
Citation: López-Oriona, Á.; Vilar, J.A.

Ordinal Time Series Analysis with

the R Package otsfeatures. Mathematics

2023, 11, 2565. https://doi.org/

10.3390/math11112565

Academic Editors: Niansheng Tang

and Shen-Ming Lee

Received: 24 April 2023

Revised: 27 May 2023

Accepted: 30 May 2023

Published: 3 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Ordinal Time Series Analysis with the R Package otsfeatures
Ángel López-Oriona * and José A. Vilar *

Research Group MODES, Research Center for Information and Communication Technologies (CITIC),
University of A Coruña, 15071 A Coruña, Spain
* Correspondence: oriona38@hotmail.com or a.oriona@udc.es (Á.L.-O.); jose.vilarf@udc.es (J.A.V.)

Abstract: The 21st century has witnessed a growing interest in the analysis of time series data. While
most of the literature on the topic deals with real-valued time series, ordinal time series have typically
received much less attention. However, the development of specific analytical tools for the latter
objects has substantially increased in recent years. The R package otsfeatures attempts to provide a
set of simple functions for analyzing ordinal time series. In particular, several commands allowing the
extraction of well-known statistical features and the execution of inferential tasks are available for the
user. The output of several functions can be employed to perform traditional machine learning tasks
including clustering, classification, or outlier detection. otsfeatures also incorporates two datasets
of financial time series which were used in the literature for clustering purposes, as well as three
interesting synthetic databases. The main properties of the package are described and its use is
illustrated through several examples. Researchers from a broad variety of disciplines could benefit
from the powerful tools provided by otsfeatures.

Keywords: otsfeatures; ordinal time series; feature extraction; cumulative probabilities; R package

MSC: 68N01; 62-07

1. Introduction

Time series data usually arise in a wide variety of disciplines as machine learning,
biology, geology, finance and medicine, among many other fields. Typically, most of the
works on the analysis of these objects have focused on real-valued time series, while the
study of time series with alternative ranges has been given limited attention. However,
the latter type of time series naturally appear in several fields when attempting to analyze
several phenomena. For instance, weekly counts of new infections with a specific disease
in a particular place are often modeled through integer-valued time series [1]. In some
contexts, the time series under consideration do not even take numerical values (e.g.,
temporal records of EEG sleep states for an infant after birth [2]). A comprehensive
introduction to the topic of time series with alternative ranges including classical models,
recent advances, key references, and specific application areas is provided by [3].

Categorical time series (CTS) are characterized by taking values in a qualitative range
consisting of a finite number of categories, which is called ordinal range (if the categories
exhibit a natural ordering) or nominal range otherwise. In this paper, the specific case of
an ordinal range is considered. Time series fulfilling this condition, frequently referred to
as ordinal time series (OTS), pose several challenges to the statistical practitioner. Indeed,
dealing with ordered qualitative outcomes implies that some classical analytic tools must
be properly adapted. For instance, standard measures of location, dispersion and serial
dependence cannot be defined in the same manner as in the real-valued case, but the
underlying ordering existing in the series range still allows for a meaningful definition of
the corresponding quantities in the ordinal setting. For instance, in [4], a unified approach
based on expected distances is proposed to obtain well-interpretable statistical measures

Mathematics 2023, 11, 2565. https://doi.org/10.3390/math11112565 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11112565
https://doi.org/10.3390/math11112565
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1456-7342
https://doi.org/10.3390/math11112565
https://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/11/11/2565?type=check_update&version=2

Mathematics 2023, 11, 2565 2 of 23

for ordinal series. In addition, sample counterparts of the corresponding measures are
introduced and their asymptotic properties are derived.

Ordinal series arise in multiple fields. Some interesting examples include credit ratings
of different countries [4] or degree of cloud coverage in different regions [5]. In addition,
OTS appear quite naturally in psychology, since temporal measurements in such discipline
often originate from ordinal scales, such as Likert questionnaires. For instance, the so-
called mood time series of the married couple [6,7] represents the daily mood of a married
couple over a period of 144 days, which is recorded on Likert scales. Specifically, the
mood measures arise from a questionnaire with 58 items such as “Right now I feel good”,
being the momentary intensity of emotions rated with answers 1 = definitely not, 2 = not,
3 = not really, 4 = a little, 5 = very much, and 6 = extremely. Such types of time series are
naturally considered as ordinal. On the contrary, in many situations, the series under
consideration are actually real-valued, but they are treated as ordinal ones because this
provides several advantages. For instance, in [8], the gross wage of different individuals is
divided into six ordered categories according to the quintiles of the income distribution for
each year. As stated by [8], one of the advantages of considering wage categories relies on
the fact that no inflation adjustment has to be made. Another illustrative example involves
the well-known air quality index (AQI), which presents the status of daily air quality and
shows the degree of air pollution in a particular place [9]. The air quality is often classified
into six different levels which are determined according to the concentrations of several
air pollutants.

While the field of OTS data analysis is still in its early stages, there are already a
few interesting works on the topic. In one of the first papers, ref. [10] proposed robust
methods of time series analysis which use only comparisons of values and not their actual
size. As previously stated, ref. [4] developed an interesting methodology for defining
statistical features in the ordinal setting, which is based on expected distances. Later,
ref. [11] proposed a family of signed dependence measures for analyzing the behavior of
a given OTS. There are also some recent works involving machine learning tasks in the
context of ordinal series. For instance, ref. [9] considered different models to forecast the
air quality levels in 16 cities of Taiwan. Two novel distances between OTS were proposed
in [12] and used to construct effective clustering algorithms. The approaches were applied
to datasets of financial time series and interesting conclusions were reached. Previous
references highlight the remarkable growth that OTS analysis has recently undergone.

In accordance with previous comments, it is clear that the construction of software
tools specifically designed to deal with OTS is crucial. However there exist no software
packages in well-known programming languages (e.g., R version 4.1.2 [13], Python version
3.11.1 [14], etc.) aimed at dealing with ordinal series. Moreover, there are only a few
libraries focusing on the analysis of ordinal data without a temporal nature, which are
mostly written in the R language, but too often restricted to specific statistical procedures.
For instance, the package ordinal [15] implements cumulative link models for coping with
ordinal response variables. Specific functions for generating multivariate ordinal data
are provided through package MultiOrd [16]. In a purely machine learning context, an
innovative computing tool named ocapis containing classification algorithms for ordinal
data is described in [17]. In addition, the library includes two preprocessing techniques:
an instance selector and a feature selector. Note that, although their usefulness is beyond
doubt, none of the previously mentioned packages is suitable to execute simple exploratory
analyses, a task which should be usually performed before moving on to more sophisticated
procedures. In sum, there are currently no software tools allowing to compute classical
features for ordinal series.

The goal of this manuscript is to present the R package otsfeatures, which includes
several functions to compute well-known statistical features for ordinal series. As well
as giving valuable information about the behavior of the time series, the corresponding
features can be used as input for classical machine learning procedures, as clustering,
classification, and outlier detection algorithms. In addition, otsfeatures also includes

Mathematics 2023, 11, 2565 3 of 23

some commands allowing to perform traditional inferential tasks. The two databases
of financial time series described in [12] are also available in the package, along with
three synthetic datasets containing OTS which were generated from different underlying
stochastic processes. These data collections allow the users to test the commands available
in otsfeatures. It is worth mentioning that some functions of the package can also be
employed to analyze ordinal data without a temporal character.

In summary, the package otsfeatures intends to integrate a set of simple but powerful
functions for the statistical analysis of OTS into a single framework. The implementation of
the package was performed by using the open-source R programming language due to the
role of R as the most used programming language for statistical computing. otsfeatures is
available from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.
org/web/packages/otsfeatures/index.html (accessed on 15 May 2023).

The rest of the paper is structured as follows. A summary of relevant features to
analyze marginal properties and the serial dependence of ordinal series is presented in
Section 2. Furthermore, some novel features measuring cross-dependence between ordinal
and numerical processes are also introduced. The main functions implemented in otsfea-
tures and the available datasets are presented in Section 3 after providing some background
on ordinal series. In Section 4, the functionality of the package is illustrated through several
examples considering synthetic data and the financial databases included in otsfeatures.
In addition, the process of using the output of some functions to carry out traditional data
mining tasks is described. Some conclusions are given in Section 5.

2. Analyzing Marginal Properties and Serial Dependence of Ordinal Time Series

Let {Xt}t∈Z, Z = {. . . ,−1, 0, 1, . . .}, be a strictly stationary stochastic process having
the ordered categorical range S = {s0, . . . , sn} with s0 < s1 < . . . < sn. The process
{Xt}t∈Z is often referred to as an ordinal process, while the categories in S are frequently
called the states. Let {Ct}t∈Z be the count process with range {0, . . . , n} generating the
ordinal process {Xt}t∈Z, i.e., Xt = sCt . It is well known that the distributional properties of
{Ct}t∈Z (e.g., stationarity) are properly inherited by {Xt}t∈Z [3]. In particular, the marginal
probabilities can be expressed as

pi = P(Xt = si) = P(Ct = i), i = 0, . . . , n, (1)

while the lagged joint probabilities (for a lag l ∈ Z) are given by

pij(l) = P(Xt = sj, Xt−l = si) = P(Ct = j, Ct−l = i), i, j = 0, . . . , n. (2)

Note that both the marginal and the joint probabilities are still well defined in the
general case of a stationary stochastic process with nominal range, i.e., when no under-
lying ordering exists in S . By contrast, in an ordinal process, one can also consider the
corresponding cumulative probabilities, which are defined as

fi = P(Xt ≤ si) = P(Ct ≤ i), i = 0, . . . , n− 1,

fij(l) = P(Xt ≤ sj, Xt−l ≤ si) = P(Ct ≤ j, Ct−l ≤ i),

i, j = 0, . . . , n− 1, l ∈ Z,

(3)

for the marginal and the joint case, respectively.
In practice, the quantities pi, pij(l), fi, and fij(l) must be estimated from a T-length

realization of the ordinal process, Xt = {X1, . . . , XT}, usually referred to as ordinal time
series (OTS). Natural estimates of these probabilities are given by

p̂i =
∑T

k=1 I(Xk = si)

T
, p̂ij(l) =

∑T−l
k=1 I(Xk = si)I(Xk+l = sj)

T − l
, (4)

https://cran.r-project.org/web/packages/otsfeatures/index.html
https://cran.r-project.org/web/packages/otsfeatures/index.html

Mathematics 2023, 11, 2565 4 of 23

f̂i =
∑T

k=1 I(Xk ≤ si)

T
, f̂ij(l) =

∑T−l
k=1 I(Xk ≤ si)I(Xk+l ≤ sj)

T − l
, (5)

where I(·) denotes the indicator function.
Probabilities pi, pij(l), fi, and fij(l) can be used to represent the process {Xt}t∈Z in

terms of marginal and serial dependence patterns. An alternative way of describing a
given ordinal process is by means of features measuring classical statistical properties
(e.g., centrality, dispersion, etc.) in the ordinal setting. A practical approach to define
these quantities consists of considering expected values of some distances between ordinal
categories [4]. Specifically, a given distance measure d defined in S ×S gives rise to specific
ordinal features. Three of the most commonly used distances are the so-called Hamming,
block, and Euclidean, which are defined as

dH(si, sj) = 1− δij, do,1(si, sj) = |i− j| and do,2(si, sj) = (i− j)2, (6)

for a pair of states si and sj, respectively, where δij denotes the Kronecker delta. The
first six quantities in Table 1 describe the marginal behavior of the process Xt for a given
distance d. There, the notation DIVC stands for diversity coefficient, which is an approach
for measuring dispersion proposed by [18], and X1

t and X2
t refer to independent copies

of Xt. In addition, the notation Xr
t was used to define a reflected copy of Xt, that is, a

stochastic process independent of Xt such that P(Xr
t = si) = pn−i, i = 0, . . . , n. Note that

the considered location measures pertain to the ordinal set S . For the remaining marginal
features, some assumptions are needed to obtain the ranges provided in Table 1, where
dn

0 = d(s0, sn). Particularly, for these four measures, we assume that dn
0 = maxx,y∈S d(x, y),

a property which is usually referred to as maximization. In addition, for the asymmetry, we
require that (J− I)D is a positive semidefinite matrix, where I and J denote the identity and
the counteridentity matrices of order n + 1 and D = (dij)1≤i,j≤n+1, where dij = d(si−1, sj−1)
is the corresponding pairwise distance matrix. Moreover, for both the asymmetry and the
skewness to be reasonable measures, we assume that the distance d is centrosymmetric, that is,
d(si, sj) = d(sn−i, sn−j), i, j = 0, . . . , n. Note that, for a symmetric process (that is, a process
Xt such that Xt and Xr

t have the same marginal distribution), then both the asymmetry and the
skewness are expected to be zero. It is worth highlighting that, under the required assumptions,
the quantities disploc,d, dispd, asymd and skewd can be easily normalized to the interval [0, 1]
(or [−1, 1] in the case of the skewness) by dividing them by dn

0 .
Estimates of the marginal features in Table 1, denoted by means of the notation (̂·),

where (·) stands for the corresponding measure (e.g., dispd), can be obtained by considering
estimates of E[d(Xt, si)] (i = 0, . . . , n), E[d(X1

t , X2
t)] and E[d(Xt, Xr

t)] given by

Ê[d(Xt, si)] =
1
T

T

∑
t=1

d(Xt, si),

Ê[d(X1
t , X2

t)] =
n

∑
i,j=0

d(si, sj) p̂i p̂j,

Ê[d(Xt, Xr
t)] =

n

∑
i,j=0

d(si, sj) p̂i p̂n−j,

(7)

respectively. Table 1 also contains some features assessing the serial dependence in an
ordinal process. In this context, one of the most common quantities is the so-called ordinal
Cohen’s κ, which measures the relative deviation of the dispersion for dependent and
independent random variables at a given lag l ∈ Z. This quantity can take either positive
or negative values, with its upper bound being 1 and its lower bound being dependent
on the underlying distance d. A sample version of κd(l), denoted by κ̂d(l), is obtained by
using d̂ispd and the standard estimate of E[d(Xt, Xt−l)] defined as

Mathematics 2023, 11, 2565 5 of 23

Ê[d(Xt, Xt−l)] =
1

T − l

T

∑
t=l+1

d(Xt, Xt−l). (8)

A detailed analysis of the marginal quantities in Table 1 plus the ordinal Cohen’s κ
is given in [4]. In particular, the asymptotic properties of the corresponding estimates are
derived and their behavior is analyzed in some simulation experiments.

Table 1. Some features of an ordinal stochastic process (top) and measuring serial cross-dependence
between an ordinal and a numerical process (bottom). DIVC stands for diversity coefficient. TCC
stands for total cumulative correlation, TMCLC stands for total mixed cumulative linear correlation,
and TMCQC stands for total mixed cumulative quantile correlation.

Ordinal
Measure Definition Range Type

Location
(standard) xloc,d = arg minx∈S E[d(Xt, x)] S Marginal

Location (with
respect to s0) x0

loc,d = arg minx∈S |E[d(Xt, s0)]− d(x, s0)| S Marginal

Dispersion
(standard) disploc,d = E[d(Xt, xloc,d)] [0, dn

0] Marginal

Dispersion
(DIVC) dispd = E[d(X1

t , X2
t)] [0, dn

0] Marginal

Asymmetry asymd = E[d(Xt, Xr
t)]− dispd [0, dn

0] Marginal

Skewness skewd = E[d(Xt, sn)]− E[d(Xt, s0)] [−dn
0 , dn

0] Marginal

Ordinal
Cohen’s κ

κd(l) =
dispd −E[d(Xt ,Xt−l)]

dispd
- Serial

TCC Ψc(l) = 1
n2 ∑n−1

i,j=0 ψij(l)2 [0, 1] Serial

Ordinal and
numerical
measure

Definition Range Type

TMCLC Ψm
1 (l) =

1
n ∑n−1

i=0 ψ∗i (l)
2 [0, 1] Serial

TMCQC Ψm
2 (l) =

1
n ∑n−1

i=0

∫ 1
0 ψ

ρ
i (l)

2dρ [0, 1] Serial

The serial dependence of an ordinal process can be evaluated by means of alterna-
tive quantities which do not pertain to the approach based on expected distances. First,
let us define the cumulative binarization of the process Xt as the multivariate process
{Yt = (Yt,0, . . . , Yt,n−1)

>, t ∈ Z} such that Yt,i = 1 if Xt ≤ si, i = 0, . . . , n− 1. By consider-
ing pairwise correlations in the cumulative binarization and fixing a lag l ∈ Z, we obtain
the quantities

ψij(l) = Corr(Yt,i, Yt−l,j) =
fij(l)− fi f j√

fi(1− fi) f j(1− f j)
. (9)

i, j = 0, . . . , n − 1. The features in (9) are very convenient because they play a similar
role than the autocorrelation function of a numerical stochastic process. A measure of
dependence at lag l can be obtained by considering the sum of the squares of all features
ψij(l). In this way, we define the total cumulative correlation (TCC) as

Ψc(l) =
1
n2

n−1

∑
i,j=0

ψij(l)2. (10)

Mathematics 2023, 11, 2565 6 of 23

An estimate of the previous quantity can be obtained by considering
Ψ̂c(l) = 1

n2 ∑n−1
i,j=0 ψ̂ij(l)2, where ψ̂ij(l) is the natural estimate of ψij(l) obtained by re-

placing fi, f j and fij(l) by f̂i, f̂ j and f̂ij(l) in (9) computed from the realization Xt.
Another interesting phenomenon that can be analyzed when dealing with an ordinal

process is to measure the degree of cross-dependence that the process displays with respect
to a given real-valued process. To this aim, let {Zt, t ∈ Z} be a strictly stationary real-valued
process with variance σ2 and consider the correlation

ψ∗i (l) = Corr(Yt,i, Zt−l) =
Cov(Yt,i, Zt−l)√

fi(1− fi)σ2
, (11)

i = 0, . . . , n− 1, which evaluates the level of linear dependence between state si of process
Xt and the process Zt at a given lag l ∈ Z. A more complete measure assessing general
types of dependence can be constructed by defining the quantity

ψ
ρ
i (l) = Corr

(
Yt,i, I(Zt−l ≤ qZt(ρ))

)
=

Cov(Yt,i, I(Zt−l ≤ qZt(ρ))√
fi(1− fi)ρ(1− ρ)

, (12)

i = 0, . . . , n− 1, where ρ ∈ (0, 1) is a probability level, qZt denotes the quantile function
of process Zt. Note that, by considering different values for ρ, dependence at different levels
at lag l can be evaluated between processes Xt and Zt.

The features of the form ψ∗i (l) can be combined in a proper way to obtain a suitable
measure of the average linear correlation between an ordinal and a numerical process. In
this way, we define the total mixed cumulative linear correlation (TMCLC) at lag l as

Ψm
1 (l) =

1
n

n−1

∑
i=0

ψ∗i (l)
2. (13)

Analogously, a measure of the average quantile correlation between both processes,
so-called the total mixed cumulative quantile correlation (TMCQC) at lag l, can be defined as

Ψm
2 (l) =

1
n

n−1

∑
i=0

∫ 1

0
ψ

ρ
i (l)

2dρ. (14)

Note that both quantities Ψm
1 (l) and Ψm

2 (l) (see the lower part of Table 1) are natu-
rally defined in the range [0, 1], with the value 0 being reached in the case of null cross-
dependence between Xt and Zt. On the contrary, larger values indicate a stronger degree
of cross-dependence between both processes.

Natural estimates of Ψm
1 (l) and Ψm

2 (l), denoted by Ψ̂m
1 (l) and Ψ̂m

2 (l), respectively, can
be obtained by considering standard estimates of ψ∗i (l) and ψ

p
i (l), denoted by ψ̂∗i (l) and

ψ̂
p
i (l), respectively. To compute the latter estimates, a T-length realization of the bivariate

process {(Xt, Zt), t ∈ Z}, that is (Xt, Zt) = {(X1, Z1), . . . , (XT , ZT)}, is needed. In this way,
estimates ψ̂∗i (l) and ψ̂

p
i (l) take the form

ψ̂∗i (l) =
Ĉov(Yt,i, Zt−l)√

f̂i(1− f̂i)σ̂2
,

ψ̂
p
i (l) =

Ĉov(Yt,i, I(Zt−l ≤ qZt(ρ))√
f̂i(1− f̂i)ρ(1− ρ)

,

(15)

where Ĉov(·, ·) denotes the standard estimate of the covariance between two random
variables, and σ̂2 is the standard estimate of the variance of process Zt computed from
the realization Zt. Estimates in (15) give rise to the quantities Ψ̂m

1 (l) =
1
n ∑n−1

i=0 ψ̂∗i (l)
2 and

Ψ̂m
2 (l) =

1
n ∑n−1

i=0

∫ 1
0 ψ̂

ρ
i (l)

2dρ.

Mathematics 2023, 11, 2565 7 of 23

3. Main Functions in otsfeatures

This section is devoted to present the main content of package otsfeatures. First, the
datasets available in the package are briefly described, and then the main functions of the
package are introduced, including both graphical and analytical tools.

3.1. Available Datasets in otsfeatures

The package otsfeatures contains some OTS datasets which can be employed to com-
pute ordinal features, evaluate different data mining algorithms, or simply for illustrative
purposes. Specifically, otsfeatures includes two databases of financial time series that were
introduced by [12]. In addition, three simulated data collections which were also used
in [12] for the evaluation of clustering algorithms are provided. A description regarding
the databases which are available in otsfeatures is provided below.

• Financial datasets. The first financial dataset contains credit ratings according to
Standard & Poors (S&P) for the 27 countries of the European Union (EU) plus the
United Kingdom [4,12]. Each country is described by means of a monthly time series
with values ranging from “D” (worst rating) to “AAA” (best rating). Specifically, the
whole range consists of the n + 1 = 23 states s0, . . . , s22, given by “D”, “SD”, “R”,
“CC”, “CCC−”, “CCC”, “CCC+”, “B−”, “B”, “B+”, “BB−”, “BB”, “BB+”, “BBB−”,
“BBB”, “BBB+”, “A−”, “A”, “A+”, “AA−”, “AA”, “AA+”, and “AAA”, respectively.
The sample period spans from January 2000 to December 2017, thus resulting serial
realizations of length T = 216. The second database consists of 9402 time series for
Austrian men entering the labor market between 1975 and 1980 at an age of at most
25 years [8]. The time series represent gross wages categories in May of successive
years, which are labeled with the integers from 0 to 5. The quintiles of the income
distribution for a given year were used to define the wage categories. In this way,
category 0 represents individuals with the lowest incomes, while category 5 represents
individuals with the highest incomes. The series exhibit individual lengths ranging
from 2 to 32 years with the median length being equal to 22. Note that, as a natural
ordering exists in the set of wage categories, the corresponding time series can be
naturally treated as OTS.

• Synthetic datasets. Each one of the synthetic datasets is associated with a particular
ordinal model concerning the underlying count process of a given OTS, namely
binomial AR(p) [19], binomial INARCH(p) [20], and ordinal logit AR(1) (see Examples
7.4.6 and 7.4.8 in [3]) models for the first, second, and third database, respectively. In
all cases, the corresponding collection contains 80 series with n + 1 = 6 categories and
length T = 600, which are split into 4 groups of 20 series each. All series in a given
dataset were generated from the corresponding type of process but the coefficients
of the generating model are different between groups. The specific coefficients were
chosen by considering Scenarios 1, 2, and 3 in [12]. According to the structure of these
data objects, the existence of 4 different classes can be assumed.

It is worth highlighting that the databases available in otsfeatures were already con-
sidered in the literature for several purposes. Specifically, the dataset of credit ratings was
employed by [4] to perform data analysis of OTS, while the database of Austrian employees
was used by [8] to carry out clustering of categorical time series. Additionally, in [12],
both collections were considered for the application of clustering procedures specifically
designed to deal with OTS. Thus, it is clearly beneficial for the user to have available the
corresponding databases through otsfeatures. On the other hand, we should note that,
in each one of the synthetic datasets, the different classes can be distinguished by means
of both marginal distributions and serial dependence patterns. Hence, these data objects
are suitable to evaluate the effectiveness of the features in Table 1 for several machine
learning problems. In fact, the usefulness of these features to carry out clustering and
classification tasks (among others) in these databases is illustrated in Section 4.3. Table 2
contains a summary of the 5 datasets included in otsfeatures. Specifically, the last column

Mathematics 2023, 11, 2565 8 of 23

contains the number of classes existing in a given data collection according to a context
of supervised classification. For instance, 4 different classes are assumed to exist in the
synthetic databases due to the fact that the 80 time series in each one were generated from
4 different stochastic processes. It is worth highlighting that datasets CreditRatings and
AustrianWages do not contain clearly defined classes, and thus the notation “-” was used
in the last column for these databases.

Table 2. Summary of the datasets included in otsfeatures. The notation No. Series, T, |S|, and No.
Classes stands for the number of series, the length of the series, the number of categories in the range
of the series and the number of classes existing in a given dataset.

Dataset Object No. Series T |S| No. Classes

Credit
Ratings CreditRatings 28 216 23 -

Austrian
Wages AustrianWages 9402 Variable 6 -

Synthetic I SyntheticData1 80 600 6 4
Synthetic II SyntheticData2 80 600 6 4
Synthetic III SyntheticData3 80 600 6 4

3.2. Functions for Inferential Tasks

In this section, we present some of the tools available in otsfeatures to perform
classical statistical tasks. In particular, we first describe one specific plot which can be used
to analyze the serial dependence structure of a given ordinal series. Afterwards, we give an
overview of some functions allowing to carry out hypothesis testing and the construction
of confidence intervals for the quantities introduced in Section 2.

3.2.1. Serial Dependence Plot

When analyzing a real-valued processes, the autocorrelation function is a classical tool
for describing the corresponding serial dependence structure. Note that, in the ordinal
setting, this function can still be employed by considering the underlying count process Ct
introduced in Section 2, which is indeed real-valued. However, using the autocorrelation
function in this context has several drawbacks, since one is treating the ordinal process
as a numerical process, thus ignoring the available information about the dissimilarity
between the different ordinal categories. Therefore, an alternative, more suitable tool is
required to examine the serial dependence patterns of an ordinal process. In this regard,
one interesting possibility consists of considering the quantity κd(l) in order to evaluate the
degree of dependence exhibited by the process at a given lag l ∈ Z. In fact, this quantity
takes the value of 0 for an i.i.d. process, while positive or negative values are associated
with different types of dependence structures. Clearly, in practice, one often works with the
T-length realization Xt and computes the estimated Cohen’s κ, κ̂d(l), which can be used to
describe the serial dependence patterns of the underlying ordinal process.

It is worth highlighting that the asymptotic distribution of the previous estimate is
well-known in the particular case of the distance d being the block distance. Specifically, ac-
cording to Theorem 7.2.1 in [4], the distribution of the estimate κ̂do,1(l) can be approximated

by a normal distribution with mean − 1
T and variance 4

Td̂isp
2
do,1

∑n−1
k,l=0

(
f̂min{k,l} − f̂k f̂l

)2.

The previous asymptotic result is rather useful in practice, since it can be used to test the
null hypothesis of serial independence at lag l. In particular, critical values for a given
significance level α can be computed, and these quantities do not depend on the specific
lag. Thus, a serial dependence graph analogous to the ACF-based plot in the real-valued
case can be constructed. Specifically, after setting a maximum lag of interest, L, the values
of κ̂do,1(l) for lags ranging from 1 to L are simultaneously depicted in one graph. Next,
the corresponding critical values are added to the plot by means of a horizontal lines.

Mathematics 2023, 11, 2565 9 of 23

According to the asymptotic approximation for κ̂do,1(l), the critical values for an arbitrary
significance level α are given by

±
2
√

∑n−1
k,l=0

(
f̂min{k,l} − f̂k f̂l

)2z1−α/2
√

Td̂ispdo,1

− 1
T

, (16)

where zτ denotes the τ-quantile of the standard normal distribution. The corresponding
graph allows one to easily identify the collection of significant lags for a given ordinal
series. Similarly to the autocorrelation plot in the numerical setting, serial dependence
plots for OTS can be used for several purposes, including model selection or identification
of regular patterns in the series among others.

The right panel of Figure 1 shows the serial dependence plot based on κ̂do,1(l) for one
of the time series in the dataset AustrianWages. A maximum lag L = 10 was considered. The
function plot_cohens_kappa() was employed to construct the graph. It is worth remarking
that, if the argument plot = FALSE is used in this function, then the output is not the serial
dependence plot but a list containing the corresponding p-values and critical values.

Figure 1. Time series plot (left panel) and serial dependence plot based on κ̂do,1
(l) (right panel) for

one of the series in dataset AustrianWages. The dashed lines indicate the critical values regarding the
null hypothesis of the corresponding quantity being zero.

3.2.2. Hypothesis Testing and Confidence Intervals

The package otsfeatures allows us to perform hypothesis tests for alternative quan-
tities in addition to κdo,1(l). In particular, there are some functions for testing that the
quantities dispdo,1

, asymdo,1
and skewdo,1 are equal to some specified values employing

the corresponding estimates. In addition, confidence intervals for these quantities can be
constructed through some commands available in the package. In both cases, the corre-
sponding implementations rely on the asymptotic results provided in Theorem 7.1.1 in [4].
It is worth highlighting that these results are valid for the general case in which dependence
between observations exist. However, when dealing with i.i.d. data, the corresponding
expressions for the asymptotic means and variances are still valid but they are simplified.
In this regard, package otsfeatures gives the user the possibility of performing hypothesis
tests and constructing confidence intervals for i.i.d. data (see Theorem 4.1 in [4]). This is
indicated to the corresponding functions by using the argument temporal = FALSE.

A summary of the main functions in otsfeatures allowing one to perform inferential
tasks is given in Table 3.

Mathematics 2023, 11, 2565 10 of 23

Table 3. Some functions for inference tasks implemented in otsfeatures.

Output Function in Otsfeatures

Serial dependence plot for κ̂do,1
(l) plot_ordinal_cohens_kappa()

Test based on κ̂do,1
(l) plot_ordinal_cohens_kappa(plot = FALSE)

Test based on d̂ispdo,1
test_ordinal_dispersion()

Test based on âsymdo,1
test_ordinal_asymmetry()

Test based on ŝkewdo,1
test_ordinal_skewness()

Confidence interval for dispdo,1
ci_ordinal_dispersion()

Confidence interval for asymdo,1
ci_ordinal_asymmetry()

Confidence interval for skewdo,1
ci_ordinal_skewness()

3.3. Functions for Feature Extraction in otsfeatures

The package otsfeatures contains several functions allowing one to compute well-
known statistical quantities for OTS measuring either marginal or serial properties. All
commands of this type are based on the estimated features presented in Section 2. A
summary of the corresponding functions is given in Table 4. In Section 4.3, the use
of several functions for feature extraction available in otsfeatures is illustrated through
several examples.

Table 4. Some functions for feature extraction implemented in otsfeatures.

Features Function in
Otsfeatures Features Function in

Otsfeatures

(p̂0, . . . , p̂n) marginal_probabilities() d̂ispd ordinal_dispersion_2()(
p̂ij(l)

)
0≤i,j≤n joint_probabilities() âsymd ordinal_asymmetry()

(f̂0, . . . , f̂n−1) c_marginal_probabilities() ŝkewd ordinal_skewness()(
f̂ij(l)

)
0≤i,j≤n−1

c_joint_probabilities() κ̂d(l) ordinal_cohens_kappa()

x̂loc,d ordinal_location_1() Ψ̂c(l) total_c_cor()
x̂0

loc,d ordinal_location_2() Ψ̂m
1 (l) total_mixed_c_cor()

d̂isploc,d ordinal_dispersion_1() Ψ̂m
2 (l) total_mixed_c_qcor()

4. Using the otsfeatures Package—AnIllustration

This section is devoted to illustrate the use of package otsfeatures. First we give some
general considerations about the package and next, we provide some examples concerning
the use of several functions for data analysis and feature extraction.

4.1. Some Generalities about otsfeatures

In otsfeatures, a T-length OTS with range S = {s0, s1, . . . , sn}, Xt = {X1, . . . , XT}, is
defined through a vector of length T whose possible values are the integer numbers from 0
to n. More precisely, the realization Xt is represented by using the associated realization of
the generating count process Ct, that is, Ct = {C1, . . . , CT} such that X j = sCj

, j = 1, . . . , T.
Note that the main advantage of this approach relies on the fact that only numerical vectors
are needed for the representation of ordinal series.

The majority of functions in the package take as input a single OTS. For instance,
functions in Table 4 return by default the corresponding estimate. Some of these func-
tions admit the argument features = TRUE. In that case, the function returns a vector
which contains the individual quantities which are considered to construct the correspond-
ing estimate. For instance, the function total_c_cor() computes by default the estimate
Ψ̂c(l). However, if we employ the argument features = TRUE, a matrix whose (i, j) entry
contains the quantity ψ̂ij(l) is returned. In fact, the extraction of the individual compo-
nents of some estimates can be very useful for several purposes. Functions ots_plot() and
plot_ordinal_cohens_kappa() with the default settings produce the corresponding time series

Mathematics 2023, 11, 2565 11 of 23

plot and serial dependence graph, respectively. On the contrary, the remaining functions
and function plot_ordinal_cohens_kappa() with plot = FALSE return the results of the corre-
sponding hypothesis tests, namely the test statistic, the critical value for a given significance
level used as input, and the p-value. It is worth remarking that most commands in otsfeatures
require the corresponding states to be specified in a vector of the form (0, 1, . . . , n). This is
done by means of the argument states. In this way, several issues can be avoided. For instance,
a particular realization may not include all the underlying ordinal values. Therefore, when
analyzing such a series, one could ignore the existence of some states. This is properly solved
by using the argument states.

The databases included in otsfeatures are defined by the means of a list named as
indicated in the first column of Table 2. In the case of the synthetic databases, each list
contains two elements, which are described below.

• The element called data is a list of vectors with the ordinal series of the corresponding
collection.

• The element named classes includes a vector of class labels associated with the objects
in data.

On the other hand, the lists associated with datasets CreditRatings and AustrianWages
only include the element data, as there are no underlying class labels for these data collections.

Let us take a look at one time series in dataset AustrianWages, which represents a
specific employee of the Austrian labor market.

> library(otsfeatures)
> AustrianWages$data[[10]]
[1] 3 3 3 3 3 0 0 3 2 0 4 0 0 3 3 3 4 5 4 4 4 5

In this series, the corresponding wage categories are identified with the integers from 0
to 5 as explained in Section 3.1 (category 0 represents the lowest incomes and category 5, the
highest incomes). In this way, the previous sequence represents an individual who started
with a moderate wage (category 3), then decreased his income level and finally ended up
in the highest wage category. Note that this representation of the series by means of integer
numbers provides a simple way of quickly examining the corresponding ordinal values.

4.2. Performing Inferential Tasks

The functions described in Section 3.2 allow the user to obtain valuable information from
a given ordinal series. Let us start by analyzing one of the time series in the dataset Austrian-
Wages. Before carrying out inferential tasks, we are going to visualize the corresponding time
series as a preliminary step. To this aim, we can employ the function ots_plot(), which takes as
input the time series we want to represent and a vector containing the different states.

ots_plot(AustrianWages$data[[100]], states = 0 : 5,
labels = 0 : 5)

We also employed the argument labels = 0:5 to indicate that the states s0 to s5 are
labeled with the integers from 0 to 5, since this is the labeling used in the original dataset
(see Section 3.1). The corresponding graph is provided in the left panel of Figure 1. This
series corresponds to an individual who belonged to all income levels except for the
highest one (5). It is worth highlighting that, as the different states are located in the
y-axis in increasing order, the plot is rather intuitive. In addition, note that, for the sake
of simplicity, the different categories are treated as equidistant. Specifically, the graph is
constructed by considering the block distance do,1 between states, which is not always
suitable, since the true underlying distance often depends on the specific context. Therefore,
the graph produced by function ots_plot() should not be treated as an accurate plot of the
corresponding OTS, but as a rough representation thereof.

As stated in Section 3.2.1, function plot_ordinal_cohens_kappa() in otsfeatures allows to
construct a serial dependence plot based on the estimate κ̂do,1(l). Let us represent such plot
for the series in the left panel of Figure 1.

Mathematics 2023, 11, 2565 12 of 23

> sd_plot <- plot_ordinal_cohens_kappa(series = AustrianWages$data[[100]],
states = 0 : 5)

By default, the function considers lags from 1 to 10 (argument max_lag) and a significance
level α = 0.05 for the corresponding test (argument α). The resulting graph is given in the
right panel of Figure 1. As the standard autocorrelation plot, the corresponding estimates
are displayed in a sequential order, with dashed lines indicating the critical values for the
associated test. In this case, the serial dependence plot indicates significant dependence at
lags 1 and 2. Moreover, dependence at lags 9 and 10 could also be considered significant, but
this may be due to chance, since multiple tests are simultaneously carried out. In addition to
the dependence plot, function plot_ordinal_cohens_kappa() also produces numerical outputs.
For instance, the corresponding p-values can be obtained by using the argument plot = FALSE.

> sd_plot <- plot_ordinal_cohens_kappa(series = AustrianWages$data[[100]],
states = 0 : 5, plot = FALSE)
> round(sd_plot$p_values, 2)
[1] 0.00 0.02 0.68 0.30 0.38 0.49 0.26 0.11 0.03 0.04

The p-values in the previous output corroborate that the quantity κdo,1(1) is signifi-
cantly non-null, thus confirming the existence of serial dependence at the first lag. Note that
the p-values associated with lags 2, 9 and 10 also indicate rejection of the null hypothesis at
level α = 0.05. However, the set of p-values should be properly adjusted to handle random
rejections of the null hypothesis that can arise in a multiple testing context. For instance,
the well-known Holm’s method, which controls the family-wise error rate at a pre-specified
α-level, could be applied to the p-values by executing the following command.

> p.adjust(round(sd_plot$p_values, 2), method = ‘holm’)
[1] 0.00 0.18 1.00 1.00 1.00 1.00 1.00 0.66 0.24 0.28

According to the corrected p-values, significant serial dependence still exists at lag 1, but
the null hypothesis of serial independence at lags 2, 9 and 10 cannot be now rejected.

In additon to analyzing serial dependence, hypothesis tests and confidence intervals
for classical ordinal quantities can be constructed by using otsfeatures (see Section 3.2.2).
To illustrate these tasks, we consider again the previous OTS and start by testing the
null hypothesis stating that the quantity skewdo,1 is equal to 0. To this aim, we employ
the function test_ordinal_skewness(), whose main arguments are the corresponding ordinal
series (argument series) and the assumed value for skewdo,1 (argument true_skewness), which
is set to zero in this example.

> test_os <- test_ordinal_skewness(series = AustrianWages$data[[100]],
states = 0 : 5, true_skewness = 0)
> test_os$p_value
[1] 0.4239951

The p-value of the test resulted as 0.424. Therefore, the null hypothesis cannot be
rejected at any reasonable significance level and we can assume that the series was gener-
ated from an ordinal process with 0 skewness. For illustrative purposes, let us repeat the
previous test by setting true_skewness = 2.

> test_os <- test_ordinal_skewness(series = AustrianWages$data[[100]],
states = 0 : 5, true_skewness = 2)
> test_os$p_value
[1] 0.02287435

This time, the p-value indicates that the null hypothesis should be rejected at the
standard significance level α = 0.05; that is, we could assume that the true skewness is

Mathematics 2023, 11, 2565 13 of 23

different from 2 at that level. However, this is no longer the case for stricter significance
levels (e.g., α = 0.01).

The construction of a confidence interval for the quantity skewdo,1 can be easily per-
formed by using the function ci_ordinal_skewness(). By default, a confidence level of 0.95 is
considered (argument level).

> ci_os <- ci_ordinal_skewness(series = AustrianWages$data[[100]],
states = 0 : 5)
> ci_os
Lower bound Upper bound
1 -0.7547583 1.794758

The lower and upper bounds of the confidence interval are given by −0.75 and 1.79,
respectively. It is worth remarking that, as we are dealing with a rather short time series
(T = 25), the interval is quite broad. In addition, note that 0 is included in the interval,
which is coherent with the results of the first hypothesis test for skewdo,1 above. Let us now
construct a confidence interval by considering a less strict confidence level, namely 0.90.

> ci_os <- ci_ordinal_skewness(series = AustrianWages$data[[100]],
states = 0 : 5, level = 0.90)
> ci_os
Lower bound Upper bound
1 -0.5498109 1.589811

As expected, the new interval has a shorter length than the previous one.
Inferential tasks for quantities dispdo,1

, and asymdo,1
can be carried out in an analogous

way by using the corresponding functions (see Table 3). Moreover, these commands can
also be used when dealing with i.i.d. data by using the argument temporal = FALSE.

4.3. Performing Data Mining Tasks

Jointly used with external functions, otsfeatures becomes a versatile and helpful
tool to carry out different data-mining tasks involving ordinal series. In this section,
for illustrative purposes, we focus our attention on three important problems, namely
classification, clustering, and outlier detection.

4.3.1. Performing OTS Classification

Firstly, we show how the output of the functions in Table 4 can be used to perform
feature-based classification. We illustrate this approach by considering the data collection
SyntheticData1, which contains 80 series generated from 4 different stochastic processes,
each one of them giving rise to 20 OTS. The underlying processes are given by two binomial
AR(1) and two binomial AR(2) models. Thus, each series in the dataset SyntheticData1
has an associated class label determined by the corresponding generating process. Using
the necessary functions, each series is replaced by a feature vector given by the quan-
tities x̂loc,do,1 , d̂ispdo,1

, âsymdo,1
, ŝkewdo,1 , κ̂do,1(1) and κ̂do,1(2). In all cases, the argument

distance = ‘Block’ (default) is used to indicate that the block distance should be employed as
the underlying block distance between states.

> features_1 <- unlist(lapply(SyntheticData1$data,
ordinal_location_1, states = 0 : 5, distance = ‘Block’))
> features_2 <- unlist(lapply(SyntheticData1$data,
ordinal_dispersion_2, states = 0 : 5, distance = ‘Block’))
> features_3 <- unlist(lapply(SyntheticData1$data,
ordinal_asymmetry, states = 0 : 5, distance = ‘Block’))
> features_4 <- unlist(lapply(SyntheticData1$data,
ordinal_skewness, states = 0 : 5, distance = ‘Block’))

Mathematics 2023, 11, 2565 14 of 23

> features_5 <- unlist(lapply(SyntheticData1$data,
ordinal_cohens_kappa, states = 0 : 5, distance = ‘Block’, lag = 1))
> features_6 <- unlist(lapply(SyntheticData1$data,
ordinal_cohens_kappa, states = 0 : 5, distance = ‘Block’, lag = 2))

> feature_dataset <- cbind(features_1, features_2, features_3,
features_4, features_5, features_6)

Note that the ith row of the object feature_dataset contains estimated values charac-
terizing the marginal and serial behavior of the ith OTS in the dataset. Therefore, several
standard classification algorithms can be applied to these matrix by means of the R package
caret [21]. Package caret requires the dataset of features to be an object of class data.frame
whose last column must provide the class labels of the elements and be named ‘Class’.
Thus, as a preliminary step, we create df_feature_dataset, a version of feature_dataset properly
arranged to be used as input to caret functions, by means of the following chunk of code.

> df_feature_dataset <- data.frame(cbind(feature_dataset,
SyntheticData1$classes))
> colnames(df_feature_dataset)[7] <- ‘Class’
> df_feature_dataset[,7] <- factor(df_feature_dataset[,7])

The function train() allows one to fit several classifiers to the corresponding dataset,
while the selected algorithm can be evaluated, for instance, by leave-one-out cross-validation
(LOOCV). A grid search in the hyperparameter space of the corresponding classifier is
performed by default. First we consider a standard classifier based on k nearest neighbours
(kNN) by using method = ‘knn’ as input parameter. By means of the command trControl(),
we define LOOCV as evaluation protocol.

> library(caret)
> train_control <- trainControl(method = ‘LOOCV’)
> model_knn <- train(Class~., data = df_feature_dataset,
trControl = train_control, method = ‘knn’)

The object model_kNN contains the fitted model and the evaluation results, among
others. The reached accuracy can be accessed as follows.

> max(model_knn$results$Accuracy)
[1] 0.95

The kNN classifier achieves an accuracy of 0.95 in the dataset SyntheticData1. Specifi-
cally, it produces only 4 misclassifications. Next, we study the performance of the random
forest and the linear discriminant analysis. To this aim, we need to set method = ‘rf’ and
method = ‘lda’, respectively.

> model_rf <- train(Class~., data = df_feature_dataset,
trControl = train_control, method = ‘rf’)
> max(model_rf$results$Accuracy)
[1] 1

> model_lda <- train(Class~., data = df_feature_dataset,
trControl = train_control, method = ‘lda’)
> max(model_lda$results$Accuracy)
[1] 1

Both approaches reach a perfect accuracy of 1, thus improving the predictive effective-
ness of the kNN classifier. For illustrative purposes, let us analyze the performance of the
previous classifiers when the Hamming distance between ordinal categories is taken into
account, which is indicated through the argument distance = ‘Hamming’.

Mathematics 2023, 11, 2565 15 of 23

> features_1 <- unlist(lapply(SyntheticData1$data,
ordinal_location_1, states = 0 : 5, distance = ‘Hamming’))
> features_2 <- unlist(lapply(SyntheticData1$data,
ordinal_dispersion_2, states = 0 : 5, distance = ‘Hamming’))
> features_3 <- unlist(lapply(SyntheticData1$data,
ordinal_asymmetry, states = 0 : 5, distance = ‘Hamming’))
> features_4 <- unlist(lapply(SyntheticData1$data,
ordinal_skewness, states = 0 : 5, distance = ‘Hamming’))
> features_5 <- unlist(lapply(SyntheticData1$data,
ordinal_cohens_kappa, states = 0 : 5, distance = ‘Hamming’, lag = 1))
> features_6 <- unlist(lapply(SyntheticData1$data,
ordinal_cohens_kappa, states = 0 : 5, distance = ‘Hamming’, lag = 2))
> feature_dataset <- cbind(features_1, features_2, features_3,
features_4, features_5, features_6)

> df_feature_dataset <- data.frame(cbind(feature_dataset,
SyntheticData1$classes))
> colnames(df_feature_dataset)[7] <- ‘Class’
> df_feature_dataset[,7] <- factor(df_feature_dataset[,7])

> model_knn <- train(Class~., data = df_feature_dataset,
trControl = train_control, method = ‘knn’)
> max(model_knn$results$Accuracy)
[1] 0.975

> model_rf <- train(Class~., data = df_feature_dataset,
trControl = train_control, method = ‘rf’)
> max(model_rf$results$Accuracy)
[1] 1

> model_lda <- train(Class~., data = df_feature_dataset,
trControl = train_control, method = ‘lda’)
> max(model_lda$results$Accuracy)
[1] 0.975

By considering the distance dH, the kNN classifier slightly improves its performance
while the linear discriminant analysis shows a small decrease in predictive effectiveness.
The random forest still reaches perfect results. The classification ability of alternative sets
of features, as well as the behavior of any other classifier, can be examined in an analogous
way as above.

4.3.2. Performing OTS Clustering

The package otsfeatures also provides an excellent framework to carry out clustering
of ordinal sequences. Let us consider now the dataset SyntheticData2 and assume that
the clustering structure is governed by the similarity between underlying models. In
other terms, the ground truth is given by the 4 groups involving the 20 series from the
same generating process (a specific binomial INARCH(p) process). We wish to perform
clustering and, according to our criterion, the clustering effectiveness of each algorithm
must be measured by comparing the experimental solution with the true partition defined
by these four groups.

In cluster analysis, distances between data objects play an essential role. In our case, a
suitable metric should take low values for pairs of series coming from the same stochastic
process, and high values otherwise. A classical exploratory step to shed light on the quality
of a particular metric consists of constructing a two-dimensional scaling (2DS) based on the
corresponding pairwise distance matrix. In short, 2DS represents the pairwise distances in

Mathematics 2023, 11, 2565 16 of 23

terms of Euclidean distances into a two-dimensional space preserving the original values
as much as possible (by minimizing a loss function). For instance, we are going to construct
the 2DS for dataset SyntheticData2 by using two specific distances between CTS proposed

by [12] and denoted by d̂1 and d̂PMF. More specifically, given two OTS X(1)
t and X(2)

t , the
metrics d̂1 and d̂PMF are defined as follows:

d̂1
(
X(1)

t , X(2)
t
)
=

n−1

∑
i=0

(
f̂ (1)i − f̂ (2)i

)2
+

L

∑
k=1

n−1

∑
i=0

n−1

∑
j=0

(
f̂ (1)ij (lk)− f̂ (2)ij (lk)

)2
,

d̂PMF
(
X(1)

t , X(2)
t
)
=

n

∑
i=0

(
p̂(1)i − p̂(2)i

)2
+

L

∑
k=1

n

∑
i=0

n

∑
j=0

(
p̂(1)ij (lk)− p̂(2)ij (lk)

)2
,

(17)

where L = {l1, . . . , lL} is a set of L lags which must be determined in advance and the
superscripts (1) and (2) indicate that the corresponding estimates are based on the real-

izations X(1)
t and X(2)

t , respectively. Both dissimilarities assess discrepancies between the
marginal distributions (first terms) and the serial dependence structures (last terms) of both
series. Therefore, they seem appropriate to group the CTS of a given collection in terms of
underlying stochastic processes. However, note that the distance d̂1 is based on cumulative
probabilities, thus taking into account the underlying ordering existing in the series range.

Let us first create the datasets dataset_1 and dataset_2 with the features required to
compute d̂1 and d̂PMF, respectively. As the series in SyntheticData2 were generated from
binomial INARCH(1) and binomial INARCH(2) processes, we consider only the first
two lags to construct the distance, i.e., we set L = {1, 2}. We have to use the argument
features = TRUE in the corresponding functions.

> list_marginal_1 <- lapply(SyntheticData2$data,
c_marginal_probabilities, states = 0 : 5)
> list_serial_1_1 <- lapply(SyntheticData2$data,
c_joint_probabilities, states = 0 : 5, lag = 1)
> list_serial_1_2 <- lapply(SyntheticData2$data,
c_joint_probabilities, states = 0 : 5, lag = 2)
> dataset_marginal_1 <- matrix(unlist(list_marginal_1),
nrow = 80, byrow = T)
> dataset_serial_1_1 <- matrix(unlist(list_serial_1_1),
nrow = 80, byrow = T)
> dataset_serial_1_2 <- matrix(unlist(list_serial_1_2),
nrow = 80, byrow = T)
> dataset_1 <- cbind(dataset_marginal_1, dataset_serial_1_1,
dataset_serial_1_2)

> list_marginal_2 <- lapply(SyntheticData2$data,
marginal_probabilities, states = 0 : 5)
> list_serial_2_1 <- lapply(SyntheticData2$data,
joint_probabilities, states = 0 : 5, lag = 1)
> list_serial_2_2 <- lapply(SyntheticData2$data,
joint_probabilities, states = 0 : 5, lag = 2)
> dataset_marginal_2 <- matrix(unlist(list_marginal_2),
nrow = 80, byrow = T)
> dataset_serial_2_1 <- matrix(unlist(list_serial_2_1),
nrow = 80, byrow = T)
> dataset_serial_2_2 <- matrix(unlist(list_serial_2_2),
nrow = 80, byrow = T)
> dataset_2 <- cbind(dataset_marginal_2, dataset_serial_2_1,
dataset_serial_2_2)

Mathematics 2023, 11, 2565 17 of 23

The 2DS planes can be built using the function plot_2d_scaling() of the R package
mlmts [22], which takes as input a pairwise dissimilarity matrix.

> library(mlmts)
> distance_matrix_1 <- dist(dataset_1)
> plot_1 <- plot_2d_scaling(distance_matrix_1,
cluster_labels = otsfeatures::SyntheticData2$classes)$plot
> distance_matrix_2 <- dist(dataset_2)
> plot_2 <- plot_2d_scaling(distance_matrix_2,
cluster_labels = otsfeatures::SyntheticData2$classes)$plot

In the above code, the syntax otsfeatures:: was employed because package mlmts
includes a data collection which is also called SyntheticData2. The resulting plots are shown
in Figure 2. In both cases, the points were colored according to the true partition defined
by the generating models. For this, we had to include the argument cluster_labels in the
function plot_2d_scaling(). This option is indeed useful to examine whether a specific metric
is appropriate when the true class labels are known. The 2DS planes reveal that both
metrics are able to identify the underlying structure rather accurately. However, there are
two specific groups of OTS (the ones represented by red and purple points) exhibiting a
certain degree of overlap in both plots, which suggests a high level of similarity between
the corresponding generating processes.

Figure 2. Two-dimensional scaling planes based on distances d̂1 (top panel) and d̂PMF (bottom panel)
for the 80 series in the dataset SyntheticData2.

To evaluate the clustering accuracy of both metrics, we consider the popular partition-
ing around medoids (PAM) algorithm, which is implemented in R through the function
pam() of package cluster [23]. This function needs the pairwise distance matrix and the
number of clusters. The latter argument is set to 4, since the series in dataset SyntheticData2
were generated from 4 different stochastic processes.

> library(cluster)
> clustering_pam_1 <- pam(distance_matrix_1, k = 4)$clustering
> clustering_pam_2 <- pam(distance_matrix_2, k = 4)$clustering

Mathematics 2023, 11, 2565 18 of 23

The vectors clustering_pam_1 and clustering_pam_2 provide the respective clustering
solutions based on both metrics. The evaluation of the quality of both partitions requires
measuring their degree of agreement with the ground truth, which can be performed by
using the Adjusted Rand Index (ARI) [24]. This index can be easily computed by means of
the function external_validation() of package ClusterR [25].

> library(ClusterR)
> external_validation(clustering_pam_1,
otsfeatures::SyntheticData2$classes)
[1] 0.6545303
> external_validation(clustering_pam_2,
otsfeatures::SyntheticData2$classes)
[1] 0.6535088

The ARI index is bounded between −1 and 1 and admits a simple interpretation: the
closer it is to 1, the better the agreement between the ground truth and the experimental
solution is. Moreover, the value of 0 is associated with a clustering partition picked at
random according to some simple hypotheses. Therefore, it can be concluded that both
metrics d̂1 and d̂PMF, respectively attain moderate scores in this dataset when used with
the PAM algorithm. In particular, both partitions are substantially similar. Note that a
nonperfect value of ARI index was already expected from the 2DS plots in Figure 2 due to
the overlapping character of Clusters 1 and 4.

The classical K-means clustering algorithm can be also executed by using otsfeatures
utilities. In this case, we need to employ a dataset of features along with the kmeans()
function of package stats [13].

set.seed(123)
clustering_kmeans_1 <- kmeans(dataset_1, c = 4)$cluster
external_validation(clustering_kmeans_1,
otsfeatures::SyntheticData2$classes)
[1] 0.6545303
> set.seed(123)
> clustering_kmeans_2 <- kmeans(dataset_2, c = 4)$cluster
> external_validation(clustering_kmeans_2,
otsfeatures::SyntheticData2$classes)
[1] 0.7237974

In the previous example, slightly better results are obtained when the d̂PMF is em-
ployed along with the K-means algorithm. Concerning d̂1, its clustering accuracy is exactly
the same as the one associated with the PAM algorithm. The performance of alternative
dissimilarities or collections of features regarding a proper identification of the underlying
clustering structure could be determined by following the same steps than in the previous
experiments.

4.3.3. Performing Outlier Detection in OTS Datasets

The topic of outlier detection has received a lot of attention in the literature, either
in the nontemporal setting (see, e.g., [26] for a review on outlier detection methods for
univariate data) or in the context of time series data (see, e.g., [27] for a review on anomaly
detection in time series data). Concerning the latter subject, it is worth noting that different
notions of outlier are considered in this context (additive outliers, innovative outliers, and
others). Here, we consider the outlying elements to be whole OTS objects. More specifically,
an anomalous OTS is assumed to be a series generated from a stochastic process different
from those generating the majority of the series in the database.

To illustrate how otsfeatures can be useful to carry out outlier identification, we
create a dataset which includes two atypical elements. For it, we consider all the series in
SyntheticData3 along with the first two series in dataset SyntheticData2.

Mathematics 2023, 11, 2565 19 of 23

> data_outliers <- c(SyntheticData3$data, SyntheticData2$data[1:2])

The resulting data collection, data_outliers, contains 82 OTS. The first 80 OTS can be
split into four homogeneous groups of 20 series, but those located into positions 81 and 82
are actually anomalous elements in the collection because they come from an ordinal logit
AR(1) model (see Section 3.1).

A distance-based approach to perform anomaly detection consists of obtaining the
pairwise distance matrix and proceeding in two steps as follows.

Step 1. For each element, compute the sum of its distances from the remaining objects in
the dataset, which is expected to be large for anomalous elements.

Step 2. Sort the quantities computed in Step 1 in decreasing order and reorder the indexes
according to this order. The first indexes in this new vector correspond to the most
outlying elements, while the last ones to the least outlying elements.

We follow this approach to examine whether the outlying OTS in data_outliers can
be identified by using the distance d̂1 given in (17). First, we construct the pairwise
dissimilarity matrix based on this metric for the new dataset.

> list_outl_1 <- lapply(data_outliers, c_marginal_probabilities,
states = 0 : 5)
> list_outl_2 <- lapply(data_outliers, c_joint_probabilities,
states = 0 : 5, lag = 1)
> list_outl_3 <- lapply(data_outliers, c_joint_probabilities,
states = 0 : 5, lag = 2)
> dataset_outl_1 <- matrix(unlist(list_outl_1), nrow = 82, byrow = T)
> dataset_outl_2 <- matrix(unlist(list_outl_2), nrow = 82, byrow = T)
> dataset_outl_3 <- matrix(unlist(list_outl_3), nrow = 82, byrow = T)
> dataset_outl <- cbind(dataset_outl_1, dataset_outl_2, dataset_outl_3)
> distance_matrix_outl <- dist(dataset_outl)

Then, we apply the mentioned two-step procedure to matrix distance_matrix_outl
by running

> order(colSums(as.matrix(distance_matrix_outl)), decreasing = T)[1:2]
[1] 81 82

The previous output corroborates that d̂1 is able to properly identify the two series
generated from anamalous stochastic processes. As an illustrative exercise, let us represent
the corresponding 2DS plot for the dataset containing the two outlying OTS by using a
different color for these elements.

> library(mlmts)
> labels <- c(otsfeatures::SyntheticData2$classes, 5, 5)
> plot_2d_scaling(distance_matrix_outl, cluster_labels = labels)$plot

The corresponding graph is shown in Figure 3. The 2DS configuration contains four
groups of points which are rather well separated, plus two isolated elements representing
the anomalous series appearing on the left part of the plot. Clearly, 2DS plots can be very
useful for outlier identification purposes, since they provide a great deal of information
on both the number of potential outliers and their location with respect to the remaining
elements in the dataset.

Mathematics 2023, 11, 2565 20 of 23

Figure 3. Two-dimensional scaling plane based on distance d̂1 for the dataset containing 2 anomalous
series.

In the previous example, the number of outliers was assumed to be known, which is
not realistic in practice. In fact, when dealing with real OTS databases, one usually needs
to determine whether the dataset at hand contains outliers. To that aim, it is often useful
to define a measure indicating the outlying nature of each object (see, e.g., [28,29]), i.e.,
those elements with an extremely large scoring could be identified as outliers. In order to
illustrate this approach, we consider the dataset CreditRatings and compute the pairwise
distance matrix according to distance d̂PMF.

> list_cr_1 <- lapply(CreditRatings$data,
marginal_probabilities, states = 0 : 22)
> list_cr_2 <- lapply(CreditRatings$data,
joint_probabilities, states = 0 : 22, lag = 1)
> list_cr_3 <- lapply(CreditRatings$data,
joint_probabilities, states = 0 : 22, lag = 2)
> dataset_cr_1 <- matrix(unlist(list_cr_1),
nrow = 28, byrow = T)
> dataset_cr_2 <- matrix(unlist(list_cr_2),
nrow = 28, byrow = T)
> dataset_cr_3 <- matrix(unlist(list_cr_3),
nrow = 28, byrow = T)
> dataset_cr <- cbind(dataset_cr_1, dataset_cr_2,
dataset_cr_3)
> distance_matrix_cr <- dist(dataset_cr)

As before, the sum of the distances between each series and the remaining ones
is computed.

> outlier_score <- colSums(as.matrix(distance_matrix_cr))

The vector outlier_score contains the sum of the distances for each of the 28 countries.
Since the ith element of this vector can be seen as a measure of the outlying character of the
ith series, those countries associated with extremely large values in this vector are potential
outliers. A simple way to detect these series consists of visualizing a boxplot based on the
elements of outlier_score and checking whether there are points located into the upper part
of the graph.

> boxplot(outlier_score, range = 1, col = ‘blue’)

The resulting boxplot is shown in Figure 4 and suggests the existence of one series
with an abnormally high outlying score. Hence, this country could be considered to
be anomalous and its individual properties be carefully investigated. Specifically, the

Mathematics 2023, 11, 2565 21 of 23

uppermost point in Figure 4 corresponds to Belgium. Note that the prior empirical approach
provides an automatic method to determine the number of outliers. Similar analyses could
be carried out by considering alternative dissimilarity measures.

Figure 4. Boxplot of the outlying scores in dataset CreditRatings based on distance d̂PMF.

5. Conclusions and Future Work

Statistical analysis of time series has experienced significant growth during the last
50 years. Although the majority of works focus on real-valued time series, ordinal time
series have received a great deal of attention during the present century. The R pack-
age otsfeatures is fundamentally an attempt to provide different functions allowing the
calculation of well-known statistical quantities for ordinal series. As well as providing
an useful description about the behavior of the time series, the corresponding quantities
can be used as input for traditional data mining procedures, as clustering, classification,
and outlier detection algorithms. Additionally, otsfeatures includes some tools enabling
the execution of classical inferential tasks, as hypothesis tests. It is worth highlighting
that several functions of the package can also be used to analyze ordinal data without
a temporal nature. The main motivation behind the package is that, to the best of our
knowledge, no previous R packages are available for a general statistical analysis of ordinal
datasets. In fact, the few software tools designed to deal with this class of databases focus
on specific tasks (e.g., clustering or classification), application areas, or types of ordinal
models. Package otsfeatures also incorporates two databases of financial time series and
three synthetic datasets, which can be used for illustrative purposes. Although otsfeatures
is rather simple, it provides the much-needed tools for the standard analyses which are
usually performed before more complex tasks as modeling, inference, or forecasting.

A description of the functions available in otsfeatures is given in the first part of this
manuscript to make clear the details behind the software and its scope. However, the
readers particularly interested in specific tools are encouraged to check the corresponding
key references, which are also provided in the paper. In the second part of the manuscript,
the use of the package is illustrated by considering several examples involving synthetic
and real data. This can be seen as a simple overview whose goal is to make the process of
using otsfeatures as easy as possible for first-time users.

There are three main ways through which this work can be extended. First, as ots-
features is under continuous development, we expect to perform frequent updates by
incorporating functions for the computation of additional statistical features which are
introduced in the future. Second, note that the statistical quantities available in otsfea-
tures are defined for univariate time series. However, multivariate time series [29,30]
are becoming more and more common due to the advances in the storage capabilities of
everyday devices. Thus, a software package allowing the computation of statistical features
for multivariate ordinal series could be constructed in the future. Note that otsfeatures
assumes that all the values of a given time series are known. Although this assumption
is entirely reasonable, it can become too restrictive in practice, since some OTS can in-
clude missing values. In this regard, it would be interesting to implement some functions

Mathematics 2023, 11, 2565 22 of 23

aimed at properly correcting these values so that the computation of ordinal features is not
negatively affected.

Author Contributions: Conceptualization, Á.L.-O. and J.A.V.; Methodology, Á.L.-O.; Software,
Á.L.-O.; Project administration, J.A.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research has been supported by the Ministerio de Economía y Competitividad
(MINECO) grants MTM2017-82724-R and PID2020-113578RB-100, the Xunta de Galicia (Grupos
de Referencia Competitiva ED431C-2020-14), and the Centre for Information and Communications
Technology Research (CITIC). CITIC is funded by the Xunta de Galicia through the collaboration
agreement between the Consellería de Cultura, Educación, Formación Profesional e Universidades
and the Galician universities for the support of research centers of the Sistema Universitario de Galicia
(CIGUS). We would also like to acknowledge the support by the European Regional Development
Fund (ERDF).

Data Availability Statement: The datasets used in this manuscript are provided in the package that
the paper describes.

Acknowledgments: The authors thank the referees for their useful comments on an earlier draft of
this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weiß, C.H.; Pollett, P.K. Binomial autoregressive processes with density-dependent thinning. J. Time Ser. Anal. 2014, 35, 115–132.

[CrossRef]
2. Stoffer, D.S.; Tyler, D.E.; Wendt, D.A. The spectral envelope and its applications. Stat. Sci. 2000, 15, 224–253. [CrossRef]
3. Weiß, C.H. An Introduction to Discrete-Valued Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2018.
4. Weiß, C.H. Distance-based analysis of ordinal data and ordinal time series. J. Am. Stat. Assoc. 2020, 115, 1189–1200. [CrossRef]
5. Weiß, C.H. Regime-switching discrete ARMA models for categorical time series. Entropy 2020, 22, 458. [CrossRef]
6. Kupfer, J.; Brosig, B.; Brähler, E. A multivariate time-series approach to marital interaction. GMS Psycho-Soc. Med. 2005, 2, Doc08.
7. Stadnitski, T. Time series analyses with psychometric data. PLoS ONE 2020, 15, e0231785. [CrossRef] [PubMed]
8. Pamminger, C.; Frühwirth-Schnatter, S. Model-based clustering of categorical time series. Bayes. Anal. 2010, 5, 345–368.
9. Chen, C.W.; Chiu, L. Ordinal time series forecasting of the air quality index. Entropy 2021, 23, 1167. [CrossRef]
10. Bandt, C. Ordinal time series analysis. Ecol. Model. 2005, 182, 229–238. [CrossRef]
11. Weiß, C.H. Measuring Dispersion and Serial Dependence in Ordinal Time Series Based on the Cumulative Paired φ-Entropy.

Entropy 2021, 24, 42. [CrossRef]
12. López-Oriona, Á.; Weiß, C.; Vilar, J.A. Fuzzy clustering of ordinal time series based on two novel distances with financial

applications. arXiv 2023, arXiv:2304.12249.
13. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
14. Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
15. Christensen, R.H.B. Ordinal—Regression Models for Ordinal Data. R Package Version 2022.11-16. 2022. Available online:

https://CRAN.R-project.org/package=ordinal (accessed on 15 May 2023).
16. Amatya, A.; Demirtas, H.; Gao, R. MultiOrd: Generation of Multivariate Ordinal Variates; R Package Version 2.4.3; R Foundation for

Statistical Computing: Vienna, Austria, 2021.
17. Heredia-Gómez, M.C.; García, S.; Gutiérrez, P.A.; Herrera, F. Ocapis: R package for ordinal classification and preprocessing in

scala. Prog. Artif. Intell. 2019, 8, 287–292. [CrossRef]
18. Rao, C.R. Diversity and dissimilarity coefficients: A unified approach. Theor. Popul. Biol. 1982, 21, 24–43. [CrossRef]
19. Weiß, C.H. A new class of autoregressive models for time series of binomial counts. Commun. Stat.-Theory Methods 2009,

38, 447–460. [CrossRef]
20. Ristić, M.M.; Weiß, C.H.; Janjić, A.D. A binomial integer-valued ARCH model. Int. J. Biostat. 2016, 12, 20150051. [CrossRef]

[PubMed]
21. Kuhn, M. Caret: Classification and Regression Training; R Package Version 6.0-93; R Foundation for Statistical Computing:

Vienna, Austria, 2022.
22. Lopez-Oriona, A.; Vilar, J.A. mlmts: Machine Learning Algorithms for Multivariate Time Series; R Package Version 1.1.1; R Foundation

for Statistical Computing: Vienna, Austria, 2023.
23. Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions; R Package

Version 2.1.2—For New Features, See the ‘Changelog’ File (in the Package Source); R Foundation for Statistical Computing:
Vienna, Austria, 2021.

http://doi.org/10.1002/jtsa.12054
http://dx.doi.org/10.1214/ss/1009212816
http://dx.doi.org/10.1080/01621459.2019.1604370
http://dx.doi.org/10.3390/e22040458
http://dx.doi.org/10.1371/journal.pone.0231785
http://www.ncbi.nlm.nih.gov/pubmed/32298372
http://dx.doi.org/10.3390/e23091167
http://dx.doi.org/10.1016/j.ecolmodel.2004.04.003
http://dx.doi.org/10.3390/e24010042
https://CRAN.R-project.org/package=ordinal
http://dx.doi.org/10.1007/s13748-019-00175-1
http://dx.doi.org/10.1016/0040-5809(82)90004-1
http://dx.doi.org/10.1080/03610920802233937
http://dx.doi.org/10.1515/ijb-2015-0051
http://www.ncbi.nlm.nih.gov/pubmed/26641973

Mathematics 2023, 11, 2565 23 of 23

24. Campello, R.J. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern
Recognit. Lett. 2007, 28, 833–841. [CrossRef]

25. Mouselimis, L. ClusterR: Gaussian Mixture Models, K-Means, Mini-Batch-Kmeans, K-Medoids and Affinity Propagation Clustering; R
Package Version 1.2.6; R Foundation for Statistical Computing: Vienna, Austria, 2023.

26. Shimizu, Y. Multiple Desirable Methods in Outlier Detection of Univariate Data with R Source Codes. Front. Psychol. 2022, 12, 6618.
[CrossRef]

27. Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A review on outlier/anomaly detection in time series data. ACM Comput.
Surv. CSUR 2021, 54, 1–33. [CrossRef]

28. Weng, X.; Shen, J. Detecting outlier samples in multivariate time series dataset. Knowl.-Based Syst. 2008, 21, 807–812. [CrossRef]
29. López-Oriona, Á.; Vilar, J.A. Outlier detection for multivariate time series: A functional data approach. Knowl.-Based Syst. 2021,

233, 107527. [CrossRef]
30. López-Oriona, Á.; Vilar, J.A. Quantile cross-spectral density: A novel and effective tool for clustering multivariate time series.

Expert Syst. Appl. 2021, 185, 115677. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patrec.2006.11.010
http://dx.doi.org/10.3389/fpsyg.2021.819854
http://dx.doi.org/10.1145/3444690
http://dx.doi.org/10.1016/j.knosys.2008.03.048
http://dx.doi.org/10.1016/j.knosys.2021.107527
http://dx.doi.org/10.1016/j.eswa.2021.115677

	Introduction
	Analyzing Marginal Properties and Serial Dependence of Ordinal Time Series
	Main Functions in otsfeatures
	Available Datasets in otsfeatures
	Functions for Inferential Tasks
	Serial Dependence Plot
	Hypothesis Testing and Confidence Intervals

	Functions for Feature Extraction in otsfeatures

	Using the otsfeatures Package—AnIllustration
	Some Generalities about otsfeatures
	Performing Inferential Tasks
	Performing Data Mining Tasks
	Performing OTS Classification
	Performing OTS Clustering
	Performing Outlier Detection in OTS Datasets

	Conclusions and Future Work
	References

