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Abstract: The work considers traveling wave optical solutions for the nonlinear generalized fractional
KMN equation. This equation is considered for describing pulse propagation in optical fibers
and communication systems using two quite similar approaches, based on the expansion of these
solutions in the exponential or polynomial forms. Both approaches belong to the direct solving
class of methods for PDEs and suppose the use of an auxiliary equation. The solutions acquired
in this paper are obtained from first- and second-order differential equations that act as auxiliary
equations. In addition, we generated 3D, contour, and 2D plots to illustrate the characteristics of
the obtained soliton solutions. To create these plots, we carefully selected appropriate values for the
relevant parameters.
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traveling wave optical solution

MSC: 35C07

1. Introduction

Fractional differential equations (FDEs) have become increasingly important in de-
scribing and modeling complex phenomena in various fields of science and engineering.
OFDEs, involving fractional derivatives with respect to a single variable, and PFDEs, which
involve fractional derivatives with respect to multiple variables, can accurately capture
the memory and hereditary properties of the system being modeled. These equations
have wide-ranging applications in fields such as physics, chemistry, engineering, biology,
finance, and economics, and are particularly useful for describing anomalous diffusion
phenomena. Therefore, the study of FDEs is essential for understanding and predicting the
behavior of complex systems in many fields of application. However, the non-locality and
non-linearity of fractional derivatives present unique challenges in solving and analyzing
FDEs. Traditional analytical and numerical methods may not be directly applicable, and
new techniques and tools need to be developed to solve and analyze these equations.
Despite these challenges, the study of FDEs has led to much important advancement in var-
ious fields of science and engineering. The development of new analytical and numerical
methods for solving and analyzing FDEs has opened up new avenues for research and has
led to a better understanding of complex phenomena. So far, abundant efficient techniques
have been proposed for obtaining exact solutions of nonlinear fractional problems such as
the generalized projective Riccati equation method [1], the exponential rational function
method [2], the sine-Gordon expansion method [3], the auxiliary ordinary differential
equation method and the generalized Riccati method [4], the first integral method [5], the
Lie symmetry approach [6], the modified Kudryashov method [7], the modified auxil-
iary equation method [8], the extended exp(−Φ(ξ))-expansion technique [9], the unified
method [10], and so on [11–14].
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In the present research, we aim to derive traveling wave solutions to the generalized
fractional Kundu–Mukherjee–Naskar (gFKMN) model, which has a dimensionless display
as follows [15–19]:

iq(Θ)
t + αqxy + iβq(qq∗x − q∗qx) = 0, (1)

where the quantity q(x, y, t) is a complex solution to the model and q∗ is the complex
conjugation of q(x, y, t). Moreover, α and β are two parameters to denote the dispersion
term and the nonlinearity term, respectively. This equation is considered for describing
pulse propagation in optical fibers and communication systems.

The generalized fractional derivative [20,21] is used here. With a function
f : (0,+∞)→ R , the generalized fractional operator of order 0 < Θ ≤ 1 for f is defined as

tDGFD
Θ f (t) = lim

ε→0

f (t + Γ($)/Γ($−Θ + 1)εt1−Θ)− f (t)
ε

, $ > −1, $ ∈ R+. (2)

The generalized fractional derivative satisfies the properties given in the following
theorem:

Theorem 1. Let α ∈ (0, 1], β > −1, β ∈ R, and f , g be α-differentiable at a point t; then:

(i) tDGFD
Θ (a f + bg) = a tDGFD

Θ ( f ) + b tDGFD
Θ (g),for all a, b ∈ R.

(ii) tDGFD
Θ (tp) =

pΓ(β)

Γ(β− α + 1)
tp−α,for all p ∈ R.

(iii) tDGFD
Θ ( f g) = f tDGFD

Θ (g) + g tDGFD
Θ ( f ).

(iv) tDGFD
Θ (

f
g
) =

g tDGFD
Θ ( f )− f tDGFD

Θ (g)
g2 .

If, in addition, f is differentiable, then DGFD
Θ ( f )(t) =

(
Γ(β)

Γ(β−α+1)

)
t1−α d f

dt .
Equation (1) frequently arises in weather science, tidal waves, river and irrigation flows,

tsunami prediction, and other applications. Günerhan et al. [22] obtained new exact solutions
for Equation (1) using a new extended direct algebraic method. Rizviet al. [23] obtained the
singular soliton, dark soliton, combined dark-singular soliton and other hyperbolic solutions
for Equation (1) using the csch method, extended tanh–coth method, and extended rational
sinh–cosh method. Talarposhti et al. [24] utilized the exp-function method to derive optical
soliton solutions for the KMN model under consideration. Onder et al. [25] introduced
optical soliton solutions for the KMN equation using the Sardar sub-equation and the new
Kudryashov methods. Using the extended Jacobi’s elliptic expansion function and the expa
function methods, Zafar et al. [26] obtained novel soliton solutions for the KMN equation.
Kumar et al. [27] found dark, bright, periodic U-shaped, and singular soliton solutions for
Equation (1) using the generalized Kudryashov and the new auxiliary equation methods. In
addition, other authors studied this equation using novel exact solution methods such as
the extended trial function method [28], sine-Gordon/sinh-Gordon expansion methods [29],
semi-inverse method [30], and Hamiltonian-based algorithm [31].

2. Mathematical Analysis of the Model

To construct new solutions for Equation (1), the following transformations are utilized:

q(x, y, t) = u(ξ) exp[iΦ(x, y, t)], (3)
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where u(ξ) represents the amplitude portion. We will look for a specific class of traveling
wave solutions, which impose the reduction of the PDE (1) to an ODE, by introducing the
so-called wave variable:

ξ = b1x + b2y− vΓ($−Θ + 1)
ΘΓ($)

tΘ. (4)

The phase portion of the solution (3) will be considered to be:

Φ(x, y, t) = −κ1x− κ2y +
ωΓ($−Θ + 1)

ΘΓ($)
tΘ + θ0. (5)

In this model, κ1 and κ2 denote wave numbers in the x-and y-directions respectively.
Moreover,ω stands for the frequency of the wave and θ0 is a constant. Similarly, the
parameters b1 and b2 in (4) represent inverse width along the x and y directions respectively,
while v is used for the velocity. Inserting (3) along with (4) and (5) into (1), we arrive at two
real and imaginary parts, respectively

αb1b2u′′ − (ω + αk1k2)u− 2βk1u3 = 0, (6)

v = −α(κ1b2 + κ2b1). (7)

It will be solved below using two different approaches, both of them based on expan-
sions of the solutions in the form of the given auxiliary equations.

3. Expansion Methods

Let us consider the following fractional NLPDE

G(u, u(Θ)
t , uxx, . . . , ) = 0. (8)

Then, if we apply the transformation

u(x, t) = u(η), η = x− vΓ($−Θ + 1)
ΘΓ($)

tΘ, (9)

on NLPDE (8), it reduces to a nonlinear problem

N(u, u′, u′′ , . . . , ) = 0, (10)

where N is a nonlinear and v is an unknown constant to be determined.
In this case, the following general structure will be assumed for the solution of

Equation (10):

u(η) =
M

∑
j=−M

Bj(exp(−ϕ(η)))j, (11)

where the coefficients Bj(−M ≤ j ≤ M) are unknown parameters. In addition, the number
of M is calculated by using some balance rules.

Let us consider the first-order differential equation:

ϕ′(η) = exp(−ϕ(η) + µ exp(ϕ(η) + λ, (12)

Then, the solutions of Equation (12) are [32–37]

ϕ(η) = ln

−√λ2 − 4µtanh
(

1
2

√
λ2 − 4µ(η + η0)

)
− λ

2µ

, µ 6= 0, λ2 − 4µ > 0, (13)
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ϕ(η) = ln

−√λ2 − 4µcoth
(

1
2

√
λ2 − 4µ(η + η0)

)
− λ

2µ

, µ 6= 0, λ2 − 4µ > 0, (14)

ϕ(η) = ln

√−(λ2 − 4µ) tan
(

1
2

√
−(λ2 − 4µ)(η + η0)

)
− λ

2µ

, µ 6= 0, λ2 − 4µ < 0, (15)

ϕ(η) = ln

√−(λ2 − 4µ) cot
(

1
2

√
−(λ2 − 4µ)(η + η0)

)
− λ

2µ

, µ 6= 0, λ2 − 4µ < 0, (16)

ϕ(η) = − ln
(

λ

exp(λ(η + η0))− 1

)
, µ = 0, λ 6= 0, λ2 − 4µ > 0, (17)

ϕ(η) = ln
(
−2(λ(η + η0)) + 2

λ2(η + η0)

)
, µ 6= 0, λ 6= 0, λ2 − 4µ = 0, (18)

ϕ(η) = ln(η + η0), λ = 0, µ = 0, (19)

where η0 is the integration constant.
Another first-order equation that can be considered an auxiliary equation is:

ϕ′(η) = −
√

µ(exp(−ϕ(η))2 + λ, (20)

Then, the solutions of Equation (20) are [38–40]

ϕ(η) = − ln

(
−
√

λ

µ
csch

(√
λ(η + η0)

))
, µ > 0, λ > 0, (21)

ϕ(η) = − ln

(√
−λ

µ
sec
(√
−λ(η + η0)

))
, µ > 0, λ < 0, (22)

ϕ(η) = − ln

(√
−λ

µ
sech

(√
λ(η + η0)

))
, µ < 0, λ > 0, (23)

ϕ(η) = − ln

(√
−λ

µ
csc
(√
−λ(η + η0)

))
, µ > 0, λ < 0, (24)

ϕ(η) = − ln
(

1
±√µ(η + η0)

)
, µ > 0, λ = 0, (25)

ϕ(η) = − ln
(

i
±√−µ(η + η0)

)
, µ < 0, λ = 0, (26)

where η0 is the constant of integration.
We will consider below that ϕ(η) is an alternative solution of the auxiliary Equation (12),

or, respectively, (20), where µ and λ are arbitrary constants.
The substitution of (11) into (10) leads to a system of nonlinear equations for

Bj(−M ≤ j ≤ M), µ, λ and v. Via symbolic software such as Maple, the solution of
the system in terms of Bj(−M ≤ j ≤ M), µ, λ and v can be determined.
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4. Solving Equation (1)

In our specific case of Equation (6), balancing between u′′ and u3 gives M = 1, both for
(12) and for (20). Thus, the following symbolic structure can be considered for the solution
of the problem:

u(η) = B−1(exp(−ϕ(η)))−1 + B0 + B1 exp(−ϕ(η)). (27)

4.1. Solutions via First Exponential Expansion

First of all, we insert (27) into (6) and collect all the terms with the same power of
exp(−ϕ(η)). Assuming all coefficients equal to zero, a set of nonlinear equations is derived:

exp (−ϕ(η))−3 : −2βκ1B−1
3 + 2αb2b1µ2B−1,

exp (−ϕ(η))−2 : 3αb2b1µB−1λ− 6βκ1B0B−1
2,

exp (−ϕ(η))−1 : 2αb2b1µB−1 + αb2b1B−1λ2 −ωB−1 − ακ1κ2B−1

−6βκ1B0
2B−1 − 6βκ1B1B−1

2,

const : −2βκ1B0
3 + αb2b1B−1λ− 12βκ1B0B1B−1

−ωB0 + αb2b1µB1λ− ακ1κ2B0,

exp(−ϕ(η)) : 2αb2b1µB1 + αb2b1B1λ2 −ωB1 − ακ1κ2B1 − 6βκ1B0
2B1

−6βκ1B1
2B−1,

exp (−ϕ(η))2 : 3αb2b1B1λ− 6βκ1B0B1
2,

exp (−ϕ(η))3 : −2βκ1B1
3 + 2αb2b1B1.

(28)

Taking as zero the coefficients of all powers of exp(−ϕ(η)), we obtain a set of polyno-
mial equations in terms of B−1, B0, B1 and ω. In what follows, we outline the solutions for
the system obtained using Maple.

Case 1:

B−1 = ±µ

√
αb2b1

βκ1
, B0 = ±λ

2

√
αb2b1

βκ1
, B1 = 0, ω = −1

2
αb2b1(λ

2 − 4µ)− ακ1κ2. (29)

Case 2:

B−1 = 0, B0 = ±λ

2

√
αb2b1

βκ1
, B1 = ±

√
αb2b1

βκ1
, ω = −1

2
αb2b1(λ

2 − 4µ)− ακ1κ2. (30)

Subsequently, utilizing the secured values (20), (30), exact solutions to Equation (1)
are obtained.

First, we represent the families of hyperbolic function solutions corresponding to
µ 6= 0,λ2 − 4µ > 0,

For Case 1:

q1,2(x, y, t) = ± 1
2

√
αb2b1
βκ1

(λ2 − 4µ)tanh
(

1
2

√
λ2 − 4µη

)
× exp

[
i
(
−κ1x− κ2y−

(
1
2 αb2b1(λ

2 − 4µ) + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
,

(31)

q3,4(x, y, t) = ± 1
2

√
αb2b1
βκ1

(λ2 − 4µ)coth
(

1
2

√
λ2 − 4µη

)
× exp

[
i
(
−κ1x− κ2y−

(
1
2 αb2b1(λ

2 − 4µ) + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
.

(32)
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For Case 2:

q5,6(x, y, t) = ± 1
2

√
αb2b1
βκ1

(
λ
√

λ2−4µtanh
(

1
2

√
λ2−4µη

)
+λ2−4µ

)
(√

λ2−4µtanh
(

1
2

√
λ2−4µη

)
+λ
)

× exp
[
i
(
−κ1x− κ2y−

(
1
2 αb2b1(λ

2 − 4µ) + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
,

(33)

q7,8(x, y, t) = ± 1
2

√
αb2b1
βκ1

(
λ
√

λ2−4µcoth 1
2

(
1/2
√

λ2−4µη
)
+λ2−4µ

)
(√

λ2−4µcoth
(

1
2

√
λ2−4µη

)
+λ
)

× exp
[
i
(
−κ1x− κ2y−

(
1
2 αb2b1(λ

2 − 4µ) + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
,

(34)

When µ = 0, λ 6= 0,

q9,10(x, y, t) = ± 1
2

√
αb2b1
βκ1

λ(eλ η+1)
(eλ η−1)

× exp
[
i
(
−κ1x− κ2y−

(
1
2 αb2b1λ2 + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
,

(35)

where η = b1x + b2y + (α(κ1b2 + κ2b1))
Γ($−Θ+1)

ΘΓ($) tΘ.

The families of periodic function solutions corresponding to µ 6= 0,λ2 − 4µ < 0, are:
For Case 1:

q11,12(x, y, t) = ± 1
2

√
− αb2b1

βκ1
(λ2 − 4µ) tan

(
1
2

√
−(λ2 − 4µ)η

)
× exp

[
i
(
−κ1x− κ2y−

(
1
2 αb2b1(λ

2 − 4µ) + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
,

(36)

q13,14(x, y, t) = ± 1
2

√
− αb2b1

βκ1
(λ2 − 4µ) cot

(
1
2

√
−(λ2 − 4µ)η

)
× exp

[
i
(
−κ1x− κ2y−

(
1
2 αb2b1(λ

2 − 4µ) + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
.

(37)

For Case 2:

q15,16(x, y, t) = ± 1
2

√
αb2b1
βκ1

(
λ
√
−(λ2−4µ) tan

(
1
2

√
−(λ2−4µ)η

)
+λ2−4µ

)
(√
−(λ2−4µ) tan

(
1
2

√
−(λ2−4µ)η

)
+λ
)

× exp
[
i
(
−κ1x− κ2y−

(
1
2 αb2b1(λ

2 − 4µ) + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
,

(38)

q17,18(x, y, t) = ± 1
2

√
αb2b1
βκ1

(
λ
√
−(λ2−4µ) cot

(
1
2

√
−(λ2−4µ)η

)
+λ2−4µ

)
(√
−(λ2−4µ) cot

(
1
2

√
−(λ2−4µ)η

)
+λ
)

× exp
[
i
(
−κ1x− κ2y−

(
1
2 αb2b1(λ

2 − 4µ) + ακ1κ2

)
Γ($−Θ+1)

ΘΓ($) tΘ + θ0

)]
,

(39)

where η = b1x + b2y + (α(κ1b2 + κ2b1))
Γ($−Θ+1)

ΘΓ($) tΘ.

The families of rational function solutions of type 1, corresponding to λ2− 4µ = 0, are:
For Case 1:

q19,20(x, y, t) = ±
√

αb2b1
βκ1

1
b1x+b2y+(α(κ1b2+κ2b1))t

× exp
[
i
(
−κ1x− κ2y− ακ1κ2

Γ($−Θ+1)
ΘΓ($) tΘ + θ0

)]
,

(40)

For Case 2:

q21,22(x, y, t) = ±
√

µαb2b1
βκ1

1
(
√

µ(b1x+b2y+(α(κ1b2+κ2b1))t)−1)

× exp
[
i
(
−κ1x− κ2y− ακ1κ2

Γ($−Θ+1)
ΘΓ($) tΘ + θ0

)]
.

(41)
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while that of type 2, corresponding to λ = 0, µ = 0, is:
For Case 2:

q23,24(x, y, t) = ±
√

αb2b1
βκ1

(b1x + b2y + (α(κ1b2 + κ2b1))t)

× exp
[
i
(
−κ1x− κ2y− ακ1κ2

Γ($−Θ+1)
ΘΓ($) tΘ + θ0

)]
.

(42)

4.2. Solutions via Second Exponential Expansion

Again, by substituting (27) into (6) and using (20) recurrently, we obtain a system of
algebraic equations and equate the coefficients of (exp(−ϕ(η)))j, i = −3,−2, . . . , 2, 3 to
zero as follows:

exp (−ϕ(η))−3 : −2βκ1B−1
3,

exp (−ϕ(η))−2 : −6βκ1B0B−1
2,

exp (−ϕ(η))−1 : −ακ1κ2B−1 − 6βκ1B−1
2B1 + αb2b1B−1λ−ωB−1 − 6βκ1B0

2B−1,
const : −ωB0 − 12βκ1B0B1B−1 − 2βκ1B0

3 − ακ1κ2B0,
exp (−ϕ(η))1 : −6βκ1B−1B1

2 − 6βκ1B0
2B1 − ακ1κ2B1 + αb2b1B1λ−ωB1,

exp (−ϕ(η))2 : −6βκ1B0B1
2,

exp (−ϕ(η))3 : 2αb2b1B1µ− 2βκ1B1
3.

(43)

Equating to zero the coefficients of all powers of exp(−ϕ(η)), yields a set of algebraic
equations for B−1, B0, B1 and ω. Solving the system of algebraic equations with the aid of
Maple, we obtain

B−1 = 0, B0 = 0, B1 = ±
√

αb2b1µ

βκ1
, ω = α(b2b1 − κ1κ2). (44)

First, we represent the families of hyperbolic function solutions corresponding to
λ > 0

q25,26(x, y, t) = ±
√

αλb2b1
βκ1

csch
(√

λ(b1x + b2y + α(κ1b2 + κ2b1)
Γ($−Θ+1)

ΘΓ($) tΘ)
)

× exp
[
i
(
−κ1x− κ2y + α(b2b1 − κ1κ2)

Γ($−Θ+1)
ΘΓ($) tΘ + θ0

)]
,

(45)

q27,28(x, y, t) = ±
√
− αλb2b1

βκ1
sech

(√
λ(b1x + b2y + α(κ1b2 + κ2b1)

Γ($−Θ+1)
ΘΓ($) tΘ)

)
× exp

[
i
(
−κ1x− κ2y + α(b2b1 − κ1κ2)

Γ($−Θ+1)
ΘΓ($) tΘ + θ0

)]
.

(46)

Second, the families of periodic function solutions corresponding to λ > 0 are:

q29,30(x, y, t) = ±
√
− αλb2b1

βκ1
sec
(√
−λ(b1x + b2y + α(κ1b2 + κ2b1)

Γ($−Θ+1)
ΘΓ($) tΘ)

)
× exp

[
i
(
−κ1x− κ2y + α(b2b1 − κ1κ2)

Γ($−Θ+1)
ΘΓ($) tΘ + θ0

)]
.

(47)

q31,32(x, y, t) = ±
√
− αλb2b1

βκ1
csc
(√
−λ(b1x + b2y + α(κ1b2 + κ2b1)

Γ($−Θ+1)
ΘΓ($) tΘ)

)
× exp

[
i
(
−κ1x− κ2y + α(b2b1 − κ1κ2)

Γ($−Θ+1)
ΘΓ($) tΘ + θ0

)]
.

(48)

Third, the families of rational function solutions are:

q33,34(x, y, t) = ±
√

αb2b1
βκ1

1
(b1x+b2y+α(κ1b2+κ2b1)t)

× exp
[
i
(
−κ1x− κ2y + α(b2b1 − κ1κ2)

Γ($−Θ+1)
ΘΓ($) tΘ + θ0

)]
.

(49)
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5. Physical Explanation

In this section, we interpret some of the fFKMN model and wave solutions from
the perspective of their physical meaning. Through utilization of exponential expansion
methods, novel types of traveling wave optical solution were discovered, encompassing
hyperbolic, trigonometric, and rational functions. We successfully derived soliton solutions
for this nonlinear model, including bright, dark, periodic, singular, and other types of
solitons. To gain a comprehensive understanding of their physical behavior, we depicted
some of the obtained solutions graphically. The following results were obtained and are
presented in the accompanying figures to enhance our understanding of the physical
phenomenon at hand. Figures 1–3 depict the 3D, contour and 2D plots of the absolute
of qi(x, y, t), i = 1, 11, 27. Figure 1 represents the gFKMN model wave solution given
in Equation (31). Figure 1a–c demonstrates that the absolute values of q1(x, y, t) form
a dark solitary (peakon soliton) wave solution with the duration −10 ≤ t, x ≤ 10 when
b1 = 1.5, b2 = 0.5, α = 0.2, β = 1, κ1 = 0.2, κ2 = 1.5, µ = −1, λ = 1, θ0 = 1,
$ = −0.5, y = 1, Θ = 0.99, while t = 0.2 (red), t = 0.5 (green), t = 1 (blue). Figure 2
depicts the complex wave solution given in Equation (36). We observe from Figure 2a–c
that the absolute value of q11(x, y, t) is a singular periodic wave solution with the du-
ration −10 ≤ t, x ≤ 10 when b1 = 0.5, b2 = 1, α = 1, β = 0.5, κ1 = 0.2, κ2 = 0.5,
µ = 1, λ = 1.5, θ0 = 1, $ = 2, y = 1, Θ = 0.9, while t = 0.2 (red), t = 0.5 (green), t = 1
(blue). Figure 3 illustrates the complex solitary wave solution given in Equation (45). We
observe from Figure 3a–c that the absolute value of q27(x, y, t) is a bright solitary (cuspon
soliton) wave solution with the duration −10 ≤ t, x ≤ 10 when b1 = 2, b2 = 0.5, α = 2,
β = 1.5, κ1 = −1.2, κ2 = 1, λ = 0.5, θ0 = 1, $ = −0.5, y = 1, Θ = 1, while t = 0.2 (red),
t = 0.5 (green), t = 1 (blue).
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Figure 1. 3D, contour and 2D plots of |q1| with b1 = 1.5, b2 = 0.5, α = 0.2, β = 1, κ1 = 0.2,
κ2 = 1.5, µ = −1, λ = 1, θ0 = 1, and $ = −0.5, with y = 1 and Θ = 0.99.
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Figure 2. 3D, contour and 2D plots of |q11| with b1 = 0.5, b2 = 1, α = 1, β = 0.5, κ1 = 0.2,
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lutions for an integer-order KMN model. Compared to the soliton solutions attained in 
previous studies [15–31], the bright, dark, periodic, and singular soliton wave solutions 
generated in this study are novel in terms of their use of the generalized fractional de-
rivative. This approach has not been reported in previously published articles, to the 
best of the authors’ knowledge. The results demonstrate that the employed methods are 
efficient mathematical techniques to find traveling wave solutions for a fractional 
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Figure 3. 3D, contour and 2D plots of |q27| with b1 = 2, b2 = 0.5, α = 2, β = 1.5, κ1 = −1.2, κ2 = 1,
λ = 0.5, θ0 = 1, and $ = 1, with y = 1 and Θ = 1.

6. Conclusions

In this work, two exponential expansion methods are well applied to the fractional
nonlinear KMN model. A generalized fractional derivative is used. As mentioned earlier
in the literature section, several researchers have reported diverse methods for obtaining
bright, dark, and singular soliton solutions to integer-order KMN models [15–31]. As
a result, the researchers focused solely on obtaining bright, dark, and singular soliton
solutions for an integer-order KMN model. Compared to the soliton solutions attained in
previous studies [15–31], the bright, dark, periodic, and singular soliton wave solutions
generated in this study are novel in terms of their use of the generalized fractional derivative.
This approach has not been reported in previously published articles, to the best of the
authors’ knowledge. The results demonstrate that the employed methods are efficient
mathematical techniques to find traveling wave solutions for a fractional NLPDE. Moreover,
the studied method can be easily adopted to investigate other fractional NLPDEs arising in
mathematics, physics and other applied disciplines.
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