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1. Introduction

Stabilization of general n order functional-differential equation by parametric dis-
tributed feedback control plays a very important role in various problems in aeronautics,
aerospace and physics.

The noise in feedback control is the main reason for investigating mathematical models
with distributed inputs. It is impossible to control the value of x(tj) at a single moment tj.
The distributed control function in integral form is used for the average of the process x(t)
in the neighborhood of tj.

In the paper [1], the absolute stability of neutral system using Lyapunov-Krasovskii
functional was studied

Stabilization of non-linear systems with distributed input was presented in [2] and
stabilization of linear systems with distributed input was presented in [3].

Asymptotic stability criteria of the zero solution of second-order linear delay differen-
tial equations were presented in [4].

Results on boundedness of solutions were obtained in [5].
Stability of second order equations with damping terms was obtained in [6–8].
In [9], linear systems with delayed control action were, transformed into systems

without delays. Under a continuity condition, the new system is an ODE control.
The stability of third order differential equations is presented in [10]. The stability of

third order neutral delay differential equations is presented in [11].
There are various applications of models described by equations with distributed feed-

back control in aeronautics, aerospace, ship navigation and network traffic regularization.
Distributed feedback control stabilization of mathematical models, is also significant

in medicine (see, for example, [12–15], where the mathematical model of testosterone
regulation and model of the hepatitis B virus were researched).

In the current article, we consider the system which can be described in the terms of
palindromic polynomials. Palindromic polynomials are an important topic in algebraic
combinatorics and have been studied by many mathematicians over the years. Palindromes
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have important properties that make them useful in various fields of mathematics, includ-
ing algebra, number theory, and combinatorics. One of the key features of palindromic
polynomials is their connection to symmetric functions [16–18]. The combinatorial in-
terpretation of the coefficients has been used to prove many other important results in
algebraic [19]. Another area where palindromic polynomials have important applications
is in the study of algebraic curves [20]. Palindromic polynomials also have connections
to other areas of mathematics, including the theory of special functions, the theory of
Lie algebras, and the theory of elliptic curves. They have also been used in various ap-
plications, including the design of error-correcting codes, digital signal processing, and
mathematical physics.

The palindromes play an important role in numerical theory, cryptography, and time-
reverse systems. One important application of palindromic polynomials is in the study
of exponential stability of linear time-invariant (LTI) systems. The study of palindromic
polynomials and their applications to stability analysis has been an active area of research
in control theory. A number of important results have been developed in this area, includ-
ing connection to the Routh–Hurwitz stability criterion, which is a classical method for
determining the stability of a polynomial based on the signs of its coefficients [21]. Other
important contributions of analyzing palindromic polynomials and their roots, as well
as the development of algorithms for computing the roots of palindromic polynomials
and their multiplicities [22,23]. In this article, we discuss the connection of palindromic
polynomials to exponential stability of functional-differential system.

Consider the n order differential equation

x(n)(t) +
n−1

∑
i=1

pi(t)x(i)(t) + u(t) = g(t), (1)

with distributed feedback control defined by

u(t) =
k

∑
j=1

∫ t

0
Kj(t, s)x(s)ds, (2)

where the kernel function defined in the following form

Kj(t, s) = β je
−αj(t−s), αj, β j ∈ R, αj > 0, 1 ≤ j ≤ k (3)

and g(t), pi(t) 1 ≤ i ≤ n− 1 are continuous functions.
The results of the exponential stability of Equation (1) for n = 2, 3 were presented

in [24,25].
In the current paper we generalize these results: we present a new approach for

stabilization of an n order functional-differential equation by distributed feedback control.
In [26], we researched the impossibility of a stabilization system (1) by distributed

control function, where the number of terms was insufficient for stabilization. The number
of terms was less than the order of the functional-differential equation.

In the current paper, we analyze the case when the number of integral components in
a distributed control function is equal to the order of the functional-differential equation.
We propose a new stabilization criteria based on choosing the 2n set of parameters in a
parametric distributed control function.

2. Stabilization Criteria in the Case of k = n

Let us introduce the following integro-differential equation, where n ≥ 2.

x(n)(t) +
n

∑
i=j

β j

∫ t

0
e−αj(t−s)x(s)ds = 0. (4)
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Denoting xn = x, xn−1 = x′n = x′, ..., x1 = x(n−1) and xn+j = β j
∫ t

0 e−αj(t−s)x(s)ds,
where 1 ≤ j ≤ n− 1, differentiating we reduce Equation (4) to a differential system of the
first order with 2n equations. 

x′1 = −∑2n−1
j=n+1 xj

x′2 = x1

...
x′n = xn−1

x′n+1 = β1xn − α1xn+1

...
x′2n = βnxn − αnx2n

. (5)

The coefficient matrix (2n× 2n)of this system is

M =



0 0 0 · · · 0 0 −1 · · · −1
1 0 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · 0 β1 −α1 · · · 0

· · · · · · · · · . . . ... · · · · · · . . . · · ·
0 0 0 · · · 0 βn 0 · · · −αn


.

Let us find the characteristic polynomial of matrix M

det(Iλ−M) =



λ 0 · · · 0 0 1 · · · 1
−1 λ · · · 0 0 0 · · · 0
0 −1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · −1 λ 0 · · · 0
0 0 · · · 0 −β1 λ + α1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 −βn 0 · · · λ + αn


= det

(
A B
C D

)
,

where
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[A]n×n =


λ 0 · · · 0 0
−1 λ ... 0 0

...
...

. . .
...

...
0 0 · · · −1 λ

, [B]n×n =


1 · · · 1
0 · · · 0
...

. . .
...

0 · · · 0

,

[C]n×n =


0 0 · · · 0 −β1
...

...
. . .

...
...

0 0 · · · 0 −βn

, [D]n×n =


λ + α1 · · · 0

...
. . .

...
0 · · · λ + αn

,

D−1 =


1

λ+α1
· · · 0

...
. . .

...
0 · · · 1

λ+αn

, BD−1C =


0 · · · −∑n

i=1
βi

λ+αi
...

. . .
...

0 · · · 0

,

A− BD−1C =


λ 0 · · · 0 ∑n

i=1
βi

λ+αi
−1 λ ... 0 0

...
...

. . .
...

...
0 0 · · · −1 λ

.

det
(

A− BD−1C
)

= (−1)n+1
n

∑
i=1

βi
λ + αi

· det


−1 λ ... 0

...
...

. . .
...

0 0 · · · −1

+

(−1)n+nλ det


λ 0 · · · 0 0
−1 λ ... 0 0

...
...

. . .
...

...
0 0 · · · −1 λ

 =
n

∑
i=1

βi
λ + αi

+ λn.

By the Schur formula [27]

det(Iλ−M) = det(D)det
(

A− BD−1C
)
=

n

∏
j=1

(
λ + αj

)(
λn +

n

∑
i=1

βi
λ + αi

)
,

and

P(λ) = λn
n

∏
j=1

(
λ + αj

)
+

n

∑
i=1

βi

n

∏
j=1
j 6=i

(
λ + αj

)
. (6)

Consider the polynomial

P̃(λ) = λn + an−1λn−1 + an−2λn−2 + ... + a1λ + 1.

P̃(λ) is a palindrome polynomial or palindrome if ak = an−k, k = 0, 1, ..., n.

Theorem 1 ([28]). Polynomial P̃(λ) is a palindrome iff for any root r also 1
r is the root of P̃(λ).

Theorem 2 ([28]). Let P̃(λ) be a palindrome of even degree 2n then P̃(λ) = λnQ
(

λ + 1
λ

)
, where

Q(t) is a polynomial of degree n.

Theorem 3. Let P̃(λ) = λ2 + Aλ + 1, A > 0 quadric palindrome then P̃(λ) has all the roots on
the left half plane, i.e. Re(λ1) < 0, Re(λ2) < 0.
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Proof. λ2 + Aλ + 1 = 0⇒ λ1,2 = 1
2

(
−A+

−
√

A2 − 4
)

.

If A > 2, then A >
√

A2 − 4 and λ1 < 0, λ2 < 0.
If A = 2, then λ1 = λ2 = − A

2 < 0.
If A < 2, then. Re(λ1) = Re(λ2) = − A

2 < 0.

Theorem 4. Let P̃(λ) = λ4 + Aλ3 + Bλ2 + Aλ + 1, A > 0, B > 2 quartic palindrome then
P̃(λ) has all the roots on the left half plane.

Proof. By Routh-Hurvitz criterion M1 = A > 0,

M2 =

∣∣∣∣∣ A A
1 B

∣∣∣∣∣ = AB− A = A(B− 1) > 0,

M3 =

∣∣∣∣∣∣∣
A A 0
1 B 1
0 A A

∣∣∣∣∣∣∣ = A2(B− 2) > 0,

M4 =

∣∣∣∣∣∣∣∣∣
A A 0 0
1 B 1 0
0 A A 0
0 1 B 1

∣∣∣∣∣∣∣∣∣ = M3 > 0.

All roots of P(λ) lie in the left half plane.

Theorem 5. (degree reduction)
Let P̃(λ) = λ2n + a2n−1λ2n−1 + a2n−2λ2n−2 + ... + a1λ + 1 palindrome of even degree, then
P̃(λ) = λnQ(t), where t = λ + 1

λ , deg(Q(t)) = n (By Theorem 2).
If all roots of Q(t) are real and negative, then P̃(λ) is exponentially stable, i.e. all roots of P̃(λ) in
C− =

{
λ ∈ C : Re(λ) < 0

}
.

Proof. Let s root of Q(t) and s = −p < 0. Then λ+ 1
λ = s⇒ λ+ 1

λ = −p⇒ λ2 + pλ+ 1 =
0 quadric palindrome, so by Theorem 3, λ ∈ C−.

Theorem 6 ([28]). (palindrome factorization)
Let f (λ), g(λ) be two palindromes of degree n and m respectively. Then

1. f (λ) · g(λ) is a palindrome of degree m + n.
2. If g(λ)| f (λ) and f (λ) = g(λ) · h(λ), then h(λ) is also a palindrome. So we obtain that

an irreducible palindrome must be linear, quadric or quartic, i.e. a palindrome factorized to
λ + A, λ2 + Aλ + 1 or λ4 + Aλ3 + Bλ2 + Aλ + 1.

Corollary 1. The palindrome of even degree can be factorized by irreducible palindromes
λ2 + Aλ + 1 or λ4 + Aλ3 + Bλ2 + Aλ + 1.

Consider system (5), where n ≥ 2, with characteristic polynomial (6).

Theorem 7. If characteristic polynomial (6) is a palindrome, then parameters βi 1 ≤ i ≤ n can be
uniquely represented via α1, ..., αn.

Proof. Recall

P(λ) = λ2n + λ2n−1
n

∑
j=1

αj + λ2n−2
n

∑
j,k=1
j 6=k

αjαk + ... + λn
n

∏
j=1

αj + ... + λ
n

∑
j=1

αj + 1

is a palindrome.
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Let us denote:

n

∑
j=1

αj = A2n−1,
n

∑
j,k=1
j 6=k

αjαk = A2n−2, ...,
n

∏
j=1

αj = An.

βi 1 ≤ i ≤ n is solution of the following system

∑n
i=1 βi = An−1

∑n
i=1 βi ∑n

j=1
i 6=j

αj = An−2

...

∑n
i=1 βi ∏n

j=1
j 6=i

αj = 1

. (7)

A ·


β1
...

βn

 =


An−1

...
1

,

where

A =


1 1 ... 1

∑n
j=2 αj ∑n

j=1
j 6=2

αj ... ∑n−1
j=1 αj

... ... ... ...
∏n

j=2 αj ∏n
j=1
j 6=2

αj ... ∏n−1
j=1 αj

.

Let us note that det(A) 6= 0, because α1 6= α2 6= ... 6= αn and positive. So system (7) has a
unique solution.

Consider system (5) with characteristic polynomial (6) in the case when n = 2.

Theorem 8. Let β1 + β2 = α1 + α2 and β1α2 + β2α1 = 1, so

P(λ) = λ4 + (α1 + α2)λ
3 + α1α2λ2 + (α1 + α2)λ + 1

is quartic palindrome. If α1 > 1, α2 > 1 and α1α2 > α1 + α2 then system (5) is exponentially
stable for n = 2.

Proof. Using Routh–Hurwitz criterion M1 = α1 + α2 > 0,

M2 =

∣∣∣∣∣ α1 + α2 α1 + α2
1 α1α2

∣∣∣∣∣ = (α1 + α2)(α1α2 − 1) > 0,

because α1 > 1, α2 > 1, so α1α2 > 1,

M3 =

∣∣∣∣∣∣∣
α1 + α2 α1 + α2 0

1 α1α2 1
0 α1 + α2 α1 + α2

∣∣∣∣∣∣∣ = (α1 + α2)
2(α1α2 − 2) > 0,

because α1α2 > α1 + α2 > 2,

M4 =

∣∣∣∣∣∣∣∣∣
α1 + α2 α1 + α2 0 0

1 α1α2 1 0
0 α1 + α2 α1 + α2 0
0 1 α1α2 1

∣∣∣∣∣∣∣∣∣ = M3 > 0.

We obtain that (5) is exponentially stable for n = 2.
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Definition 1. Let a0, a1, ..., an be real numbers. It is palindromic (or symmetric) with center of
symmetry at n/2 if ai = an − i for i = 0, 1, ..., n. It is unimodal if a0 ≤ ... ≤ am−1 ≤ am ≥
am+1 ≥ ... ≥ an for some m.

Definition 2. The real numbers {d0, ..., dm} is considered to be logarithmic concave (log-concave) if
dj+1 · dj−1 ≤ d2

j 1 ≤ j ≤ m− 1. If the real numbers is concave than it is an unimodal palindrome.

Theorem 9 ([29]). Let p(x) = ∑m
k=0 ckxk be an unimodal polynomial. If cj − cj−1 ≥ cj+1 − cj

then polynomial p(x) is log concave.

Definition 3. {an}m
n=1 is r− factor strong log-concave if a2

j > raj−1aj+1 where r > 1.

Theorem 10 ([30]). Let p(x) be a polynomial with positive coefficients and deg(p(x)) > 5. If
p(x) r0 strongly log-concave, where r0 ≈ 1.466 is the unique real root of r3 − r2 − 1 = 0, then all
roots of p(x) have a negative real part.

Theorem 11. Let us consider a system (5) with a characteristic polynomial (6).
Consider αj > 1, 1 ≤ j ≤ n and α1 < α2 < ... < αn such that

n

∑
j=1

αj = A2n−1,
n

∑
j,k=1
j 6=k

αjαk = A2n−2, ...,
n

∏
j=1

αj = An.

If P(λ) is an unimodal palindrome

P(λ) = λ2n + λ2n−1
n

∑
j=1

αj + λ2n−2
n

∑
j,k=1
j 6=k

αjαk + ... + λn
n

∏
j=1

αj + ... + λ
n

∑
j=1

αj + 1. (8)

If
{

Aj

}n−1

j=0
r0 strongly log-concave, then polynomial (8) r0 strong log-concave (and system (5)

is exponentially stable).

Proof. For all j ≤ n− 1, A2
j > r0 Aj−1 Aj+1.

However, because P(λ) is a palindrome, A2n−j = Aj. For all n ≤ j < 2n, Aj = An+k,
where k = 0, ..., n.
We have

A2
j = A2

n+k = A2
n−k > r0

(
An−k−1 · An−k+1

)
= r0

(
An+k−1 · An+k+1

)
= r0 Aj−1 · Aj+1.

We obtain that
{

Aj

}2n

j=0
is r0 strongly log-concave, so P(λ) is r0 strongly log-concave. That

is, all roots have a negative real part.

3. Examples

Example 1. In the case of a differential equation of the second order and a distributed control
function with two integral terms

x
′′
(t) + β1

∫ t

0
e−α1(t−s)x(s)ds + β2

∫ t

0
e−α2(t−s)x(s)ds = 0,

the characteristic polynomial is

P(λ) = λ4 + (α1 + α2)λ
3 + α1α2λ2 + (β1 + β2)λ + (β1α2 + β2α1).
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We suppose that P(λ) is palindromic polynomial, so the following equations are fulfilledβ1 + β2 = α1 + α2

β1α2 + β2α1 = 1
(9)

Let us choose α1 = 20 and α2 = 40 such that conditions of Theorem 11 are fulfilled, i.e α1
and α2 is strongly log-concave. Coefficients of characteristic palindromic polynomial is strongly
log-concave, because

A4 = 1, A3 = α1 + α2 = 60, A2 = α1α2 = 800, A1 = 60, A0 = 1, r0 ≈ 1.466

and 
A2

2 > r0 A1 A3

A2
1 > r0 A0 A2

A2
3 > r0 A2 A4

.

Now, we can calculate parameters, solving system (9) (Solution of the following system exists, by
Theorem 7) β1 = −9.9999, β2 = 19.999, and the roots of the characteristic polynomial are following

λ1 = −40.0125, λ2 = −19.975, λ3 = −1 ∗ 10−8, λ4 = −0.0125.

In the next examples, we will use the same technique, as in Example 1.

Example 2. In the case of a differential equation of the third order and a distributed control function
with three integral terms

x′′′(t) + β1

∫ t

0
e−α1(t−s)x(s)ds + β2

∫ t

0
e−α2(t−s)x(s)ds + β3

∫ t

0
e−α3(t−s)x(s)ds = 0,

the characteristic polynomial is

P(λ) = λ3(λ + α1)(λ + α2)(λ + α3) + β1(λ + α2)(λ + α3)

+β2(λ + α1)(λ + α3) + β3(λ + α1)(λ + α2).

α1 = 2, α2 = 3, α3 = 6, β1 = 30.75, β2 = −97.333, β3 = 102.583,

λ1 = −5.0506− i0.418, λ2 = −5.0506 + i0.418, λ3 = −0.25275− i0.96753, λ4 = −0.25275 + i0.96753,

λ5 = −0.19665− i0.01627, λ6 = −0.19665 + i0.01627.

Example 3. In the case of a differential equation of the fourth order and a distributed control
function with four integral terms

x′′′′(t) + β1

∫ t

0
e−α1(t−s)x(s)ds + β2

∫ t

0
e−α2(t−s)x(s)ds

+β3

∫ t

0
e−α3(t−s)x(s)ds + β4

∫ t

0
e−α4(t−s)x(s)ds = 0,

the characteristic polynomial is

P(λ) = λ4(λ + α1)(λ + α2)(λ + α3)(λ + α4) + β1(λ + α2)(λ + α3)(λ + α4)

+β2(λ + α1)(λ + α3)(λ + α4) + β3(λ + α1)(λ + α2)(λ + α4)

+β4(λ + α1)(λ + α2)(λ + α3).
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α1 = 3, α2 = 4, α3 = 5, α4 = 6, β1 = −1369.333, β2 = 10027.5, β3 = −19932, β4 = 11615.833,

λ1 = −7.3276, λ2 = −0.13647, λ3 = −0.26795− i0.96343, λ4 = −0.26795 + i0.96343,

λ5 = −4.8378− i2.5345, λ6 = −4.8378 + i2.5345, λ7 = −0.16219− i0.08497,

λ8 = −0.16219 + i0.08497.

4. Conclusions

In the current article, we propose the stabilization criteria by feedback control (2) of
n-order functional-differential equations. We considered control functions in integral form

u(t) =
k

∑
j=1

uj(t)

where uj(t) =
∫ t

0 Kj(t, s)x(s)ds
The vectors (u1, ..., uk) define the feedback control of Equation (2). Here vector dimen-

sions define the degree of freedom of the feedback control function.
In the previous paper [26], the stabilizing of n-order functional-differential Equation (1)

by a distributed control function (2) was proven, where the number of integral terms is
less than n is impossible. The numerical examples for various orders were given. In the
current paper, we show that we can stabilize n-order functional-differential Equation (1)
by a distributed control function (2), where the number of integral terms is equal to n. We
investigated a novel approach for finding the stabilization set of 2n parameters of integral
terms based on log-concave and palindromic polynomials.

Open Questions:
(1) The existence of more general condition than strong log-concavity which can be

applied to parameters set in Theorem 11.
(2) Applying our approach to other types of functional-differential systems, for exam-

ple, to obtain another criteria for absolute stability of neutral systems studied in paper [1].
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