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Abstract: The aim of this paper is to introduce new forms of quasi-contractions in metric-like spaces
and initiate more general conditions for the existence of invariant points for such operators. The
proposed notions are then applied to study novel existence criteria for the existence of solutions to
two-point boundary value problems in the domains of integer and fractional orders. To attract further
research in this direction, important consequences are deduced and discussed to indicate the novelty
and generality of our proposed concepts.
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1. Introduction and Preliminaries

The origin of fixed point theory in spaces with a metric structure was announced for
the first time by Banach [1]. This result has been called the contraction mapping principle
(or the Banach fixed point theorem). The Banach contraction principle affirms that any
contractive self-mapping on a complete metric space has one and only one fixed point
(also termed the invariant point). The principle is one of the famous tests for the existence
and uniqueness of solutions to various problems in science and engineering. Due to the
simplicity in its applications, the contraction mapping principle has been modified in
different directions. One of the extensions of the principle by replacing the contractive
constant with a family of functions was established by Rakotch [2]. For some recent
refinements of the Banach fixed point theorem, one can consult [3–5] and the references
therein. A few of these earlier improvements that are of interest to us in this current project
include the work of Ciric [6], Geraghty [7], Jaggi [8], and Dass-Gupta [9]. It is important
to note that every Rakotch contraction is a special form of a Geraghty contraction (see [7]
(Corollary 3.1)). The idea of quasi-contraction, defined by Ciric [6], is recognized as one of
the earliest contractive mappings.

Definition 1 ([6]). Let (X, d) be a metric. A mapping T : X −→ X is called a quasi-contraction if
there λ ∈ [0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ≤ λ max{d(x, y), d(x, Ty), d(y, Tx),

d(x, Tx), d(y, Ty)}.

It is now well-known that every quasi-contraction in the sense of [6] on a complete
metric space has an invariant point. Along the way, one of the first rational type contractive
inequalities was initiated by Jaggi [8].
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Definition 2 ([8]). Let (X, d) be a metric space and T : X −→ X be a continuous mapping.
The mapping T is called a Jaggi contraction if it satisfies the following conditions:

d(Tx, Ty) ≤ α1d(x, Tx)d(y, Ty)
d(x, y)

+ α2d(x, y), (1)

for all x, y ∈ X, x 6= y and for some α1, α2 ∈ [0, 1) with ∑2
i=1 αi < 1.

Then, it was presented in [8] that every mapping T defined on a complete metric space
fulfilling (1) has a unique fixed point. For some recent variants of Jaggi contraction, we
direct the readers to [10,11].

Let X be a nonempty set endowed with a metric d. Consider an auxiliary function
h : X× X −→ [0, 1) satisfying

lim
n−→∞

h(xn, yn) = 1 =⇒ lim
n−→∞

d(xn, yn) = 0,

for all sequences {xn}n∈N and {yn}n∈N in X such that {d(xn, yn)}n∈N is non-increasing and
converges [12]. We denote the class of functions defined above byH(X).

Example 1 ([12]). Let ρ1, ρ2 : R2 −→ [0, 1) be given by

(i) ρ1(x, y) = η for some η ∈ (0, 1);
(ii) ρ2(x, y) = t

t+x2+y2 for some t ≥ 0.

Then, ρ1, ρ2 ∈ H(R).

Geraghty [7] launched a family G of auxiliary functions ζ : R+ −→ [0, 1) such that if
the sequence tn is monotonic decreasing in R+ and

ζ(tn) −→ 1, then tn −→ 0.

After this, any function ζ ∈ G has been called a Geraghty function. By using the
members of G, Geraghty [7] established the following result.

Theorem 1 ([7]). Let (X, d) be a complete metric space. Suppose that T : X −→ X is a mapping
and ζ : R+ −→ [0, 1) is a function such that for all x, y ∈ X,

d(Tx, Ty) ≤ ζ(d(x, y))d(x, y), (2)

where ζ ∈ G. Then, T has one and only one invariant point in X.

The inequality (2) is now well recognized as the Geraghty contraction in the literature.
Theorem 1 has inspired many investigators (e.g., see [13–15]).

Popescu [16] proposed a variant of (triangular) τ-admissible mappings, studied
in [13,17], as given below.

Definition 3 ([16]). Let (X, d) be a metric space and τ : X× X −→ R+ be a mapping. The map-
ping T : X −→ X is called τ-orbital admissible, if

τ(x, Tx) ≥ 1 implies τ(Tx, T2x) ≥ 1.

If, supplementarily,

τ(x, y) ≥ 1 and τ(y, Ty) ≥ 1 implies τ(x, Ty) ≥ 1,

then the mapping T is called triangular τ-orbital admissible.
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Observe that every τ-admissible mapping is a τ-orbital admissible mapping. For fur-
ther information and some counter examples, we refer to [14,16,17].

Definition 4 ([14]). Let (X, d) be a metric space and τ : X × X −→ R+ be a mapping. Then,
X is said to be τ-regular if for every sequence {xn}n∈N such that τ(xn, xn+1) ≥ 1 for all n ∈ N,
xn −→ x as n −→ ∞, there exists a subsequence {xnk}k∈N of {xn}n∈N such that τ(xnk , x) ≥ 1
for all k ∈ N.

By Φ, we depict the class of functions ξ : R+ −→ R+ that are continuous and non-
decreasing such that ξ(t) = 0 if and only if t = 0.

Recently, by using the Geraghty contraction with the interplay of ξ ∈ Φ, Karap-
inar et al. [12] defined some new contractions and examined conditions for the existence of
fixed points for such operators. We recall these notions as follows.

Definition 5 ([12]). Let (X, d) be a metric space and T : X −→ X, τ : X × X −→ R+ be
mappings. Then, for all x, y ∈ X, define the following inequalities:

(e1) τ(x, y)ξ(d(Tx, Ty)) ≤ h(x, y)ξ(E1(x, y)),
(e2) τ(x, y)ξ(d(Tx, Ty)) ≤ h(x, y)ξ(E2(x, y)),
(e3) τ(x, y)ξ(d(Tx, Ty)) ≤ h(x, y)ξ(E3(x, y)),

where h ∈ H(X), ξ ∈ Φ and

E1(x, y) =max

{
d(x, Tx)d(y, Ty)

d(x, y)
, d(x, y), d(x, Tx),

d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}
,

E2(x, y) = max
{

d(x, Tx)d(y, Ty)
d(x, y)

, d(x, y)
}

,

E3(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Then, the mapping T is called a Jaggi-τ− h− ξ contraction (respectively, a generalized
Jaggi-type τ − h− ξ contraction) if (E1) (respectively, (E2)) is satisfied. We say that T is a
τ − h− ξ contraction if (E3) holds.

Definition 6 ([12]). Let (X, d) be a metric space and T : X −→ X be a self-mapping. Suppose
that there exist ξ ∈ Φ, h ∈ H(X) and τ : X× X −→ R+ such that for all x, y ∈ X,

(E4) τ(x, y)ξ(d(Tx, Ty)) ≤ h(x, y)ξ(E4(x, y)),

where
E4(x, y) = max

{
d(x,Tx)(1+d(y,Ty))

1+d(x,y) , d(x, y), d(y,Ty)(1+d(x,Tx))
1+d(x,y)

}
.

Then, T is said to be a generalized Dass-Gupta type τ-h-ξ-contraction.

The following is the principal result of [12].

Theorem 2 ([12]). Let (X, d) be a complete metric space and τ : X × X −→ R+, T : X −→ X
be mappings. Assume that the following conditions are satisfied:

(C1) T is a Jaggi-τ − h− ξ contraction;
(C2) T is continuous and forms a triangular τ-orbital admissible;
(C3) There exists x0 ∈ X such that τ(x0, Tx0) ≥ 1.

Then, T has an invariant point in X.
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On the other hand, the study of new spaces and the corresponding invariant point
results has been a very vigorous activity in mathematical research groups. In this way,
Matthews [18] initiated the idea of a partial metric space as an aspect of the denotational
semantics of data flow networks. In this space, the Euclidean metric is replaced with the
partial metric (PM) with the property that the self-distance of any point in the space may
be nonzero. It was established in [18] that the Banach contraction principle hold good in
PM spaces and can be utilized in program verification. Neil [19] improved the idea of a
partial metric space by allowing negative distances. The idea of partial metric space due
to [19] is called the dualistic PM. Heckman [20] extended the PM concept by removing the
small self-distance axiom. The PM proposed by Heckman [20] is termed weak PM.

Not long ago, Amini-Harandi [21] extended the PM spaces by launching the notion
of metric-like (ML) space and discussed some invariant point results that subsume some
related ones in the literature. Shortly after, Shukla [22] initiated the concept of 0 − σ-
complete ML space and extended the idea of Amini-Harandi [21]. Following [21,22],
several invariant point results in ML spaces have been examined; a few of these can be
found in [23–25].

Hereafter, specific fundamentals of PM and ML spaces are gathered.

Definition 7 ([18]). A PM on a nonempty set X is a function ρ : X× X −→ R+ such that for
all x, y, z ∈ X,

(ρ1) x = y if and only if ρ(x, x) = ρ(x, y) = ρ(y, y);
(ρ2) ρ(x, x) ≤ ρ(x, y);
(ρ3) ρ(x, y) = ρ(y, x);
(ρ4) ρ(x, y) ≤ ρ(x, z) + ρ(z, y)− ρ(z, z).

The pair (X, ρ) is called a partial metric space.

Remark 1. It is obvious that if ρ(x, y) = 0, then (ρ1) and (ρ2) yield x = y. However, if x = y,
ρ(x, y) may not be zero. One of the cardinal examples of a partial metric space is the pair (R, ρ),
where ρ(x, y) = max{x, y} for all x, y ∈ R.

Definition 8 ([21]). An ML on a nonempty set X is a function $ : X× X −→ R+ such that for
all x, y, z ∈ X,

($1) $(x, y) = 0 implies x = y;
($2) $(x, y) = $(y, x);
($3) $(x, y) ≤ $(x, z) + $(z, y).

The pair (X, $) is called an ML space.

Observe that an ML satisfies all the axioms of a metric, except that $(x, x) is positive
for x ∈ X. Every ML on X generates a topology µ$ on X whose base is the family of open
$-balls, given as

B$(x, ε) = {y ∈ X : |$(x, y)− $(x, x)| < ε},

for all x ∈ X and ε > 0.

A sequence {xn}n∈N in X converges to a point x ∈ X if and only if lim
n−→∞

$(xn, x) =

$(x, x). The sequence {xn}n∈N in X is said to be $-Cauchy if lim
n,m−→∞

$(xn, xm) exists and is

finite. The ML space (X, $) is $-complete if for each Cauchy sequence {xn}n∈N there exists
u ∈ X such that

lim
n−→∞

$(xn, u) = $(u, u) = lim
n,m−→∞

$(xn, xm).

It is interesting to know that every partial metric space is an ML space, but the converse
is not always true, as the following example shows.
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Example 2 ([21]). Let X = {0, 1} and $ : X× X −→ R+ be defined by

$(x, y) =

{
2, if x = y = 0,
1, otherwise.

Then, (X, $) is an ML space. However, (X, $) is not a PM, since $(0, 0) > $(0, 1).

The following Lemma is needed in the sequel. Its proof can be adapted from its metric
space version established in [26].

Lemma 1. Let (X, $) be an ML space and {xn}n∈N be a sequence in X such that

lim
n−→∞

$(xn, xn+1) = 0. (3)

If {xn}n∈N is not Cauchy in (X, $), then there exist ε > 0 and two sequences {yk}k∈N and
{nk}k∈N of positive integers such that nk > yk > k, and the following hold:

(i) lim
k−→∞

$(xyk , xnk ) = ε;

(ii) lim
k−→∞

$(xyk , xnk+1) = ε;

(iii) lim
k−→∞

$(xyk−1 , xnk ) = ε;

(iv) lim
k−→∞

$(xyk−1 , xnk+1) = ε.

Following our survey of the existing literature, it is observed that invariant point results
of Jaggi type and Dass-Gupta type extensions in the sense of Karapinar et al. [12] have not
been exhaustively examined in ML or dislocated metric spaces. Hence, following the above
chain of developments, and particularly motivated by the ideas presented in [12,21,27,28],
the principal objectives of this manuscript are twofold. The first is to introduce new classes
of contractions in ML spaces, viz. Jaggi type (τ, h, ξ)-quasi-contraction, Dass-Gupta type
(τ, h, ξ)-quasi-contraction, and to analyze criteria for the existence of fixed points for such
operators. The second focus is to apply the obtained results to examine novel conditions for
the existence of solutions to ordinary boundary value problems and fractional boundary
value problems with integral boundary conditions. A few consequences are discussed
to indicate that the ideas initiated herein improve and subsume a significant number of
existing concepts in the related literature. In particular, our results extend the notions
studied in [7–9,12,29] from complete metric spaces to $-complete ML spaces.

The rest of the paper is structured in the following style: in Section 2, new classes
of contractions are defined, and the conditions under which their fixed points exist are
investigated. Section 2.1 discusses a few particular cases of our principal ideas. Some
roles of the obtained results are considered in Sections 2.2 and 2.3, concerning differential
equations of integer and non-integer orders, respectively. Section 3 provides an overview
of the proposed concepts in this paper.

2. Main Results

We begin this section by introducing the following concept.

Definition 9. Let (X, $) be an ML space and τ : X × X −→ R+, T : X −→ X be mappings.
Then, T is called a Jaggi-type (τ, h, ξ)-quasi-contraction if for all x, y ∈ X,

τ(x, y)ξ($(Tx, Ty)) ≤ h(x, y)ξ(J (x, y)), (4)

where h ∈ H(X), ξ ∈ Φ, and
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J (x, y) = max

{
$(x, Tx)$(y, Ty)

$(x, y)
, $(x, y), $(x, Tx), $(y, Ty),

$(x, Ty) + $(y, Tx)
4

,
$(x, x) + $(y, y)

4

}
.

(5)

Theorem 3. Let (X, $) be a $-complete ML space and τ : X × X −→ R+ , T : X −→ X be
mappings. Suppose that the following conditions are satisfied:

(i) T is a Jaggi-type (τ, h, ξ)-quasi-contraction;
(ii) T is continuous and forms a triangular τ-orbital admissible;
(iii) There exists x0 ∈ X such that τ(x0, Tx0) ≥ 1.

Then, T has an invariant point in X.

Proof. Define an iterative sequence {xn}n∈N by xn = Txn−1 for all n ∈ N. On account
of (iii), and using the τ-orbital admissibility of T, we can verify that τ(xn, xn+1) ≥ 1
for each n ∈ N. Then, using the fact that T is triangular τ-orbital admissible, we have
τ(xn, xn+1) ≥ 1and τ(xn+1, xn+2) ≥ 1 implies τ(xn, xn+2) ≥ 1. Again, using the same
argument, we have τ(xn, xn+2) ≥ 1 and τ(xn+2, xn+3) ≥ 1 implies τ(xn, xn+3) ≥ 1. Con-
tinuing in the same manner, we get τ(xn, xn+1) ≥ 1. Assume that for some positive integer
p, xp = xp+1, then xp = Txp, and hence xp is an invariant point of T. For this purpose,
we presume that xn 6= xn+1 for all n = 0, 1, 2, . . . . Since T is a Jaggi-type (τ, h, ξ)-quasi-
contraction, then for all n ∈ N,

ξ($(xn, xn+1)) ≤ τ(xn−1, xn)ξ($(xn, xn+1))

= τ(xn−1, xn)ξ($(Txn−1, Txn))

≤ h(xn−1, xn)ξ(J (xn−1, xn))

< ξ(J (xn−1, xn)).

(6)

Using (5), we have
J (xn−1, xn)

= max

{
$(xn−1, Txn−1)$(xn, Txn)

$(xn−1, xn)
, $(xn−1, xn), $(xn−1, Txn−1),

$(xn, Txn),
$(xn−1, Txn) + $(xn, Txn−1)

4
,

$(xn−1, xn−1) + $(xn, xn)

4

}

= max

{
$(xn−1, xn)$(xn, xn+1)

$(xn−1, xn)
, $(xn−1, xn), $(xn−1, xn), $(xn, xn+1),

$(xn−1, xn+1) + $(xn, xn)

4
,

$(xn−1, xn−1) + $(xn, xn)

4

}

= max

{
$(xn, xn+1), $(xn−1, xn),

$(xn−1, xn+1) + $(xn, xn)

4
,

$(xn−1, xn−1) + $(xn, xn)

4

}

≤ max

{
$(xn, xn+1), $(xn−1, xn),

$(xn−1, xn) + $(xn, xn+1) + $(xn, xn−1) + $(xn−1, xn)

4
,

$(xn−1, xn) + $(xn, xn−1) + $(xn−1, xn) + $(xn, xn−1)

4

}

= max

{
$(xn, xn+1), $(xn−1, xn),

3
4

$(xn−1, xn) +
1
4

$(xn, xn+1)

}
.

(7)



Mathematics 2023, 11, 2477 7 of 19

Suppose that $(xn−1, xn) < $(xn, xn+1); then, (7) becomes

J (xn−1, xn) ≤ max

{
$(xn, xn+1),

3
4

$(xn, xn+1) +
1
4

$(xn, xn+1)

}
= max{$(xn, xn+1), $(xn, xn+1)} = $(xn, xn+1).

Therefore, (6) yields

ξ($(xn, xn+1)) < ξ(J (xn−1, xn)) ≤ ξ($(xn, xn+1)),

a contradiction. Thus, we infer that for all n ∈ N, $(xn, xn+1) ≤ $(xn−1, xn), and

J (xn−1, xn) ≤ $(xn, xn+1). (8)

Therefore, the sequence {$(xn, xn+1)}n∈N is non-increasing. Consequently, there exists
η ≥ 0 such that lim

n−→∞
$(xn, xn+1) = η. Now, we show that η = 0. Assume on the contrary

that η > 0. Then, from (6) and (8), we get

0 <
ξ($(xn, xn+1))

ξ($(xn−1, xn))
≤ h(xn−1, xn),

from which it follows that lim
n−→∞

h(xn−1, xn) = 1. Given that h ∈ H(X) yields

lim
n−→∞

$(xn−1, xn) = 0—proving that η = 0, a contradiction—hence,

lim
n−→∞

$(xn, xn+1) = 0. (9)

We now show that the sequence {xn}∈N is Cauchy. Suppose on the contrary that
{xn}n∈N is not a Cauchy sequence; then, all the conclusions of Lemma 1 hold. As we have
already noted in the beginning, using τ-orbital admissibility, we have

τ
(

xyp , xyp+1

)
≥ 1 for all yp.

Then , using the fact that T is triangular τ-orbital admissible, we have

τ
(

xyp , xyp+1

)
≥ 1 and τ

(
xyp+1, xyp+2

)
≥ 1 =⇒ τ

(
xyp , xyp+2

)
≥ 1.

Again, using the same argument, we have

τ
(

xyp , xyp+2

)
≥ 1 and τ

(
xyp+2, xyp+3

)
≥ 1 =⇒ τ

(
xyp , xyp+3

)
≥ 1.

Continuing the same manner, we get

τ
(

xyp , xnp

)
≥ 1.

Using the point that τ(xnp , xyp) ≥ 1 for all p ∈ N, we note that for each p ∈ N,

ξ($(xnp+1, xyp+1)) ≤ τ(xnp , xyp)ξ($(xnp+1, xyp+1))

= τ(xnp , xyp)ξ($(Txnp , Txyp))

≤ h(xnp , xyp)ξ(J (xnp , xyp)).

(10)
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In addition, for each p ∈ N, we get

J (xnp , xyp) = max

{
$(xnp , Txnp)$(xyp , Txyp)

$(xnp , xyp)
, $(xnp , xyp),

$(xnp , Txnp), $(xyp , Txyp),

$(xnp , Txyp) + $(xyp , Txnp)

4
,

$(xnp , xnp) + $(xyp , xyp)

4

}

= max

{
$(xnp , xnp+1)$(xyp , xyp+1)

$(xnp , xyp)
, $(xnp , xyp),

$(xnp , xnp+1), $(xyp , xyp+1),

$(xnp , xyp+1) + $(xyp , xnp+1)

4
,

$(xnp , xnp) + $(xyp , xyp)

4

}

≤ max

{
$(xnp , xnp+1)$(xyp , xyp+1)

$(xnp , xyp)
, $(xnp , xyp),

$(xnp , xnp+1), $(xyp , xyp+1),

$(xnp , xyp) + $(xyp , xyp+1) + $(xyp , xnp) + $(xnp , xnp+1)

4
,

$(xnp , xyp) + $(xyp , xnp) + $(xyp , xnp) + $(xnp , xyp)

4

}
.

(11)

Keeping note of lim
p→∞

$
(

xnp , xnp+1

)
= 0, and lim

p→∞
$
(

xyp , xyp+1

)
= 0, together with

the results of Lemma 1, the limit of the right hand side of (11) is lim
p→∞

$
(

xyp , xnp

)
= ε. Note

that, by the definition of J , we have

$
(

xyp , xnp

)
≤ J

(
xyp , xnp

)
.

So, using squeeze theorem, we have

lim
p→∞
J
(

xyp , xnp

)
= ε. (12)

By utilizing the continuity of ξ and using (12), we have

lim
p→∞

ξ
(

$
(

xyp , xnp

))
≤ lim

p→∞
h
(

xyp , xnp

)
lim
p→∞

ξ
(
J
(

xyp , xnp

))
.

Since we have lim
p→∞

$
(

xyp , xnp

)
= lim

p→∞
J
(

xyp , xnp

)
= ε, we conclude that

lim
p−→∞

h(xnp , xyp) = 1. Given that h ∈ H(X), we get lim
p−→∞

$(xnp , xyp) = 0, which is a

contradiction. Hence, {xn}n∈N a Cauchy sequence. Thus, we can find u ∈ X such that
lim

n−→∞
xn = u. Since T is continuous, we obtain lim

n−→∞
xn+1 = lim

n−→∞
Txn = Tu; from which

it follows that, Tu = u.

Definition 10. Let (X, $) be an ML space and τ : X × X −→ R+, T : X −→ X be mappings.
Then, T is called a Dass-Gupta type (τ, h, ξ)-quasi-contraction if, for all x, y ∈ X,

τ(x, y)ξ($(Tx, Ty)) ≤ h(x, y)ξ(D(x, y)), (13)
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where h ∈ H(X), ξ ∈ Φ, and

D(x, y) = max

{
$(x, Tx)[1 + $(y, Ty)]

1 + $(x, y)
,

$(y, Ty)[1 + $(x, Tx)]
1 + $(x, y)

,

$(x, y),
$(x, x) + $(y, y)

4

}
.

(14)

Theorem 4. Let (X, $) be a $-complete ML space and τ : X × X −→ R+, T : X −→ X be
mappings. Assume that

(i) T is a Dass-Gupta type (τ, h, ξ)-quasi-contraction;
(ii) T is continuous and forms triangular τ-orbital admissible;
(iii) There exists x0 ∈ X such that τ(x0, Tx0) ≥ 1.

Then, T has an invariant point in X.

Proof. From condition (iii), there exists x0 ∈ X such that τ(x0, Tx0) ≥ 1. Let the sequence
{xn} be constructed as xn = Txn−1, for all n ∈ N. Assume that xp = xp+1, for some p ∈ N,
then Txp = xp+1 = xp, that is, xp is an invariant point of T. So, we presume that xn 6= xn+1,
n = 0, 1, 2, ...n. As in the previous proof, we can easily see that τ(xn−1, xn) ≥ 1. Hence,

ξ($(xn, xn+1)) ≤ τ(xn−1, xn)ξ($(xn, xn+1))

= τ(xn−1, xn)ξ($(Txn−1, Txn))

≤ h(xn−1, xn)ξ(D(xn−1, xn))

< ξ(D(xn−1, xn)) (15)

On the other hand,

D(xn−1, xn) = max


$(xn−1,Txn−1)[1+$(xn ,Txn)]

1+$(xn−1,xn)
,

$(xn ,Txn)[1+$(xn−1,Txn−1)]
1+$(xn−1,xn)

, $(xn−1, xn),
$(xn−1,xn−1)+$(xn ,xn)

4



= max


$(xn−1,xn)[1+$(xn ,xn+1)]

1+$(xn−1,xn)
,

$(xn ,xn+1)[1+$(xn−1,xn)]
1+$(xn−1,xn)

, $(xn−1, xn),
$(xn−1,xn−1)+$(xn ,xn)

4


≤ max


$(xn−1,xn)[1+$(xn ,xn+1)]

1+$(xn−1,xn)
,

$(xn, xn+1), $(xn−1, xn),
$(xn−1,xn)+$(xn ,xn−1)+$(xn ,xn−1)+$(xn−1,xn)

4


= max

{
$(xn−1,xn)[1+$(xn ,xn+1)]

1+$(xn−1,xn)
, $(xn, xn+1), $(xn−1, xn)

}
.

If $(xn−1, xn) < $(xn, xn+1), then

D(xn−1, xn) < max
{

$(xn, xn+1)[1 + $(xn, xn+1)]

1 + $(xn, xn+1)
, $(xn, xn+1)

}
= max{$(xn, xn+1), $(xn, xn+1)} = $(xn, xn+1).

So, using (15), we have

ξ($(xn, xn+1)) < ξ(D(xn−1, xn)) < ξ($(xn, xn+1)),
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a contradiction. Hence, $(xn, xn+1) ≤ $(xn−1, xn) for all n ∈ N, and so,

D(xn−1, xn) ≤ max
{

$(xn−1, xn)[1 + $(xn−1, xn)]

1 + $(xn−1, xn)
, $(xn−1, xn)

}
= max{$(xn−1, xn), $(xn−1, xn)} = $(xn−1, xn).

That is,

D(xn−1, xn) ≤ $(xn−1, xn). (16)

This shows that {$(xn, xn+1)}n∈N is a non-increasing sequence. Therefore, there exists
η ≥ 0 such that lim

n→∞
$(xn, xn+1) = η. Now, we claim that η = 0. Assume on the contrary

that η > 0. Then, from (15) and (16) , we get

0 <
ξ($(xn, xn+1))

ξ($(xn−1, xn))
≤ h(xn−1, xn),

from which it follows lim
n→∞

h(xn−1, xn) = 1. Since h ∈ H(X), so lim
n→∞

$(xn−1, xn) = 0, gives

a contradiction. Hence, η = 0. Next, we shall demonstrate that {xn}n∈N is a Cauchy
sequence. Assume on the contrary that {xn}n∈N is not a Cauchy sequence. Then, all the
conclusions of Lemma 1 hold. Consistent with the previous proof, we can show that
τ(xnp , xyp) ≥ 1. Therefore, for p ∈ N

ξ($(xnp+1, xyp+1)) ≤ τ(xnp , xyp)ξ($(xnp+1, xyp+1))

= τ($(xnp , xyp))ξ($(Txnp , Txyp))

≤ h(xnp , xyp)ξ(D((xnp , xyp))) (17)

Then, we consider

D(xnp , xyp) = max


$(xnp ,Txnp )[1+$(xyp ,Txyp )]

1+$(xnp ,xyp )
,

$(xyp ,Txyp )[1+$(xnp ,Txnp )]

1+$(xnp ,xyp )
, $(xnp , xyp),

$(xnp ,xnp )+$(xyp ,xyp )

4



≤ max


$(xnp ,xnp+1)[1+$(xyp ,xyp+1)]

1+$(xnp ,xyp )
,

$(xyp ,xyp+1)[1+$(xnp ,xnp+1)]

1+$(xnp ,xyp )
, $(xnp , xyp),

$(xnp ,xnp+1)+$(xnp+1,xnp )+$(xyp ,xyp+1)+$(xyp+1,xyp )

4

.

Keeping note of lim
p→∞

$
(

xnp , xnp+1

)
= 0, and lim

p→∞
$
(

xyp , xyp+1

)
= 0, together with

the results of Lemma 1, the limit of the right-hand side of the above equation will be equal
to lim

p→∞
$
(

xyp , xnp

)
= ε.

Note that, by the definition of D, we have

$(xyp , xnp) ≤ D(xyp , xnp).

So, using the squeeze theorem, we have

lim
p→∞
D
(

xyp , xnp

)
= ε. (18)
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Using the continuity of ξ and together with (17) and (18), we have

lim
p→∞

ξ
(

$
(

xyp , xnp

))
≤ lim

p→∞
h
(

xyp , xnp

)
lim
p→∞

ξ
(
D
(

xyp , xnp

))
.

Since we have lim
p→∞

$
(

xyp , xnp

)
= lim

p→∞
D
(

xyp , xnp

)
= ε, and so lim

p→∞
h(xnp , xyp) = 1.

Given that h ∈ H(X), we obtain lim
p→∞

$(xnp , xyp) = 0, a contradiction. Consequently,

{xn}n∈N is a Cauchy sequence. By the completeness of X, there exists u ∈ X such
that lim

n→∞
xn = u. Since T is continuous, then lim

n→∞
xn+1 = lim

n→∞
Txn = Tu, proving that

Tu = u.

Example 3. Let X = [0, 1] and

$(x, y) = |x− y|+ |x|+ |y| (19)

for all x, y ∈ X; then, (X, $) is a complete ML space ([22]). Define the mapping T : X −→ X by
T(x) = ln

(
1 + x

3
)
, for all x ∈ X; then, T is not a contraction mapping. Let τ : X× X −→ R+ be

defined as

τ(x, y) =

{
1, if x, y ∈ [0, 1),
0, otherwise.

Let ξ(t) = t for all t ≥ 0, and h : X× X −→ [0, 1) be set as

h(x, y) =

{ arctan(|x−y|+|x|+a)
|x−y|+|x|+a , if x 6= y, 0 ≤ a < 1,

0, if x = y.

Clearly, h ∈ H(X) and ξ ∈ Φ. Now, using the fact that ln(1 + t) ≤ arctan(t), for all
t ∈ [0, 1], then for all x, y ∈ [0, 1), we have

τ(x, y)$(Tx, Ty) =
∣∣∣ln(1 +

x
3

)
− ln

(
1 +

y
3

)∣∣∣ = ∣∣∣∣ln(1 + x
1 + y

)∣∣∣∣
≤ ln(1 + |x|) ≤ ln(1 + |x|+ a)

≤ ln(1 + |x− y|+ |y|+ a) ≤ arctan(|x− y|+ |y|+ a)

=
arctan(|x− y|+ |y|+ a)
|x− y|+ |y|+ a

· (|x− y|+ |y|+ a)

= h(x, y)ξ($(x, y))

≤ h(x, y)ξ(J (x, y)).

Note that if x = 1 or y = 1, then τ(x, y) = 0, and hence

τ(x, y)ξ($(Tx, Ty)) ≤ h(x, y)ξ(J (x, y)).

Obviously, other hypotheses of Theorem 3 are satisfied. Consequently, we see that u = 0 is the
invariant point of T.

It is worthy of note that the mapping $ in (19) is not a metric, since for x = y = 1, $(1, 1) = 2.
Similarly, $ is not a PM, since for x = 0 and y = 1, $(0, 1) = 3 > 0 = $(0, 0). Hence, our result
does not coincide with the main ideas of [13] and some citations therein.

2.1. Some Consequences

In this section, we discuss a few particular cases of our principal results. First, we use
the following auxiliary function, launched in [13].
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Let Ψ be the class of all upper semi-continuous from the right functions ψ : R+ −→ R+

such that ψ−1(0) = 0 and ψ(t) < t for all t > 0.

Corollary 1. Let (X, $) be a $-complete ML space and τ : X × X −→ R+, T : X −→ X be
mappings. Assume that the following conditions are satisfied:

(i) τ(x, y)ξ($(Tx, Ty)) ≤ ζ(ξ(J (x, y)))ξ(J (x, y)) for each x, y ∈ X, where ξ ∈ Φ, ζ ∈ G
and J (x, y) is as given in (5);

(ii) T is triangular τ-orbital admissible and either T is continuous or X is τ-regular;
(iii) There exists x0 ∈ X such that τ(x0, Tx0) ≥ 1.

Then, T has an invariant point in X.

Proof. Define the mapping h : X× X −→ R+ by

h(x, y) = ζ(ξ(J (x, y))), for all x, y ∈ X.

Suppose that the sequences {xn}n∈N, {yn}n∈N in X are such that h(xn, yn) = 1. Then,
ξ(J (xn, yn)) = 0. Since ξ is continuous and ξ−1(0) = 0, then J (xn, yn) = 0. It follows that

lim
n→∞

$(xn, yn) = lim
n→∞

$(xn, xn+1) = lim
n→∞

$(yn, yn+1) = 0. (20)

Thus, h ∈ H(X), and by Condition (i), we obtain

τ(x, y)ξ($(Tx, Ty)) ≤ h(x, y)ξ(J (x, y)), for each x, y ∈ X.

Hence, T is a Jaggi-type (τ, h, ξ)-quasi-contraction. By applying (20) and the triangle
inequality, we get

lim
n→∞

$(Txn, Tyn) = lim
n→∞

$(xn+1, yn+1) = 0.

Consequently, all the hypotheses of Theorem 3 are satisfied. Therefore, T has an
invariant point u ∈ X.

Motivated by Definition 1, we deduce the next concept, which unifies and extends
Theorem 1 due to Geraghty [7] and the results of [6,12,13].

Definition 11. Let (X, $) be an ML space and τ : X × X −→ R+, T : X −→ X be mappings.
Then, T is called a (τ, ζ, ξ)-quasi-contraction (or simply generalized quasi-contraction) if there exist
ζ ∈ G and ξ ∈ Φ such that for all x, y ∈ X,

τ(x, y)$(Tx, Ty) ≤ ζ(ξ(M(x, y)))ξ(M(x, y)), (21)

where

M(x, y) = max{$(x, y), $(x, Tx), $(y, Ty), $(x, x), $(y, y)}. (22)

Corollary 2. Let (X, $) be a $-complete ML space and τ : X × X −→ R+, T : X −→ X be
mappings. Assume that the following conditions are satisfied:

(i) T is a (τ, ζ, ξ)-quasi-contraction;
(ii) T is triangular τ-orbital admissible and either T is continuous or X is τ-regular;
(iii) There exists x0 ∈ X such that τ(x0, Tx0) ≥ 1.

Then, T has an invariant point in X.
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Proof. First, observe that Theorem 3 is still valid if (5) is replaced with (22). Now, define
the mapping h : X× X −→ R+ by

h(x, y) = ζ(ξ(M(x, y))), for all x, y ∈ X.

Following Corollary 1, we can deduce that h ∈ H(X) and for any sequences {xn}n∈N,
{yn}n∈N in X,

lim
n→∞

h(xn, yn) = 1 ⇒ lim
n→∞

$(Txn, Tyn) = lim
n→∞

$(xn+1, yn+1) = 0.

Since ξ is a non-decreasing function, then for all x, y ∈ X,

τ(x, y)ξ($(Tx, Ty)) ≤ h(x, y)ξ(M(x, y)) ≤ h(x, y)ξ(J (x, y)), for all x, y ∈ X.

Hence, T is a Jaggi-type (τ,h,ξ)-quasi-contraction. Therefore, all the hypotheses of
Theorem 3 are satisfied, from which it follows that T has an invariant point in X.

Corollary 3. (Amini-Harandi [21] (Theorem 2.7)). Let (X, $) be a $-complete ML space and
τ : X× X −→ R+, T : X −→ X be mappings such that

$(Tx, Ty)) ≤ $(x, y)− ϕ($(x, y)),

for all x, y ∈ X, where ϕ ∈ Φ. Then T has an invariant point in X.

Proof. Define the mapping h : X× X −→ [0, 1) by

h(x, y) =

{
$(x,y)−ϕ($(x,y))

$(x,y) , if x 6= y;

0, if x = y.

Let {xn}n∈N, {yn}n∈N be sequences in X such that {$(xn, yn)}n∈N is non-increasing
and lim

n→∞
$(xn, yn) = η. Assume that lim

n→∞
h(xn, yn) = 1. Then, we need to prove that

lim
n→∞

$(xn, yn) = 0. Suppose on the contrary that lim
n→∞

$(xn, yn) = η > 0. Since ϕ is

continuous, then

lim
n→∞

h(xn, yn) = lim
n→∞

$(xn, yn)− ϕ($(xn, yn))

$(xn, yn)

=
η − ϕ(η)

η
= 1,

from which it follows that ϕ(η) = 0, and hence η = 0, a contradiction. Consequently,
lim

n→∞
$(xn, yn) = 0, that is, h ∈ H(X).

Let ξ(t) = t for all t ∈ R+. Then, using (22), we infer that

ξ($(Tx, Ty)) ≤ h(x, y)ξ($(x, y)) ≤ h(x, y)ξ(J (x, y)), for all x, y ∈ X.

Hence, with τ(x, y) = 1 for all x, y ∈ X, Theorem 3 can be applied to conclude that T
has an invariant point in X.

Corollary 4. (Amini-Harandi [21] (Theorem 2.11)). Let (X, $) be a $-complete ML space and
τ : X× X −→ R+, T : X −→ X be mappings such that the following conditions are satisfied:

(i) $(Tx, Ty) ≤ T($(x, y))$(x, y) for all x, y ∈ X, where T : R+ −→ [0, 1) is a non-increasing
continuous function with T−1(0) = 0;

(ii) T is triangular τ-orbital admissible and either T is continuous or X is τ-regular;
(iii) There exists x0 ∈ X such that τ(x0, Tx0) ≥ 1.

Then, T has an invariant point in X.
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Proof. Consider the mapping h : X× X −→ [0, 1) given by

h(x, y) = ζ($(x, y)), for all x, y ∈ X, ζ ∈ G.

Let ξ(t) = t for all t ∈ R+. Then, from Condition (i), we have

ξ($(Tx, Ty)) ≤ h(x, y)ξ($(x, y)) ≤ h(x, y)ξ(J (x, y)), for all x, y ∈ X.

Hence, all the hypotheses of Theorem 3 are satisfied with τ(x, y) = 1 for all x, y ∈ X.
Consequently, T has an invariant point in X.

2.2. An Application to Ordinary Differential Equations

In this section, a role of one of our obtained results is examined in the domain
of ordinary boundary value problems (Bvp). For related studies, the reader can con-
sult [12,30,31] and some references therein. In particular, we adopt the method of [12]. Let
X = C([0, 1], R+) be the space of all continuous real-valued functions defined on I = [0, 1]
and let u ∈ X. Consider the two-point Bvp of order two:{

−u′′(t)− g(t, u(t)) = 0, t ∈ I
u(0) = u(1) = 0,

(23)

where g : I ×R is a continuous function. The integral reformulation of (23) is given by

u(t) =
∫ 1

0
L(t, s)g(s, u(s)) ds, (24)

where L(t, s) is the Green’s function obtained as

L(t, s) =

{
t(1− s), if 0 ≤ t ≤ s ≤ 1
s(1− t), if 0 ≤ s ≤ t ≤ 1.

Consider an operator T : X −→ X defined by

Tu(t) =
∫ 1

0
L(t, s)g(s, u(s)) ds, t ∈ I (25)

for all t ∈ D. We recall that u ∈ X is a solution of (23) if and only if u ∈ X is an
invariant point of T defined in (25). Define the mapping $ : X × X −→ R by $(x, y) =
supt∈I (|x(t)|+ |y(t)|), for all x, y ∈ X. Then, (X, $) is a $-complete ML space.

Theorem 5. Assume that the following conditions are satisfied:

(C1) There exist T : R2 −→ R and ψ ∈ Φ such that for all t ∈ I and p, q ∈ R with T(p, q) ≥ 0,

|g(t, p)− g(t, q)| ≤ 8ψ(|p|+ |q|);

(C2) there exists u1 ∈ X such that for all t ∈ I ,

T(u1(t),
∫ 1

0
L(t, s)g(s, u1(s))) ≥ 0;

(C3) for all t ∈ I and u, v ∈ X,

T(u(t), v(t)) ≥ 0 implies T
(∫ 1

0
L(t, s)g(s, u(s)) ds,

∫ 1

0
L(t, s)g(s, v(s)) ds

)
≥ 0;



Mathematics 2023, 11, 2477 15 of 19

(C4) let {un}n∈N be a sequence in X such that un −→ u ∈ X, and for all t ∈ I with n ∈ N,

T(un(t), un+1(t)) ≥ 0 implies T(un(t), u(t)) ≥ 0.

Then, the Bvp (23) has a solution in X.

Proof. We show that the operator T given in (25) is a Jaggi-type (τ, h, ξ)-quasi-contraction.
Let u, v ∈ X such that T(u(t), v(t)) ≥ 0 for all t ∈ I . Employing (C1), we have

|Tu(t)− Tv(t)| =

∣∣∣∣∫ 1

0
L(t, s)(g(s, u(s))− g(s, v(s))) ds

∣∣∣∣
≤

∫ 1

0
L(t, s)|g(s, u(s))− g(s, v(s))| ds

≤
∫ 1

0
L(t, s)(8ψ(|u(s)|+ |v(s)|)) ds

≤ 8ψ($(u, v)) sup
t∈I

∫ 1

0
L(t, s) ds = ψ($(u, v)),

where we recognized the fact that for each t ∈ I ,
∫ t

0 L(t, s) ds = t
2 −

t2

2 , and hence

sup
t∈I

∫ 1

0
L(t, s) ds =

1
8

. Now, define τ : X× X −→ R+ by

τ(u, v) =

{
1, if T(u(t), v(t)) ≥ 0
0, otherwise,

and

h(u, v) =

{
ψ($(u,v))

$(u,v) , if u 6= v

0, elsewhere.

Then, for all u, v ∈ X, we get

τ(u, v)$(Tu, Tv) ≤ ψ($(u, v)) =
ψ($(u, v))

$(u, v)
$(u, v)

= h(u, v)$(u, v) ≤ h(u, v)J (u, v).

Then, taking ξ(t) = t for all t ∈ R+, we find that T is a Jaggi-type (τ, h, ξ)-quasi-
contraction. Moreover, let {un}n∈N be a sequence in X such that xn −→ u ∈ X and
lim

n−→∞
h(un, u) = 1. By the definition of τ, for all n ∈ N and t ∈ I , T(un(t), u(t)) ≥ 0. So,

$(Tun(t), Tu(t)) ≤ ψ($(un(t), u(t))),

from which it follows that for all n ∈ N, $(Tun, Tu) ≤ ψ($(un, u)). By assumption,
lim

n−→∞
$(un, u) = 0. Hence, lim

n−→∞
$(un+1, u) = 0. Utilizing hypotheses (C2) − (C4), it

is clear that all the assumptions of Theorem 3 are fulfilled. Consequently, there exists
u∗ ∈ X such that Tu∗ = u∗.

2.3. Application to Nonlinear Differential Equations in the Setting of Fractional Derivatives with
Singular Kernel

In this section, one of our main results is applied to examine new conditions for the
existence of a solution to the Caputo-type fractional boundary value problem of order
ς ∈ (1, 2] possessing an integral boundary condition.
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Let ς be a positive real number, and Γ denotes the gamma function. The Caputo
derivative of fractional order ς is given as

(C
0Dς f )(t) =

1
Γ(n− ς)

∫ t

0
((t− s)n−ς−1 f (n)(s)) ds, n = [ς] + 1,

where f : R+ −→ R is a continuous function.
Consider the following fractional differential equation:

(C
0Dςu)(t) = g(t, u(t)), t ∈ I = (0, 1], (26)

with the boundary condition

u(0) = 0, u(1) =
∫ r

0
u(s) ds, r ∈ (0, 1),

where u ∈ C([0, 1],R) = X and g : I × R −→ R is a continuous function. The integral
reformulation of (26) is given by

u(t) =
1

Γ(η)

∫ t

0
(t− s)η−1g(s, u(s))ds− 2t

(2− r2)Γ(ς)

∫ 1

0
(1− s)η−1g(s, u(s)) ds

+
2t

(2− r2)Γ(η)

∫ r

0

(∫ s

0
(s− z)η−1g(z, u(z)) dz

)
ds, t ∈ I.

Define an operator T : X −→ X by

Tu(t) =
1

Γ(η)

∫ t

0
(t− s)η−1g(s, u(s))ds− 2t

(2− r2)Γ(ς)

∫ 1

0
(1− s)η−1g(s, u(s)) ds

+
2t

(2− r2)Γ(η)

∫ r

0

(∫ s

0
(s− z)η−1g(z, u(z)) dz

)
ds, t ∈ I. (27)

It is a fact that u ∈ X solves (26) if and only if u ∈ X is an invariant point of T in (27).
Consider the mapping $ : X× X −→ R given as

$(x, y) = sup
t∈I

(|x(t)− y(t)|+ |x(t)|+ |y(t)|) = ‖x− y‖∞ + ‖x‖∞ + ‖y‖∞,

for all x, y ∈ X. Then, (X, $) is a $-complete ML space. However, the mapping $ is not
a metric.

Now, we investigate the solvability conditions of Problem (26) via the following as-
sumptions.

(A1) There exist ω : R2 −→ R and ψ ∈ Φ such that for all t ∈ I and p, q ∈ R with

ω(p, q) ≥ 0, |g(t, p)− g(t, q)| ≤ M0ψ(|p− q|+ |p|+ |q|), M0 = Γ(ς+2)
5+3ς ;

(A2) There exists u0 ∈ X such that ω(u0, Tu0) ≥ 0 for all t ∈ I;
(A3) For all t ∈ I and u, v ∈ X, ω(u(t), v(t)) ≥ 0 implies ω(Tu(t), Tv(t)) ≥ 0;
(A4) Let {un}n∈N be a sequence in X such that un −→ u ∈ X, and for all t ∈ I,

ω(un(t), un+1(t)) ≥ 0 for all n ∈ N implies ω(un(t), u(t)) ≥ 0.

Theorem 6. Under the assumptions (A1)–(A4), Problem (26) has at least one solution u∗ in X.
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Proof. We show that the mapping T is a Jaggi-type (τ, h, ξ)-quasi-contraction. Accordingly,
let u, v ∈ X such that for all t ∈ I, ω(u(t), v(t)) ≥ 0. Then, using (A1),

|Tu(t)− Tv(t)|

=

∣∣∣∣∣ 1
Γ(ς)

∫ t

0
(t− s)ς−1g(s, u(s))

− 2t
(2− r2)Γ(ς)

∫ 1

0
(1− s)ς−1g(s, u(s)) ds

+
2t

(2− r2)Γ(ς)

∫ r

0

(∫ s

0
(s− z)ς−1g(z, u(s)) dz

)
ds

− 1
Γ(ς)

∫ t

0
(t− s)ς−1g(s, v(s)) ds +

2t
(2− r2)Γ(ς)

∫ 1

0
(1− s)ς−1g(s, v(s)) ds

− 2t
(2− r2)Γ(ς)

∫ r

0

(∫ s

0
(s− z)ς−1g(z, v(z)) dz

)
ds

≤ 1
Γ(ς)

∫ t

0
|t− s|ς−1|g(s, u(s))− g(s, v(s))| ds

+
2t

(2− r2)Γ(ς)

∫ 1

0
(1− s)ς−1|g(s, u(s))− g(s, v(s))| ds

+
2t

(2− r2)Γ(ς)

∫ r

0

∣∣∣∣∫ s

0
(s− z)ς−1|g(s, u(s))− g(s, v(s))| dz

∣∣∣∣ ds

≤ 1
Γ(ς)

∫ t

0
|t− s|ς−1M0ψ(|u(s)− v(s)|+ |u(s)|+ |v(s)|) ds

+
2t

(2− r2)Γ(ς)

∫ 1

0
|1− s|ς−1M0ψ(|u(s)− v(s)|+ |u(s)|+ |v(s)|) ds

+
2t

(2− r2)Γ(ς)

∫ r

0

(
|s− z|ς−1M0ψ(|u(s)− v(s)|+ |u(z)|+ |v(z)|) dz

)
ds

≤ M0ψ(‖u− v‖∞ + ‖u‖∞ + ‖v‖∞) · sup
t∈(0,1)

(
1

Γ(ς)

∫ t

0
|t− s|ς−1 ds

+
2t

(2− r2)
Γ(ς)

∫ 1

0
|1− s|ς−1 ds +

2t
(2− r2)Γ(ς)

∫ r

0

∫ s

0
|s− z|ς−1 dz ds

)
≤ ψ(‖u− v‖∞ + ‖u‖∞ + ‖v‖∞) = ψ($(u, v)).

That is, $(Tu, Tv) ≤ ψ($(u, v)). Now, define the mapping τ : X × X −→ R+ as
follows:

τ(x, y) =

{
1, if ω(u(t), v(t)) ≥ 0, for all t ∈ I
0, elsewhere,

and let

h(u, v) =

{
ψ($(u,v))

$(u,v) , if u 6= v

0, otherwise.

Then, for all u, v ∈ X, we get

τ(u, v)$(Tu, Tv) ≤ ψ($(u, v)) =
ψ($(u, v))

$(u, v)
$(u, v)

= h(u, v)$(u, v) ≤ h(u, v)J (u, v).

By setting ξ(t) = t for all t ∈ R+, we see that T is a Jaggi-type (τ, h, ξ)-quasi-
contraction. Clearly, all the assumptions of Theorem 3 are satisfied. Consequently, there
exists u∗ ∈ X such that u∗ = Tu∗.
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3. Conclusions

This manuscript proposed new forms of quasi-contractions, under the names Jaggi
type (τ, h, ξ)-quasi-contraction and Dass-Gupta type (τ, h, ξ)-quasi-contraction in ML
spaces, and analyzed novel conditions for the existence of invariant points for such opera-
tors. The launched ideas are then utilized to examine the existence criteria for the solutions
of boundary value problems in the bodywork of integer and non-integer orders. It is
apposite to state that the present concepts in this article, being investigated in an ML setup,
are fundamental. Hence, our approach can be moved further to some realms such as b-ML
spaces, fuzzy metric spaces, and related quasi or pseudo-metric spaces.
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