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Abstract: Over the past few decades, the mathematical community has accumulated a significant
amount of pure mathematical data, which has been analyzed through supervised, semi-supervised,
and unsupervised machine learning techniques with remarkable results, e.g., artificial neural net-
works, support vector machines, and principal component analysis. Therefore, we consider as
disruptive the use of machine learning algorithms to study mathematical structures, enabling the
formulation of conjectures via numerical algorithms. In this paper, we review the latest applica-
tions of machine learning in the field of geometry. Artificial intelligence can help in mathematical
problem solving, and we predict a blossoming of machine learning applications during the next
years in the field of geometry. As a contribution, we propose a new method for extracting geometric
information from the point cloud and reconstruct a 2D or a 3D model, based on the novel concept of
generalized asymptotes.
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1. Introduction

The use of machine learning (ML) is gaining popularity in the scientific community,
especially in domains such as data analysis, optimization, and statistics. ML algorithms are
used to detect patterns in data and can be leveraged to solve a broad range of mathematical
problems. Mathematics has benefited significantly from ML, particularly in the realm of
data analysis. Through ML algorithms, mathematicians can analyze vast datasets and
uncover underlying relationships and patterns that may be elusive using conventional
statistical techniques. The discovery of these patterns and relationships have provided
novel insights in various fields such as engineering, biology, and finance [1].

Machine learning also plays an essential role in optimization, which refers to finding
the most optimal solution for a given problem. Machine learning algorithms are particularly
useful in searching for the best solution in high-dimensional spaces. Furthermore, through
the application of machine learning techniques to analyze vast datasets and uncover
patterns, mathematicians can develop new mathematical models that are better equipped
to address the complexity of real-world systems. Machine learning can help in the creation
of novel mathematical models and algorithms.

The structure of the paper is as follows (see Figure 1): In Section 2, we discuss the
outbreak of machine learning in certain fields closely related to mathematics and geometry,
and the unstoppable growth of machine learning in the coming years in this field of
knowledge, reasoning the causes for this trend.
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Figure 1. Structure of the paper, with the target for every section.

In the following section (Section 3), we review the latest publications and tendencies
in which machine learning is being applied to various fields of mathematics and geometry.
We briefly summarize the algorithms used and the strategies with which the problem is
approached, from the data science point of view, for its resolution, as well as the knowledge
provided by this perspective.

In Section 4, we highlight some of the problems, both formal and technical, that our
discipline may face in this advent of machine learning.

In Section 5, we present a method using asymptotes for point clouds reconstruction
that involves fitting a set of asymptotes to the point clouds. The asymptotes can be
defined from the infinity branches that can be constructed from the point clouds. Once
the asymptotes have been fit to the point clouds, they can be used to reconstruct a 2D
or 3D model by interpolating between the points and generating a curve or a surface
that follows the asymptotes. The novelty is that one may use the asymptotes that are not
necessarily lines but g-asymptotes. At this point, we underline the the great advantage
provided by the use of g-asymptotes and the problem it avoids in the reconstruction of 2D
or 3D models. When the given point clouds include points at the “infinity” (i.e., points
having large coordinates), the construction of effective method needs some other approach,
since otherwise the prediction of the geometry of the 2D or 3D model could not be the
expected one. For instance, in Section 5 introduction, point clouds at [−5, 5] × [−5, 5]
and at [−15, 15] × [−15, 15] are provided. The behavior of the curve one is looking for
modeling the point clouds is totally different if one looks at the squares with smaller
coordinate points, than if one “goes to the infinity” where the distortion of the model seems
to indicate that we have different curves (compare figures in Section 5 introduction, where
point clouds at [−100, 100]× [−100, 100] and at [−1000, 1000]× [−1000, 1000] are provided).
More precisely, in the square [−N, N]× [−N, N] with N small enough, some well-known
machine learning techniques allow us to accurately determine the model. However, to
correctly predict the geometric object, we need to model the infinity accurately, and the
essential tools from which we can extract geometric information from the point cloud and
reconstruct a 2D or a 3D model are the g-asymptotes, which generalize the classical notion
of asymptote. In figures of Example 2, one may find that although the approximation in
the squares of smaller lengths is also good, the error in this area is much greater than in
the infinity where the asymptotes describe the point clouds perfectly. Therefore, the use of
g-asymptotes seems to be a successful and novel technique to deal with this problem.

We finish the paper with a section of conclusions and future work (see Section 6).

2. Data Analysis from a Mathematical Point of View

Geometry is a branch of mathematics that focuses on the study of shapes, sizes,
positions, and dimensions of objects in space. The concepts of geometry have been studied
for thousands of years, and its principles and formulas are still used today in various
applications. Through the study of geometry, we can gain a deeper understanding of the
world around us and develop problem-solving skills that can be applied in numerous
contexts. Algebraic geometry is a branch of mathematics that combines algebra and
geometry to study the solutions of polynomial equations. It deals with geometric objects
that are defined by algebraic equations and seeks to understand their properties and
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structures. In algebraic geometry, the focus is on studying the geometric shapes that
are solutions to polynomial equations rather than the specific numerical values of those
solutions. The field has numerous applications, including in physics, computer science,
and cryptography. The study of algebraic geometry requires a solid understanding of
abstract algebra, topology, and complex analysis. With its focus on the relationship between
algebra and geometry, algebraic geometry has been instrumental in advancing the fields of
modern mathematics and theoretical physics [2,3].

Without getting into debates about the philosophy of mathematics, it is generally
agreed that mathematics is not an exception to the scientific method: the appearance of
certain data, whether from physical reality, mathematical reality, or the plane of ideas, leads
to a number of conjectures, which are then proved or disproved through further analysis.
Up until the introduction of the first computers, the entire procedure was traditionally
completed mentally.

An interesting approach can be found in [4], from the mathematics mechanization
point of view. This paper reviews the state-of-the-art on developing symbolic algorithms
from manipulating mathematical objects, aided by computers or artificial intelligence.
These methods enable automated proving or discovering geometry theorems. Moreover,
the methods always work in the symbolic realm, leaving apart the analysis of numerical
datasets coming from geometry-related problems. Automated Deduction in Geometry
conferences [5] are a valuable resource of work for this approach. Nevertheless, as the latest
advances in machine learning and artificial intelligence (AI) bring us closer to achieving
universal AI, this will mark a significant leap in knowledge discovery in mathematics.

Given that mathematics is the language through which nature is expressed [6], it is
not unexpected that there is a significant crossover between mathematics and physics.
The works of Kepler, Newton, Fermat, Gauss, and even more recently, Einstein, come to
mind. In each of them, we may see a collection of tables or numerical records from which
we must deduce the mathematical expressions that support, clarify, or model the facts we
are dealing with. All of this was performed manually before the invention of the computer.

However, computers are also able to provide huge datasets representing a theoretical
or practical problem. This is the crucial aspect of the situation: [7,8] are just two examples
of enormous data sets that frequently emerge in mathematics as a result of numerical
simulations. Any numerical mathematical simulation generates a lot of data that, unlike
real process data, are accurate: they include no noise at all. An example of this may be
the creation of numerically rational curves modeling a specific problem [9]. These days, it
is usual to use computers for these tasks due to the cheapness of storage and the current
computing capability of CPUs and GPUs.

Significant contributions to these developments have also came from the study of
theoretical physics and cosmology. On the one hand, some of their problems are concep-
tually and formally treated from a purely mathematical perspective; on the other hand,
numerical simulations have become crucial to scientific advancement almost since the
arrival of the computer.

Symmetry is a critical concept in all physical theories, and it is described using mathe-
matical groups. Understanding a theory’s symmetry greatly simplifies calculations and aids
in developing intuition [10–12]. The theory of relativity was a groundbreaking paradigm
shift in the way space and time were perceived. Relativity frames were based on speeds,
and a maximum speed of light was established as an unbreakable limit. As the theory
evolved into general relativity, incorporating accelerating objects and massive bodies, it
became clear that gravity was based on the geometry of spacetime [13–15].

Other hot topic in theoretical physics is the superfluid vacuum theory (SVT). The vac-
uum, which appears to be empty, actually includes a superfluid that permeates the entire
cosmos. It is hypothesized that this superfluid, which has peculiar characteristics such
as zero viscosity and limitless compressibility, is the cause of a variety of phenomena,
including the presence of mass and the functioning of gravity. The scientific community
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still views SVT as a novel and contentious concept, and much research and discussions are
being conducted to examine its potential applications and veracity.

Fundamental particle objects are changed to fields in specific representations of the
Lorentz group, resulting in quantum field theory, which incorporates the key concepts of
special relativity into quantum theory [16–20].

Quantum computing is an advancement in physics and mathematics. In order to
tackle complicated problems at a previously unheard-of speed, quantum computing is a
breakthrough area that merges the ideas of quantum physics and computer technology. It
has the potential to transform many industries, including artificial intelligence, medicine
development, and cryptography. The development and use of quantum computing heavily
rely on mathematics. Mathematics is at the core of quantum computing, from creating
quantum algorithms to determining the mathematical foundation to characterize quantum
systems. By providing the required mathematical tools and insights, mathematicians
have considerably aided the development of quantum computing. We can examine the
connection between mathematics and quantum computing in [21–24] and highlight some
important mathematical concepts used in quantum computing.

We concluded that the vast majority of scientific disciplines heavily rely on data and
mathematics. It is inevitable that one of the most well-known fields of our era—machine
learning—will emerge with massive mathematical data sets. We can take into account a
variety of choices when we have enormous data sets, the output of simulations, or the
outcome of assigning numerical values to a problem. Every research has a target, whether
it be to investigate particular high-level concepts or to respond to particular questions.
Exploratory questions may aim to find unusual data trends or locate unusual records.
Confirmatory questions, on the other hand, are more focused and involve tasks such as
identifying group differences or monitoring attribute changes over time.

Intelligent data analysis finds its roots in various disciplines, but statistics and machine
learning are arguably the most significant [1,25]. Although statistics is the older of the two,
the emergence of machine learning has added a distinct culture, interests, emphases, aims,
and objectives that diverge from those of statistics. This divergence has created a creative
tension between the two disciplines at the core of intelligent data analysis, leading to the
development of innovative data analytic tools. Despite their differences, both statistics and
machine learning contribute to the advancement of intelligent data analysis.

There are different types of machine learning algorithms, such as supervised learning,
unsupervised learning, and reinforcement learning, and each is used in different contexts
and for different purposes [1]. Supervised learning is a type of machine learning in which
a labeled data set is used to train a machine learning algorithm. The labeled data are
those that have already been “tagged” with the correct answers, and are used to train the
algorithm to make predictions or decisions. Supervised learning is useful when we have
labeled data available and want to predict a specific outcome or make a decision based
on that data. In a way, we are incorporating prior human knowledge and experience of
the problem into the solution of the problem. The algorithm has all that knowledge as
a starting point, and it evolves and learns from the knowledge that we have provided it.
Examples of supervised algorithms could be linear regression, logistic regression, neural
networks, or support vector machines (SVM).

Unsupervised learning is a type of machine learning in which you do not provide
labeled data to the machine learning algorithm. Instead, the algorithm is trusted to discover
patterns and relationships in the data on its own. Unsupervised learning is useful when
we do not have a labeled data set available and want to discover patterns and trends
in the data. However, unsupervised learning does not allow us to make specific predic-
tions or decisions based on the data, as it does not provide the correct answers to train
the algorithm. Unsupervised algorithms are clustering algorithms and dimensionality
reduction algorithms.

In semi-supervised learning, the data set contains both labeled and unlabeled data.
Typically, the amount of unlabeled data is much larger than the number of labeled examples.



Mathematics 2023, 11, 2576 5 of 24

The goal of a semi-supervised learning algorithm is the same as that of a supervised
algorithm. The idea is that using the unlabeled data in addition to the labeled data allows
the algorithm to find a better model.

We may come across reinforced learning algorithms on occasion. In these circum-
stances, the algorithm is immersed in the problem and may observe the problem’s or the
environment’s state, which is converted into a feature vector. The algorithm can then
operate on each state and change it. The algorithm is rewarded (or punished) based on the
outcome of the action, whether it changes to a better or desired state or not. The algorithm’s
goal is to generate an action strategy that solves the problem.

3. Machine Learning Techniques for Geometry

Machine learning and geometry are two fields that have become increasingly inter-
connected in recent years. Geometry provides a powerful toolset for understanding and
analyzing the structure of data, while machine learning algorithms offer a framework for
processing and making predictions based on that data. As a result, machine learning has
found many applications in geometry, and geometric methods have become increasingly
important in machine learning [8,26,27].

Geometry has been employed in machine learning in a variety of ways, including
the development of novel algorithms [7,28]. Geometric algorithms, for example, have
been utilized to build clustering approaches that group comparable data points together
based on their geometric qualities. Geometric algorithms have also been used to create
classification algorithms, which use geometric features to assign new data points to one of
several pre-defined categories.

Another important application of geometry in machine learning is in the analysis
of high-dimensional data [29–32]. High-dimensional data are common in many machine
learning applications, but it can be difficult to understand and analyze using traditional
statistical methods. Geometric methods provide a way to represent and analyze high-
dimensional data in a way that is more intuitive and interpretable. Geometric deep learning
is another area of research where machine learning and geometry intersect [33–35]. In ge-
ometric deep learning, the goal is to develop deep learning algorithms that can operate
directly on geometric structures such as graphs, point clouds, and meshes. This method
has demonstrated potential in a number of applications, including 3D object identification
and drug development.

Finally, machine learning has also been used to advance the field of geometry itself.
Machine learning algorithms have been used to automate the generation of geometric mod-
els, to predict geometric properties of materials, and to develop new geometric optimization
algorithms [7].

One example of a supervised learning algorithm used in geometry is the support
vector machine (SVM) (Figure 2). SVMs are a popular tool for classification and regression
tasks. They work by finding the hyperplane that maximally separates two classes in a
high-dimensional space (see Figure 3) [1]. An example of the application of SVMs can be
found in [36]. In this paper, the authors use the database of weighted-P4s which admit
Calabi–Yau 3-fold. This is a classic problem in string theory, closely related to algebraic
geometry, that has been faced with machine learning tools, mainly due to the existence of
numerical datasets [37,38]. Unsupervised techniques identified an unanticipated almost
linear dependence of the topological data on the weights. This then allowed them to
identify a previously unnoticed clustering in the Calabi–Yau data. Supervised techniques
were successful in predicting the topological parameters of the hypersurface from its
weights with an accuracy of R2 > 95%. Supervised learning also allowed them to identify
weighted-P4s, which admit Calabi–Yau hypersurfaces to 100% accuracy by making use of
partitioning supported by the clustering behavior.
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Figure 2. Kernel-SVM for separating classes using higher dimensional spaces. Source:
Shehzadex (https://commons.wikimedia.org/wiki/File:Kernel_yontemi_ile_veriyi_daha_fazla_
dimensiyonlu_uzaya_tasima_islemi.png, accessed on 1 June 2023), https://creativecommons.org/
licenses/by-sa/4.0/legalcode, accessed on 1 June 2023.

Figure 3. The Calabi–Yau quintic (local 2D cross-section of the real 6D manifold). ML techniques
have been used for discover hidden clusters in data in [36]. Source: Andrew J. Hanson, Indiana
University. (https://commons.wikimedia.org/wiki/File:CalabiYau5.jpg, accessed on 1 June 2023),
“CalabiYau5”, https://creativecommons.org/licenses/by-sa/3.0/legalcode, accessed on 1 June 2023.

Another example of a supervised learning algorithm used in geometry is the convolu-
tional neural network (CNN). CNNs are a type of deep learning algorithm that use layers of
convolutional filters to extract features from images or other spatial data [39]. In geometry,
CNNs can be used to segment images of geometric shapes or recognize patterns in point
clouds [40]. For example, a CNN could be trained to identify the boundaries between
different regions of a 3D surface [41–44]. It has been also applied in the Amoebae problem
in [45]. Amoebae, introduced in [46], are regions in Rn with several holes and straight
narrowing tentacles reaching to the infinity, constructed from polynomials in n complex
variables. Amoebae from tropical geometry and the Mahler measure from number theory
play important roles in quiver gauge theories and dimer models.

Regression tasks in geometry are also an example of supervised learning algorithms.
In fact, the aforementioned Amoebae problem has also been tackled with regression in [47].
Their dependencies on the coefficients of the Newton polynomial closely resemble each
other, and they are connected via the Ronkin function. Genetic symbolic regression methods
are employed to extract the numerical relationships between the 2D and 3D amoebae
components and the Mahler measure.

Another common unsupervised learning problem in geometry is clustering, where
the target is to group data points together based on some measure of similarity. This can be
useful for tasks such as image segmentation or identifying patterns in complex data sets.
Another popular algorithm is principal component analysis (PCA), which finds the direc-
tions of greatest variance in the data and projects the data onto those directions, effectively
reducing the dimensionality of the data. Berman, in [36], provides some analysis of the

https://commons.wikimedia.org/wiki/File:Kernel_yontemi_ile_veriyi_daha_fazla_dimensiyonlu_uzaya_tasima_islemi.png
https://commons.wikimedia.org/wiki/File:Kernel_yontemi_ile_veriyi_daha_fazla_dimensiyonlu_uzaya_tasima_islemi.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://commons.wikimedia.org/wiki/File:CalabiYau5.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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fundamentals of the dataset using PCA, topological data analysis (TDA), and other unsu-
pervised machine learning methods, just as a previous stage before applying supervised
machine learning methods.

Unsupervised learning has demonstrated success in generative models, which aim
to generate new data that are similar to the training data. According to [48], one promi-
nent strategy is generative adversarial networks (GANs), in which two neural networks
are trained concurrently: one generates new data, and the other attempts to distinguish
between the produced data and the real data. This results in a feedback loop in which the
generator learns to generate increasingly realistic data and the discriminator improves its
ability to discern between actual and fake data.

In geometry, GANs have been used to generate 3D shapes and textures, as well as
to interpolate between different shapes. For example, GANs have been used to generate
realistic 3D models of chairs, cars, and other objects, which can be useful in fields such
as architecture and product design. GANs have also been used to interpolate between
different shapes, allowing for the creation of new shapes that are similar to existing ones
but with variations that may not have been manually designed. More complex approaches,
related to geometry, can be found in [49,50].

Reinforcement learning has also been applied in geometry, i.e., in the optimization of
geometric shapes. Given a set of points, an algorithm can use reinforcement learning to find
the shape that maximizes a certain criterion, such as the area or perimeter. The algorithm
would start with an initial guess of the shape, and then iteratively modify it based on the
feedback received from the environment. The feedback could be the value of the criterion,
or a measure of the distance between the shape and a target shape. Another application
of reinforcement learning in geometry is the discovery of new mathematical structures.
An algorithm could learn to generate graphs that satisfy certain properties, such as being
planar or having a certain degree distribution. The algorithm would start with a random
graph and then iteratively modify it based on the feedback received from the environment.
The feedback could be the value of a metric that measures how well the graph satisfies the
desired properties. Some applied examples can be found in [51,52].

Neural networks and deep learning have changed the field of machine learning,
and their impact on geometry has been significant. A neural network (ANN) is a computa-
tional model that is designed to simulate the way the human brain works. It is composed
of interconnected nodes or neurons, each of which is assigned a weight and a bias value [1].
These neurons receive inputs from other neurons and perform a computation before pass-
ing their output to other neurons. By adjusting the weights and biases of these neurons,
the neural network can be trained to recognize patterns in data. One application can be
seen in [53], where they apply machine learning algorithms to the study of lattice polytopes.
With ANN, they are able to predict standard properties, such as volume, dual volume,
reflexivity, etc, with accuracies up to 100%. The paper applies to 2D polygons and 3D poly-
topes with Plücker coordinates as input, which out-perform the usual vertex representation.
Same author also applies ANN to amoebae in [45], applying multilayer perceptron as well
as CNN.

Deep learning takes this concept a step further by using neural networks with many
layers [25]. Each layer in a deep neural network performs a different computation on
the input data, with the output of one layer serving as the input to the next. This allows
the network to learn more complex features and patterns in the data, and can result in
more accurate predictions. One of the key benefits of deep learning in geometry is its
ability to learn from large amounts of data. This is especially useful in situations where
traditional geometric algorithms may be too computationally expensive or too complex
to implement. Deep learning algorithms can be trained on large datasets of images or
geometric models, allowing them to learn from a vast amount of information and make
accurate predictions [8,33,35]. Another advantage is its ability to generalize to new, unseen
data. Once a neural network has been trained on a particular dataset, it can be applied to



Mathematics 2023, 11, 2576 8 of 24

new data with similar properties. This has many applications in fields such as computer
graphics, computer vision, and robotics [8,54,55] (see Figure 4).

Figure 4. Embeddings over datasets, after applying clustering in [55], using graph neural networks.
(a) DGI for Cora; (b) GMI for Cora; (c) MVGRL for Cora; (d) SGIB for Cora; (e) DGI for Citeseer;
(f) GMI for Citeseer; (g) MVGRL for Citeseer; (h) SGIB for Citeseer; (i) DGI for Pubmed; (j) GMI for
Pubmed; (k) MVGRL for Pubmed; (l) SGIB for Pubmed. Source: Reprinted from Ref. [55].

Table 1 summarizes most popular methods in machine learning, ordered by the
function performed (clustering, regression, classification or dimensionality reduction).
Figure 5 offers a short guide to choose the most suited algorithm.

Table 1. Popular machine learning algorithms organized by task.

Supervised
(Classification)

Supervised
(Regression)

Unsupervised
(Clustering)

Unsupervised
(Dimensionality

Reduction)

Kernel SVM
&

Linear SVM

Random
forest dbscan PCA

ANN ANN k-means
Singular

Value
Decomposition

CNN Linear
regression K-modes

Latent
Dirichlet
Analysis

Logistic
Regression

Gradient
boosting tree hierarchical

Decision
tree &

gradient
boosting tree

Decision
tree

Gaussian
Mixture

mode
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Figure 5. Cheat-code guide for choosing ML algorithms.

The fields of mathematics and geometry are poised for a significant revolution in the
form of machine learning, which will impact virtually every area of study. It is essential
for mathematicians to remain at the forefront of these inevitable advancements to guide
their development.

4. Challenges in Machine Learning for Geometry

Math and geometry are no exception to how machine learning approaches have altered
how we process and interpret data. We consider that machine learning in geometry has a
number of opportunities and challenges. Our survey shows that this method has potential
to be both helpful and disruptive in the coming years. However, there are some historical
ML flaws that should be carefully considered when used in mathematics and geometry.
Despite these challenges, here are also several opportunities in applying machine learning
to geometry. For example, machine learning can be used to extract meaningful features
from high-dimensional geometry data, such as point clouds, meshes, and curves. These
features can then be used for tasks such as classification, segmentation, and reconstruction.

One of the most significant challenges in machine learning for geometry is overfitting
and underfitting. Overfitting occurs when a model is too complex and tries to fit the noise
in the data, resulting in poor generalization performance. On the other hand, underfitting
happens when a model is too simple and fails to capture the underlying patterns in the
data, leading to poor performance on both the training and test data. Defeating overfitting
and underfitting in geometry requires careful attention to the choice of model and the
amount of data used for training. To prevent overfitting or underfitting, it is crucial to find
a balance between model complexity and the volume of training data. This is particularly
difficult in geometry because the data’s dimensionality might be very great. Additionally,
the theoretical basis and prior understanding of the issue should be considered. This
additional information can be used to improve the models or possibly create some new
ones based on a thorough theoretical understanding of the issue.

Another drawback in machine learning for geometry is the lack of labeled data. Unlike
in other fields, such as computer vision or natural language processing, where large labeled
datasets are available, geometry often requires manual labeling, which is time-consuming
and expensive. Nevertheless, symbolic and numerical computer software is able to generate



Mathematics 2023, 11, 2576 10 of 24

datasets that represent a mathematical problem. Machine learning applied over this dataset
can offer mathematics solutions regarding classification, prediction of modeling, three of
the key features of ML methods.

Alternatively, unsupervised learning techniques can be used to learn from unlabeled
data. Unsupervised learning can be used to discover meaningful structure and patterns
in the data without the need for explicit labels. For example, unsupervised learning can
be used to learn a low-dimensional representation of high-dimensional geometry data,
such as point clouds or meshes. This low-dimensional representation can then be used for
downstream tasks such as classification, segmentation, and reconstruction.

One more way to address the limited availability of data is to develop techniques that
can learn from few or zero-shot examples. Few-shot learning aims to learn from a small
number of examples, while zero-shot learning aims to learn from a set of examples without
any direct training. These techniques are particularly useful in geometry, where it is often
challenging to obtain large labeled datasets. Few-shot and zero-shot learning can enable
machines to recognize new shapes and structures with minimal training data, making them
valuable tools in geometry processing and modeling.

Machine learning can also be used to enhance the accuracy and efficiency of traditional
geometry processing techniques, such as surface fitting, shape optimization, and geometric
modeling. For example, machine learning can be used to predict the behavior of complex
geometric structures, such as composite materials, and to optimize their design.

Because machine learning for geometry frequently uses sophisticated mathematical
operations and transformations that are difficult to understand or explain, interpretability
is a challenge when using machine learning methods. In order to overcome this difficulty,
researchers are creating methods for interpreting and explaining the decisions made by
machine learning algorithms. To increase understanding of the models’ decision-making
process, one option is to use visualization techniques. Another strategy is to create models
with built-in interpretability. For instance, because they are simple to comprehend and
explain, decision trees and rule-based models are frequently utilized in situations where
interpretability is important. Explainability can support or extend previous knowledge,
and also gain insight on mathematical problems. Previous knowledge of the problem or
similar problems, and the theoretical existing corpus, can help on decide how to choose
between the different solutions machine learning gives for a problem. In mathematics,
theoretical knowledge is always a key factor.

One of the opportunities in applying machine learning to geometry is the potential
for collaboration and interdisciplinary research. Although several fields have a strong
relationship with geometry, namely theoretical physics, other fields lying in the results of
mathematical processes, more than theoretical developments, can be largely benefited. Ma-
chine learning techniques can be used in conjunction with traditional geometry processing
techniques, such as surface reconstruction, shape optimization, and geometric modeling.
This collaboration can enable researchers to develop more efficient and accurate techniques
for solving challenging geometric problems.

Another chance for collaboration is the development of shared benchmarks and
datasets. Researchers may compare and assess the performance of various algorithms
and models by working together on benchmarks and datasets, allowing the discipline to
advance more swiftly and effectively. Mathematician can generate huge synthetic datasets,
and machine learning can look for patterns, anomalies, or make predictions of the spatial
or time evolution. This collaboration can bring insight for mathematical open problems,
besides developing new tailored machine learning algorithms starting from the deep
mathematical expertise in the problem.

5. A New Practical Application in Algebraic Geometry

As we stated above, machine learning can be used for point cloud reconstruction,
which is the process of creating a 2D or a 3D model from a set of 2D or 3D points captured by
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a scanner or generated by some other means. Point cloud reconstruction is an important step
in a wide range of applications such as printing, virtual reality, and autonomous driving.

There are several machine learning techniques that can be used for point cloud re-
construction. One popular approach is to use deep learning models such as convolutional
neural networks (CNNs) or graph neural networks (GNNs) to learn a mapping from the
input point cloud to the output model. These models can be trained on a large dataset of
point clouds and corresponding models, and can learn to generalize to new, unseen data.

Another approach is to use traditional machine learning algorithms such as k-nearest
neighbors or random forests to predict the geometry of the model from the input point
cloud. These methods can be effective in certain situations, but may not be as powerful as
deep learning models when it comes to handling complex, high-dimensional data.

Machine learning has the potential to revolutionize the field of point cloud reconstruc-
tion by enabling faster, more accurate, and more automated methods for creating models
from point clouds.

However, when point clouds include points at the “infinity” (i.e., points having
large coordinates), the construction of effective method needs some other approach since
otherwise, the prediction of the geometry of the 2D or 3D model could not be the expected
one. More precisely, let us consider the point clouds given in Figures 6 and 7.

Figure 6. Point clouds at [−5, 5]× [−5, 5] (left) and point clouds at [−15, 15]× [−15, 15] (right).

The behavior of the curve we are looking for, for modeling the point clouds, is totally
different if we look at the squares with smaller coordinate points, than if we “go to the
infinity”. Here, the distortion of the model seems to indicate that we have different curves.
In the square [−N, N]× [−N, N] with N small enough, some well-known machine learning
techniques allow to accurately determine the model. However, to correctly predict the
geometric object, we need to model the infinity accurately and the essential tool for this
problem is the asymptotes.

Thus, in this section, we use a new important tool from which we can extract geometric
information from the point cloud and reconstruct a 2D or a 3D model, the generalized
asymptotes or g-asymptotes. A curve may have more general curves than lines describing
the status at the points with “large coordinates”. More precisely, a curve C̃ is a generalized
asymptote (or g-asymptote) of another curve C if the distance between C̃ and C tends to zero
as they tend to infinity, and C can not be approached by a new curve of lower degree.
This notion, introduced and studied by S. Pérez-Díaz in some previous papers ([56–60]),
generalizes the classical concept of an asymptote of a curve C defined as a line such that
the distance between C and the line approaches zero as they tend to infinity (see [61–63]).
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Figure 7. Point clouds at [−100, 100] × [−100, 100] (left) and point clouds at [−1000, 1000] ×
[−1000, 1000] (right).

The approach using asymptotes for point clouds reconstruction involves fitting a set of
asymptotes to the point clouds. The asymptotes can be defined from the infinity branches
that can be constructed from the point clouds. Once the asymptotes have been fit to the
point clouds, they can be used to reconstruct a 2D or 3D model by interpolating between the
points and generating a curve or a surface that follows the asymptotes. This approach can
be particularly useful for reconstructing smooth, curve and surfaces, where other methods
such as voxel-based reconstruction (see [64]) may not be as effective.

The novelty of this paper is to use the asymptotes that are not necessarily lines but
g-asymptotes. For this purpose, first we start with some previous notions and we introduce
the concept of infinity branch and g-asymptote from which one may obtain an algebraic plane
curve that follows the point clouds. We present the method for the case of plane curves,
but this approach can be easily generalized to the n-dimensional space (see [58] where
the g-asymptotes for algebraic curves in n-dimensional space are introduced). The case of
surfaces, can be dealt in a similar way, but for this purpose, we need the theory concerning
g-asymptotes, which is currently being studied by the authors of this paper (see [65,66]).

The use of infinity branches and g-asymptotes opens up a promising field at intersection
with machine learning. In general, any method that seeks boundaries of separation between
classes can rely on these concepts to try to look for curves, planes, or hypersurfaces that,
in some way, are defined by the asymptotic behavior of the point cloud determined by a given
class. Without forgetting the predictive capacity that asymptotes have in themselves, since
their own concept is the projection of a tendency towards extreme values of the coordinates.

In the following, let C be a plane curve over the complex field C defined by the
(irreducible) polynomial f (x, y) ∈ R[x, y]. Its corresponding projective curve denoted as
C∗, is defined by the (homogeneous) polynomial F(x, y, z) = fd(x, y) + z fd−1(x, y) + · · ·+
zd f0 ∈ R[x, y, z], where d := deg(C) and f j(x, y) are the homogeneous forms of degree j,
for j = 0, . . . , d. Throughout this section, we assume w.l.o.g. that (0:1:0) is not an infinity
point of C∗ (otherwise, we apply a linear change of coordinates).

To obtain the infinity branches of C, we consider the curve defined by the polynomial
g(y, z) = F(1 : y : z) and we compute the series expansion for the solutions of g(y, z) = 0
around z = 0. We obtain degy(g) solutions defined by the (different) Puiseux series that can

be grouped into conjugacy classes. That is, if ϕ(z) = m + a1zN1/N + a2zN2/N + a3zN3/N +
· · · ∈ C〈〈z〉〉, ai 6= 0, ∀i ∈ N, where N ∈ N , Ni ∈ N, i ∈ N, and 0 < N1 < N2 < · · · ,
is a Puiseux series (i.e., g(ϕ(z), z) = 0), and ν(ϕ) = N (N is the called ramification
index of ϕ), the series ϕj(z) = m + a1cN1

j zN1/N + a2cN2
j zN2/N + a3cN3

j zN3/N + · · · , where

cN
j = 1, j ∈ {1, . . . , N}, are the conjugates of ϕ. The set of all the conjugates of ϕ is called

the conjugacy class of ϕ and it contains ν(ϕ) different series.
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Since g(ϕ(z), z) = 0 in some neighborhood of z = 0 where ϕ(z) converges, there exists
M ∈ R+ with F(1 : ϕ(t) : t) = g(ϕ(t), t) = 0 for t ∈ C and |t| < M, which implies that
F(t−1 : t−1 ϕ(t) : 1) = f (t−1, t−1 ϕ(t)) = 0, for t ∈ C and 0 < |t| < M. Set t−1 = z. We find
that f (z, r(z)) = 0 for z ∈ C and |z| > M−1 where

r(z) = zϕ(z−1) = mz + a1z1−N1/N + a2z1−N2/N + a3z1−N3/N + · · · , ai 6= 0, ∀i ∈ N

N, Ni ∈ N, i ∈ N, and 0 < N1 < N2 < · · · .
One may reason likewise with the N different series in the conjugacy class. However,

in [57], we prove that all the results hold independently on the chosen series in the conjugacy
class. Thus, in the following, we consider any representant in the conjugacy class and we
introduce the notion of infinity branch of a plane curve C.

Definition 1. An infinity branch of a plane curve C associated to the infinity point P =
(1:m:0), m ∈ C, is a set B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M}, M ∈ R+,

r(z) = zϕ(z−1) = mz + a1z1−N1/N + a2z1−N2/N + a3z1−N3/N + · · · , (1)

where N, Ni ∈ N, i ∈ N, and 0 < N1 < N2 < · · · .

Now, we provide the concepts of convergent branches and approaching curves. These
notions will allow us to study if two curves approach each other (Theorem 2). In addition,
Theorem 1 characterizes the convergence of two infinity branches (these notions and the
proofs of the theorems can be found in [56,57]).

Definition 2. Two infinity branches, B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} ⊂ B and
B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} ⊂ B, are convergent if limz→∞(r(z)− r(z)) = 0.

Theorem 1. Two branches B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} and B = {(z, r(z)) ∈ C2 :
z ∈ C, |z| > M} are convergent iff the terms with non-negative exponent in r(z) and r(z) are the
same. Therefore, two convergent infinity branches are associated with the same infinity point.

The classical concept of asymptote has to be with a line that approaches a given curve
at the infinity. In the following, we generalize this idea and we say that two curves approach
each other if they have two infinity branches that converge (see Definition 3 and Theorem 2).

Definition 3. Let C be a plane curve with an infinity branch B. A curve C approaches C at B if
limz→∞ d((z, r(z)), C) = 0.

Theorem 2. Let C be a plane curve with an infinity branch B. A plane curve C approaches C at B
iff C has an infinity branch, B, such that B and B are convergent.

Now, we consider C a plane curve and B an infinity branch of C. We have just
described how C can be approached at B by a new curve C, and now we consider that
deg(C) < deg(C). Then, one may say that C degenerates since it behaves at the infinity as a
curve of smaller degree. For example, one may think on a hyperbola that is a curve of degree
two having two real asymptotes. This could make us deduce that the hyperbola degenerates at
the infinity in two lines. Similarly, an ellipse has two asymptotes that, in this case, are complex
lines. The asymptotic behavior of a parabola is different since it cannot be approached at the
infinity by any line. This leads us to the notion of perfect curve and g-asymptotes.

Definition 4. A curve of degree d is a perfect curve if it cannot be approached by any curve of
degree less than d.
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Definition 5. Let C be a curve with an infinity branch B. A g-asymptote (or generalized asymptote)
of C at B is a perfect curve that approaches C at B.

The notion of g-asymptote is a generalization of the classical concept of asymptote since
as one may deduce, a g-asymptote is not necessarily a line, but a perfect curve (Definition 4).
Throughout this section, we refer to g-asymptote simply as asymptote.

Every infinity branch of a given plane curve implicitly defined has, at least, one
asymptote and now, we show how to compute it. For this purpose, we rewrite Equation (1)
defining a branch B (Definition 1) as

r(z) = mz + a1z1−n1/n + · · ·+ akz1−nk/n + ak+1z1−Nk+1/N + · · · (2)

where 0 < N1 < · · · < Nk ≤ N < Nk+1 < · · · and gcd(N, N1, . . . , Nk) = b, N = n · b,
Nj = nj · b, j ∈ {1, . . . , k}. That is, we simplify the non-negative exponents such that
gcd(n, n1, . . . , nk) = 1. Remark that 0 < n1 < n2 < · · · , and nk ≤ n, and N < Nk+1,
i.e., the terms ajz

1−Nj/N with j ≥ k + 1 are those which have negative exponent. We denote
these terms as A(z) := ∑∞

`=k+1 a`z−q` , where q` = 1− N`/N ∈ Q+, ell ≥ k + 1. We say
that n is the degree of B, and we denote it by deg(B).

Taking into account Theorems 1 and 2, we find that any curve C approaching C at B
should have an infinity branch B = {(z, r(z)) ∈ C2 : z ∈ C, |z| > M} such that the terms
with non-negative exponent in r(z) and r(z) are the same. In the most simple case, if A = 0
(there are no terms with negative exponent, see Equation (2)), we obtain

r̃(z) = mz + a1z1−n1/n + a2z1−n2/n + · · ·+ akz1−nk/n, (3)

where a1, a2, . . . ∈ C \ {0}, m ∈ C, n, n1, n2 . . . ∈ N, gcd(n, n1, . . . , nk) = 1, and 0 < n1 <
n2 < · · · . We observe that r̃ has the same terms with non-negative exponent as r, and r̃
does not have terms with negative exponent.

Let C̃ be the plane curve containing the branch B̃ = {(z, r̃(z)) ∈ C2 : z ∈ C, |z| > M̃}.
We have that

Q̃(t) = (tn, mtn + a1tn−n1 + · · ·+ aktn−nk ) ∈ C[t]2,

where n, n1, . . . , nk ∈ N, gcd(n, n1, . . . , nk) = 1, and 0 < n1 < · · · < nk, is a polynomial
parametrization of C̃ and it is proper (see Lemma 3 in [56]). In Theorem 2 in [56], we prove
that C̃ is a g-asymptote of C at B.

In the following, we illustrate this process by means of an example.

Example 1. Let C be a curve of degree d = 4 defined by (see Figure 8)

f (x, y) = −81x4 − 144x3y + 102x2y2 + 104xy3 + 19y4 + 146x3 + 729x2y + 28xy2 − 7y3+
444x2 − 698xy + 230y2 − 863x + 618y + 577 ∈ R[x, y].

Figure 8. Input curve.
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The infinity points are P1 = (1 : −3 : 0), P2 = (1 : 1 : 0), and P3 = (1 : −19/9 : 0). We
first consider P1 and we compute its associated branches and asymptotes.

There exists only one branch associated to P1, B1 = {(z, r1(z)) ∈ C2 : z ∈ C, |z| > M1},
where

r1(z) = −3z + 37703z−3/59049− 7577437
√

3z−5/2/20155392 + 3602z−2/6561−
44111

√
3z−3/2/93312 + 233z−1/486− 863

√
3z−1/2/648 + 31/18 + 5

√
3
√

z/3 + . . .

(we compute r1 by using the command puiseux, which is included in the algcurves package of the
computer algebra system Maple).

We obtain r̃1(z) = −3z + 31/18 + 5
√

3
√

z/3 and hence, the parametrization of the asymp-
tote C̃1 is

Q̃1(t) = (t2, −3t2 + 31/18 + 5
√

3t/3).

Now, we analyze the point P2. We have one infinity branch associated to P2, B2 = {(z, r2(z)) ∈
C2 : z ∈ C, |z| > M2}, where

r2(z) = z− 85/64z−3 − 9/8z−2 − 5/4z−1 − 2 + · · · .

We obtain that r̃2(z) = −2 + z and thus, the parametrization of the asymptote C̃2 is given by
Q̃2(t) = (t, −2 + t) ∈ R[t]2.

Now, we analyze the point P3. We have one infinity branch associated to P3, B3 = {(z, r3(z)) ∈
C2 : z ∈ C, |z| > M2}, where

r3(z) = −9z/19 + 193181/3779136z−3 + 1417/52488z−2 − 14495/18468z−1 + · · · .

We obtain that r̃3(z) = −9z/19. The parametrization of the asymptote C̃3 is given by Q̃3(t) =
(t, −9t/19) ∈ R[t]2.

In Figure 9, we plot the curve C, and the asymptotes C̃1, C̃2, and C̃3.

Figure 9. Input curve with the asymptotes in [−100, 100]× [−100, 100].

Observe that Figure 9 is plotted in the square [−100, 100]× [−100, 100]. Note that in this
square, where the points have “sufficient large coordinates”, asymptotes approach perfectly to
the input curve. However, if we plot C with the asymptotes C̃1, C̃2, and C̃3 in a smaller square,
[−20, 20]× [−20, 20] (see Figure 10), one may check that the asymptotes approach C worse. That
is, as one knows, the approach of asymptotes to the curve is good at the infinity and in fact,
the asymptotes are the only tool we have to approach at the infinity.
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Figure 10. Input curve with the asymptotes in [−20, 20]× [−20, 20].

Now, let us assume that we are given a point clouds as in Figure 7, and we are inter-
ested in making specific predictions or decisions based on the data. For this purpose, one
has to develop methods that should generate geometric models and analyze its geometric
properties. In fact as we stated above, although some machine learning algorithms are
developed in this sense, some new tools are necessary to understand the behavior at the
infinity, which is summarized in constructing the asymptotes.

For this purpose, the idea we provide in this paper is the following: from the point
clouds at the infinity and in each of the directions, the infinity branches, B = {(z, r(z)) ∈
C2 : z ∈ C, |z| > M}, passing through those points are constructed. One can consider
branches of degree n ≥ 1 according to the given point clouds. The ramification index to
be considered (i.e., the value of N) and the number of terms in r(z) can be as large as one
wishes, depending on the number of points one wants to use. As more points one considers,
a better approximation is obtained.

As one can deduce, this method only involves linear systems and their solution
provides the infinity branches and hence the asymptotes. That is, we compute (tn, r(tn)),
where r(z) has as many terms as one wishes. Depending on the approximation purposes,
either the whole infinity branch can be used, or only the asymptote determined from
it. Note that an infinity branch (with a finite number of terms) is, in the background,
a parametrization however, it is not polynomial (as the asymptote is) and its degree is N,
which could be much larger than the degree of the asymptote (n).

Additionally and in order to measure the error, for each given point one may compute
the distance to the nearest point on the asymptote. An error will be acceptable depending
on the objectives of the problem being addressed.

This new technique, as we mentioned above, can serve as a basis for new clustering
algorithms based on the distance of points to a hypersurface. The approach could also
be combined with dimensionality reduction methods or methods based on manifolds
to search for spaces in which points can be separated by lower-order surfaces, as SVM
kernels do. All the mathematical theory developed so far can be used as a starting point for
such algorithms, by means of the numerical approximations presented above, setting as
parameters the maximum orders or the errors committed, for example.

Therefore, this method can be used as a basis for a new classification algorithm,
and also, once the families of asymptotes that solve the problem have been determined,
they can be used as a basis for predicting the classes in the extreme locations of the points,
whether they are time variables or other types of variables. These asymptotes, together
with plausibility conditions imposed by the problem, can lead to knowledge discovery
in problems analyzed in this way. It also opens up a new area of work in the study
of asymptotes that can represent acceptable solutions, as opposed to those that provide
false solutions.
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This proposal for the use of asymptotes is being developed by the authors and it will
be the subject of publications and developments in forthcoming articles.

In the following, we illustrate these ideas by means of several examples. In the first one,
the asymptotes computed have a degree of one. However, the second provides asymptotes
of degree two.

Example 2. We are given a set of point clouds that we plot in Figures 6 and 7.
One should note that the input points are given, in general, in floating point arithmetic.

From the figures, we observe that we have three different directions and then one should obtain three
infinity branches. We consider N = 4 and n = 1 (if the approximation is not good enough, one may
increase the value of n).

The first branch obtained is B1 = {(z, r1(z)) ∈ C2 : z ∈ C, |z| > M1}, where

r1(z) = −2z− 0.02961946858z−4 + 0.1088248743z−3 − 0.05349794239z−2

+0.5185185185z−1 + 1.333333333.

We compute r̃1(z), and we have that r̃1(z) = −2z + 1.333. Hence, the parametrization of the
asymptote C̃1 is Q̃1(t) = (t, −2t + 1.33).
Now, we determine B2 = {(z, r2(z)) ∈ C2 : z ∈ C, |z| > M2}, where

r2(z) = z + 0.09375000000z−4 + 0.01562500000z−3 + 0.2500000000z−2 − 0.2500000000z−1

+ 2.

We obtain that r̃2(z) = 2 + z and thus, the parametrization of the asymptote C̃2 is given by
Q̃2(t) = (t, 2 + t) ∈ R[t]2.

Finally, we obtain the infinity branch B3 = {(z, r3(z)) ∈ C2 : z ∈ C, |z| > M2}, where

r3(z) = −1.4z− 0.06413053142z−4 − 0.1244498743z−3 − 0.1965020576z−2

−0.2685185185z−1 + 3.066666667.

We obtain that r̃3(z) = −1.4z + 3.0666, and the parametrization of the asymptote C̃3 is given
by Q̃3(t) = (t, −1.4t + 3.0666) ∈ R[t]2.

In Figure 11, we plot the curve C, and the asymptotes C̃1, C̃2 and C̃3 in [−1000, 1000] ×
[−1000, 1000].

Figure 11. Input curve with asymptotes in [−1000, 1000]× [−1000, 1000].

In Figure 12, we plot the curve C, and the asymptotes in [−100, 100]× [−100, 100].
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Figure 12. Input curve with asymptotes in [−100, 100]× [−100, 100].

In Figure 13, we plot the curve C, and the asymptotes in [−15, 15]× [−15, 15].

Figure 13. Input curve with asymptotes in [−15, 15]× [−15, 15].

In Figure 14, we plot the curve C, and the asymptotes in [−5, 5]× [−5, 5].

Figure 14. Input curve with asymptotes in [−5, 5]× [−5, 5].
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One may observe that, although the approximation in the squares of smaller length is also
good, the error in this area is much greater than in the infinity. More precisely, if for each given
point we calculate the distance to the nearest point on the nearest line, we obtain that for the first
case ([−1000, 1000]2) the error is less or equal than 10−6, for [−100, 100]2 the error is less or equal
than 10−3, for [−15, 15]2 the error is less or equal than 10−2, and for [−5, 5]2 the error is less or
equal than 10−1. However, is important to note that topologically, the asymptotes describe the curve
perfectly at the infinity but not in the area near the origin.

In the following example, we have that asymptotes of degree two have to be used to
obtain a better approximation at one of the directions of the infinity.

Example 3. We are given a set of point clouds that we plot in Figures 15 and 16.

Figure 15. Point clouds at [−5, 5]× [−5, 5] (left) and point clouds at [−15, 15]× [−15, 15] (right).

Figure 16. Point clouds at [−100, 100] × [−100, 100] (left) and point clouds at [−1000, 1000] ×
[−1000, 1000] (right).

From these figures, we observe that we have two different directions and then one should
compute two infinity branches. We consider N = 4 and n = 1 (if the approximation is not good one
can increase the value of n).

The first branch obtained is B1 = {(z, r1(z)) ∈ C2 : z ∈ C, |z| > M1}, where

r1(z) = −1.4z + 0.02264890280z−4 + 0.03151619841z−3 + 0.04587715287z−2

+ 0.06995884774z−1 + 2.044444444.
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We compute r̃1(z), and we have that r̃1(z) = −1.4z + 2.0444. Hence, the parametrization of
the asymptote C̃1 is Q̃1(t) = (t, −1.4t + 2.0444).

Now, we determine B2 = {(z, r2(z)) ∈ C2 : z ∈ C, |z| > M2}. If one considers n = 1 one
does not obtain a nice approximation. Thus, let n = 2. We find

r2(z) = −2z2 + 2.30940107700000z + 1.77777777800000− 0.652191970900000z−1

− 0.0349794238699994z−2 − 0.102090614700000z−3 − 0.0229385764400001z−4.

We obtain that r̃2(z) = −2z2 + 2.30940107700000z + 1.77777777800000 and thus,
the parametrization of the asymptote C̃2 is given by Q̃2(t) = (t2, −2t2 + 2.30940107700000t +
1.77777777800000) ∈ R[t]2.

In Figure 17, we plot the curve C, and the asymptotes C̃1, and C̃2 in [−1000, 1000] ×
[−1000, 1000].

Figure 17. Input curve with asymptotes in [−1000, 1000]× [−1000, 1000].

In Figure 18, we plot the curve C, and the asymptotes in [−100, 100]× [−100, 100].

Figure 18. Input curve with asymptotes in [−100, 100]× [−100, 100].

In Figure 19, we represent the curve C, and the asymptotes in [−15, 15]× [−15, 15].
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Figure 19. Input curve with asymptotes in [−15, 15]× [−15, 15].

In Figure 20, we plot the curve C, and the asymptotes in [−5, 5]× [−5, 5].

Figure 20. Input curve with asymptotes in [−5, 5]× [−5, 5].

Now, for each given point we calculate the distance to the nearest point on the asymptotes. We
obtain that for the first case ([−1000, 1000]2) the error is less or equal than 10−5, for [−100, 100]2

the error is less or equal than 10−4, for [−15, 15]2 the error is less or equal than 10−1, and for
[−5, 5]2 the error is less or equal than 0.5.

6. Conclusions

Machine learning is a highly promising technique that has demonstrated significant
value in pattern recognition, knowledge discovery, prediction, and classification. Artificial
intelligence is one of the most disruptive technologies today, with machine learning being a
significant contributor. The discipline of machine learning is currently experiencing a surge
in growth, boosted by advancements in computer processing power and the abundance of
data available for analysis.

In addition to traditional mathematical development, computers play a crucial role in
modern mathematics. With the rise of numerical and symbolic calculus software, computer-
assisted mathematics and geometry have become increasingly prevalent. This opens
the door for machine learning to be an powerful tool into the realm of geometry by
generating datasets that represent open problems that cannot be solved using conventional
methods, either due to their complexity, novelty, or unfamiliarity. Machine learning has
the potential to model multi-dimensional point clouds, approximate curves numerically,
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and identify singularities, anomalies, and patterns that can later be mathematically proven.
The possibilities for machine learning in this field are virtually limitless.

In particular, in this paper we present a method using asymptotes for point clouds
reconstruction that involves fitting a set of asymptotes to the point clouds. The asymptotes
can be defined from the infinity branches that can be constructed from the point clouds.
Once the asymptotes have been fitted to the point clouds, they can be used to reconstruct a
2D or 3D model by interpolating the points and generating a curve or a surface that follows
the asymptotes. The novelty is that one may use the asymptotes that are not necessarily
lines but g-asymptotes.

Our presented method, using asymptotes and point reconstruction, is an example
of one of the lines of joint work between geometry and machine learning. On the one
hand, we have that the theoretical constructs are able to generate series of computed points,
with user-controlled accuracy, on which the usual machine learning algorithms can be
applied to perform predictions, modeling, classification, or pattern search.

Each of these approaches can provide different and novel solutions to a mathematical
problem, from interpolation or extrapolation issues, to the issue of calculating functions
or asymptotes, or even the discovery of singularities or anomalies not predicted. The ma-
chine learning approach to numerical sets may provide geometry and mathematics with
discoveries of the same kind that machine learning is now providing to different areas
of knowledge.

In addition, the methods used in geometry can be applied to extend current machine
learning algorithms, or even generate new ones. The very concept of asymptote is a
modeling of a behavior at infinity. While up to now, asymptotes have been calculated
on curves or surfaces, in the case of generalized asymptotes, the calculation of numerical
asymptotes on point clouds can open up new ways of modeling real processes, or of
calculating evolutions and predictions about such processes. This is, for example, a current
line of work being conducted by two of the authors.
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