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Abstract: This paper is concerned with the general atom-bond sum-connectivity index ABSγ, which
is a generalization of the recently proposed atom-bond sum-connectivity index, where γ is any real
number. For a connected graph G with more than two vertices, the number ABSγ(G) is defined
as the sum of (1− 2(dx + dy)−1)γ over all edges xy of the graph G, where dx and dy represent the
degrees of the vertices x and y of G, respectively. For −10 ≤ γ ≤ 10, the significance of ABSγ is
examined on the data set of twenty-five benzenoid hydrocarbons for predicting their enthalpy of
formation. It is found that the predictive ability of the index ABSγ for the selected property of the
considered hydrocarbons is comparable to other existing general indices of this type. The effect of the
addition of an edge between two non-adjacent vertices of a graph under ABSγ is also investigated.
Furthermore, several extremal results regarding trees, general graphs, and triangle-free graphs of a
given number of vertices are proved.
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1. Introduction

A property of a graph that is preserved by the graph isomorphism is known as a graph
invariant (see [1]). The real-valued graph invariants are frequently referred to as topo-
logical indices. The readers are referred to [1–3] for (chemical) graph theory terminology
and notations.

The connectivity index (often referred to as the Randić index, which was initially
developed in [4] with name “branching index”) has taken a significant position among
the most studied and implemented topological indices. The connectivity index is thought
to be the topological index that has been studied the most, in terms of theory as well
as implementation, according to [5]. This index for a graph G is represented by the
following number:

R(G) = ∑
st∈E(G)

1√
dsdt

,

where dv stands for the degree of a vertex v in G, and E(G) stands for the edge set of G. (If
more than one graph is being considered, we express the degree of v in G using the notion
dv(G) to prevent confusion). More details on the research of the connectivity index may be
found in the survey papers [6,7], books [8,9], and related works cited therein.

The scientific literature now contains a number of variants of the connectivity index
due to its growing popularity. The sum-connectivity (SC) index [10] and the atom-bond
connectivity (ABC) index [11,12] are two of the variants of the connectivity index that have
been the subject of substantial investigation; these indices have the following definitions

SC(G) = ∑
st∈E(G)

1√
ds + dt
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and

ABC(G) = ∑
st∈E(G)

√
ds + dt − 2

dsdt
.

The SC index’s fundamental idea was used in [13] to produce the atom-bond sum-
connectivity (ABS) index, a new variation of the ABC index. The ABS index of a graph G is
defined as

ABS(G) = ∑
st∈E(G)

√
1− 2

ds + dt
.

In [13], certain extremal results about the ABS index of (chemical) trees and general
graphs were reported. Article [14] not only gives a solution to an extremal problem
involving the ABS index for unicyclic graphs, but it also reports chemical uses of the ABS
index. The trees with the lowest ABS index were examined in [15,16] independently, with a
specified number of vertices of degree 1 and a fixed order. Further existing results on the
ABS index can be found in [17–19].

The general ABS index [14] for a graph G is defined as

ABSγ(G) = ∑
st∈E(G)

(
1− 2

ds + dt

)γ

,

where γ can assume any real number with the constraint that the graph G must satisfy
the following property when γ < 0: ds + dt > 2 for every edge st ∈ E(G). Note that if the
inequality ds + dt > 2 holds for every st ∈ E(G), then ABSγ(G) can also be defined as

ABSγ(G) = ∑
st∈E(G)

(
1 +

2
dst

)−γ

,

where dst = ds + dt − 2, which is the degree of the edge st. Here, we highlight that the
general ABS index (and subsequently the ABS index) is a special case of a more general
topological index that was first investigated in [20].

In the upcoming section, the chemical usefulness of ABSγ is examined on the data
set of twenty-five benzenoid hydrocarbons for predicting their enthalpy of formation for
−10 ≤ γ ≤ 10; it was found that the predictive ability of the index ABSγ for the selected
property of the considered hydrocarbons is comparable to other existing general indices
of this type. Investigating the impact of the addition of an edge in a non-complete graph
under ABSγ is the focus of Section 3, where a non-complete graph is one that differs from
the complete graph. In Section 4, a number of extremal problems about trees, general
graphs, and triangle-free graphs of a given number of vertices are addressed.

2. Chemical Applicability of ABSγ

In the current section, the significance of ABSγ is examined on the data set of twenty-
five benzenoid hydrocarbons (having names given in Table 1) for predicting the enthalpy
of formation ∆H f of the mentioned hydrocarbons for −10 ≤ γ ≤ 10. The experimental
data (given in Table 1) for the selected property of these hydrocarbons is taken from [21,22].

First, we calculate the ABS, ABC, SC and R indices of molecular graphs of the twenty-
five benzenoid hydrocarbons under consideration. For doing this, we establish a general
expression for evaluating the aforementioned indices. By a hexagonal system, we mean a
molecular graph of a benzenoid hydrocarbon. In a hexagonal system, a vertex of degree
3 lying on three hexagons is known as an internal vertex; a vertex that is not an internal
vertex is referred to as an external vertex. In addition, in a hexagonal system, an edge
whose both end vertices are incident to external vertices is called an external edge; an
edge that is not an external edge is known as an internal edge. For example, see Figure 1
where internal/external vertices are indicated by black/white vertices, respectively, while
internal/external edges are indicated by thin/bold edges, respectively. A hexagonal system
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possessing no internal vertex is commonly referred to as a catacondensed hexagonal system.
In a catacondensed hexagonal system, an edge whose every vertex has degree 3 is referred
to as a branched hexagon. By a kink in a catacondensed hexagonal system, we mean a
hexagon possessing exactly one pair of adjacent vertices of degree 2. For further information
regarding hexagonal systems, the readers are referred to [23].

Table 1. The values of the enthalpy of formation ∆H f and the indices ABS, ABC, SC, R, for the
considered 25 hydrocarbons.

Compound Name ABS ABC R SC ∆H f

benzene 4.2426 4.2426 3.0000 3.0000 82.9

naphthalene 8.1575 7.7377 4.9663 5.1971 150.6

anthracene 12.0724 11.2328 6.9327 7.3942 227.7

phenanthrene 12.0468 11.1924 6.9495 7.4080 207.1

pyrene 14.5219 13.2328 7.9327 8.6190 225.7

benzo[a]anthracene 15.9617 14.6875 8.9158 9.6051 291.0

benzo[c]phenanthrene 15.9361 14.6470 8.9327 9.6190 302.4

chrysene 15.9361 14.6470 8.9327 9.6190 262.8

naphthacene 15.9873 14.7279 8.8990 9.5913 291.4

triphenylene 15.9105 14.6066 8.9495 9.6328 269.8

benzo[a]pyrene 18.4112 16.6875 9.9158 10.8299 301.0

benzo[e]pyrene 18.3856 16.6470 9.9327 10.8437 304.0

perylene 18.3856 16.6470 9.9327 10.8437 324.0

benzo[b]chrysene 19.8510 18.1421 10.8990 11.8161 346.0

benzo[c]chrysene 19.8254 18.1017 10.9158 11.8299 334.0

benzo[g]chrysene 19.7998 18.0613 10.9327 11.8437 333.0

benzo[a]tetracene 19.8766 18.1826 10.8821 11.8022 359.0

dibenzo[a,c]anthracene 19.8254 18.1017 10.9158 11.8299 345.0

dibenzo[a,h]anthracene 19.8510 18.1421 10.8990 11.8161 343.0

dibenzo[a,j]anthracene 19.8510 18.1421 10.8990 11.8161 343.0

dibenzo[b,g]phenanthrene 19.8510 18.1421 10.8990 11.8161 347.0

dibenzo[c,g]phenanthrene 19.8254 18.1017 10.9158 11.8299 335.0

pentacene 19.9022 18.2230 10.8653 11.7884 374.5

pentaphene 19.8766 18.1826 10.8821 11.8022 359.0

picene 19.8254 18.1017 10.9158 11.8299 334.0
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Figure 1. A hexagonal system differentiating internal and external vertices/edges.

Let Hh be any catacondensed hexagonal system possessing h hexagons, from which hk
are kinks and hb are branched hexagons. Then, one has

m2,2(Hh) = 3hb + hk + 6, m2,3(Hh) = 2(2h− 3hb − hk − 2), and

m3,3(Hh) = 3hb + hk + h− 1,

where mi,j(Hh) is the cardinality of the set

{st ∈ E(Hh) : dt = j, ds = i}.

Thus, by making use of the formula of ABSγ, we have

ABSγ(Hh) = (3hb + hk + 6)
(

1
2

)γ

+ 2(2h− 3hb − hk − 2)
(

3
5

)γ

+ (3hb + hk + h− 1)
(

2
3

)γ

,

which is equivalent to

ABSγ(Hh) =

(
4
(

3
5

)γ

+

(
2
3

)γ )
h +

((
1
2

)γ

− 2
(

3
5

)γ

+

(
2
3

)γ )
hk

+ 3
((

1
2

)γ

− 2
(

3
5

)γ

+

(
2
3

)γ )
hb (1)

+ 6
(

1
2

)γ

− 4
(

3
5

)γ

−
(

2
3

)γ

.

The value of ABSγ(Hh) can be calculated by utilizing Formula (1). By utilizing the obtained
information about the number of edges of different types in any catacondensed hexagonal
system, we now derive a general version of (1). A bond incident degree (BID) index of Hh
is defined as

BID(Hh) = ∑
2≤i≤j≤3

mi,j(Hh) · βi,j , (2)

which implies that

BID(Hh) = (3hb + hk + 6)β2,2 + 2(2h− 3hb − hk − 2)β2,3

+ (3hb + hk + h− 1)β3,3,
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which is equivalent to

BID(Hh) = (4β2,3 + β3,3)h + (β2,2 − 2β2,3 + β3,3)hk

+ 3(β2,2 − 2β2,3 + β3,3)hb + 6β2,2 − 4β2,3 − β3,3. (3)

Now, we calculate the ABS, ABC, SC and R indices of molecular graphs of the benzenoid
hydrocarbons having names given in Table 1 (the calculated values of the mentioned indices
are also given in the same table); we remark here that most of these molecular graphs are
catacondensed hexagonal systems, and hence, the mentioned indices are calculated by
utilizing (3).

Now, we calculate the correlation coefficient between ∆H f and the ABS, ABC, SC and
R indices for the hydrocarbons mentioned in Table 1. From Table 2, it follows that all the
four examined indices perform almost the same in predicting the enthalpy of formation of
the hydrocarbons mentioned in Table 1.

Table 2. The positive value of the correlation coefficient between the enthalpy of formation and the
ABS, ABC, SC and R indices for the hydrocarbons mentioned in Table 1.

ABS ABC R SC

Enthalpy of formation 0.9806 0.9826 0.9823 0.9815

If βi,j = ((i + j− 2)/ij)γ or βi,j = (i + j))γ or βi,j = (ij))γ, then Equation (2) yields
ABCγ or the sum-connectivity index SCγ or the general Randić index Rγ, respectively.
Next, we calculate the correlation coefficient between ∆H f and ABSγ, ABCγ, SCγ, Rγ for
the hydrocarbons mentioned in Table 1. The positive values for the correlation r (between
the selected property of the considered hydrocarbons and ABSγ, ABCγ, SCγ, Rγ), with
γ ∈ [−10, 10], are depicted in Figures 2–5. The maximum positive values for the correlation
r (between the selected property of the considered hydrocarbons and ABSγ, ABCγ, SCγ,
Rγ), with γ ∈ [−10, 10], are given in Table 3. Table 3 indicates that the maximum positive
values for the correlation r of the examined four indices are neither considerably different
from one another nor significantly better than the ones given in Table 2.

Table 3. The maximum positive value for the correlation r, between ∆H f of the considered hydrocar-
bons and the considered topological indices (that are ABSγ, ABCγ, SCγ and Rγ), when γ ∈ [−10, 10].

Index Correlation (r) γ

ABSγ 0.9869 −0.1626

ABCγ 0.9903 6.07095

SCγ 0.9815 −0.6431

Rγ 0.9823 −0.4818
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Figure 2. The positive value for the correlation R (between ∆H f of the considered hydrocarbons and
ABSγ) for γ ∈ [−10, 10].
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Figure 3. The positive value for the correlation R (between ∆H f of the considered hydrocarbons and
ABCγ) for γ ∈ [−10, 10].
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Figure 4. The positive value for the correlation R (between ∆H f of the considered hydrocarbons and
SCγ) for γ ∈ [−10, 10].
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Figure 5. The positive value for the correlation R (between ∆H f of the considered hydrocarbons and
Rγ) for γ ∈ [−10, 10].

3. Behavior of ABSγ Under the Addition of an Edge

Let G be a graph such that st 6∈ E(G). By the graph G + st, we mean the graph
formed by adding the edge st in G. In this section, it is proved that ABSγ(G + st) >
ABSγ(G) whenever γ ≥ 0. The following already existing result is required to prove the
aforementioned inequality involving ABSγ.



Mathematics 2023, 11, 2494 8 of 15

Lemma 1 ([13]). Let ϕ be a strictly increasing function of two variables α and β with the constraints
ϕ(α, β) = ϕ(β, α) ≥ 0, α ≥ 1 and β ≥ 1. If s and t are non-adjacent vertices in a graph G such
that max{ds, dt} ≥ 1, then

∑
st∈E(G+st)

ϕ
(
ds(G + st), dt(G + st)

)
> ∑

st∈E(G)

ϕ
(
ds(G), dt(G)

)
.

Proposition 1. If s and t are non-adjacent vertices in a graph G such that max{ds, dt} ≥ 1, then

ABSγ(G + st) > ABSγ(G)

for γ ≥ 0.

Proof. If γ = 0, then we have

ABSγ(G + st) = |E(G)|+ 1 > |E(G)| = ABSγ(G).

Next, suppose that γ > 0. Certainly, the function ψ with the following definition is strictly
increasing for γ > 0:

ψ(α, β) =

(
1− 2

α + β

)γ

.

Thus, Lemma 1 guaranties the desired conclusion.

4. Extremal Results

This section is devoted to proving several extremal results concerning trees, general
graphs, and triangle-free graphs of a given order. The following lemma is very crucial in
proving the first main result of this section.

Lemma 2. For a fixed positive real number γ greater than or equal to 2
5 , define a function ψγ as

ψγ(α) = 2
(

α

α + 2

)γ

−
(

α− 1
α + 1

)γ

,

where α ≥ 3. The function ψγ is strictly increasing.

Proof. Throughout the proof, it is assumed that α ≥ 3. The derivative function ψ′γ of ψγ is
determined as

ψ′γ = 2γ

(
2αγ−1

(α + 2)γ+1 −
(α− 1)γ−1

(α + 1)γ+1

)
.

In order to prove the result, it is enough to show that

2αγ−1

(α + 2)γ+1 >
(α− 1)γ−1

(α + 1)γ+1 for γ ≥ 2
5

,

or

2
(

α

α− 1

)γ−1
>

(
α + 2
α + 1

)γ+1
for γ ≥ 2

5
,

which is equivalent to

ln 2 > (γ + 1)
(

ln(α + 2)− ln(α + 1)
)
− (γ− 1)

(
ln α− ln(α− 1)

)
, (4)

for γ ≥ 2
5 . In what follows, we prove (4).
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The mean value theorem confirms the existence of the numbers a1 and a2 with α− 1 <
a1 < α and α + 1 < a2 < α + 2 such that

(γ + 1)
(

ln(α + 2)− ln(α + 1)
)
− (γ− 1)

(
ln α− ln(α− 1)

)
=

γ + 1
a2
− γ− 1

a1
(5)

If γ = 1, then
γ + 1

a2
− γ− 1

a1
<

2
α + 1

< ln 2 (6)

(because a2 > α + 1) and thence from (5) and (6), the inequality (4) follows.
If 2

5 ≤ γ < 1, then

γ + 1
a2
− γ− 1

a1
<

γ + 1
α + 1

− γ− 1
α− 1

=
2(α− γ)

α2 − 1

≤
2
(
α− 2

5
)

α2 − 1
< ln 2. (7)

(because a2 > α + 1 and a1 > α− 1) and thence from (5) and (7), the inequality (4) follows.
Finally, if γ > 1, then

γ + 1
a2
− γ− 1

a1
<

γ + 1
α + 1

− γ− 1
α

<
γ + 1

α
− γ− 1

α
=

2
α
< ln 2 (8)

(because a2 > α + 1 and a1 < α) and thence from (5) and (8), the inequality (4) follows.

The following elementary lemma is also used in the proof of the first main result (that
is Theorem 1) of this section.

Lemma 3. For every positive (negative) real number γ, the function φγ defined below is strictly
increasing (decreasing, respectively) in both α and β

φγ(α, β) =

(
1− 2

α + β

)γ

,

where min{α, β} ≥ 1.

Let P : x1 · · · xk be a non-trivial path in a graph G. The path P is pendent if and only if
max{dx1 , dxk} ≥ 3, min{dx1 , dxk} = 1 and dxi = 2 when 2 ≤ i ≤ k− 1. Two pendent paths
of a graph are said to be adjacent if they have a vertex in common.

Theorem 1. For γ ≥ 2
5 , if H is a graph with a minimum value of ABSγ in the family of all

connected graphs of size m and order n, then the graph H possess no adjacent pendent paths.

Proof. We prove the contra-positive statement of the theorem. Assume that P : ca1 · · · ar
and P′ : cb1 · · · bs are adjacent pendent paths in H, where ar and bs are pendent vertices,
and dc ≥ 3. Denote by H′ the graph deduced from H by dropping the edge b1c and by
adding the edge b1ar. Obviously, V(H) = V(H′) and |E(H)| = |E(H′)|. In the following,
we show that the inequality ABSγ(H) > ABSγ(H′) holds, which gives the conclusion of
the contra-positive statement of the theorem. Take X = NH(a) \ {a1, b1} and assume that
γ ≥ 2

5 .
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Case 1. r = s = 1.
By utilizing the definition of ABSγ and Lemma 3, one has

ABSγ(H)− ABSγ(H′) = ∑
x∈X

((
1− 2

dc + dx

)γ

−
(

1− 2
dc + dx − 1

)γ)
+

(
1− 2

dc + 1

)γ

−
(

1
3

)γ

> 0.

Case 2. max{r, s} ≥ 2 and min{r, s} = 1.
In this case, again one obtains

ABSγ(H)− ABSγ(H′) = ∑
x∈X

((
1− 2

dc + dx

)γ

−
(

1− 2
dc + dx − 1

)γ)
+

(
1− 2

dc + 2

)γ

−
(

1
2

)γ

> 0.

Case 3. min{r, s} ≥ 2.
In this case, by using Lemma 3, we have

ABSγ(H)− ABSγ(H′) = ∑
x∈X

((
1− 2

dc + dx

)γ

−
(

1− 2
dc + dx − 1

)γ)
+ 2
(

1− 2
dc + 2

)γ

−
(

1− 2
dc + 1

)γ

+

(
1
3

)γ

− 2
(

1
2

)γ

(9)

> 2
(

1− 2
dc + 2

)γ

−
(

1− 2
dc + 1

)γ

+

(
1
3

)γ

− 2
(

1
2

)γ

.

Now, by using Lemma 2 on the right-hand side of Equation (9), we obtain

ABSγ(H)− ABSγ(H′) > 2
(

3
5

)γ

+

(
1
3

)γ

− 3
(

1
2

)γ

> 0.

as needed.

Theorem 1 directly implies the following result.

Corollary 1. For γ ≥ 2
5 and n ≥ 3, if G is any n-vertex tree graph different from the path graph

Pn, then

ABSγ(G) > (n− 3)
(

1
2

)γ

+ 2
(

1
3

)γ

= ABSγ(Pn).

Proposition 1 and Theorem 1 directly imply the following result.

Corollary 2. For γ ≥ 2
5 and n ≥ 4, if G is any connected n-vertex graph different from the path

and complete graphs Pn, Kn, then

ABSγ(Pn) = (n− 3)
(

1
2

)γ

+ 2
(

1
3

)γ

< ABSγ(G)

<

(
n
2

)(
n− 2
n− 1

)γ

= ABSγ(Kn).
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Theorem 2. Let G be a graph. Let xy ∈ E(G) such that xy is not a part of any triangle (if it exists)
of G and dx ≥ dy ≥ 2. Take NG(y) = {y1, y2, . . . , ydy−1, x} and NG(x) = {x1, x2, . . . , xdx−1, y}.
Generate a graph G? from G by dropping out the edges y1y, y2y, · · · , yry and by inserting
x1y, x2y, · · · , xry. Then, ABSγ(G) < ABSγ(G?) for γ > 0 and ABSγ(G) > ABSγ(G?)
for γ < 0

Proof. By making use of the definition of ABSγ, one obtains

ABSγ(G)− ABSγ(G?)

=
dx(G)−1

∑
i=1

((
1− 2

dx(G) + dxi (G)

)γ

−
(

1− 2
dx(G) + dxi (G) + dy(G)− 1

)γ)

+
dy(G)−1

∑
j=1

((
1− 2

dy(G) + dyi (G)

)γ

−
(

1− 2
dx(G) + dyi (G) + dy(G)− 1

)γ)
;

the right-hand side of this equation is negative for γ > 0 and positive for γ < 0, because of
Lemma 3.

Theorem 3. For n ≥ 4, if G is any n-vertex tree graph different from the star graph Sn, then

ABSγ(G)


< (n− 1)

(
n− 2

n

)γ

= ABSγ(Sn) when γ > 0,

= (n− 1) when γ = 0,

> (n− 1)
(

n− 2
n

)γ

= ABSγ(Sn) when γ < 0.

Proof. For γ = 0, the result is trivial. Because the proofs of the desired inequalities for
γ > 0 and γ < 0 are very similar to each other, we prove the inequality only for γ > 0.
Thereby, in the rest of the proof, we suppose that γ > 0. The constraints G 6= Sn and
n ≥ 4 guarantee that G has an edge xy such that min{dx, dy} ≥ 2. Assume that dx ≥ dy.
Take NG(y) = {y1, y2, . . . , yr, x} and NG(x) = {x1, x2, . . . , xs, y}. Generate a graph G?

from G by dropping out the edges y1y, y2y, · · · , yry and by inserting x1y, x2y, · · · , xry. By
using Theorem 2, one obtains ABSγ(G) < ABSγ(G?). If G? = Sn then we are finished. If
G? 6= Sn, then G? contains an edge x′y′ such that dx′ ≥ dy′ ≥ 2, and hence, we apply the
above transformation on all the neighbors of y′, except x, of G? to obtain another graph
G?? satisfying ABSγ(G) < ABSγ(G?) < ABSγ(G??). If G?? = Sn, then we are finished. If
G?? 6= Sn, then we repeat this process (of applying the above graph transformation) until
we obtain Sn.

Lemma 4 ([24]). If G is an n-vertex graph, then at most, two of the following properties can hold:

(i). The graph G is triangle free.

(ii). The minimum degree of G is more than 2n
5 .

(iii). The chromatic number of G is at least 3.

The set of all different members of the degree sequence of a graph G is referred to as
the degree set of G.

Theorem 4. If G is a triangle-free graph, containing no component isomorphic to K2, with m ≥ 2
edges and n vertices, then

ABSγ(G)


≤ m

(
n− 2

n

)γ

if γ > 0,

≥ m
(

n− 2
n

)γ

if γ < 0.
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In either case, the equality holds if and only if G is a completely bipartite graph.

Proof. Note that the function ψ defined as follows is strictly decreasing for γ < 0 and
strictly increasing for γ > 0:

ψ(α) =

(
α− 2

α

)γ

, α > 2.

The definition of G implies that for every edge xy ∈ E(G), the inequality dx + dy ≤ n holds,
and hence

ψ(dx + dy)

{
≤ ψ(n) if γ > 0,
≥ ψ(n) if γ < 0,

with equality holds, in either case, if and only if dx + dy = n. Consequently, we have

ABSγ(G)


≤ m

(
n− 2

n

)γ

if γ > 0,

≥ m
(

n− 2
n

)γ

if γ < 0.

with equality if and only if the equation dx + dy = n holds for every edge xy ∈ E(G).
It remains to be shown that G (being a triangle-free graph) is completely bipartite if

and only if the equation dx + dy = n holds for every edge xy ∈ E(G). If G is completely
bipartite, then the desired conclusion follows from the definition of G. Conversely, assume
that the equation dx + dy = n holds for every edge xy ∈ E(G). Take uv, vw ∈ E(G). Then,
du + dv = n = dv + dw, which gives du = dw. Thus, the degree set of G has at most two
elements. (Under the given constraint, if the degree set of G has two elements then adjacent
vertices of G have different degrees.)

Next, we claim that G (being a triangle-free graph) is bipartite. Contrarily, assume that
G is not bipartite. The graph G then contains a cycle of odd length (of at least 5), which
implies that G is regular; otherwise, adjacent vertices of G have different degrees, which is
not possible because of the existence of a cycle of odd length in G. Since dx + dy = n for
every edge xy ∈ E(G), the graph must be n

2 -regular, and n must be even. Since n
2 > 2n

5 and
the chromatic number of G is greater than 2 (because we have contrarily assumed that G
having at least one edge is not bipartite), we arrive at a contradiction to Lemma 4. Thus, G
must be bipartite.

Let (A1, A2) be the bipartition of G. Take a1a2 ∈ E(G) with a1 ∈ A1 and a2 ∈ A2.
Then, a1 must be adjacent to all vertices of A2, and a2 must be adjacent to all vertices of A1
because dx + dy = n for every xy ∈ E(G). Therefore, G is completely bipartite.

We remark here that the part of Theorem 3 regarding γ < 0 follows from Theorem 4.
Next, we give another consequence of Theorem 4.

Corollary 3. If G is a triangle-free graph, containing no component isomorphic to K2, with n
vertices and with at least two edges, then

ABSγ(G) ≤
⌊

n2

4

⌋(
n− 2

n

)γ

, for γ > 0;

where Kbn/2c,dn/2e is the only graph for which the equality sign in this inequality holds.

Proof. The well-known Turán Theorem guaranties |E(G)| ≤
⌊
n2/4

⌋
, where Kbn/2c,dn/2e

is the only graph for which the equality sign in this inequality holds. Now, the required
conclusion follows from Theorem 4.

Since bipartite graphs are also triangle free, Corollary 4 implies the next result.
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Corollary 4. If G is a bipartite graph, containing no component isomorphic to K2, with n vertices
and with at least two edges, then

ABSγ(G) ≤
⌊

n2

4

⌋(
n− 2

n

)γ

, for γ > 0,

where Kbn/2c,dn/2e is the only graph for which the equality sign in this inequality holds.

Theorem 5. If G is a graph, containing no component isomorphic to K2, with m ≥ 2 edges, then

ABSγ(G)


≤ m

(
m− 1
m + 1

)γ

if γ > 0,

≥ m
(

m− 1
m + 1

)γ

if γ < 0.

The equality holds, in either case, if and only if G is the star graph.

Proof. Note that the function ψ defined as follows is strictly decreasing for γ < 0 and
strictly increasing for γ > 0:

ψ(α) =

(
α− 2

α

)γ

, α > 2.

Note that the inequality dx + dy ≤ m + 1 holds for every edge xy ∈ E(G), and hence

ψ(dx + dy)

{
≤ ψ(m + 1) when γ > 0,
≥ ψ(m + 1) when γ < 0,

with equality, in either case, if and only if dx + dy = m + 1. Consequently, we have

ABSγ(G)

{
≤ m · ψ(m + 1) when γ > 0,
≥ m · ψ(m + 1) when γ < 0.

with equality, in either case, if and only if dx + dy = m + 1 for every edge xy ∈ E(G); that
is, every edge of G is adjacent with all other edges of G.

Theorem 3 confirms that Sn is the only graph with the least value of ABSγ over the
family of all n-vertex tree graphs for γ < 0. Next, by utilizing Theorem 5, we prove a result
similar to this statement for connected graphs when − 3

4 < γ < 0.

Corollary 5. For an n-vertex connected graph G 6= Sn, with n ≥ 3, the following inequality holds

ABSγ(G) > (n− 1)
(

n− 2
n

)γ

when −3
4
< γ < 0.

Proof. Assume that G has m edges. Since m ≥ 2 and G 6= Sn, by using Theorem 5, we have

ABSγ(G) > m
(

m− 1
m + 1

)γ

for −3
4
< γ < 0. (10)

Consider the function φγ defined as follows:

φγ(α) = α

(
α− 1
α + 1

)γ

, α ≥ 2,
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where γ is a fixed number satisfying − 3
4 < γ < 0. The derivative function φ′γ of φγ is

found as

φ′γ(α) =

(
α− 1
α + 1

)γ(α2 + 2γα− 1
α2 − 1

)
.

Since α ≥ 2 and − 3
4 < γ < 0, the inequality φ′γ(α) > 0 holds whenever α2 + 2γα− 1 > 0,

which holds whenever
2γ >

1
α
− α ≥ 1

2
− 2,

which is certainly true because α ≥ 2 and − 3
4 < γ < 0. Thus, φ′γ(α) > 0, and hence,

φγ(m) ≥ φγ(n− 1), which together with (10) yield

ABSγ(G) > (n− 1)
(

n− 2
n

)γ

for −3
4
< γ < 0.

5. Conclusions

We investigated the significance of the general ABS index ABSγ on the data set
of twenty-five benzenoid hydrocarbons for predicting their enthalpy of formation for
−10 ≤ γ ≤ 10 and found that its predictive ability for the selected property of the
considered hydrocarbons is comparable to other existing general indices of this type. We
also proved the inequality ABSγ(G + rs) > ABSγ(G) for γ ≥ 0 whenever r and s are non-
adjacent vertices in a graph G. Finally, we proved a number of extremal results regarding
trees, general graphs, and triangle-free graphs of a given number of vertices. It would
be interesting to examine the index ABSγ on other data sets of chemical compounds for
predicting their physicochemical properties. Another direction for possible future work
regarding ABSγ is the study of the behavior of this index of a non-complete graph G when
a new edge is added to G and γ < 0.
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14. Ali, A.; Gutman, I.; Redžepović, I. Atom-bond sum-connectivity index of unicyclic graphs and some applications. Electron. J.

Math. 2023, 5, 1–7.
15. Alraqad, T.A.; Milovanović, I.Ž.; Saber, H.; Ali, A.; Mazorodze, J.P. Minimum atom-bond sum-connectivity index of trees with a

fixed order and/or number of pendent vertices. arXiv 2022, arXiv:2211.05218.
16. Maitreyi, V.; Elumalai, S.; Balachandran, S. The minimum ABS index of trees with given number of pendent vertices. arXiv 2022,

arXiv:2211.05177.
17. Gowtham, K.J.; Gutman, I. On the difference between atom-bond sum-connectivity and sum-connectivity indices. Bull. Cl. Sci.

Math. Nat. Sci. Math. 2022, 47, 55–65.
18. Huang, R.R.; Aftab, S.; Noureen, S.; Aslam, A. Analysis of porphyrin, PETIM and zinc porphyrin dendrimers by atom-bond

sum-connectivity index for drug delivery. Mol. Phys. 2023, e2214073. [CrossRef]
19. Noureen, S.; Ali, A. Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves. Discret. Math.

Lett. 2023, 12, 26–28.
20. Tang, Y.; West, D.B.; Zhou, B. Extremal problems for degree-based topological indices. Discret. Appl. Math. 2016, 203, 134–143.

[CrossRef]
21. Das, K.C.; Gutman, I.; Furtula, B. Survey on geometric-arithmetic indices of graphs. MATCH Commun. Math. Comput. Chem. 2011,

65, 595–644.
22. Thermodynamic Research Center. TRC Thermodynamic Tables–Hydrocarbons; Thermodynamic Research Center, The Texas A & M

University System: College Station, TX, USA, 1987.
23. Gutman, I.; Cyvin, S.J. Introduction to the Theory of Benzenoid Hydrocarbons; Springer: Berlin, Germany, 1989.
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