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Abstract: Runge-Kutta (RK) pairs are amongst the most popular methods for numerically solving
Initial Value Problems. While using an RK pair, we may experience rejection of some steps through
the interval of integration. Traditionally, all of the evaluations are then dropped, and we proceed
with a completely new round of computations. In this work, we propose avoiding this waste and
continuing by reusing the rejected RK stages. We focus especially on an RK pair of orders six and five.
After step rejection, we reuse all the previously evaluated stages and only add three new stages. We
proceed by evaluating the output using a smaller step. By this technique, we manage to significantly
reduce the cost in a set of problems that are known to pose difficulties in RK algorithms with changing
step sizes.

Keywords: initial value problem; Runge-Kutta; step control
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1. Introduction

A fundamental issue in mathematical analysis, the Initial Value Problem (IVP) has
applications in a variety of disciplines, including physics, engineering, and economics. The
IVP has the following form

y′ = f (x, y), y(x0) = y0 ∈ Rm, x ∈ [x0, xe], (1)

with f : R×Rm → Rm continuously differentiable.
The IVP’s purpose is to determine the solution to a differential equation given the

starting condition, which is the value of the dependent variable at a specified initial time.
The most frequent approach for solving the IVP is to use numerical methods, which entail
estimating the solution of the differential equation using discrete time steps.

The Runge-Kutta (RK) method is one of the most prominent and commonly used numeri-
cal methods for solving the IVP. The RK technique was developed in the late 1800s by German
mathematicians Carl Runge and Martin Kutta. It is a class of numerical methods that estimate
the value of the solution at the end of a time step by taking a weighted average of function
values at different points in the time step. The algebraic order of the RK method relates to the
number of function evaluations for each time step, which impacts the technique’s accuracy.
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For solving the IVP, the RK approach offers significant benefits over other numerical
methods. It is a basic and easy-to-implement approach that is understandable to non-
mathematicians. It is also a flexible approach that may be used to solve a broad variety
of differential equations, including stiff problems that are difficult to solve with other
numerical methods. Furthermore, the RK approach is a self-starting technique, which
implies that no extra equations or conditions must be solved.

However, the RK method’s accuracy is dependent on the sequence of the process,
which increases the technique’s computing cost and complexity. To overcome this issue,
the Runge-Kutta pair, a version of the RK technique, was devised. A Runge-Kutta pair
is a pair of RK methods using the same body of function evaluations but distinct weight
coefficients that are used to estimate the solution and error at each time step. The estimated
error is utilised to adjust the step size in the following time step, leading to a more accurate
and efficient technique than the single RK method.

The general form of an s-stage Runge-Kutta pair of orders p and p− 1 can be written
as follows (remark that clearly s > p for p > 4):

yn+1 = yn + hn
s
∑

i=1
bikni, p−th order aproximation,

ŷn+1 = yn + hn
s
∑

i=1
b̂ikni, (p− 1)−th order aproximation,

with

kni = f (xn + cihn, yn + hn

i−1

∑
j=1

aijknj), i = 1, 2, · · · , s,

where yn is the approximate solution at time xn, hn is the time step size, kni are the inter-
mediate function values, and bi, b̂i, ci, and aij are the RK coefficients. We assume that the
coefficients form the column vectors bT , b̂T c ∈ Rs and the matrix A ∈ Rs×s. The error
estimate can be calculated as follows:

en+1 = ‖yn+1 − ŷn+1‖ = ‖hn
s
∑

i=1
(bi − b̂i)kni‖. (2)

By comparing the error estimate to a specified tolerance level TOL and modifying the
time-step size accordingly, the step size may be adjusted. This enables a more efficient and
precise technique for resolving the IVP. For achieving this, we use the formula

hn+1 = 0.9 · hn ·
(

TOL
en+1

)(1/p)
. (3)

In case en+1 > TOL, the step is rejected, i.e., we do not move forward from xn to xn+1.
Then, we again use (3) but replace the left-hand side with hn. This is a classical procedure:
see [1] (p. 167).

There have been several studies on the performance and accuracy of Runge-Kutta
pairs in solving the IVP. Among the first such studies, Fehlberg compared the performance
of different RK pairs of order 5 and 6 on a set of test problems and found that a particular
RK pair, known as the Fehlberg pair, was the most efficient and accurate pair for a wide
range of problems [2]. These pairs by Fehlberg are quadrature defective. Thus, for quadratic
problems, the lower and higher order results coincide, and error control fails.

In another study, Prince and Dormand introduced a new RK pair of order 6 and 5 that
avoided this defect and showed improved performance compared to other RK pairs [3].

In recent years, there have been developments in using RK pairs in combination with
adaptive time-stepping algorithms to solve the IVP. One such algorithm is the Dormand–
Prince method, which uses an embedded RK pair of order 5 and 4 with adaptive time-step
size control to improve the accuracy and efficiency of the method [4]. Another algorithm is
the Tsitouras method, which uses an embedded RK pair of order 5 and 6 with adaptive
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time-step size control; it has been shown to be more efficient and accurate than other RK
pairs on certain types of problems [5].

In conclusion, the Runge-Kutta pair is a powerful and versatile numerical method for
solving the IVP. It provides a more accurate and efficient method than using a single RK
method by using a pair of methods of the same order with different coefficients to estimate
the value of the solution and the error at each time step. There have been several studies on
the performance and accuracy of RK pairs, with some pairs designed specifically for stiff
equations and others optimized for efficiency and accuracy on a wide range of problems.
Adaptive time-stepping algorithms, such as the Dormand–Prince and Tsitouras pairs, have
been developed to further improve the accuracy and efficiency of the RK pair method.

2. The New Step-Size Control Scheme

After using the devised Equations (2) and (3) for changing the step size, we may
experience step rejection. Then, traditionally, all the stages are completely wasted and we
proceed by evaluating a new smaller step. This unjustified loss will be discussed here. We
intend to suggest extension of existing pairs in order to handle these stages of a rejected
step again and reduce the cost.

Thus, after an s-stage RK pair is applied and the error estimation fails to stay below
εn+1, we reduce the current step to have a new length, say τhn, τ < 1. We then extend the
pair by adding some more stages. After having at hand the s stages of the underlying pair,
given by (1), we additionally compute

kni = f (xn + cihn, yn + hn

i−1

∑
j=1

aijknj), i = s + 1, s + 2, · · · , s̃,

and combine all these s̃ stages in a new pair of formulas

y∗n+1 = yn + hn
s̃
∑

i=1
b∗i kni, p−th order aproximation,

ŷ∗n+1 = yn + hn
s̃
∑

i=1
b̂∗i kni, (p− 1)−th order aproximation.

i.e., the new weights b∗, b̂∗ are used in order to approximate y∗n+1 ≈ y(xn + τhn).
The error estimate now becomes

e∗n+1 = ‖y∗n+1 − ŷ∗n+1‖ = ‖hn
s̃
∑

i=1
(b∗i − b̂∗i )kni‖,

and the slightly modified formula

hn+1 = 0.9 · hn ·
(

TOL
e∗n+1

)(1/p)

.

is used for advancing the integration.
In consequence, we spend only (s̃ − s) stages after a step rejection instead of the

s-stages lost with the standard step-size-control algorithm. Obviously, we clearly demand
(s̃− s) < s.

For safety reasons, we only apply the new algorithm in case

TOL < εn+1 < λ · TOL,

for some λ > 1. Otherwise, we continue with the standard policy (2)–(3).
We assume that the new extended set of coefficients now forms the column vectors

b∗T , b̂∗T c ∈ Rs̃ and the new extended matrix A ∈ Rs̃×s̃.
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3. Evaluation of a Mew-Extended Runge-Kutta Pair

In the present work, we concentrate on a pair of orders six and five. We choose the
DLMP6(5) pair that appeared in [6]. This pair seems to be among the best choices for
moderate tolerances (i.e., 10−4 > TOL > 10−9, see [5]). For this case, s = 9, but since

a9j = bj, j = 1, 2, · · · , 9,

the last stage of each step can be used as the first stage of the next step. This is called FSAL
(First Stage As Last), and then DLMP6(5) only actually spends 8 stages per step. The same
number of stages is wasted after a step rejection using (2) and (3).

We set τ = 0.8 and s̃ = 12. The new extended pair (named DLMP6(5)ext) shares an
enhanced set of coefficients, as shown in the previous subsection. When a step is rejected,
we evaluate these three new stages, kn,10, kn,11 and kn,12, and combine them with the new
set of weights b∗, b̂∗ to form the new approximations for the point xn + τhn.

Thus, we have to evaluate the coefficients

a10,1, a10,3, a10,4, · · · , a10,9, a11,1, a11,3, a11,4, · · · , a11,10, a12,1, a12,3, a12,4, · · · , a12,11,

c10, c11, c12, b∗1 , b∗4 , b∗5 , · · · , b∗12, b̂∗1 , b̂∗4 , b̂∗5 , · · · , b̂∗11,

since for the considered type of pairs, it is appropriate to set

a10,2 = a11,2 = a12,2 = b∗2 = b∗3 = b̂∗2 = b̂∗3 = b̂∗12 = 0.

The coefficients of DLMP6(5) along with the above ones have to satisfy the order
conditions listed in Tables 1 and 2.

Table 1. Order conditions for the higher-order weights of DLMP6(5)ext, i.e., b∗.

d1,1 = b∗I− τ, d2,1 = b∗c− τ2

2 , d3,1 = 1
2

(
b∗c2 − τ3

3

)
,

d3,2 = b∗Ac− τ3

6 , d4,1 = 1
6

(
b∗c3 − τ4

4

)
, d4,2 = b∗Ac2 − τ4

12 ,

d4,3 = b∗(c ∗ Ac)− 1
24 , d4,4 = b∗A2c− τ4

24 , d5,1 = 1
24

(
b∗c4 − τ5

5

)
,

d5,2 = 1
2

(
b∗
(
c2 ∗ Ac

)
− τ5

10

)
, d5,3 = 1

2

(
b∗(Ac)2 − τ5

10

)
, d5,4 = 1

2

(
b∗
(
c ∗ Ac2)− τ5

15

)
,

d5,5 = b∗
(
c ∗ A2c

)
− τ5

10 , d5,6 = 1
6

(
b∗Ac3 − τ5

20

)
, d5,7 = b∗A(c ∗ Ac)− τ5

40 ,

d5,8 = 1
2

(
b∗A2c2 − τ5

60

)
, d5,9 = b∗A3c− τ5

120 , d6,1 = 1
120

(
b∗c5 − τ6

6

)
,

d6,2 = 1
6

(
b∗
(
c3 ∗ Ac

)
− τ6

12

)
, d6,3 = 2

(
b∗
(

c ∗ (Ac)2
)
− τ6

24

)
, d6,4 = 1

4

(
b∗
(
c2 ∗ Ac2)− τ6

18

)
,

d6,5 = 1
2

(
b∗
(
c2 ∗ A2c

)
− τ6

36

)
, d6,6 = 1

2

(
b∗
(

Ac ∗ Ac2)− τ6

36

)
, d6,7 = 1

2

(
b∗
(

Ac ∗ A2c
)
− τ6

72

)
,

d6,8 = 1
6

(
b∗
(
c ∗ Ac3)− τ6

24

)
, d6,9 = b∗(c ∗ A(c ∗ Ac))− τ6

48 , d6,10 = 1
2

(
b∗
(
c ∗ A2c2)− τ6

72

)
,

d6,11 = b∗
(
c ∗ A3c

)
− τ6

144 , d6,12 = 1
24

(
b∗Ac4 − τ6

30

)
, d6,13 = 1

2

(
b∗A

(
c2 ∗ Ac

)
− τ6

60

)
,

d6,14 = 1
2

(
b∗A(Ac)2 − τ6

120

)
, d6,15 = 1

2

(
b∗A

(
c ∗ Ac2)− τ6

90

)
, d6,16 = b∗A

(
c ∗ A2c

)
− τ6

180 ,

d6,17 = 1
6

(
b∗A2c3 − τ6

120

)
, d6,18 = b∗A2(c ∗ Ac)− τ6

240 , d6,19 = 1
2

(
b∗A3c2 − τ6

360

)
,

d6,20 = b∗A4c− τ6

720 .

Table 2. Order conditions for the lower-order weights of DLMP6(5)ext, i.e., b̂∗.

d̂1,1 = b∗I− τ, d̂2,1 = b̂∗c− τ2

2 , d̂3,1 = 1
2

(
b̂∗c2 − τ3

3

)
,

d̂3,2 = b̂∗Ac− τ3

6 , d̂4,1 = 1
6

(
b̂∗c3 − τ4

4

)
, d̂4,2 = b̂∗Ac2 − τ4

12 ,

d̂4,3 = b̂∗(c ∗ Ac)− 1
24 , d̂4,4 = b̂∗A2c− τ4

24 , d̂5,1 = 1
6

(
b̂∗c4 − τ5

5

)
,

d̂5,2 = 1
2

(
b̂∗
(
c2 ∗ Ac

)
− τ5

10

)
, d̂5,3 = 1

2

(
b̂∗(Ac)2 − τ5

10

)
, d̂5,4 = 1

2

(
b̂∗
(
c ∗ Ac2)− τ5

15

)
,

d̂5,5 = b̂∗
(
c ∗ A2c

)
− τ5

10 , d̂5,6 = 1
6

(
b̂∗Ac3 − τ5

20

)
, d̂5,7 = b̂∗A(c ∗ Ac)− τ5

40 ,

d̂5,8 = 1
2

(
b̂∗A2c2 − τ5

60

)
, d̂5,9 = b̂∗A3c− τ5

120 .

In these Tables, we mention with dji the j−th-order conditions. By ∗, we denote
component-wise multiplication among vectors. This multiplication has lesser priority than
the dot product. We also use the notation c2 = c ∗ c, c3 = c ∗ c ∗ c, etc. By A2 = A · A or
Ac = A · c, we denote the classical dot product. We also set I = [1, 1, · · · , 1]T ∈ Rs̃.
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For solving the above equations, we make some simplifying assumptions. Namely

AI = c, ( A · c = 1
2

c2)(3+), (A · c2 =
1
3

c3)(3+),

and
b · (A + C− τ Is̃) = 0s̃.

In the above, we use the symbolization v(i+) with the elements of some vector v but
with its first (i− 1) elements dropped. We set C = diag(c), and by Is̃ and 0s̃, we mean,
respectively, the identity and zero matrix in Rs̃×s̃.

Then, there is a severe reduction in the number of the order conditions to be solved.
We are able to analytically solve these remaining order conditions with respect to the new
coefficients. Indeed, when the above assumptions hold, only the order conditions

d6,1, d5,1, d4,1, d3,1, d2,1, d1,1, d5,4, d5,5, d6,16, d6,8, d6,11, d6,19,

and
d̂5,1, d̂4,1, d̂3,1, d̂2,1, d̂1,1, d̂5,4, d̂5,5,

have to be solved. The task is becoming a lot easier. We even manage to solve the
seventh-order equations of condition for the higher-order formula. The resulting pair
is shown in Table 3. These coefficients can be retrieved in Mathematica [7] format from
http://users.uoa.gr/~tsitourasc/dlmp65ext.m (accessed on 3 June 2023).

An interpolant of the sixth-order at the same cost can be constructed for this type of
pair [8]. Then, we may freely choose the magnitude of τ and vary the lengths of the new
step after rejection. By fixing τ = 0.8 and achieving locally seventh-order accuracy after
rejection, we obtain better results overall.

Table 3. The coefficients of the new extended pair.

c2 = 1
9 , c3 = 1

6 , c4 = 1
4 , c5 = 5

9 , c6 = 1
2 , c7 = 48

49 ,
c8 = 1, c9 = 1, c10 = 4

139 , c11 = 17
38 , c12 = 4

5 ,
b∗1 = −0.06075441182658404, b∗2 = b∗3 = 0,
b∗4 = 0.25108031811087983, b∗5 = 0.59459248062264663,

b∗6 = −0.58130691768291823, b∗7 = −0.01117792906462664,
b∗8 = 0.001953125, b∗9 = 0.00453876219794998,

b∗10 = 0.18340955527240297, b∗11 = 0.33291925465838509,
b∗12 = 0.08474576271186441, b̂∗1 = −0.0607545222182737630,
b̂∗2 = b̂∗3 = 0 = b̂∗12, b̂∗4 = 0.362681592201453867,
b̂∗5 = 1.18886870906761734, b̂∗6 = −1.20278300666332157,

b̂∗7 = −0.357600832335522983, b̂∗8 = 0.232809581363277529
b̂∗9 = 0.0760545523116338381 b̂∗10 = 0.163215379071331048
b̂∗11 = 0.314851188060490077 b̂∗12 = 0.0826573591413146190, b1 = 203

2880 ,
b2 = b3 = 0 = b9, b4 = 30208

70785 ,
b5 = 177147

164560 , b6 = − 536
705 ,

b7 = 1977326743
3619661760 , b8 = − 259

720 ,
b̂1 = 36567

458800 , b̂4 = 9925984
27063465 ,

b̂5 = 85382667
117968950 , b̂6 = − 310378

808635 ,
b̂7 = 262119736669

345979336560 , b̂8 = − 1
2 , b̂8 = − 101

2294 ,
a21 = 0.111111111111111111, a31 = 0.0416666666666666667,

http://users.uoa.gr/~tsitourasc/dlmp65ext.m
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Table 3. Cont.

a32 = 0.125, a41 = 0.0625,
aj2 = 0, j = 4, 5, · · · , 12, a43 = 0.1875,

a51 = 0.384087791495198903, a53 = −1.33744855967078189,
a54 = 1.50891632373113855, a61 = 0.417370572207084469,

a63 = −1.46730245231607629, a64 = 1.60862026257121625,
a65 = −0.0586883824622244241, a71 = −0.906581932271243731,

a73 = 1.98165828767968130, a74 = 0.967924991130227440,
a75 = 7.90644976448593311, a76 = −8.96985927428990425,

a81 = −1.23125466844812894, a83 = 2.33058398998453494,
a84 = 1.69577556052661329, a85 = 10.8007435894539014,

a86 = −12.5648566499630329, a87 = −0.0309918215538877730,
a9j = bj, j = 1, 2, · · · , 8, a101 = 0.0276060694624219017,

a103 = −0.18678058047598361, a104 = 0.391371551663676298,
a105 = 1.09230024433914178, a106 = −1.22247349711209067,

a107 = −0.556216395594661712, a108 = 0.356521739130434783,
a109 = 0.126447847004327, a111 = 0.0192549367566782782,

a114 = 0.496087246358859837, a115 = −1.18052838103602307,
a116 = 1.29939201810168170, a117 = 0.586956521739130435,

a118 = −0.367816091954022989, a119 = −0.142156862745098039,
a1110 = 0.281632150794417543, a121 = −0.820970265019910839,
a124 = −0.653270781790705787, a125 = 4.32243201762434916,
a126 = −5.36952327363607790, a127 = −1.10690062359555245,
a128 = 0.688006483439893015, a129 = 0.274081679397217048,
a1210 = 0.562729086953349127, a1211 = 1.38529454069957502,
a113 = −0.545453116962992122, a123 = 1.51812113592786359

4. Numerical Results

We have chosen the detest problems D4, D5, and E2 as the set to perform our tests
on. Integrating these problems by any 6(5) pair, we observe that almost 25% of the
computational cost is wasted upon rejected steps. The problems chosen are given below.

Problem D4
This is the two-body problem with eccentricity e = 0.7, and it has the following

form [9]

y′1 = y3, y′2 = y4, y′3 = − y1

(y2
1 + y2

2)
3/2

, y′4 = − y2

(y2
1 + y2

2)
3/2

,

y1(0) = e =
7
10

, y2(0) = 0, y3(0) = 0, y4(0) =

√
17
3

, x ∈ [0, 20].

Notice that subscripts above denote the component of the problem and not time steps. We
solve the above equations in the interval [0, 20], and the theoretical solution is given in [10].

After we run this problem for tolerances TOL = 10−4, 10−5, · · · , 10−9 and λ = 7, we
record in Tables 4 and 5 all the characteristics of the results. In the final column, we present
an efficiency measure according to the formula [11,12]

efficiency = (total function evaluations) · (end point error)1/6. (4)

This information is perhaps more significant because it ensures that we do not simply
decrease the number of rejected steps with a very conservative step-size algorithm, which,
in reverse, decreases efficiency.
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Table 4. Results of DLMP6(5) over the problem D4 using the standard step-size-change algorithm.

TOL Accepted Steps Rejected Steps Extended Steps End Point Error Efficiency (4)

10−4 60 24 0 1.0× 10−3 213.6
10−5 78 29 0 2.1× 10−4 208.5
10−6 108 39 0 2.5× 10−5 201.7
10−7 151 48 0 2.6× 10−6 186.5
10−8 215 58 0 2.2× 10−7 169.2
10−9 303 10 0 2.2× 10−8 132.1

Table 5. Results of DLMP6(5) over the problem D4 using the new step-size-change algorithm.

TOL Accepted Steps Rejected Steps Extended Steps End Point Error Efficiency (4)

10−4 58 7 13 3.3× 10−4 150.3
10−5 76 5 13 6.7× 10−5 141.0
10−6 107 0 20 4.2× 10−6 119.0
10−7 155 0 26 2.0× 10−6 151.4
10−8 224 0 36 1.7× 10−7 144.0
10−9 307 0 9 2.1× 10−8 131.2

Problem D5
This is again the two-body problem (i.e., Kepler problem) as above but with eccentricity

e = 0.9, and the initial conditions are now

y1(0) = e =
9

10
, y2(0) = 0, y3(0) = 0, y4(0) =

√
19, x ∈ [0, 20].

The corresponding results are given in Tables 6 and 7.

Table 6. Results of DLMP6(5) over the problem D5 using the standard step-size-change algorithm.

TOL Accepted Steps Rejected Steps Extended Steps End Point Error Efficiency (4)

10−4 90 29 0 4.3× 10−3 384.1
10−5 118 45 0 3.0× 10−4 337.0
10−6 160 58 0 3.8× 10−5 319.4
10−7 223 75 0 3.7.1× 10−6 296.8
10−8 316 92 0 2.9× 10−7 265.9
10−9 449 64 0 2.6× 10−8 224.1

Table 7. Results of DLMP6(5) over the problem D5, using the new step-size-change algorithm.

TOL Accepted Steps Rejected Steps Extended Steps End Point Error Efficiency (4)

10−4 89 18 10 4.0× 10−3 356.9
10−5 117 23 13 4.9× 10−5 224.3
10−6 158 3 27 2.2× 10−5 232.8
10−7 227 0 40 2.4× 10−6 229.0
10−8 327 0 52 2.0× 10−7 215.7
10−9 457 0 36 2.2× 10−8 200.5

Problem E2
This is the Van der Pol oscillator driven by the equations

y′1 = y2, y′2 = (1− y2
1)y2 − y1, y1(0) = 2, y2(0) = 0, x ∈ [0, 20].

The corresponding results are given in Tables 8 and 9.
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Table 8. Results of DLMP6(5) over the problem E2 using the standard step-size-change algorithm.

TOL Accepted Steps Rejected Steps Extended Steps End Point Error Efficiency (4)

10−4 50 25 0 2.5× 10−4 150.9
10−5 71 31 0 2.2× 10−5 136.9
10−6 102 32 0 1.7× 10−6 117.4
10−7 146 42 0 1.8× 10−7 113.5
10−8 207 41 0 1.9× 10−8 102.1
10−9 298 33 0 2.0× 10−9 94.2

Table 9. Results of DLMP6(5) over the problem E2 using the new step-size-change algorithm.

TOL Accepted Steps Rejected Steps Extended Steps End Point Error Efficiency (4)

10−4 51 4 14 5.7× 10−5 97.3
10−5 73 6 16 3.2× 10−5 123.9
10−6 104 0 21 2.4× 10−6 105.7
10−7 149 3 24 1.7× 10−7 97.4
10−8 210 4 19 1.4× 10−8 88.1
10−9 302 1 19 1.7× 10−9 86.2

Arenstorf orbit
A fascinating orbit displays a spacecraft’s steady journey around the Earth and

Moon [1] (p. 297). This can be given in the form of (1) as follows

y′1 = y3,

y′2 = y4,

y′3 = −ψ′
ψ cos x + y1

P1
+ ψ

ψ′ cos x− y1

P2
,

y′4 = −ψ′
ψ sin x + y2

P1
+ ψ

ψ′ sin x− y2

P2
,

with

P1 =
(
(y1 + ψ cos x)2 + (y2 + ψ sin x)2

)1.5
,

P2 =
(
(y1 − ψ′ cos x)2 + (y2 − ψ′ sin x)2

)1.5
,

ψ = 0.012277471, ψ′ = 0.987722529,

and initi·al values

y1(0) = 0.994, y3(0) = 0, y2(0) = 0, y4(0) = −1.007585106379082,

and the solution is periodic with period xA = 17.0652165601579625589. We solved the
Arenstorf problem and recorded the cost (i.e., the stages used) and the errors observed
for xA.

The corresponding results are given in Tables 10 and 11.
Interpreting the results, we observe about 28%-29% improvement in the efficiency for

the problems and accuracies chosen. This can be found by dividing the corresponding
values in the last column of Tables 4–11: e.g., for problem D4 and TOL = 10−4, we observe
that the standard algorithm ((2) and (3)) is about 213.6

150.3 = 42.1% more expensive than the
new algorithm. In all 24 runs, we experience better efficiency with the new algorithm.
Another interesting issue is that the error is decreasing, since after step rejection, we apply
locally a seventh-order approximation.

The new algorithm proposed in the paper could be applied to fractional-order differ-
ential equations after some proper modifications [13,14].
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Table 10. Results of DLMP6(5) over the Arenstorf orbit using the standard step-size-change algorithm.

TOL Accepted Steps Rejected Steps Extended Steps End Point Error Efficiency (4)

10−4 61 23 0 5.4× 10−1 605.9
10−5 81 29 0 2.6× 10−1 704.6
10−6 111 42 0 3.4× 10−3 474.6
10−7 155 49 0 4.4× 10−4 450.0
10−8 219 47 0 3.6× 10−5 387.4
10−9 315 44 0 4.3× 10−6 366.6

Table 11. Results of DLMP6(5) over the Arenstorf orbit using the new step-size-change algorithm.

TOL Accepted Steps Rejected Steps Extended Steps End Point Error Efficiency (4)

10−4 62 16 5 6.6× 10−1 595.8
10−5 81 16 7 2.7× 10−1 640.2
10−6 113 12 18 5.1× 10−4 297.6
10−7 157 0 26 1.6× 10−4 310.4
10−8 225 0 30 9.0× 10−6 272.7
10−9 320 0 25 3.0× 10−6 316.9

5. Conclusions

A new step-control algorithm was presented in this article that, after the rejection
of a Runge-Kutta step, avoids the unnecessary waste of the already-made computations.
Numerical results on problems with a high percentage of rejected steps show the clear
advantages of the new step-size policy.
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