply.

(5) Abundant simulation experiments have been performed and demonstrated that the
VIG shows superiority in solving BHFSP compared with the six algorithms in existence
on 100 test instances.

The rest of this study can be stated as follows: Section 2 puts forward the literature
related to BHFSP. Section 3 formulates the BHFSP. In Section 4, a variant IG algorithm is
designed. Section 5 lists and discusses the simulation experiments. In the end, a summary
and future research points are presented in Section 6.

Mathematics 2023, 11, 2453 3 of 25

2. Literature Review
2.1. Hybrid Flow Shop Scheduling Problems

The methods commonly used to solve HFSP fall into three categories: exact meth-
ods [12], heuristic methods [13], and metaheuristic algorithms [14]. The first category
mainly includes the branch-and-bound method [15] and the dynamic programming ap-
proach [16], which can obtain the optimal solution using solvers but are best suited for
small-scale problems due to their long computation time. However, for HFSPs with large
scales, it is hard to obtain an optimum solution within a limited time. In view of this, the
second and third categories of methods, heuristic, and metaheuristic have been developed
and applied to optimize large-scale problems. The NEH heuristic, initially proposed by
Nawaz, Enscore, and Ham to optimize FSSP [17], has been further developed in subsequent
studies. Ronconi et al. developed the combination of MinMax and NEH heuristics, called
MME, to optimize the blocking FSSP [18]. Likewise, the author obtained PFE by combining
the profile fitting (PF) heuristic with NEH. On this basis, Pan and Wang proposed a com-
bined PE-NEH heuristic to solve FSSP with blocking constraints [19]. Fernandez-Viagas
et al. used two memory-based composite heuristics to address the HFSP [20]. Öztop et al.
presented a greedy adaptive disturbance method combining NEH (GRASP_NEH(x)) for
the HFSP [2]. Although these heuristic methods may not be as effective as meta-heuristics
in solving complex problems, they are often considered a useful initialization strategy due
to their ability to produce high-quality initial solutions.

In recent years, HFSP and its extensions have attracted the attention of scholars. To
solve the general HFSP, Xiao et al. studied the work shift HFSP and presented a mod-
ified genetic algorithm (GA) according to a scheduling rule to optimize the weighted
makespan [21]. Jin et al. adopted a hybrid simulated annealing (SA) method combining dif-
ferent scheduling rules [22]. To effectively solve HFSP, Wang et al. proposed a distribution
estimation algorithm (EDA) that uses a probabilistic model to find promising solutions [23].
Pan et al. employed a variety of heuristic methods to improve the performance of the initial
solution and embedded them into the discrete artificial bee colony (DABC) to optimize the
makespan of HFSP [24]. Due to the lack of local search ability of the swarm intelligence
method, Li et al. designed a variety of neighborhood structures to overcome this challenge
and utilized the advantages of EDA and chemical-reaction optimization (CRO) to design
a hybrid variable neighborhood search (HVNS) algorithm to solve HFSP [25]. To enrich
the method of solving HFSP, Lin et al. proposed a chaos-enhanced SA (CSA) algorithm
to optimize makespan [26]. To fill the gap in energy conservation studies for the five
phases of HFSP, Utama et al. designed a hybrid Aquila Optimizer (HAO) to optimize the
total energy consumption [27]. Subsequently, Utama et al. created a hybrid Archimedes
optimization algorithm (HAOA), which hopefully will help provide new insights into
advanced HAOA methods for solving HFSP [28]. In the real world, the expansion of HFSP
with production limitations is more realistic than the general HFSP. Zhang et al. studied
the HFSP with lot streaming to improve production efficiency and presented an effective
modified migrating birds optimization (EMBO) algorithm to solve it [29]. In addition, the
collaborative mechanism is considered. Zhang et al. proposed a collaborative variable
neighborhood descent (CVND) for HFSP with consistent sublots [30]. To overcome the
drawback that IG tends to fall into a local optimum, Li et al. introduced a restart strategy
and proposed an adaptive IG to solve the hybrid no-idle flow shop scheduling problem [31].
In a multiple-factory environment, Cui et al. proposed an improved multi-population ge-
netic algorithm (MPGA) that considers inter-factory neighborhood structure to solve the
HFSP [32]. Considering group scheduling, Qin et al. designed a block-based neighborhood
selection strategy according to the characteristics of the problem [33]. In addition, Qin
et al. also studied the distributed HFSP, whose optimization goal is to minimize the total
energy consumption [34]. For the energy consumption metric, Wang et al. investigated the
energy-efficient fuzzy HFSP (EFHFSP) with the variable machine speed and extended the
existing non-dominated sorting genetic algorithm-II (NSGA-II) [35]. According to the above
literature, we selected some representative literature related to our considered problem

Mathematics 2023, 11, 2453 4 of 25

and stated their problems and algorithms in Table 1. Through an analysis of problems and
algorithms, we found that most of the literature does not consider the blocking constraint
and adopts swarm intelligence algorithms, i.e., GA, SA, EDA, DABC, EMBO, etc. These
algorithms can provide multiple solutions to improve the diversity of solutions. However,
they have more parameters and complicated structures. In the exploration of a single
solution neighborhood, these swarm intelligence algorithms are slightly less effective than
the IG algorithm [36]. Thus, a modified IG algorithm is adopted to solve the BHFSP due
to the fact that it can more intensively explore a single solution and is very effective at
improving the reinforcement of the solution.

Table 1. Review of the studies on HFSP.

Authors HFSP with Blocking Objective (Minimizing) Algorithms MILP Model

Xiao et al. [21] No Weighted makespan GA No
Jin et al. [22] No Makespan SA Yes

Wang et al. [23] No Makespan EDA Yes
Pan et al. [24] No Makespan DABC Yes
Li et al. [25] No Makespan HVNS No

Lin et al. [26] No Makespan CSA Yes
Utama et al.[27] No Total energy consumption HAO Yes
Utama et al. [28] No Total energy consumption HAOA No
Zhang et al. [29] No Total flow time EMBO Yes
Zhang et al. [30] No Makespan CVND Yes

Li et al. [31] No Total flow time adaptive IG(AIG) Yes
Cui et al. [32] No Makespan MPGA No
Qin et al. [33] Yes Makespan IG Yes
Qin et al. [34] Yes Total energy consumption IG Yes

Wang et al. [35] No Total energy consumption NSGA-II Yes
This research Yes Makespan VIG Yes

Regarding the blocking constraints, we note the following research. Pan et al. analyzed
the problem characteristics of FSSP with blocking constraints (BFSP) and developed several
effective heuristics to expand the problem-solving methods [19]. Shao et al. proposed a
discrete invasive weed optimization method (DIWO) to solve the BFSP with the makespan
criterion [37]. Ribas et al. considered realistic production setup times and proposed an IG
algorithm to handle the BFSP [11]. Considering the distributed environment, Han et al.
proposed an effective IG by combining learning-based selecting multiple neighborhood
constructions to solve the discrete BFSP [38]. Meanwhile, Qin et al. used a collaborative IG
to solve the HFSP without buffers [39]. Zhang et al. used a discrete whale swarm algorithm
to solve HFSP with limited buffers [40]. Considering the machine energy consumption,
Qin et al. proposed an improved IG to address the HFSP including energy consumption
and blocking constraints [36].

From the literature above, it is evident that research on blocking constraints is still
ongoing, and there are many practical applications for BHFSP, such as container trailer
scheduling problems [41], train track scheduling [42], ship manufacturing [43], and concrete
blocks [44]. Therefore, studying BHFSP has practical significance.

2.2. Iterated Greedy Algorithm

IG is widely used to solve FSSP because of its simple structure, few parameters, and
high efficiency [9]. Thus, many scholars have proposed some improved IG algorithms to
solve scheduling problems. Rodriguez et al. employed IG to address the FSSP of unrelated
parallel machines [45]. Fernandez-Viagas et al. used the eight variants of IG based on
some search-based heuristics to vary their population size and optimize the total delay
criterion [46]. To minimize the makespan, Rubén Ruiz, Pan, and Naderi used an improved
IG to optimize FSSP under the distributed environment [10]. The authors extended the
destruction, reconstruction, and local search strategies to create a two-level IG based on

Mathematics 2023, 11, 2453 5 of 25

mixed properties of the problem. For the distributed blocking FSSP (DBFSP), Chen et al.
described a population iterative greedy (PBIG) based on the advantages of the crowd search
method and iterative greedy algorithm [47]. Pan and Ruiz [48] first constructed the MILP
model for the mixed no-idle flow shop problem and designed an efficient IG combining a
speed-up neighborhood insertion strategy. Qin et al. presented a double level mutation
IG (IGDLM) to optimize HFSP [49]. Missaoui and Ruiz [50] proposed a parameter-less IG
without calibration to address HFSP with setup time and lead-time window restraints.

From the literature cited in this paper, i.e., [7,40–45,48], we know that the IGA has
shown good performance among the metaheuristics for many scheduling problems, espe-
cially in the flow shop scheduling field. For example, (1) as mentioned in the literature [48],
unlike other metaphor-based algorithms, IGA is a simple iterated search method with no
complex structures, which is easy to be coded and understood. Therefore, it is available to
be replicated and used for other related problems. (2) In addition, the latest literature [44]
proposed a modified IGA, named IGDLM algorithm that used to solve the BHFSP. This
work compares many advanced algorithms, and simulation results have proved that the
IGDLM outperforms the existing five compared algorithms. (3) Referring to [45], the au-
thors compared the IG algorithm with different strategies and proved that it is feasible
to use the IG algorithm to solve the HFSP and results show that the IG series algorithms
generally obtain good solutions. The advantages of the IG algorithm are attributed to the
simplicity of the algorithm framework with few parameters, ease of integration, and good
reinforcement and local convergence performance. Based on the above analyses, we finally
selected the IG algorithm to solve the BHFSP considered in this paper.

Although the above studies have used the IG algorithm to solve the scheduling
problem, they have also revealed its limitations. Specifically, the IG algorithm has a
strong local perturbation ability, but correspondingly, it is easy to make the solution
converge prematurely and fall into a local optimum. Additionally, from the existing
literature, the IG algorithm only optimizes a single solution, leading to poor diversity of
solutions. To better address the BHFSP problem, we design corresponding strategies to
overcome these limitations. We consider using parallel optimization to simultaneously
optimize two solutions and using a collaborative mechanism to interact between the
two solutions, increasing their diversity. Due to the characteristics of the HFSP, there are
different decoding methods available. Therefore, we incorporate a hybrid decoding strategy
into the parallel framework. This framework includes a new reconstruction mechanism
that combines forward and backward decoding strategies to increase the diversity of
solutions. Additionally, we incorporate a swap-based local reinforcement strategy to enable
a deeper exploration of local neighborhoods. The proposed strategies can decrease the
computational time of the objective function and raise the diversity of solutions.

3. Problem Statement

BHFSP is described as follows: Each job within a set having J jobs are processed
at S sequential stages according to the same sequence. For each stage s (s = 1, 2, · · · , S),
there exists Ms (Ms ≥ 1) identical parallel machines. Furthermore, there is at least one
stage containing more than one identical parallel machine. We assume that there are no
intermediate buffers between neighboring stages. The processing time of job j at stage s is
denoted as pj,s. Our optimization goal is to find a reasonable scheduling sequence with
minimal makespan.

Typically, the following discussion of BHFSP is based on the following six hypotheses:

(1) At time 0, all jobs can be processed and machines are free.
(2) At any time, a machine can only process one job at a time, and a job cannot be

processed by multiple machines at the same time.
(3) All jobs are continuously processed without any interruptions.
(4) Each job goes through all the processing stages in turn and is processed by only one

machine at a stage.
(5) Skipping a stage or ending early is not allowed.

Mathematics 2023, 11, 2453 6 of 25

(6) No intermediate buffer exists in any neighboring stages. If all machines at the next
stage are busy after a job is processed at the current machine, the finished job will be
blocked until one machine at the downstream stage is free.

3.1. Mathematical Model

Objective:
MinimizeCmax (1)

Constraints:

Ms

∑
m=1

yj,s,m = 1, ∀j ∈ {1, 2, · · · , J}, ∀s ∈ {1, 2, · · · , S} (2)

zj,j′ ,s + zj′ ,j,s ≤ 1, ∀j, j′ ∈ {1, 2, · · · , J}, j < j′, ∀s ∈ {1, 2, · · · , S} (3)

zj,j′ ,s + zj′ ,j,s ≥ yj,s,m + yj′ ,s,m − 1, ∀j, j′ ∈ {1, 2, · · · , J}, j < j′,
∀s ∈ {1, 2, · · · , S}, ∀m ∈ {1, 2, · · · , Ms}

(4)

Cj,s ≥ pj,s, ∀j ∈ {1, 2, · · · , J}, ∀s ∈ {1, 2, · · · , S} (5)

Cj′ ,s ≥ Dj,s + pj′ ,s +
(

yj,s,m + yj′ ,s,m + zj,j′s − 3
)
·U, ∀j, j′ ∈ {1, 2, · · · , J}, j 6= j′,

∀s ∈ {1, 2, · · · , S}, ∀m ∈ {1, 2, · · · , Ms}
(6)

Cj,s+1 = Dj,s + pj,s+1, ∀j ∈ {1, 2, · · · , J}, ∀s ∈ {1, 2, · · · , S− 1} (7)

Dj,s ≥ Cj,s, ∀j ∈ {1, 2, · · · , J}, ∀s ∈ {1, 2, · · · , S} (8)

Cmax ≥ Dj,S, ∀j ∈ {1, 2, · · · , J} (9)

Constraint (1) is the optimized makespan. Constraint (2) guarantees a job is processed
on only one machine of each stage. Constraint (3) refers to that zj,j′ ,s and zj,j′ ,s cannot
equal 1 at the same time. Constraint (4) enforces that if jobs j and j’ can be processed on
the same machine at stage s, one of zj,j′ ,s and zj,j′ ,s must be equal 1 and the other equal 0.
Constraint (5) guarantees that the completion time of job j at stage s is larger than or equal
to that of the processing time of job j at stage s. For job j and job j’, if job j is processed on
the same machine before j’ at stage s, the completion time of job j’ at stage s must be not less
than the departure time of job j at stage s plus pj′ ,s, ensured by Constraint (6). Constraint (7)
defines that the completion time of a job at a stage is not less than the processing time
at the same stage plus its departure time at the previous one. Constraint (8) ensures that
at each stage, the departure time of a job is larger than or equal to its completion time.
Constraint (9) guarantees that the makespan is equal to or larger than the departure time
of all jobs at the last stage.

3.2. Example Instance

Consider an example with J = 6, S = 2, M1 = 2 and M2 = 2. Table 2 lists all pj,s. One
possible solution of the example is z1, 3, 1 = 1, z1, 5, 1 = 1, z3, 5, 1 = 1, z2, 4, 1 = 1, z2, 6, 1 = 1,
z4, 6, 1 = 1, z1, 3, 2 = 1, z1, 4, 2 = 1, z1, 5, 2 = 1, z3, 4, 2 = 1, z3, 6, 2 = 1, z4, 6, 2 = 1, z2, 5, 2 = 1, y1, 1, 1 = 1,
y3, 1, 1 = 1, y5, 1, 1 = 1, y2, 1, 2 = 1, y4, 1, 2 = 1, y6, 1, 2 = 1, y1, 2, 1 = 1, y3, 2, 1 = 1, y4, 2, 1 = 1, y6, 2, 1 = 1,
y2, 2, 2 = 1. A scheduling Gantt chart of the given example is displayed in Figure 1.

Mathematics 2023, 11, 2453 7 of 25

Table 2. Processing times of jobs at stage 1 and stage 2.

Job Stage 1 Stage 2

1 1 3
2 2 4
3 2 4
4 3 1
5 2 3
6 1 2

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 28

be processed on the same machine at stage , one of and must be equal
and the other equal . Constraint (5) guarantees that the completion time of job at
stage is larger than or equal to that of the processing time of job at stage . For job

 and job , if job is processed on the same machine before at stage , the
completion time of job at stage must be not less than the departure time of job at
stage plus , ensured by Constraint (6). Constraint (7) defines that the completion
time of a job at a stage is not less than the processing time at the same stage plus its
departure time at the previous one. Constraint (8) ensures that at each stage, the
departure time of a job is larger than or equal to its completion time. Constraint (9)
guarantees that the makespan is equal to or larger than the departure time of all jobs at
the last stage.

3.2. Example Instance
Consider an example with , , and . Table 2 lists all .

One possible solution of the example is , , , ,
, , , , , , , ,
, , , , , , , ,
, , , . A scheduling Gantt chart of the given example

is displayed in Figure 1.

Table 2. Processing times of jobs at stage and stage .

Job Stage 1 Stage 2
1 1 3
2 2 4
3 2 4
4 3 1
5 2 3
6 1 2

Figure 1. The scheduling Gantt chart of the given example.

In Figure 1, the makespan of above example is 11. At moment 3, job 3 has been
finished on machine 1 at stage 1. However, job 3 must be blocked on machine 1 until
moment 4 because all machines in the next stage are busy. Similarly, at moment 5, job 4
remained on machine 2 at stage 1 until moment 8.

4. VIG Algorithm for BHFSP
Ruiz and Stützle first proposed an IG algorithm for solving the FSP [9]. The

framework of the basic IG is shown in Algorithm 1 and consists of four phases:
initialization phase, destruction and reconstruction (DR) phase, local search, and
acceptance criteria. First, a high-quality solution is obtained during the initialization
phase. Second, for the destruction operation, we select some elements at random from the

Figure 1. The scheduling Gantt chart of the given example.

In Figure 1, the makespan of above example is 11. At moment 3, job 3 has been finished
on machine 1 at stage 1. However, job 3 must be blocked on machine 1 until moment 4
because all machines in the next stage are busy. Similarly, at moment 5, job 4 remained on
machine 2 at stage 1 until moment 8.

4. VIG Algorithm for BHFSP

Ruiz and Stützle first proposed an IG algorithm for solving the FSP [9]. The frame-
work of the basic IG is shown in Algorithm 1 and consists of four phases: initialization
phase, destruction and reconstruction (DR) phase, local search, and acceptance criteria.
First, a high-quality solution is obtained during the initialization phase. Second, for the
destruction operation, we select some elements at random from the current solution π
and delete them. All the deleted elements are put into πd, and the rest elements forms
πr. For the reconstruction operation, each element is removed one by one from πd and
greedily reinserted into πr until a complete solution is obtained. Next, a local reinforcement
approach is adopted to further enhance the algorithm’s performance. Finally, the solution
is updated by using the acceptance criteria.

Algorithm 1. Basic IG algorithm

01: Generate an initial solution π0
02: π = Local Search (π0)
03: while (not meet termination criteria) do
04: (πd, πr) = Destruction (π)
05: π′ = Reconstruction (πd, πr)
06: π′′ = Local Search (π′)
07: π = AcceptanceCriterion (π”, π0)
08: end while

For BHFSP, two questions must be considered simultaneously: how to assign a job
to a particular machine at each stage and how to determine the sequence of jobs to be
processed at each machine. For the basic IG, only one solution is continually optimized
during the iteration process, which reduces the diversity of solution. Therefore, considering
the characteristics of BHFSP and the flaw of the basic IG, we proposed a variant IG (VIG). In
the proposed VIG, two decoding strategies, i.e., forward decoding, and backward decoding,
are devised to solve the machine allocation issue. To enhance the diversity of VIG, we
devise a parallel mechanism based on a hybrid decoding strategy. This allows us to obtain

Mathematics 2023, 11, 2453 8 of 25

two optimized solutions, and their interaction is carried out by crossover operator. The
above parallel and cooperation mechanism can increase the opportunity of obtaining a
good solution to some extent.

Algorithm 2 describes the proposed VIG algorithm framework. First, two initial
solutions are generated by using NEH [17] and MME [18] (see line 1 in Algorithm 2). Then,
within the while loop, the DR_LS_SA strategy (see lines 6–7 in Algorithm 2) leads to the
parallel evolution of the two solutions. As can be seen from the name of the DR_LS_SA
function, this part includes DR, local search, and SA strategies. Algorithm 3 describes these
three parts in detail. The DR strategy (see line 1 in Algorithm 3) and local search strategy
(see line 5 in Algorithm 3) based on two decoding methods are proposed to improve
the quality of the solutions and increase their diversity. If only the improved solution is
accepted, the algorithm may converge prematurely and lose diversity. The diversity of
solutions is enhanced in our algorithms by utilizing SA. If the quality of the currently
generated solution is worse than the quality of the original solution, this research still
chooses to accept the current solution with a certain probability (see line 12 in Algorithm 3),

instead of directly discarding it, where T =
J

∑
j=1

S
∑

S=1
pj,s/(10× J × S)× τ, where J is the

number of jobs, S is the number of stages, pj,s is the processing time of job j at stage s, and τ

(τ∈(0,1)) is a temperature parameter to be adjusted. To avoid the VIG from being trapped in
a local optimum, we use a cooperation mechanism based on crossover operator to interact
with two solutions, which further enhances the diversity of solutions (see lines 14–17 in
Algorithm 2). The parameter ward in Algorithm 3 has two values, 0 and 1, which represent
forward decoding and backward decoding, respectively (see lines 6–7 in Algorithm 2). In
Algorithm 2, the number of times the best solution has not been improved is represented
by parameter f ail_count. The parameter crossover_threshold represents the value of the
condition threshold. When f ail_count is equal to crossover_threshold, VIG implements
a collaborative mechanism based on crossover operation to increase the diversity of the
solution. To help readers better understand, Figure 2 illustrates the specific process of VIG,
which includes DR, local search, and cooperation mechanisms.

Algorithm 2. The framework of the VIG algorithm

Input: π1 and π2 are two empty scheduling sequences, d is the number of removed and
reinserted jobs in DR
01: π1 = NEH(π1), π2 = MME(π2)

02: πbest1 = π1, πtemp1 = π1, πbest2 = π2, πtemp2 = π2
03: f ail_count = 0 %% f ail_count is a counter
04: πbest = min(πbest1, πbest2)
05: while (termination criterion is not satisfied) do
06: πtemp1, πbest1, π1 = DR_LS_SA(πtemp1, πbest1, π1, d, 0) %%including DR, local search,
and SA
07: πtemp2, πbest2, π2 = DR_LS_SA(πtemp2, πbest2, π2, d, 1)
08: if (πbest1 or πbest2 is better than πbest)
09: πbest = min(πbest1, πbest2)
10: f ail_count = 0
11: else
12: f ail_count++
13: end if
14: if (f ail_count = crossover_threshold)
15: πtemp1, πtemp2 = Crossover(πtemp1, πtemp2) %% Cooperative mechanism
16: f ail_count = 0
17: end if
18: end while
Output: πbest

Mathematics 2023, 11, 2453 9 of 25

Algorithm 3. DR_LS_SA (πtemp, πbest, π, d, ward)

Input: πtemp, πbest, π, d, ward
01: πtemp = Destruction_Reconstruction

(
πtemp, d, ward

)
02: if (πtemp is better than πbest)
03: πbest = πtemp

04: end if
05: πtemp = LocalSearchStrategy(πtemp, ward) %% based on swap strategy
06: if (πtemp is better than π)
07: π = πtemp

08: if (πtemp is better than πbest)
09: πbest = πtemp

10: end if
11: else %% SA acceptance criterion
12: if (rand() ≤ exp(−(Cmax(πtemp)− Cmax(π))/T))
13: π = πtemp

14: else
15: πtemp = π

16: end if
17: end if
Output: πtemp, πbest, π

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 28

05: tempπ = (,)tempLocalSearchStrategy wardπ %% based on swap strategy

06: if (tempπ is better than π)

07: tempπ = π

08: if (tempπ is better than b es tπ)

09: best tempπ = π
10: end if
11: else %% SA acceptance criterion
12: if (() exp((() ()) /)temp

max maxrand C C T≤ − π − π)

13: tempπ = π
14: else
15: tempπ = π
16: end if
17: end if
Output: tempπ , b es tπ , π

UpdateUpdate

Update
temp1π

temp1π

temp1π
DR

LS

DR

LS

best1π best 2π

bestπ

Update

Update

Crossover

temp1π temp2π

temp2π

 temp2π

 temp2π

Update Update

Forward decoding Backward decoding

Figure 2. The cooperative process of two solutions.

4.1. Encoding and Decoding Scheme
There are two key issues that need to be addressed before designing an algorithm

for BHFSP: encoding and decoding. Given the discrete nature of the problem, the job
sequence corresponding to a solution is represented using a discrete integer encoding.
For the decoding issue, its purpose is to obtain the real scheduling and evaluate the
makespan. The regular FSSPs are known to be reversible. That is if the jobs go through
the flow shop in the opposite direction and in the reverse process, the makespan does not
change [24]. However, for BHFSP, due to there being parallel machines in some stages, it
does not have the above property. Thus, different makespan values can be obtained for a
given job sequence using forward and backward decoding methods. By different
decoding strategies, we can select the minimal objective function value as the final
makespan. Multiple decoding strategies can assist the algorithm to find the optimal
value. Based on this, we propose a hybrid decoding strategy including forward and
backward decoding. Suppose there are jobs, and each job goes through stages for

Figure 2. The cooperative process of two solutions.

4.1. Encoding and Decoding Scheme

There are two key issues that need to be addressed before designing an algorithm for
BHFSP: encoding and decoding. Given the discrete nature of the problem, the job sequence
corresponding to a solution is represented using a discrete integer encoding. For the
decoding issue, its purpose is to obtain the real scheduling and evaluate the makespan. The
regular FSSPs are known to be reversible. That is if the jobs go through the flow shop in the
opposite direction and in the reverse process, the makespan does not change [24]. However,
for BHFSP, due to there being parallel machines in some stages, it does not have the above
property. Thus, different makespan values can be obtained for a given job sequence using
forward and backward decoding methods. By different decoding strategies, we can select
the minimal objective function value as the final makespan. Multiple decoding strategies
can assist the algorithm to find the optimal value. Based on this, we propose a hybrid
decoding strategy including forward and backward decoding. Suppose there are J jobs,
and each job goes through S stages for processing. The processing sequence is [1, 2, . . . , J].
[j] represents the index of the jth job. In forward decoding, f c[j],s represents the completion

Mathematics 2023, 11, 2453 10 of 25

time of the job and f mts,m is denoted as the idle time of the machine m at stage s. m*

represents the machine with the earliest idle time at stage s. f c[j],s is calculated according to
Equations (10)–(14). Equation (15) represents the makespan of the forward calculation.

f c[j],0 = 0, j = 1, 2, . . . , J (10)

f mts,m = 0, s = 1, 2, · · · , S, m = 1, 2, · · · , Ms (11)

m∗ = argmin
m=1,2,··· ,Ms

{ f mts,m}, s = 1, 2, · · · , S (12)

f c[j],s = max
{

f mts,m∗ , f c[j],s−1

}
+ pj,s, j = 1, 2, · · · , J, s = 1, 2, · · · , S (13)

f mts,m∗ =

{
f c[j],s+1 − p[j],s+1, s = 1, 2, · · · , S− 1
f c[j],s, s = S

(14)

Cmax = maxf [j],s, j = 1, 2, · · · , J, s = S (15)

In the backward decoding, bc[j],s represents the backward completion time of the
job and bmtsm is denoted as idle time of the machine m at stage s during the backward
calculation. m* represents the machine with the earliest idle time at stage s. bc[j],s is
calculated according to Equations (16)–(20). Equation (21) is of the makespan obtained by
the backward calculation.

bc[j],S+1 = 0, j = J, J − 1, · · · , 1 (16)

bmts,m = 0, s = S, S− 1, · · · , 1, m = Ms, Ms − 1, · · · , 1 (17)

m∗ = argmin
m=Ms,M,−1,··· ,1

{bmts,m}, s = S, S− 1, · · · , 1 (18)

bc[j],s = max
{

bmts,m∗ , bc[j],s+1

}
+ pj,s, j = J, J − 1, · · · , 1, s = S, S− 1, · · · , 1 (19)

bmts,m∗ =

{
bc[j],s−1 − p[j],s−1, s = S, S− 1, · · · , 2
bc[j],s, s = 1

(20)

Cmax = maxbc[j],s, j = 1, 2, · · · , J, s = 1 (21)

In the following, we illustrate the forward and backward decoding methods by an
example in which there are 3 stages and 4 jobs. There are two identical parallel machines
at stage 1 and stage 2, and one machine at stage 3. Suppose that a particular job sequence
π = (1, 2, 3, 4), and the processing time of each job at each stage is as follows.

pj,s =


2 2 1
1 1 2
2 1 2
4 5 1


4.1.1. Forward Decoding Method

Forward decoding means arranging the first job in the sequence to each stage, then the
second job, and so forth, until the last job. At each stage, the jobs are scheduled to the first
earliest available machine. After a job is processed on the current machine, if no machine

Mathematics 2023, 11, 2453 11 of 25

is available at the next stage, the job is blocked on the current machine until a machine is
available at the next stage. For a given job sequence π = (1, 2, 3, 4) in the above example,
we decode it according to the forward encoding method, and the procedure is as follows:

(1) First schedule job 1. Job 1 is arranged to stage 1, stage 2, and stage 3 according to
the process sequence. As described above, at each stage we select the first earliest
available machine for job 1. Figure 3a shows the Gantt chart after arranging job 1.

(2) Then job 2 is arranged to each stage according to the scheduling process of job 1.
Note that on the second machine at the second stage, job 2 is blocked on the current
machine until moment 4. Figure 3b shows the Gantt chart after job 2 is scheduled.

(3) Job 3 and job 4 are scheduled by using the same method as job 1 and job 2, the Gantt
charts that job 3 and job 4 have been scheduled are shown in Figure 3c,d, respectively.
We finally obtain real scheduling with a makespan that is equal to 12.

Mathematics 2023, 11, x FOR PEER REVIEW 12 of 28

example, we decode it according to the forward encoding method, and the procedure is
as follows:
(1) First schedule job 1. Job 1 is arranged to stage 1, stage 2, and stage 3 according to the

process sequence. As described above, at each stage we select the first earliest
available machine for job 1. Figure 3a shows the Gantt chart after arranging job 1.

(2) Then job 2 is arranged to each stage according to the scheduling process of job 1.
Note that on the second machine at the second stage, job 2 is blocked on the current
machine until moment 4. Figure 3b shows the Gantt chart after job 2 is scheduled.

(3) Job 3 and job 4 are scheduled by using the same method as job 1 and job 2, the Gantt
charts that job 3 and job 4 have been scheduled are shown in Figure 3c,d,
respectively. We finally obtain real scheduling with a makespan that is equal to 12.

(a) (b)

(c) (d)

Figure 3. Forward decoding process for job sequence (the gray area in the graph is the blocking
time). (a) Decoding process of job 1; (b) Decoding process of job 1 and job 2; (c) Decoding process of
job 1, job 2, and job 3; (d) Decoding process of job 1, job 2, job 3, and job 4.

4.1.2. Backward Decoding Method
For a given sequence of jobs, real scheduling can also be obtained by traversing the

jobs in the opposite order, that is, the last job is considered first. The jobs are assigned to
the first available machine in a backward manner from the last stage to the first stage.
Considering the above example, we arrange the jobs by the backward strategy as follows.
(1) First arrange job 4. Job 4 is arranged to stage 3, stage 2, and stage 1 according to the

opposite process sequence. At each stage, we select the earliest available machine for
job 4 in a backward manner. Figure 4a shows the Gantt chart for arranging job 4 by
using the backward decoding method.

(2) Then consider job 3. In the same way as job 4 is scheduled, job 2 is arranged to each
stage according to the opposite process sequence. Figure 4b shows the Gantt chart
that job 2 is scheduled by using the backward decoding method.

(3) Job 2 and job 1 are scheduled by using the same method as job 4 and job 3. Note that
blocking may also occur during the backward decoding process. Figure 4c,d give the
Gantt charts that job 2 and job 1 have been scheduled by using the backward
decoding method, respectively. Finally, we obtain real scheduling whose makespan
is equal to 10.

Figure 3. Forward decoding process for job sequence (the gray area in the graph is the blocking time).
(a) Decoding process of job 1; (b) Decoding process of job 1 and job 2; (c) Decoding process of job 1,
job 2, and job 3; (d) Decoding process of job 1, job 2, job 3, and job 4.

4.1.2. Backward Decoding Method

For a given sequence of jobs, real scheduling can also be obtained by traversing the
jobs in the opposite order, that is, the last job is considered first. The jobs are assigned
to the first available machine in a backward manner from the last stage to the first stage.
Considering the above example, we arrange the jobs by the backward strategy as follows.

(1) First arrange job 4. Job 4 is arranged to stage 3, stage 2, and stage 1 according to the
opposite process sequence. At each stage, we select the earliest available machine for
job 4 in a backward manner. Figure 4a shows the Gantt chart for arranging job 4 by
using the backward decoding method.

(2) Then consider job 3. In the same way as job 4 is scheduled, job 2 is arranged to each
stage according to the opposite process sequence. Figure 4b shows the Gantt chart
that job 2 is scheduled by using the backward decoding method.

(3) Job 2 and job 1 are scheduled by using the same method as job 4 and job 3. Note that
blocking may also occur during the backward decoding process. Figure 4c,d give the
Gantt charts that job 2 and job 1 have been scheduled by using the backward decoding
method, respectively. Finally, we obtain real scheduling whose makespan is equal
to 10.

Mathematics 2023, 11, 2453 12 of 25
Mathematics 2023, 11, x FOR PEER REVIEW 13 of 28

(a) (b)

(c) (d)

Figure 4. Backward decoding process for job sequence (the gray area in the graph is the blocking
time). (a) Decoding process of job 1; (b) Decoding process of job 1 and job 2; (c) Decoding process of
job 1, job 2, and job 3; (d) Decoding process of job 1, job 2, job 3, and job 4.

4.2. The Initialization Strategy
The performance of the IG algorithm is strongly impacted by the initialization

strategy. Many scholars have proven that NEH is an efficient initialization method for
discrete scheduling problems [17]. MME has a good performance in solving the BFSP
[18]. Considering the blocking characteristic of BHFSP, both of the above two heuristics
are used in this paper as the initialization strategies to solve BHFSP to improve the
diversity of VIG.

In our paper, we attempt to enhance the diversity of VIG by generating multiple
solutions. Therefore, we use different initialization strategies to solve BHFSP: NEH with a
forward decoding strategy to calculate the makespan of job sequences and MME with a
backward decoding strategy to calculate the makespan. At this time, we can guarantee
that two high-quality initial solutions are obtained. In the next loop, we can optimize the
two initial solutions in different directions, which may broaden the search space and
increase the diversity of solutions.

4.3. Destruction and Construction
In traditional IG algorithms, the destruction and reconstruction operators can

strongly disturb the current solution, which increases the diversity of solution. In the
destruction phase, we randomly delete d jobs from tempπ and put them into removeπ . The
remaining jobs compose of tempπ (\temp temp remove=π π π) (see lines 2–6). In the
reconstruction phase, we extracted job remove

jπ from removeπ , one by one, and then try to
insert them into all positions of tempπ . We adopt forward and backward decoding
strategies to calculate the makespan, respectively. If 0ward = , forward decoding
strategy is adopted to evaluate the objective function. If 1ward = , backward decoding
strategy is adopted (see lines 11–15). Repeated the above process until all the jobs in
sequence removeπ have been removed, and find the position with minimal maxC .
Algorithm 4 shows the pseudocode of the destruction and reconstruction strategy,

()_ Re , , tempDestruction construction d wardπ , which d is the number of jobs to be removed
from tempπ , and ward is the parameter that decides the decoding strategy.

Figure 4. Backward decoding process for job sequence (the gray area in the graph is the blocking
time). (a) Decoding process of job 1; (b) Decoding process of job 1 and job 2; (c) Decoding process of
job 1, job 2, and job 3; (d) Decoding process of job 1, job 2, job 3, and job 4.

4.2. The Initialization Strategy

The performance of the IG algorithm is strongly impacted by the initialization strategy.
Many scholars have proven that NEH is an efficient initialization method for discrete
scheduling problems [17]. MME has a good performance in solving the BFSP [18]. Consid-
ering the blocking characteristic of BHFSP, both of the above two heuristics are used in this
paper as the initialization strategies to solve BHFSP to improve the diversity of VIG.

In our paper, we attempt to enhance the diversity of VIG by generating multiple
solutions. Therefore, we use different initialization strategies to solve BHFSP: NEH with a
forward decoding strategy to calculate the makespan of job sequences and MME with a
backward decoding strategy to calculate the makespan. At this time, we can guarantee that
two high-quality initial solutions are obtained. In the next loop, we can optimize the two
initial solutions in different directions, which may broaden the search space and increase
the diversity of solutions.

4.3. Destruction and Construction

In traditional IG algorithms, the destruction and reconstruction operators can strongly
disturb the current solution, which increases the diversity of solution. In the destruction
phase, we randomly delete d jobs from πtemp and put them into πremove. The remaining
jobs compose of πtemp (πtemp = πtemp\πremove) (see lines 2–6). In the reconstruction phase,
we extracted job πremove

j from πremove, one by one, and then try to insert them into all
positions of πtemp. We adopt forward and backward decoding strategies to calculate the
makespan, respectively. If ward = 0, forward decoding strategy is adopted to evaluate the
objective function. If ward = 1, backward decoding strategy is adopted (see lines 11–15).
Repeated the above process until all the jobs in sequence πremove have been removed, and
find the position with minimal Cmax. Algorithm 4 shows the pseudocode of the destruction
and reconstruction strategy, Destruction_Reconstruction

(
πtemp, d, ward

)
, which d is the

number of jobs to be removed from πtemp, and ward is the parameter that decides the
decoding strategy.

Mathematics 2023, 11, 2453 13 of 25

Algorithm 4. Destruction_Reconstruction
(
πtemp, d, ward

)
Input: πtemp, parameter d, ward
01: πremove = ∅, πtemp′ = πtemp

02: while (πremove.size < d) %% Destruction
03: pt = rand()%J + 1

04: Extract π
temp′
pt from πtemp′ and put it into πremove

05: πtemp′ = πtemp′\πtemp′
pt

06: end while
07: for j =1 to d %% reconstruction
08: pos = 0
09: while (pos ≤ πtemp.size)
10: Insert πremove

j into position pos of πtemp′

11: if (ward = 0)
12: Calculate Cmax using forward decoding strategy
13: else if (ward = 1)
14: Calculate Cmax using backward decoding strategy
15: end if
16: pos++
17: end while
18: Select the best position pos with minimal Cmax and insert πremove

j to position pos of πtemp′

19: end for
Output: πtemp′

4.4. Local Search Strategy

Following the destruction and reconstruction phases, it is common to perform a local
search operation on the solution to improve the quality of the current solution. The local
search strategy in the traditional IG algorithm usually uses the insert operator. Assuming
that there are J jobs, each job needs to be inserted into J positions, so the time complex-
ity of using the insertion operator is O(J2). However, by replacing the insert operator
with the swap operator, the time complexity can be reduced to O(J). To reduce time
complexity and explore local neighborhoods more deeply, we propose a swap-based local
reinforcement strategy.

In Algorithm 5, function swap(πtemp
k , π

temp
pt) refers to exchange job π

temp
k and π

temp
pt , and

obtain a new sequence πtemp′ . Forward_Fit(πtemp′) in line 6 means that the πtemp′ adopts the
forward decoding strategy to calculate the makespan, Cmax′ . Similarly, Backward_Fit(πtemp′) in
line 8 represents that the πtemp′ uses backward decoding to calculate Cmax′ . If the makespan
of πtemp′ , Cmax′ , is less than the makespan of πtemp, Cmax, then πtemp is updated with πtemp′ ;
otherwise, πtemp′ is updated with πtemp.

Algorithm 5. LocalSearchStrategy(πtemp, ward)

Input: πtemp, Cmax is the target value of πtemp, ward
01: k = 0, πtemp′ = πtemp

02: while (k < πtemp.size)
03: for pt = k + 1 to J
04: πtemp′ = swap(πtemp

k , π
temp
pt)

05: if (ward = 0)
06: Cmax′ = Forward_Fit(πtemp′)
07: else if (ward = 1)
08: Cmax′ = Backward_Fit(πtemp′)
09: end if
10: if (Cmax′ < Cmax)
11: πtemp = πtemp′

Mathematics 2023, 11, 2453 14 of 25

Algorithm 5. Cont.

12: else
13: πtemp′ = πtemp

14: end if
15: end for
16: k++
17: end while
Output: πtemp′

5. Simulation Experiments and Analysis

All the algorithms are coded in Visual Studio 2019 using C++. The same library
functions are employed to make fair comparisons. All the instances are executed five inde-
pendent replications on the same PC with an Intel Core i7 Pentium processor @ 3.60 GHz
and 32 GB RAM, whose operating system is Windows 10 X64. For all the algorithms, an
elapsed CPU time is adopted as the termination criterion.

5.1. Test Data and Performance Metric

To demonstrate the effectiveness of the proposed algorithm, we have conducted exten-
sive simulation experiments. We use the methods of generating test instances provided
by the literature [49] to obtain the test data. That is, the processing time of each job on
each machine is obtained randomly from the interval [1, 99]. The number of machines at
each stage is randomly generated from the range [1,5]. J belongs to {20, 40, 60, 80, 100},
and S belongs to {5, 10}. This will result in 10 (|J|×|S|) different combinations, in which
each combination has 10 test instances. Thus, 100 test instances are generated. To ensure
fairness, each instance is independently run 30 times, and all algorithms set the same CPU
runtime as the termination criteria, denoted as TimeLimit = J × S× CPU (millisecond), in
which CPU is set as 10 and 15, respectively. The source code in this paper can be found on
GitHub (https://github.com/nideluckily/VIG.git (accessed on 17 May 2023)).

All performance comparisons are conducted using the relative percentage increase
(RPI) as shown in Equation (22).

RPI =
1
10

10

∑
instance=1

ci − cmin
cmin

× 100 (22)

where, for each test instance, ci is the average of makespan obtained by the ith algorithm
that independently runs 30 times. cmin is the best makespan found by all seven algorithms
that independently run 30 times. The average RPI (ARPI) of 10 different combinations
(scales) is calculated.

5.2. Validation of MILP Model

The MILP model mentioned in Section 2 will be evaluated and nine small-scale
instances are randomly selected to demonstrate its correctness by using a Gurobi solver [38].
The maximum termination criteria of the Gurobi solver and VIG algorithm are set to 3600 s
and TimeLimit = J × S× CPU (millisecond), respectively. Each instance of VIG algorithm
runs independently 30 times, and the average value of the makespan of 20 times is obtained
as the final objective value. Table 3 shows the makespan and runtime obtained by the MILP
model and VIG.

In Table 3, the MILP model performs better for small test instances, such as 8_2, 8_3,
8_4, 13_3, and 18_2 instances. However, as instance sizes increase, the performance of
MILP gradually decreases compared to VIG, such as 13_4, 18_3, and 18_4 test instances.
Table 3 also reveals that the time taken for MILP to solve the problem is much higher than
that of VIG. Furthermore, for large-scale instances, the MILP model is difficult to provide a
good solution in a short time. In practical production, it is necessary to find an approximate

https://github.com/nideluckily/VIG.git

Mathematics 2023, 11, 2453 15 of 25

optimal solution within a reasonable time. In contrast, the proposed VIG is more suitable
for practical applications.

Table 3. Makespan values for the MILP Model and the VIG algorithm.

J_S
MILP VIG

Makespan Time (s) Makespan Time (s)

8_2 74 2.28 74 0.17
8_3 154 1.13 158 0.25
8_4 185 5.66 186 0.33

13_2 194 935.10 196 0.27
13_3 193 3600 196 0.39
13_4 247 3600 241 0.53
18_2 243 3600 243 0.38
18_3 298 3600 296 0.55
18_4 341 3600 328 0.73

Best values are indicated in bold.

5.3. Calibration of Parameters

In the IG algorithm, different parameter configurations may have an impact on
the final results. In this subsection, we have calibrated two key parameters, d and
crossover_threshold, using Taguchi experimental method. For parameter d, it plays an
important role in balancing the local and global search abilities of an algorithm and coordi-
nating its diversity. A too large d may increase the perturbation for the current sequence
and devote more time. However, a too small d will result in a small perturbation and
potentially insufficient exploration of the solution. For parameter crossover_threshold, it
is used to interact with two solutions obtained by DR and local search strategies. The
cooperation strategy based on crossover operator can increase the diversity with a certain
probability. In other words, if the number of times that the makespan is not minimized
reaches the threshold crossover_threshold, the algorithm may converge prematurely. Thus,
the value of crossover_threshold is related to the scale of test instances. In this paper, the
calculation formula of crossover_threshold is α/J, where α = {1600, 1800, 2000, 2200, 2400}.
Thus, the calibration of crossover_threshold in this paper is the calibration of α.

In the calibration of parameters, preliminary experiments are conducted under the
terminal condition TimeLimit = J × S× CPU (millisecond). Each parameter is set to have
five factor levels, such as d = {2, 3, 4, 5, 6} and α = {1600, 1800, 2000, 2200, 2400}, respectively.
We obtained 25 different configurations using the orthogonal table shown in Table 4. To
ensure fair, four different instances, such as 20 × 5, 60 × 10, 80 × 5, and 100 × 10, are
randomly selected. The mean RPI values of different combinations are integrated. Based
on the yielded RPI, the trend of the level of the factor is plotted in Figure 5.

Figure 5 shows the Taguchi analysis of the ARPI for each parameter. ARPI value is
the smallest when d = 3, suggesting that VIG has the best performance with this parameter
setting. Then as d becomes larger, the value of RPI gradually becomes larger as well. This
is because as the value of d increasing, the number of the reinsertion operator used in the
DR strategy also increases, which takes more time. As a result, the number of iterations
for VIG is reduced, and the algorithm loses opportunities to search for potential solutions.
Parameter α has little influence on VIG. When α = 2200, VIG demonstrates dominance.
Based on the above experimental analysis, we can conclude that d has a significant impact
on VIG, while α has only a minor impact. Therefore, we set the parameters as d = 3 and
α = 2200.

Table 5 reports the significance level of parameter d and α in terms of the ARPI value
of all scale instances, where delta measures the magnitude of the effect by calculating
the difference between the maximum and minimum ARPI values among the five levels.
Delta is larger or the rank indicator is smaller, suggesting that the parameter has an
obvious influence. Thus, from Table 5, d and α have great and small impacts on the
algorithm, respectively.

Mathematics 2023, 11, 2453 16 of 25

Table 4. Orthogonal table and response values.

Combination
Parameters

ARPI
d α

1 2 1600 0.747758
2 2 1800 0.720745
3 2 2000 0.729445
4 2 2200 0.739731
5 2 2400 0.697866
6 3 1600 0.551798
7 3 1800 0.556757
8 3 2000 0.555334
9 3 2200 0.582645
10 3 2400 0.567974
11 4 1600 0.60351
12 4 1800 0.587508
13 4 2000 0.581717
14 4 2200 0.524173
15 4 2400 0.57228
16 5 1600 0.631847
17 5 1800 0.641343
18 5 2000 0.655224
19 5 2200 0.64794
20 5 2400 0.639212
21 6 1600 0.734407
22 6 1800 0.691219
23 6 2000 0.719173
24 6 2200 0.669324
25 6 2400 0.696156

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 28

15 4 2400 0.57228
16 5 1600 0.631847
17 5 1800 0.641343
18 5 2000 0.655224
19 5 2200 0.64794
20 5 2400 0.639212
21 6 1600 0.734407
22 6 1800 0.691219
23 6 2000 0.719173
24 6 2200 0.669324
25 6 2400 0.696156

Figure 5. Taguchi analysis for all the factors for the VIG calibration.

Table 5. The ARPI response values of each parameter.

Level d α
1 0.7271 0.6539
2 0.5629 0.6395
3 0.5738 0.6482
4 0.6431 0.6328
5 0.7021 0.6347

Delta 0.1642 0.0211
Rank 1 2

5.4. Evaluating Different Strategies
This section will evaluate and analyze the algorithm components. Two sets of

experiments, including comparisons of different decoding strategies and comparisons of
local search strategies, are performed to verify their effectiveness.

As mentioned in Section 4, we know that for a given sequence of jobs, the objective
values calculated by forward decoding and backward decoding, respectively, may be
different [24]. To obtain the minimal makespan, we adopted a hybrid decoding strategy,
which combines forward decoding and backward decoding. To verify the superiority of
our hybrid decoding strategy, we tested the performance of VIG with only backward
decoding, VIG with only forward decoding, and VIG with hybrid decoding. The three
algorithms were run under the same experimental environment. For each compared
strategy, we adopted 100 test instances, each one ran independently 30 times, and the
ARPI values are shown in Figure 6. In Figure 6, the hybrid decoding strategy combining
forward and backward is superior to the single decoding strategy. The reason may be
that different decoding strategies can obtain different makespans, and multiple decoding

Figure 5. Taguchi analysis for all the factors for the VIG calibration.

Table 5. The ARPI response values of each parameter.

Level d α

1 0.7271 0.6539
2 0.5629 0.6395
3 0.5738 0.6482
4 0.6431 0.6328
5 0.7021 0.6347

Delta 0.1642 0.0211
Rank 1 2

5.4. Evaluating Different Strategies

This section will evaluate and analyze the algorithm components. Two sets of experi-
ments, including comparisons of different decoding strategies and comparisons of local
search strategies, are performed to verify their effectiveness.

Mathematics 2023, 11, 2453 17 of 25

As mentioned in Section 4, we know that for a given sequence of jobs, the objective
values calculated by forward decoding and backward decoding, respectively, may be
different [24]. To obtain the minimal makespan, we adopted a hybrid decoding strategy,
which combines forward decoding and backward decoding. To verify the superiority of our
hybrid decoding strategy, we tested the performance of VIG with only backward decoding,
VIG with only forward decoding, and VIG with hybrid decoding. The three algorithms
were run under the same experimental environment. For each compared strategy, we
adopted 100 test instances, each one ran independently 30 times, and the ARPI values
are shown in Figure 6. In Figure 6, the hybrid decoding strategy combining forward and
backward is superior to the single decoding strategy. The reason may be that different
decoding strategies can obtain different makespans, and multiple decoding strategies
provide more opportunities to obtain minimal makespans than single decoding strategy.
Therefore, the hybrid decoding strategy is suited for solving BHFSP.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 28

strategies provide more opportunities to obtain minimal makespans than single
decoding strategy. Therefore, the hybrid decoding strategy is suited for solving BHFSP.

In traditional IG algorithms, the insertion operator is often considered to disturb the
current solution. Local search using the insertion operator typically takes more time than
the one based on the swap operator. Therefore, we adopted a swap-based local search
strategy instead of the insertion operator. To verify its effectiveness, the strategies with
the insertion operator and with the swap operator, respectively, have been conducted
under the terminal condition and ran five times independently on 100
instances. From Figure 7, we observed that the swap-based operator is obviously more
effective than the insertion operator. The reason may be that the time complexity of the
former is lower than that of the latter. Thus, in the same terminal time, the number of
iterations of the algorithm using a swap operator is much more than that of an insertion
operator, resulting that VIG is enabled to obtain more possible approximate solutions or
explore more neighborhoods. Therefore, the swap-based local search can enhance the
performance of the algorithm, which can effectively explore undiscovered
neighborhoods and search for more solutions with high quality.

Figure 6. Means plots for different decoding strategies.

Figure 7. Means plots for different local search strategies.

5.5. Performance Evaluation of Comparative Algorithms
To analyze the capability of VIG and prove its effectiveness, we compared VIG with

six algorithms in this section. The comparison algorithms include four population-based
intelligence optimization methods, such as GA [51], DABC [24], EMBO [29], and discrete
particle swarm optimization algorithm (DPSO) [52], and two improved IG algorithms,
i.e., IGTALL [2] and double level mutation iterated greedy (IGDLM) [49]. GA is a
metaheuristic algorithm that is influenced by natural selection and generates new
candidate solutions by using operators such as crossover and mutation. DABC is a
classical swarm intelligence algorithm that uses heuristics to generate the initial
population and then optimizes the solution through three stages: employed bees,
onlooker bees, and scout bees. EMBO uses two competitive mechanisms to improve the

backward decoding forward decoding hybrid decoding

Means and 95.0 Percent LSD Intervals

0.059

0.079

0.099

0.119

0.139

0.159

AR
PI

Insert Swap

Means and 95.0 Percent LSD Intervals

-0.02

0.08

0.18

0.28

0.38

0.48

AR
PI

Figure 6. Means plots for different decoding strategies.

In traditional IG algorithms, the insertion operator is often considered to disturb the
current solution. Local search using the insertion operator typically takes more time than
the one based on the swap operator. Therefore, we adopted a swap-based local search
strategy instead of the insertion operator. To verify its effectiveness, the strategies with the
insertion operator and with the swap operator, respectively, have been conducted under
the terminal condition J × S× 10 and ran five times independently on 100 instances. From
Figure 7, we observed that the swap-based operator is obviously more effective than the
insertion operator. The reason may be that the time complexity of the former is lower than
that of the latter. Thus, in the same terminal time, the number of iterations of the algorithm
using a swap operator is much more than that of an insertion operator, resulting that VIG
is enabled to obtain more possible approximate solutions or explore more neighborhoods.
Therefore, the swap-based local search can enhance the performance of the algorithm,
which can effectively explore undiscovered neighborhoods and search for more solutions
with high quality.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 28

strategies provide more opportunities to obtain minimal makespans than single
decoding strategy. Therefore, the hybrid decoding strategy is suited for solving BHFSP.

In traditional IG algorithms, the insertion operator is often considered to disturb the
current solution. Local search using the insertion operator typically takes more time than
the one based on the swap operator. Therefore, we adopted a swap-based local search
strategy instead of the insertion operator. To verify its effectiveness, the strategies with
the insertion operator and with the swap operator, respectively, have been conducted
under the terminal condition and ran five times independently on 100
instances. From Figure 7, we observed that the swap-based operator is obviously more
effective than the insertion operator. The reason may be that the time complexity of the
former is lower than that of the latter. Thus, in the same terminal time, the number of
iterations of the algorithm using a swap operator is much more than that of an insertion
operator, resulting that VIG is enabled to obtain more possible approximate solutions or
explore more neighborhoods. Therefore, the swap-based local search can enhance the
performance of the algorithm, which can effectively explore undiscovered
neighborhoods and search for more solutions with high quality.

Figure 6. Means plots for different decoding strategies.

Figure 7. Means plots for different local search strategies.

5.5. Performance Evaluation of Comparative Algorithms
To analyze the capability of VIG and prove its effectiveness, we compared VIG with

six algorithms in this section. The comparison algorithms include four population-based
intelligence optimization methods, such as GA [51], DABC [24], EMBO [29], and discrete
particle swarm optimization algorithm (DPSO) [52], and two improved IG algorithms,
i.e., IGTALL [2] and double level mutation iterated greedy (IGDLM) [49]. GA is a
metaheuristic algorithm that is influenced by natural selection and generates new
candidate solutions by using operators such as crossover and mutation. DABC is a
classical swarm intelligence algorithm that uses heuristics to generate the initial
population and then optimizes the solution through three stages: employed bees,
onlooker bees, and scout bees. EMBO uses two competitive mechanisms to improve the

backward decoding forward decoding hybrid decoding

Means and 95.0 Percent LSD Intervals

0.059

0.079

0.099

0.119

0.139

0.159

AR
PI

Insert Swap

Means and 95.0 Percent LSD Intervals

-0.02

0.08

0.18

0.28

0.38

0.48

AR
PI

Figure 7. Means plots for different local search strategies.

Mathematics 2023, 11, 2453 18 of 25

5.5. Performance Evaluation of Comparative Algorithms

To analyze the capability of VIG and prove its effectiveness, we compared VIG with
six algorithms in this section. The comparison algorithms include four population-based
intelligence optimization methods, such as GA [51], DABC [24], EMBO [29], and discrete
particle swarm optimization algorithm (DPSO) [52], and two improved IG algorithms,
i.e., IGTALL [2] and double level mutation iterated greedy (IGDLM) [49]. GA is a meta-
heuristic algorithm that is influenced by natural selection and generates new candidate
solutions by using operators such as crossover and mutation. DABC is a classical swarm
intelligence algorithm that uses heuristics to generate the initial population and then op-
timizes the solution through three stages: employed bees, onlooker bees, and scout bees.
EMBO uses two competitive mechanisms to improve the probability of finding a better
solution at the front end of the flock. DPSO combines the variable neighborhood search
(VNS) algorithm with the particle swarm optimization algorithm to reduce the computation
time and obtain the optimal solution. IGTALL adds a local search strategy after the destruc-
tion phase to improve the quality of some solutions and further expand the ability of the
algorithm to explore the solution space. IGDLD reduces the computation time and helps
the algorithm explore the solution space more deeply by using two mutation operations.
The above six comparison algorithms are all proposed for HFSP and have been proven to
have excellent performance. Thus, it is equitable to consider them as contrastive algorithms.
In addition, to be fair, we modified them appropriately to adapt our problem. To be fair, the
parameters of all compared algorithms were set to the values recommended by the original
literature and shown in Table 6. All algorithms were set up in the same experimental
environment to run and use the same termination criterion TimeLimit = J × S× CPU for
100 test instances. Each instance ran independently 30 times.

Table 6. Parameters of the comparison algorithms.

Algorithm
Population

Size
Number of

Destruction Jobs Crossover Rate Variation Rate Constant
Factor

Temperature
Coefficient

Psize d Pc Pr α T

DABC 20 / / / 30 /
DPSO 100 / / / 200 /
EMBO 25 / / / 10 /

GA 100 / 0.7 0.1 4 0.85
IGDLM / 4 / 0.3 / 0.5
IGTALL / 3 / / 10 0.5

VIG / 3 / / / 0.5

Tables 7 and 8 give the experimental results, i.e., average makespan (AVG) and RPI
values obtained by all algorithms on 10 different scales when CPU = 10 and CPU = 15,
respectively. In Tables 7 and 8, ‘J×S’ represents the scale of the problem, where J and S
refer to the number of jobs and stages, respectively. Meanwhile, to visually illustrate the
advantages of all comparison algorithms, Figures 8 and 9 show the means and 95% least
significant difference (LSD) confidence intervals of all test algorithms.

In Tables 7 and 8, the proposed VIG algorithm shows extremely superior performance
in solving 10 instance sets of different scales. We can observe that the number of the best
average makespan generated by VIG is 10, followed by DPSO (2), IGDLM (1), IGTALL (0),
GA (0), EMBO (0), and DABC (0). Meanwhile, the RPI values obtained by VIG are the best
among all the algorithms. Similarly, VIG obtains the best average makespan and RPI values
for all the instances when CPU = 15. Overall, VIG outperforms the comparative algorithms
in solving the BHFSP, which may be attributed to our hybrid decoding strategy that can
efficiently identify and select a small makespan value. Additionally, the swap-based local
search can explore undiscovered neighborhoods more effectively and potentially find more
feasible solutions.

Mathematics 2023, 11, 2453 19 of 25

Table 7. The values of average makespan and RPI for all comparison algorithms when CPU = 10.

J × S
VIG IGTALL IGDLM GA EMBO DPSO DABC

AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI

20 × 5 794 0.08 798 0.72 796 0.37 810 2.41 795 0.18 796 0.33 796 0.47
20 × 10 1350 0.11 1357 0.61 1351 0.20 1389 3.04 1352 0.27 1350 0.14 1355 0.52
40 × 5 1363 0.31 1386 2.36 1380 1.83 1403 3.82 1376 1.48 1393 2.99 1393 2.97

40 × 10 2215 0.13 2235 1.01 2224 0.52 2271 2.66 2229 0.74 2242 1.27 2255 1.86
60 × 5 2761 0 2762 0.03 2761 0.01 2770 0.35 2762 0.04 2761 0.02 2764 0.14

60 × 10 3175 0.21 3200 1.13 3192 0.87 3221 1.80 3191 0.81 3225 2.00 3231 2.09
80 × 5 3400 0.16 3416 1.11 3408 0.63 3427 1.50 3409 0.61 3430 1.89 3435 1.90

80 × 10 4272 0.05 4286 0.36 4280 0.22 4321 1.17 4283 0.30 4332 1.39 4353 1.89
100 × 5 3904 0.08 3917 0.88 3911 0.50 3925 1.20 3913 0.58 3932 1.67 3934 1.69
100 × 10 5490 0.15 5526 0.81 5516 0.62 5549 1.22 5504 0.41 5667 3.37 5714 4.24

mean 2872.4 0.13 2888.3 0.92 2881.9 0.60 2908.6 1.87 2881.4 0.58 2913 1.62 2923 1.91

Best values are indicated in bold.

Table 8. The values of average makespan and RPI for all comparison algorithms when CPU = 15.

J × S
VIG IGTALL IGDLM GA EMBO DPSO DABC

AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI

20 × 5 794 0.07 798 0.67 796 0.34 811 2.62 794 0.16 795 0.31 797 0.53
20 × 10 1349 0.08 1356 0.60 1351 0.16 1387 2.90 1352 0.26 1350 0.10 1356 0.55
40 × 5 1363 0.31 1385 2.30 1380 1.84 1401 3.71 1376 1.43 1392 2.96 1393 2.98

40 × 10 2214 0.11 2233 0.93 2224 0.50 2274 2.79 2229 0.74 2240 1.21 2256 1.87
60 × 5 2761 0.00 2762 0.02 2761 0.00 2771 0.39 2762 0.03 2761 0.02 2764 0.12
60 × 10 3175 0.17 3198 1.07 3190 0.79 3224 1.86 3190 0.75 3224 1.94 3229 2.01
80 × 5 3400 0.10 3415 1.05 3408 0.63 3428 1.58 3409 0.60 3429 1.83 3434 1.83
80 × 10 4271 0.02 4285 0.35 4279 0.21 4317 1.08 4283 0.29 4330 1.33 4350 1.81
100 × 5 3904 0.10 3916 0.85 3910 0.49 3926 1.21 3913 0.59 3931 1.64 3934 1.68
100 × 10 5489 0.12 5525 0.79 5515 0.59 5553 1.29 5505 0.42 5662 3.28 5712 4.19

mean 2872 0.11 2887.3 0.86 2881.4 0.56 2909.2 1.94 2881.3 0.53 2911 1.46 2922.5 1.76

Best values are indicated in bold.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 28

Table 8. The values of average makespan and RPI for all comparison algorithms when CPU = 15.

J × S
VIG IGTALL IGDLM GA EMBO DPSO DABC

AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI
20 × 5 794 0.07 798 0.67 796 0.34 811 2.62 794 0.16 795 0.31 797 0.53
20 × 10 1349 0.08 1356 0.60 1351 0.16 1387 2.90 1352 0.26 1350 0.10 1356 0.55
40 × 5 1363 0.31 1385 2.30 1380 1.84 1401 3.71 1376 1.43 1392 2.96 1393 2.98
40 × 10 2214 0.11 2233 0.93 2224 0.50 2274 2.79 2229 0.74 2240 1.21 2256 1.87
60 × 5 2761 0.00 2762 0.02 2761 0.00 2771 0.39 2762 0.03 2761 0.02 2764 0.12
60 × 10 3175 0.17 3198 1.07 3190 0.79 3224 1.86 3190 0.75 3224 1.94 3229 2.01
80 × 5 3400 0.10 3415 1.05 3408 0.63 3428 1.58 3409 0.60 3429 1.83 3434 1.83
80 × 10 4271 0.02 4285 0.35 4279 0.21 4317 1.08 4283 0.29 4330 1.33 4350 1.81
100 × 5 3904 0.10 3916 0.85 3910 0.49 3926 1.21 3913 0.59 3931 1.64 3934 1.68

100 × 10 5489 0.12 5525 0.79 5515 0.59 5553 1.29 5505 0.42 5662 3.28 5712 4.19
mean 2872 0.11 2887.3 0.86 2881.4 0.56 2909.2 1.94 2881.3 0.53 2911 1.46 2922.5 1.76

Best values are indicated in bold.

Figure 8. Confidence intervals for all comparison algorithms when CPU = 10.

Figure 9. Confidence intervals for all comparison algorithms when CPU = 15.

In Tables 7 and 8, the proposed VIG algorithm shows extremely superior
performance in solving 10 instance sets of different scales. We can observe that the
number of the best average makespan generated by VIG is 10, followed by DPSO (2),
IGDLM (1), IGTALL (0), GA (0), EMBO (0), and DABC (0). Meanwhile, the RPI values
obtained by VIG are the best among all the algorithms. Similarly, VIG obtains the best
average makespan and RPI values for all the instances when CPU = 15. Overall, VIG
outperforms the comparative algorithms in solving the BHFSP, which may be attributed
to our hybrid decoding strategy that can efficiently identify and select a small makespan
value. Additionally, the swap-based local search can explore undiscovered
neighborhoods more effectively and potentially find more feasible solutions.

DABC DPSO EMBO GA IGDLM IGTALL VIG

Means and 95.0 Percent LSD Intervals

-0.2

0.2

0.6

1

1.4

1.8

2.2

AR
PI

DABC DPSO EMBO GA IGDLM IGTALL VIG

Means and 95.0 Percent LSD Intervals

-0.2

0.2

0.6

1

1.4

1.8

2.2

AR
PI

Figure 8. Confidence intervals for all comparison algorithms when CPU = 10.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 28

Table 8. The values of average makespan and RPI for all comparison algorithms when CPU = 15.

J × S
VIG IGTALL IGDLM GA EMBO DPSO DABC

AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI AVG RPI
20 × 5 794 0.07 798 0.67 796 0.34 811 2.62 794 0.16 795 0.31 797 0.53
20 × 10 1349 0.08 1356 0.60 1351 0.16 1387 2.90 1352 0.26 1350 0.10 1356 0.55
40 × 5 1363 0.31 1385 2.30 1380 1.84 1401 3.71 1376 1.43 1392 2.96 1393 2.98
40 × 10 2214 0.11 2233 0.93 2224 0.50 2274 2.79 2229 0.74 2240 1.21 2256 1.87
60 × 5 2761 0.00 2762 0.02 2761 0.00 2771 0.39 2762 0.03 2761 0.02 2764 0.12
60 × 10 3175 0.17 3198 1.07 3190 0.79 3224 1.86 3190 0.75 3224 1.94 3229 2.01
80 × 5 3400 0.10 3415 1.05 3408 0.63 3428 1.58 3409 0.60 3429 1.83 3434 1.83
80 × 10 4271 0.02 4285 0.35 4279 0.21 4317 1.08 4283 0.29 4330 1.33 4350 1.81
100 × 5 3904 0.10 3916 0.85 3910 0.49 3926 1.21 3913 0.59 3931 1.64 3934 1.68

100 × 10 5489 0.12 5525 0.79 5515 0.59 5553 1.29 5505 0.42 5662 3.28 5712 4.19
mean 2872 0.11 2887.3 0.86 2881.4 0.56 2909.2 1.94 2881.3 0.53 2911 1.46 2922.5 1.76

Best values are indicated in bold.

Figure 8. Confidence intervals for all comparison algorithms when CPU = 10.

Figure 9. Confidence intervals for all comparison algorithms when CPU = 15.

In Tables 7 and 8, the proposed VIG algorithm shows extremely superior
performance in solving 10 instance sets of different scales. We can observe that the
number of the best average makespan generated by VIG is 10, followed by DPSO (2),
IGDLM (1), IGTALL (0), GA (0), EMBO (0), and DABC (0). Meanwhile, the RPI values
obtained by VIG are the best among all the algorithms. Similarly, VIG obtains the best
average makespan and RPI values for all the instances when CPU = 15. Overall, VIG
outperforms the comparative algorithms in solving the BHFSP, which may be attributed
to our hybrid decoding strategy that can efficiently identify and select a small makespan
value. Additionally, the swap-based local search can explore undiscovered
neighborhoods more effectively and potentially find more feasible solutions.

DABC DPSO EMBO GA IGDLM IGTALL VIG

Means and 95.0 Percent LSD Intervals

-0.2

0.2

0.6

1

1.4

1.8

2.2

AR
PI

DABC DPSO EMBO GA IGDLM IGTALL VIG

Means and 95.0 Percent LSD Intervals

-0.2

0.2

0.6

1

1.4

1.8

2.2

AR
PI

Figure 9. Confidence intervals for all comparison algorithms when CPU = 15.

To intuitively display the performance of all comparison algorithms, Figures 8 and 9
show the means and 95% LSD confidence intervals of all test algorithms. We can observe

Mathematics 2023, 11, 2453 20 of 25

that under the different CPU running times, the VIG algorithm outperforms other com-
parison algorithms, followed by IGDLM, EMBO and IGTALL, DPSO, DABC, and GA
algorithms. We can believe that the algorithm including the proposed hybrid decoding,
local search, and interaction strategies can show superior performance in solving BHFSP.

To further demonstrate the superiority of VIG, we selected four instance sets of
different scales, i.e., 20 × 10, 60 × 10, 80 × 5, and 100 × 5, and displayed their box
plots in Figure 10. The makespan of the VIG algorithm was smaller than those of IGDLM,
EMBO, IGTALL, DPSO, DABC, and GA. In the four randomly selected test instances, VIG
stood out from the other comparison algorithms and exhibited a relatively stable state. This
indicates that the quality of the solutions produced by our algorithm does not fluctuate
much and the convergence of the algorithm is good when dealing with instances of different
sizes. From the overall perspective, VIG obtained the best makespan value.

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 28

To intuitively display the performance of all comparison algorithms, Figures 8 and 9
show the means and 95% LSD confidence intervals of all test algorithms. We can observe
that under the different CPU running times, the VIG algorithm outperforms other
comparison algorithms, followed by IGDLM, EMBO and IGTALL, DPSO, DABC, and GA
algorithms. We can believe that the algorithm including the proposed hybrid decoding,
local search, and interaction strategies can show superior performance in solving BHFSP.

To further demonstrate the superiority of VIG, we selected four instance sets of
different scales, i.e., 20 × 10, 60 × 10, 80 × 5, and 100 × 5, and displayed their box plots in
Figure 10. The makespan of the VIG algorithm was smaller than those of IGDLM, EMBO,
IGTALL, DPSO, DABC, and GA. In the four randomly selected test instances, VIG stood
out from the other comparison algorithms and exhibited a relatively stable state. This
indicates that the quality of the solutions produced by our algorithm does not fluctuate
much and the convergence of the algorithm is good when dealing with instances of
different sizes. From the overall perspective, VIG obtained the best makespan value.

In addition, to enrich the experiments, we analyzed the convergence properties of
the proposed algorithm. Four test instances, 40×5, 60×10, 80×5, and 100×10, were
randomly selected to plot the evolutionary curves. All algorithms were performed in the
same experimental environment, and the CPU is set to 10. In Figure 11, Y-axis is the
makespan yielded by the algorithm during the evolutionary process, and the X-axis
refers to the elapsing time of the algorithm. From Figure 11, it is clear that VIG has the
lowest convergence curve and is the most rapid among the seven algorithms. VIG can use
a hybrid decoding strategy to obtain different makespan values, increasing the diversity
of solutions. At the same time, the use of local search can further increase the depth of
neighborhood exploration and hopefully find better solutions. In addition, VIG can find
better solutions for test instances of different scales and shows low convergence curves,
which again demonstrates the good convergence of the algorithm. The above analysis
demonstrates the effectiveness of VIG in solving the BHFSP.

(a) (b)

(c) (d)

Figure 10. Box plot of all algorithms. (a) 20 × 10; (b) 60 × 10; (c) 80 × 5; (d) 100 × 5.

M
ak

es
pa

n

M
ak

es
pa

n

M
ak

es
pa

n

M
ak

es
pa

n

Figure 10. Box plot of all algorithms. (a) 20 × 10; (b) 60 × 10; (c) 80 × 5; (d) 100 × 5.

In addition, to enrich the experiments, we analyzed the convergence properties of
the proposed algorithm. Four test instances, 40 × 5, 60 × 10, 80 × 5, and 100 × 10, were
randomly selected to plot the evolutionary curves. All algorithms were performed in
the same experimental environment, and the CPU is set to 10. In Figure 11, Y-axis is the
makespan yielded by the algorithm during the evolutionary process, and the X-axis refers
to the elapsing time of the algorithm. From Figure 11, it is clear that VIG has the lowest
convergence curve and is the most rapid among the seven algorithms. VIG can use a
hybrid decoding strategy to obtain different makespan values, increasing the diversity
of solutions. At the same time, the use of local search can further increase the depth of
neighborhood exploration and hopefully find better solutions. In addition, VIG can find
better solutions for test instances of different scales and shows low convergence curves,
which again demonstrates the good convergence of the algorithm. The above analysis
demonstrates the effectiveness of VIG in solving the BHFSP.

Mathematics 2023, 11, 2453 21 of 25
Mathematics 2023, 11, x FOR PEER REVIEW 23 of 28

(a) (b)

(c) (d)

Figure 11. Evolution curve of all algorithms. (a) 40 × 5; (b) 60 × 10; (c) 80 × 5; (d) 100 × 10.

5.6. Friedman Test
These simulation results are used to test whether significant differences exist in multiple

overall distributions [53]. We presume that all the compared methods are not significantly
different from each other at every beginning. When the p-value is less than 0.05, the above
assumption is unacceptable, and all methods are regarded to be significantly different. On
the contrary, if the above assumption is accepted, it suggests that there are no significant
differences between all methods. Tables 9 and 10 list the results of the Friedman test for 100
instances under CPU = 10 and CPU = 15, respectively. The p-value obtained by the Friedman
test is equal to 0.000, which is less than the given level , suggesting that VIG is
significantly different from the six compared algorithms. For the values of ranks, the
proposed VIG algorithm has the minimum rank value, e.g., 2.13 and 2.17 when CPU = 10 and
CPU = 15, respectively. In addition, the maximum value ARPI (max), mean value ARPI
(mean), and standard deviation (std. deviation) of VIG are 0.64, 0.061, and 0.1369,
respectively. The above values are the smallest compared to other algorithms. Based on the
above analysis, our VIG has an extremely high ability to solve BHFSP and is suitable for
BHFSP.

Table 9. Friedman Test (α = 0.05) when CPU = 10.

Algorithm Ranks CN Min Max Mean Std.
Deviation

VIG 2.13 100 0.00 0.64 0.061 0.1369
IGTALL 3.84 100 0.00 5.88 0.827 1.4039
IGDLM 2.91 100 0.00 4.67 0.506 1.0183

GA 6.23 100 0.00 8.09 1.804 1.9808
EMBO 3.41 100 0.00 4.47 0.471 0.8354
DPSO 4.25 100 0.00 10.59 1.442 2.4597
DABC 5.26 100 0.00 10.18 1.692 2.4898
p-value 0.000

Best values are indicated in bold.

M
ak

es
pa

n

M
ak

es
pa

n

M
ak

es
pa

n

M
ak

es
pa

n

Figure 11. Evolution curve of all algorithms. (a) 40 × 5; (b) 60 × 10; (c) 80 × 5; (d) 100 × 10.

5.6. Friedman Test

These simulation results are used to test whether significant differences exist in multi-
ple overall distributions [53]. We presume that all the compared methods are not signif-
icantly different from each other at every beginning. When the p-value is less than 0.05,
the above assumption is unacceptable, and all methods are regarded to be significantly
different. On the contrary, if the above assumption is accepted, it suggests that there are no
significant differences between all methods. Tables 9 and 10 list the results of the Friedman
test for 100 instances under CPU = 10 and CPU = 15, respectively. The p-value obtained by
the Friedman test is equal to 0.000, which is less than the given level α = 0.050, suggest-
ing that VIG is significantly different from the six compared algorithms. For the values
of ranks, the proposed VIG algorithm has the minimum rank value, e.g., 2.13 and 2.17
when CPU = 10 and CPU = 15, respectively. In addition, the maximum value ARPI (max),
mean value ARPI (mean), and standard deviation (std. deviation) of VIG are 0.64, 0.061,
and 0.1369, respectively. The above values are the smallest compared to other algorithms.
Based on the above analysis, our VIG has an extremely high ability to solve BHFSP and is
suitable for BHFSP.

Table 9. Friedman Test (α = 0.05) when CPU = 10.

Algorithm Ranks CN Min Max Mean Std.
Deviation

VIG 2.13 100 0.00 0.64 0.061 0.1369
IGTALL 3.84 100 0.00 5.88 0.827 1.4039
IGDLM 2.91 100 0.00 4.67 0.506 1.0183

GA 6.23 100 0.00 8.09 1.804 1.9808
EMBO 3.41 100 0.00 4.47 0.471 0.8354
DPSO 4.25 100 0.00 10.59 1.442 2.4597
DABC 5.26 100 0.00 10.18 1.692 2.4898
p-value 0.000

Best values are indicated in bold.

Mathematics 2023, 11, 2453 22 of 25

Table 10. Friedman Test (α = 0.05) when CPU = 15.

Algorithm Ranks CN Min Max Mean Std.
Deviation

VIG 2.17 100 0.00 0.68 0.063 0.1366
IGTALL 3.99 100 0.00 6.11 0.829 1.3963
IGDLM 2.95 100 0.00 4.72 0.512 1.0325

GA 6.23 100 0.00 7.92 1.764 1.9696
EMBO 3.23 100 0.00 4.11 0.460 0.8254
DPSO 4.26 100 0.00 10.22 1.416 2.4265
DABC 5.18 100 0.00 8.10 1.559 2.2845
p-value 0.000

Best values are indicated in bold.

Remark 1. Based on the experimental data and analysis reported in Sections 5.2–5.6, the proposed
VIG algorithm has good convergence and is effective in solving BHFSP. The reasons are given as
follows: (1) This paper adopts the parallel optimization route to obtain two solutions; one solution
adopts forward decoding and the other adopts backward decoding, which can effectively calculate
the objective value and select a minimal makespan. (2) Two efficient initialization methods based
on different decoding strategies are used to generate high-quality solutions at the beginning, which
can assist the algorithm to have more opportunities for probing the search space in depth. (3) The
implementation of a swap-based local search strategy with low time complexity, which explores
the neighborhood space of the solution very quickly. (4) The interaction of optimization solutions
with some probability yields two new scheduling sequences, which improves the diversity of the
solutions. Based on the analyses, the proposed hybrid decoding strategy and parallel optimization
route are reasons for the outstanding performance of VIG. In addition, in real production, traditional
manual scheduling methods often fail to obtain efficient solutions due to the complexity of scheduling
problems. The intelligent optimization algorithm can find a solution close to the optimal solution
within a reasonable time frame by the computing power and search technique of the computer. From
the experimental results and analysis, our VIG algorithm is effective in solving the BHFSP, which
can provide a promising solution for realistic production scheduling problems.

6. Conclusions

We studied the BHFSP and now propose a VIG algorithm to optimize the makespan.
First, a MILP model of BHFSP was built, and the Gurobi solver was adopted to demonstrate
its correctness. Second, multiple decoding strategies based on forward and backward
mechanisms were proposed to find a smaller completion time. Then a parallel evolution
framework of two solutions was designed to broaden the search scope of VIG. In addition,
the swap-based local disturbance strategy could quickly change the position of the job
sequence, which saved the running time and increased the opportunities to probe the
search space in depth, effectively enhancing the quality of the algorithm. Finally, the
use of a crossover operator increased the diversity of solutions. Through the simulation
experiments listed in Section 5, the proposed VIG algorithm shows superiority compared
with the six existing algorithms.

This paper presents insights into the application of intelligent optimization algorithms
in solving production scheduling problems. In practice, production scheduling involves
the task of arranging production resources and job sequences in complex production envi-
ronments to maximize production efficiency and meet production requirements. Due to the
complexity of production scheduling problems and the diversity of constraints, traditional
manual scheduling methods often fail to achieve optimal or efficient solutions. Intelligent
optimization algorithms use the computing power and search techniques of computers to
explore near-optimal solutions in large-scale problem spaces. The experimental results and
analysis demonstrate the effectiveness of the proposed optimization approach. Decision
makers can utilize our method to obtain high-quality solutions within a reasonable time
frame, thereby improving production efficiency, reducing costs, enhancing competitiveness,
and achieving sustainable development.

Mathematics 2023, 11, 2453 23 of 25

Although VIG demonstrates excellent performance in solving the BHFSP, there are still
some related issues that require further research. Firstly, VIG performs well in solving the
optimization objective of the maximum completion time, but it may not be suitable for other
objectives or multi-objective scenarios. In future research, multi-objective optimization
problems can be considered. Secondly, the production constraints currently considered are
not comprehensive enough, and the next step of research can also consider multi-factory
production, group problems, etc. Finally, considering the actual production demand, we
should apply the proposed algorithm to real production scheduling problems.

Author Contributions: Y.W. (Yong Wang): conceptualization, methodology, data curation, software,
validation, writing—original draft. Y.W. (Yuting Wang): conceptualization, methodology, software,
validation, writing—original draft. Y.H.: conceptualization, methodology, software, validation,
writing—original draft. All authors have read and agreed to the published version of the manuscript.

Funding: This work was jointly supported by the National Natural Science Foundation of China
under grant numbers 61973203. We are grateful for Guangyue Youth Scholar Innovation Talent
Program support received from Liaocheng University (LCUGYTD2022-03).

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations

Notations:
J: The number of jobs.
S: The number of stages.
j: The index of jobs, j ∈ {1, 2, . . . , J}.
s: The index of stages, s ∈ {1, 2, . . . , S}.
Ms: The number of parallel machines at stage s.
m: The index of machines at stage s, m ∈ {1, 2, . . . , Ms}.
U: A big positive number.
pj,s The processing time of job j at stage s.
Decision variables:
Cmax: The makespan.
Cj,s: The completion time of job j at stage s.
Dj,s: The departure time of job j at stage s. The time that job j leaves the machine when it finishes
processing at stage s.
yj,s,m: Binary decision variable, 1 if job j is processed on machine m at stage s, 0 otherwise.
zj,j′ ,s: Binary decision variable, 1 if job j, is processed on the same machine before job j′ at stage s,
0 otherwise.

References
1. Reza Hejazi, S.; Saghafian, S. Flowshop-Scheduling Problems with Makespan Criterion: A Review. Int. J. Prod. Res. 2005, 43,

2895–2929. [CrossRef]
2. Öztop, H.; Fatih Tasgetiren, M.; Eliiyi, D.T.; Pan, Q.-K. Metaheuristic Algorithms for the Hybrid Flowshop Scheduling Problem.

Comput. Oper. Res. 2019, 111, 177–196. [CrossRef]
3. Kim, Y.-D.; Shim, S.-O.; Choi, B.; Hwang, H. Simplification Methods for Accelerating Simulation-Based Real-Time Scheduling in a

Semiconductor Wafer Fabrication Facility. IEEE Trans. Semicond. Manuf. 2003, 16, 290–298.
4. Marichelvam, M.K.; Prabaharan, T.; Yang, X.S. A Discrete Firefly Algorithm for the Multi-Objective Hybrid Flowshop Scheduling

Problems. IEEE Trans. Evol. Comput. 2014, 18, 301–305. [CrossRef]
5. Bruzzone, A.A.G.; Anghinolfi, D.; Paolucci, M.; Tonelli, F. Energy-Aware Scheduling for Improving Manufacturing Process

Sustainability: A Mathematical Model for Flexible Flow Shops. CIRP Ann. 2012, 61, 459–462. [CrossRef]
6. Peng, K.; Pan, Q.-K.; Gao, L.; Zhang, B.; Pang, X. An Improved Artificial Bee Colony Algorithm for Real-World Hybrid Flowshop

Rescheduling in Steelmaking-Refining-Continuous Casting Process. Comput. Ind. Eng. 2018, 122, 235–250. [CrossRef]
7. Fernandez-Viagas, V.; Ruiz, R.; Framinan, J.M. A New Vision of Approximate Methods for the Permutation Flowshop to Minimise

Makespan: State-of-the-Art and Computational Evaluation. Eur. J. Oper. Res. 2017, 257, 707–721. [CrossRef]

https://doi.org/10.1080/0020754050056417
https://doi.org/10.1016/j.cor.2019.06.009
https://doi.org/10.1109/TEVC.2013.2240304
https://doi.org/10.1016/j.cirp.2012.03.084
https://doi.org/10.1016/j.cie.2018.05.056
https://doi.org/10.1016/j.ejor.2016.09.055

Mathematics 2023, 11, 2453 24 of 25

8. Wardono, B.; Fathi, Y. A Tabu Search Algorithm for the Multi-Stage Parallel Machine Problem with Limited Buffer Capacities.
Eur. J. Oper. Res. 2004, 155, 380–401. [CrossRef]

9. Ruiz, R.; Stützle, T. A Simple and Effective Iterated Greedy Algorithm for the Permutation Flowshop Scheduling Problem. Eur. J.
Oper. Res. 2007, 177, 2033–2049. [CrossRef]

10. Ruiz, R.; Pan, Q.-K.; Naderi, B. Iterated Greedy Methods for the Distributed Permutation Flowshop Scheduling Problem. Omega
2019, 83, 213–222. [CrossRef]

11. Ribas, I.; Companys, R.; Tort-Martorell, X. An Iterated Greedy Algorithm for the Parallel Blocking Flow Shop Scheduling Problem
and Sequence-Dependent Setup Times. Expert Syst. Appl. 2021, 184, 115535. [CrossRef]

12. Wang, S.; Liu, M.; Chu, C. A Branch-and-Bound Algorithm for Two-Stage No-Wait Hybrid Flow-Shop Scheduling. Int. J. Prod.
Res. 2015, 53, 1143–1167. [CrossRef]

13. Riane, F.; Artiba, A.; Elmaghraby, S.E. Sequencing a Hybrid Two-Stage Flowshop with Dedicated Machines. Int. J. Prod. Res. 2002,
40, 4353–4380. [CrossRef]

14. Ruiz, R.; Vázquez-Rodríguez, J.A. The Hybrid Flow Shop Scheduling Problem. Eur. J. Oper. Res. 2010, 205, 24. [CrossRef]
15. Fattahi, P.; Hosseini, S.M.H.; Jolai, F.; Tavakkoli-Moghaddam, R. A Branch and Bound Algorithm for Hybrid Flow Shop

Scheduling Problem with Setup Time and Assembly Operations. Appl. Math. Model. 2014, 38, 119–134. [CrossRef]
16. Xuan, H.; Tang, L. Scheduling a Hybrid Flowshop with Batch Production at the Last Stage. Comput. Oper. Res. 2007, 34, 2718–2733.

[CrossRef]
17. Nawaz, M.; Enscore, E.E.; Ham, I. A Heuristic Algorithm for the M-Machine, n-Job Flow-Shop Sequencing Problem. Omega 1983,

11, 91–95. [CrossRef]
18. Ronconi, D.P. A Note on Constructive Heuristics for the Flowshop Problem with Blocking. Int. J. Prod. Econ. 2004, 87, 39–48.

[CrossRef]
19. Pan, Q.-K.; Wang, L. Effective Heuristics for the Blocking Flowshop Scheduling Problem with Makespan Minimization. Omega

2012, 40, 218–229. [CrossRef]
20. Fernandez-Viagas, V.; Molina-Pariente, J.M.; Framinan, J.M. New Efficient Constructive Heuristics for the Hybrid Flowshop to

Minimise Makespan: A Computational Evaluation of Heuristics. Expert Syst. Appl. 2018, 114, 345–356. [CrossRef]
21. Xiao, W.; Hao, P.; Zhang, S.; Xu, X. Hybrid Flow Shop Scheduling Using Genetic Algorithms. In Proceedings of the 3rd World

Congress on Intelligent Control and Automation (Cat. No. 00EX393), Hefei, China, 28 June–2 July 2000; IEEE: New York, NY,
USA, 2000; Volume 1, pp. 537–541.

22. Jin, Z.; Yang, Z.; Ito, T. Metaheuristic Algorithms for the Multistage Hybrid Flowshop Scheduling Problem. Int. J. Prod. Econ.
2006, 100, 322–334. [CrossRef]

23. Wang, S.; Wang, L.; Liu, M.; Xu, Y. An Enhanced Estimation of Distribution Algorithm for Solving Hybrid Flow-Shop Scheduling
Problem with Identical Parallel Machines. Int. J. Adv. Manuf. Technol. 2013, 68, 2043–2056. [CrossRef]

24. Pan, Q.-K.; Wang, L.; Li, J.-Q.; Duan, J.-H. A Novel Discrete Artificial Bee Colony Algorithm for the Hybrid Flowshop Scheduling
Problem with Makespan Minimisation. Omega 2014, 45, 42–56. [CrossRef]

25. Li, J.; Pan, Q.; Wang, F. A Hybrid Variable Neighborhood Search for Solving the Hybrid Flow Shop Scheduling Problem. Appl.
Soft Comput. 2014, 24, 63–77. [CrossRef]

26. Lin, S.-W.; Cheng, C.-Y.; Pourhejazy, P.; Ying, K.-C.; Lee, C.-H. New Benchmark Algorithm for Hybrid Flowshop Scheduling with
Identical Machines. Expert Syst. Appl. 2021, 183, 115422. [CrossRef]

27. Utama, D.M.; Primayesti, M.D. A Novel Hybrid Aquila Optimizer for Energy-Efficient Hybrid Flow Shop Scheduling. Results
Control. Optim. 2022, 9, 100177. [CrossRef]

28. Utama, D.; Salima, A.; Setiya Widodo, D. A Novel Hybrid Archimedes Optimization Algorithm for Energy-Efficient Hybrid Flow
Shop Scheduling. Int. J. Adv. Intell. Inform. 2022, 8, 237. [CrossRef]

29. Zhang, B.; Pan, Q.; Gao, L.; Zhang, X.; Sang, H.; Li, J. An Effective Modified Migrating Birds Optimization for Hybrid Flowshop
Scheduling Problem with Lot Streaming. Appl. Soft Comput. 2017, 52, 14–27. [CrossRef]

30. Zhang, B.; Pan, Q.-K.; Meng, L.-L.; Zhang, X.-L.; Ren, Y.-P.; Li, J.-Q.; Jiang, X.-C. A Collaborative Variable Neighborhood Descent
Algorithm for the Hybrid Flowshop Scheduling Problem with Consistent Sublots. Appl. Soft Comput. 2021, 106, 107305. [CrossRef]

31. Li, Y.-Z.; Pan, Q.-K.; Li, J.-Q.; Gao, L.; Tasgetiren, M.F. An Adaptive Iterated Greedy Algorithm for Distributed Mixed No-Idle
Permutation Flowshop Scheduling Problems. Swarm Evol. Comput. 2021, 63, 100874. [CrossRef]

32. Cui, H.; Li, X.; Gao, L. An Improved Multi-Population Genetic Algorithm with a Greedy Job Insertion Inter-Factory Neighborhood
Structure for Distributed Heterogeneous Hybrid Flow Shop Scheduling Problem. Expert Syst. Appl. 2023, 222, 119805. [CrossRef]

33. Qin, H.; Han, Y.; Wang, Y.; Liu, Y.; Li, J.; Pan, Q. Intelligent Optimization under Blocking Constraints: A Novel Iterated Greedy
Algorithm for the Hybrid Flow Shop Group Scheduling Problem. Knowl.-Based Syst. 2022, 258, 109962. [CrossRef]

34. Qin, H.; Han, Y.; Chen, Q.; Wang, L.; Wang, Y.; Li, J.; Liu, Y. Energy-Efficient Iterative Greedy Algorithm for the Distributed
Hybrid Flow Shop Scheduling with Blocking Constraints. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 1–16. [CrossRef]

35. Wang, Y.-J.; Wang, G.-G.; Tian, F.-M.; Gong, D.-W.; Pedrycz, W. Solving Energy-Efficient Fuzzy Hybrid Flow-Shop Scheduling
Problem at a Variable Machine Speed Using an Extended NSGA-II. Eng. Appl. Artif. Intell. 2023, 121, 105977. [CrossRef]

36. Qin, H.-X.; Han, Y.-Y.; Zhang, B.; Meng, L.-L.; Liu, Y.-P.; Pan, Q.-K.; Gong, D.-W. An Improved Iterated Greedy Algorithm for the
Energy-Efficient Blocking Hybrid Flow Shop Scheduling Problem. Swarm Evol. Comput. 2022, 69, 100992. [CrossRef]

https://doi.org/10.1016/S0377-2217(02)00873-1
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1016/j.omega.2018.03.004
https://doi.org/10.1016/j.eswa.2021.115535
https://doi.org/10.1080/00207543.2014.949363
https://doi.org/10.1080/00207540210159536
https://doi.org/10.1016/j.ejor.2009.09.024
https://doi.org/10.1016/j.apm.2013.06.005
https://doi.org/10.1016/j.cor.2005.10.014
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/S0925-5273(03)00065-3
https://doi.org/10.1016/j.omega.2011.06.002
https://doi.org/10.1016/j.eswa.2018.07.055
https://doi.org/10.1016/j.ijpe.2004.12.025
https://doi.org/10.1007/s00170-013-4819-y
https://doi.org/10.1016/j.omega.2013.12.004
https://doi.org/10.1016/j.asoc.2014.07.005
https://doi.org/10.1016/j.eswa.2021.115422
https://doi.org/10.1016/j.rico.2022.100177
https://doi.org/10.26555/ijain.v8i2.724
https://doi.org/10.1016/j.asoc.2016.12.021
https://doi.org/10.1016/j.asoc.2021.107305
https://doi.org/10.1016/j.swevo.2021.100874
https://doi.org/10.1016/j.eswa.2023.119805
https://doi.org/10.1016/j.knosys.2022.109962
https://doi.org/10.1109/TETCI.2023.3271331
https://doi.org/10.1016/j.engappai.2023.105977
https://doi.org/10.1016/j.swevo.2021.100992

Mathematics 2023, 11, 2453 25 of 25

37. Shao, Z.; Pi, D.; Shao, W.; Yuan, P. An Efficient Discrete Invasive Weed Optimization for Blocking Flow-Shop Scheduling Problem.
Eng. Appl. Artif. Intell. 2019, 78, 124–141. [CrossRef]

38. Han, X.; Han, Y.; Zhang, B.; Qin, H.; Li, J.; Liu, Y.; Gong, D. An Effective Iterative Greedy Algorithm for Distributed Blocking
Flowshop Scheduling Problem with Balanced Energy Costs Criterion. Appl. Soft Comput. 2022, 129, 109502. [CrossRef]

39. Qin, H.-X.; Han, Y.-Y.; Liu, Y.-P.; Li, J.-Q.; Pan, Q.-K.; Han, X. A Collaborative Iterative Greedy Algorithm for the Scheduling of
Distributed Heterogeneous Hybrid Flow Shop with Blocking Constraints. Expert Syst. Appl. 2022, 201, 117256. [CrossRef]

40. Zhang, C.; Tan, J.; Peng, K.; Gao, L.; Shen, W.; Lian, K. A Discrete Whale Swarm Algorithm for Hybrid Flow-Shop Scheduling
Problem with Limited Buffers. Robot. Comput.-Integr. Manuf. 2021, 68, 102081. [CrossRef]

41. Yu, Z.; Wang, S. The Research of Trailer Scheduling Based on the Hybrid Flow Shop Problem with Blocking. In Proceedings of the
World Congress on Intelligent Control & Automation, Chongqing, China, 25–27 June 2008.

42. Zhang, Q.; Yu, Z. Population-Based Multi-Layer Iterated Greedy Algorithm for Solving Blocking Flow Shop Scheduling Problem.
Comput. Integr. Manuf. Syst. 2016, 22, 2315–2322. [CrossRef]

43. Zheng, Y.; Mo, G.; Zhang, J. Blocking Flow Line Scheduling of Panel Block in Shipbuilding. Comput. Integr. Manuf. Syst. 2016, 22,
2305–2314. [CrossRef]

44. Riahi, V.; Newton, M.A.H.; Su, K.; Sattar, A. Constraint Guided Accelerated Search for Mixed Blocking Permutation Flowshop
Scheduling. Comput. Oper. Res. 2019, 102, 102–120. [CrossRef]

45. Rodriguez, F.J.; Lozano, M.; Blum, C.; García-Martínez, C. An Iterated Greedy Algorithm for the Large-Scale Unrelated Parallel
Machines Scheduling Problem. Comput. Oper. Res. 2013, 40, 1829–1841. [CrossRef]

46. Fernandez-Viagas, V.; Valente, J.M.S.; Framinan, J.M. Iterated-Greedy-Based Algorithms with Beam Search Initialization for the
Permutation Flowshop to Minimise Total Tardiness. Expert Syst. Appl. 2018, 94, 58–69. [CrossRef]

47. Chen, S.; Pan, Q.-K.; Gao, L.; Sang, H. A Population-Based Iterated Greedy Algorithm to Minimize Total Flowtime for the
Distributed Blocking Flowshop Scheduling Problem. Eng. Appl. Artif. Intell. 2021, 104, 104375. [CrossRef]

48. Pan, Q.-K.; Ruiz, R. An Effective Iterated Greedy Algorithm for the Mixed No-Idle Permutation Flowshop Scheduling Problem.
Omega 2014, 44, 41–50. [CrossRef]

49. Qin, H.; Han, Y.; Chen, Q.; Li, J.; Sang, H. A Double Level Mutation Iterated Greedy Algorithm for Blocking Hybrid Flow Shop
Scheduling. Control. Decis. 2022, 37, 2323–2332. [CrossRef]

50. Missaoui, A.; Ruiz, R. A Parameter-Less Iterated Greedy Method for the Hybrid Flowshop Scheduling Problem with Setup Times
and Due Date Windows. Eur. J. Oper. Res. 2022, 303, 99–113. [CrossRef]

51. Nejati, M.; Mahdavi, I.; Hassanzadeh, R.; Mahdavi-Amiri, N.; Mojarad, M. Multi-Job Lot Streaming to Minimize the Weighted
Completion Time in a Hybrid Flow Shop Scheduling Problem with Work Shift Constraint. Int. J. Adv. Manuf. Technol. 2014, 70,
501–514. [CrossRef]

52. Marichelvam, M.K.; Geetha, M.; Tosun, Ö. An Improved Particle Swarm Optimization Algorithm to Solve Hybrid Flowshop
Scheduling Problems with the Effect of Human Factors—A Case Study. Comput. Oper. Res. 2020, 114, 104812. [CrossRef]

53. Huang, J.-P.; Pan, Q.-K.; Gao, L. An Effective Iterated Greedy Method for the Distributed Permutation Flowshop Scheduling
Problem with Sequence-Dependent Setup Times. Swarm Evol. Comput. 2020, 59, 100742. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engappai.2018.11.005
https://doi.org/10.1016/j.asoc.2022.109502
https://doi.org/10.1016/j.eswa.2022.117256
https://doi.org/10.1016/j.rcim.2020.102081
https://doi.org/10.13196/j.cims.2016.10.005
https://doi.org/10.13196/j.cims.2016.10.004
https://doi.org/10.1016/j.cor.2018.10.003
https://doi.org/10.1016/j.cor.2013.01.018
https://doi.org/10.1016/j.eswa.2017.10.050
https://doi.org/10.1016/j.engappai.2021.104375
https://doi.org/10.1016/j.omega.2013.10.002
https://doi.org/10.13195/j.kzyjc.2021.0607
https://doi.org/10.1016/j.ejor.2022.02.019
https://doi.org/10.1007/s00170-013-5265-6
https://doi.org/10.1016/j.cor.2019.104812
https://doi.org/10.1016/j.swevo.2020.100742

	Introduction
	Literature Review
	Hybrid Flow Shop Scheduling Problems
	Iterated Greedy Algorithm

	Problem Statement
	Mathematical Model
	Example Instance

	VIG Algorithm for BHFSP
	Encoding and Decoding Scheme
	Forward Decoding Method
	Backward Decoding Method

	The Initialization Strategy
	Destruction and Construction
	Local Search Strategy

	Simulation Experiments and Analysis
	Test Data and Performance Metric
	Validation of MILP Model
	Calibration of Parameters
	Evaluating Different Strategies
	Performance Evaluation of Comparative Algorithms
	Friedman Test

	Conclusions
	References

