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Abstract: In this paper, we propose and compare new methodologies for ranking the importance of
variables in productive processes via an adaptation of OneClass Support Vector Machines. In particular,
we adapt two methodologies inspired by the machine learning literature: one involving the random
shuffling of values of a variable and another one using the objective value of the dual formulation of
the model. Additionally, we motivate the use of these type of algorithms in the production context and
compare their performance via a computational experiment. We observe that the methodology based
on shuffling the values of a variable outperforms the methodology based on the dual formulation. We
observe that the shuffling-based methodology correctly ranks the variables in 94% of the scenarios with
one relevant input and one irrelevant input. Moreover, it correctly ranks each variable in at least 65% of
replications of a scenario with three relevant inputs and one irrelevant input.

Keywords: data envelopment analysis; feature ranking; model specification; unsupervised machine
learning; technical efficiency; overfitting
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1. Introduction

A topic which has attracted large amounts of interest from the machine learning and
statistical communities is the importance which certain variables have when building
models to predict or explain a response variable. This can be encountered in a large variety
of fields, such as the measurement of the technical efficiency of a set of homogeneous
entities (companies, public organizations, etc.), related to microeconomics and operations
research. Some of the early contributions in this area of study can be traced back to the
work by Cobb and Douglas [1], who empirically estimated a production function. Later,
Koopmans proposed a formal definition of technical efficiency [2], and Debreu and Farrell
introduced a way to measure it, following an input-oriented or output-oriented radial
direction in [3,4], respectively. A link between the measures of efficiency and production
technologies was introduced by Shephard in [5]. Building on these foundations, a variety
of approaches have been proposed, which are usually split in the literature into parametric
and nonparametric methodologies. Representative examples of each approach, which are
two of the most well-known techniques, are the Data Envelopment Analysis (DEA) in the
nonparametric family [6,7], and the Stochastic Frontier Analysis (SFA) in the parametric
one [8,9].

In this article, we focus on the nonparametric approach due to some of its character-
istics, such as its flexibility and its natural multi-input, multi-output treatment. Whereas
the parametric approach assumes some functional form for the production frontier, the
nonparametric approach takes, as a foundation, only some properties of the underlying
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production frontier. In particular, the DEA methodology proposes a linear optimization
program which can be used to estimate the technical efficiency of a unit with respect to a
production technology which satisfies the postulates of envelopment, free disposability of
inputs and outputs, and convexity. It does so by applying, at the last stage, the postulate of
minimal extrapolation, which estimates the smallest among all possible sets satisfying the
above postulates [7].

The postulate of minimal extrapolation is the cause of one of the criticisms that
has been leveraged against DEA, which is that it is a data-driven technique which is
descriptive in nature, and thus may not generalize well [10]. In particular, it does not
allow for statistical inference tasks to be performed unless the sample size is large enough.
Various authors have attempted to overcome this limitation. Among them, Simar and
Wilson have adapted bootstrapping procedures to estimate bias, variance, and to construct
confidence intervals [11,12]. Other properties studied include the consistency and speed
of convergence of the DEA estimators [13], which is deeply related to the problem of the
curse of dimensionality, which results in too many units being considered efficient when
the number of dimensions is large, relative to the number of units available. Some recent
contributions to the DEA literature are [14,15].

In this paper, we turn our attention to a field related to that of operations research
and optimization, which is the field of machine learning and data analytics. This is an
area of knowledge which builds estimators from available data. These estimators can be
broadly classified into two families: supervised and unsupervised learning. In supervised
learning, some variables are used in order to estimate one or multiple objective variables.
Depending on the nature of the predicted variable(s), supervised learning tasks can be a
regression of a continuous variable or a classification of elements into various classes when
the target variable is discrete. On the other hand, in unsupervised learning, all variables
are used in order to obtain information about the process which generated the data, which
includes tasks such as clustering, anomaly detection, or estimating probability densities
and their supports.

Until relatively recently, there had been little contact between the fields of machine
learning and the measurement of technical efficiency fields, but some examples of their
proximity can be seen in the work by Kuosmanen and Johnson, who used piecewise
linear estimators of a production function via the Corrected Concave Nonparametric
Least Squares [16]. Another contribution by Parmeter introduced nonparametric kernel
estimators to the frontier problem [17], while Daouia et al. proposed a procedure using
constrained polynomial splines to obtain smooth frontiers [18]. Other authors have adapted
decision tree-based techniques such as Classification and Regression Trees (CART) in [10],
or probabilistic regression trees (with panel data) in [19]. Furthermore, Valero-Carreras
et al. adapted Support Vector Regression in this context [20], while Olesen and Ruggiero
proposed a representation of production frontiers using hinging hyperplanes [21]. Finally,
Guerrero et al. combined DEA with machine learning techniques through the Structural
Risk Minimization principle [22].

One feature that the works mentioned above have in common (except DEA itself) is
that they are methods which use some of the variables available in the data (inputs) in
order to predict the values of one (or more) output variable(s). This is usually associated
with the supervised learning paradigm in machine learning. In the production context, this
is justified by the natural split into inputs and outputs present, where the inputs are used
to predict or explain the values of the output(s). However, these methods have drawbacks,
such as the requirement to a priori partition the variables into two subsets, and they present
difficulties when being extended to multi-output contexts [23].

In contrast, unsupervised learning makes no such distinction between variables. In-
stead, it treats all variables homogeneously, and attempts to obtain information about
the underlying Data Generating Process (DGP) that yielded the data. In this context, the
estimation objective of DEA becomes to estimate the production technology, which can be
seen as the support of the underlying Data Generating Process [24] and, from this point of
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view, DEA resembles an unsupervised learning technique more closely. These observations
enable the use of methodologies for the estimation of the support of a distribution in order
to estimate production technologies.

Among the methods for estimating the support of a probability distribution, a relevant
family is that of kernel methods, such as the Kernel Density Estimation [25,26]. Kernels
are transformations of the data which endow estimators with flexibility. They can also
provide smoothing to estimators of probability densities of random variables, and their
corresponding supports. At the intersection of machine learning methodology and the
statistical learning theory, there lies a family of kernel-based estimators called Support
Vector Machines (SVM) [27,28]. First introduced by Vapnik, SVMs adapt the flexibility
of kernel methods to varied tasks such as classification and regression in the supervised
learning area. Furthermore, SVMs can be adapted to unsupervised machine learning tasks
such as the estimation of support of high-dimensional distributions via, for example, the
OneClass Support Vector Machines (OCSVM) estimator of [29]. We choose this method as
the basis for our estimator of the production technology.

An important topic in data-driven methodologies is the phenomenon of the decrease
in the quality of the model as the dimensionality of the data increases when compared to
the number of data points available [30]. This problem is related to the rate of convergence,
which depends on the number of units as well as on the dimensionality of the problem. In a
nonparametric frontier analysis, this phenomenon is often called the curse of dimensionality
and takes form in an increase in the number of Decision Making Units (DMUs) considered
efficient, and the subsequent lack of discrimination between them. It is also related to the
question of model specification, and an important task in this context is measuring the
importance of each variable in the production process, which allows the ranking of the
variables according to this importance.

Approaches to the evaluation of the importance of variables and their selection from
the DEA literature include proposals based on regressions between input variables and
efficiency scores [31], or partial correlations among variables [32], as well as methods
evaluating the contribution of each variable to the estimated efficiency scores [33]. Statistical
hypothesis tests have been proposed to evaluate the significance of input variables [34], as
well as comparisons between the number of efficient units estimated by various models [35].
We refer the reader to a more thorough discussion and comparison of these and other
techniques in [36]. Other contributions propose methods which evaluate the importance
of subsets of variables, such as those that enrich the optimization programs using binary
variables to model the inclusion or exclusion of variables [37–39]. Along these lines, criteria
such as Akaike’s Information Criteria [40] or game-theoretic measures such as the Shapley
value [41] have been used to choose among models. In addition to the selection among the
original variables, other authors have proposed methods for the aggregation of variables
into new variables, such as those which use the Principal Component Analysis [42,43], or
techniques based on bootstrapping [12]. Some other approaches to attempt to increase the
discriminating power of DEA involve super-efficiency models [44], which omit the unit
whose efficiency is being evaluated from the reference set of the technology, or the use of
the distance to anti-efficient frontiers [45], among others.

More recently, there are contributions for the selection of variables such as [46], who
provide a more recent overview of methods as well as a methodology using contribution
loads; methodologies based on statistical tests such as [47,48]; as well as methods which
enrich other estimators such as SCNLS [16] with LASSO-based regularization terms [49–51].

From the machine learning perspective (without contact with the technical efficiency
measurement field), many varied approaches have been proposed for the ranking of
importance of variables and their selection; see for example [52–54]. In this paper, we will
focus on two of the most well-known methods. One involves the random shuffling of
features, first introduced with Random Forest in [55]; and the other is an SVM-specific
method which measures the importance of variables via their effect on the objective value
of the dual formulation of the estimator. It was introduced in [56].
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In summary, in this paper, we propose an adaptation of the OneClass Support Vector
Machine algorithm to the estimation of production technologies which generalize those of
DEA, aiming to overcome the deterministic and overfitting nature of DEA. We furthermore
endow it with methods for the measurement of the importance of each variable in the
production process, as well as obtaining a ranking of these variables. We propose a feature
shuffling method and an approach based on the objective function of the dual formulation
of the model. This paper presents a new link between the ranking of the importance
of variables in efficiency measurement and machine learning. Furthermore, this paper
proposes, for the first time, the use of unsupervised machine learning methodologies to
rank the importance of variables in production processes.

The rest of this article is structured as follows. Section 2 introduces the main concepts
of the Data Envelopment Analysis, OneClass Support Vector Machines, and describes the
feature importance methods which we will adapt. Section 3 proposes an adaptation of the
OneClassSVM estimator to the nonparametric frontier estimation context and equips it with
the proposed approaches for ranking the importance of features. Section 4 describes and
presents the results of a computational experiment performed to compare these methods.
Finally, Section 5 presents the conclusions of this article, as well as an outline of potential
future research lines.

2. Background

In this section, we briefly introduce the main notions used in the article related to the
Data Envelopment Analysis, OneClass Support Vector Machines, and the feature ranking
methods which we will adapt.

2.1. Data Envelopment Analysis

The Data Envelopment Analysis (DEA) is a nonparametric methodology for the
estimation of the technical efficiency of members of a set of Decision Making Units (DMUs)
in a multi-input, multi-output context. It uses a dataset consisting of n DMUs, where DMU
i consumes xi = (x(1), . . . , x(m)) ∈ Rm

+ inputs in order to produce yi = (y(1), . . . , y(s)) ∈
Rs

+ outputs, and estimates the relative efficiency of each DMU with respect to an underlying
production technology satisfying certain microeconomic axioms (we represent vectors using
bold characters, while scalars are not bold).

Whereas the standard formulation in DEA assumes non-negative values for both
inputs and outputs, yielding different objectives for each type of variable, these variables
can be considered with the direction of flow to and from the unit under study [2]. This
difference in flow direction is formalized in the netput notation, which considers inputs
to have non-positive values, while the values of output variables are non-negative, i.e.,
the netput representation of DMU i is zi = (−xi, yi) ∈ Rm

− ×Rs
+ [57,58]. We denote the

netput dataset by Z . With this notation, increasing efficiency of a DMU corresponds to
maximizing each component (without reducing any other component). Furthermore, the
axiom of free disposability is simplified, since now any variable can have its values freely
reduced while remaining feasible. The netput notation in the production context allows
for a homogeneous treatment of all variables. The efficiency of each DMU is evaluated
with respect to a technology or production possibility set, which is defined by those netput
bundles whose outputs are producible given a set of inputs.

Ψ = {z ∈ Rm
− ×Rs

+ : z is feasible}.

We will denote by Ψ the unknown underlying technology, and work with estimations
of this technology, which we denote by Ψ̂. In the case of the DEA estimator, the technology
Ψ̂DEA is the smallest set satisfying: the envelopment of the data, that is, Ψ̂DEA contains all
DMUs in Z ; convexity, that is, Ψ̂DEA is a convex set; and free disposability of inputs and
outputs, that is, for every z ∈ Ψ̂DEA, whenever z′ ≤ z, we have z′ ∈ Ψ̂DEA [7]. In particular,
the DEA estimated technology Ψ̂DEA is, following the minimal extrapolation principle, the
unique set satisfying these properties.
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Given a technology Ψ, a usual characterization of technically efficient units is as those
points which are not strictly Pareto dominated by any other element of Ψ, i.e., there is no
feasible DMU with strictly greater netput values. The corresponding set of interest is the
weak efficient frontier of Ψ, which consists of the (weak) technically efficient points in Ψ. It
is defined by ∂W(Ψ) := {z ∈ Ψ : ẑ > z⇒ ẑ /∈ Ψ}. The technical efficiency of a DMU can
then be measured as the distance to ∂W(Ψ) with respect to some permitted improvement
path. One such measure of efficiency is the Directional Distance Function (DDF), introduced
in [57,59]. The DDF projects each DMU along some pre-specified direction g ∈ Rm+s

+ such
that g 6= 0, as follows:

δ(z, g) = max{δ : (z + δg) ∈ Ψ}. (1)

Thus, δ(z, g) measures the distance from z to the boundary of a given technology Ψ
along a direction g. The DDF takes the value 0 for efficient DMUs (any change along the
g direction leaves the technology) and, whenever z ∈ Ψ, we have δ(z, g) ≥ 0. Therefore,
δ ∈ [0,+∞), and it can be seen as a measure of technical inefficiency of a given DMU z.

A particular choice of vector g(z) = (0, y) = (0, . . . , 0, z(m + 1), . . . , z(m + s)) ∈ Rm+s
+

yields the output-oriented Farrell measure of efficiency, which is defined as the largest possible
proportional increase in all outputs simultaneously, which results in a feasible bundle [4]:

λ(z) = max{λ : (−x, λy) ∈ Ψ}. (2)

The coincidence of both measures can be seen explicitly via the relationship λ = δ− 1,
since z + δg = (−x, y) + δ(0, y) = (−x, (1 + δ)y).

DEA is a very interesting approach to determine technical efficiency, partly due to being
based on few assumptions. However, the estimates obtained using this technique are very
dependent on the variables utilized [30] and suffer from overfitting to the data due to the
minimal extrapolation principle [10]. We introduce a technique which aims to overcome these
limitations and use it to measure the relative importance of variables (inputs and outputs).

2.2. OneClass Support Vector Machines

We now turn our attention to the OneClass Support Vector Machine (OCSVM) esti-
mator [29], in machine learning, which we will adapt to measure technical efficiency. This
estimator belongs to the family of Support Vector Machines (SVM) [27,28], which are based
on the statistical learning theory, with the aim to bound not only the classification error,
but also the generalization error via a weighing hyperparameter C = 1/νn. The OCSVM
estimates the region in which this data lives, separating it from the rest of the space via
a hyperplane in a transformed space via a transformation function φ. In other words, it
estimates the support of the underlying Data Generating Process. The OCSVM estimator is
based on the following quadratic program:

min
w∈Rm+s+h ,ξ∈Rn ,ρ∈R

1
2
‖w‖2 +

1
νn

n

∑
i=1

ξi − ρ

subject to 〈w ·φ(zi)〉 ≥ ρ− ξi, ∀i ∈ {1, . . . , n}
ξi ≥ 0, ∀i ∈ {1, . . . , n}

. (3)

This program involves a regularization error term 1
2‖w‖

2, an empirical error term
involving one ξi for each DMU, and a scalar value ρ indicating where the frontier is located.
The tradeoff between the various terms is weighted by a hyperparameter ν. When solving
this program, we obtain (w∗, ξ∗, ρ∗), which determine the estimated support of the dataset,
defined by:

Ψ̂OCSVM = {z ∈ Rm+s : 〈w∗ ·φ(z)〉 ≥ ρ∗}. (4)

This estimator can obtain sets with various properties according to the choice of
kernel or transformation function φ(z). This kernel maps the feature space into a higher
dimensional space and separates the data in this transformed space, giving more flexibility
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to the method. By parallelism with the DEA-estimated technology, we choose for this task
the following adaptation of the PieceWise Linear (PWL) transformation function described
in ([60], Expression (12)), which will result in polyhedral sets being estimated:

φPWL(z) =

{
−z(k), for k ∈ {1, . . . , m + s}
−max{µ, 〈pk · z〉+ qk}, for k ∈ {m + s + 1, . . . , m + s + h}

. (5)

Figure 1 illustrates the role played by the PWL transformation function (5) in the
proposed approach in an example with two variables. In this example, four hyperplanes
are defined, each of which splits the variable space into two half-spaces. These hyperplanes
are called basis functions in [60]. Each component of the transformation function achieves
the value −µ in one such half-space, and the value −〈pk · z〉 − qk elsewhere. Thus, the
region where each hyperplane is equal to hyperparameter µ causes the corresponding
component of φPWL to change the function chosen in the maximum, which results in a
turning point of a potential estimated boundary of Ψ̂OCSVM, weighted by the corresponding
component of w. Thus, we can observe that the resulting boundary consists of a piecewise
linear region with turning points at each of the defined hyperplanes. Given a particular
transformation function, the OCSVM algorithm will estimate values of w so that the
corresponding region is an estimate of the support of the observed data. A restriction on
the values of w will enable the estimation of a convex set.

Figure 1. Example of hyperplanes and of a classification boundary.

This feature mapping involves an offset hyperparameter µ, as well as a number h
of hyperplanes determined by their coefficients pk and qk ∈ R. The regions where each
hyperplane takes the value µ are those regions of the netput space where the boundary of
the support can have turning points.

2.3. Feature Ranking in Machine Learning

We now turn our attention to two of the large variety of methods available in the machine
learning literature to measure and rank the importance of variables. We choose two of the
most well-known methods which are appropriate to the OneClass Support Vector Machine
estimator. These are methods based on the random shuffling of the values of a variable,
introduced in [55], as well as an approach based on the change in the objective value of the
dual problem to (8), as proposed in [56] specifically for Support Vector Machines.



Mathematics 2023, 11, 2590 7 of 24

2.3.1. Feature Shuffling

Feature Shuffling, also known as Permutation Feature Importance, is one of the
classical methods for measuring the relative importance of features for a given estimator
in machine learning. It is based on the increase of the error of a model when the values
of a feature are randomly shuffled. This methodology was introduced together with the
Random Forest algorithm [55].

The idea behind this algorithm is that, for some estimators, the magnitude of the
error values may depend on the number of features used in the estimator, so that if two
models are compared where a feature has been completely dropped from one of them,
there may be effects from the changes in both the number of features used (related to the
rate of convergence), and the effect of the feature itself which we aim to measure. Instead,
randomly shuffling the values of the variable being evaluated makes this variable, on
average, unrelated to the rest of features. The effect is then similar to dropping the variable
from the estimator, while keeping the number of features used in the estimator unchanged.

Based on this observation, a backward stepwise procedure is proposed which, at
each step, obtains a measure of the relative importance of the features for the current
estimator, and ranks the least important one last among the remaining features. At each
step, this method fits the appropriate estimator to the data with every remaining variable,
and obtains the Mean Squared Error (MSE) of the estimator, E0, that is, the error of the
model. It then iterates over each remaining variable l one at a time, and shuffles randomly
the values of this variable, obtaining a dataset Zl . Then, the estimator is fitted again with
the shuffled data, yielding an estimator error of El .

The shuffling of values of a variable that are very important to the production process
should result in a large increase of values from E0 to El , whereas an irrelevant variable
being shuffled would have little to no effect on the error of the estimator. Thus, we calculate
the normalized difference:

∆El =
El − E0

E0
. (6)

The variable l is considered more important the larger the ∆El is. Thus, at each step,
the variable attaining the minimum value of ∆El is considered the least important, and
it is ranked last among the remaining variables. The process is then iterated with those
variables not yet added to the ranking until the last variable remaining is considered the
most important one. This yields a complete ranking of the features under consideration.

2.3.2. Dual Objective Variation

This SVM-inspired approach, introduced in [56], is based on the variation in the
objective value of the dual formulation of a Support Vector Machine when a variable
is dropped. It considers the dual formulation of an SVM, as calculated using standard
quadratic programming tools. The use of the objective value J of the dual as a measure of
the importance of a variable is justified since this objective value can be seen as a measure
of the error of the model.

Thus, we can evaluate the importance of each variable via the effect that removing this
variable has on the objective value J of the dual formulation of an SVM. The methodology
begins by solving the Support Vector Machine (in its dual formulation) and obtaining its
objective value J. This quantity involves the dual variables, which are then fixed in order to
simplify the computation. Then, the values of the variable being considered are converted
to 0, simulating the effect of its removal, and the model is solved once again, obtaining a
new value Jl . Then, the normalized squared difference ∆J2

l is calculated:

∆J2
l =

(
Jl − J

J

)2
. (7)

This value ∆J2
l is the corresponding measure of importance of the variable l. If the

evaluated variable l is irrelevant to the production process, its elimination will cause a small
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increase in the error of the model, that is, it will yield a small value of ∆J2
l , whereas the removal

of an important variable will cause the error to increase, yielding larger values of ∆J2
l .

At each step, the variable with a minimum ∆J2
l is considered as the least important for

the estimator, and it is ranked last among the remaining variables. The method is then iterated
until the final variable remaining is considered the most important variable in the process.

3. New Methods for Ranking Variables in Production Processes Using OneClass
Support Vector Machines for Efficiency Measurement

In this Section, we adapt the OCSVM algorithm introduced in Section 2 with the
piecewise linear kernel (5) to the task of estimating production technologies via appropri-
ate modifications to satisfy convexity and other relevant microeconomic properties. We,
furthermore, propose two approaches for ranking the importance of the variables involved
in the production process.

As the basis of the proposal, we follow the approach from [24] that a technology
arises from an underlying Data Generating Process (DGP) which is assumed to have
some statistical properties. These assumptions are that the observed DMUs are random
samples of identically and independently distributed random variables with an underlying
probability density function satisfying some regularity conditions. In this context, the
problem of estimating a production technology has a natural interpretation, such as the
task of estimating the support of a probability distribution, which enables the use of tools
from that literature, such as OCSVM.

We begin by adapting the OneClass Support Vector Machine estimator (3) to the task
of estimating a production technology as follows. The resulting model, which we call
OneClass for Efficiency Measurement (OCEM) is the following:

min
w∈Rm+s+h , ξ∈Rn , ρ∈R

1
2
‖w‖2 +

1
νn

n

∑
i=1

ξi − ρ (8)

subject to 〈w ·φPWL(zi)〉 ≥ ρ− ξi, ∀i ∈{1, . . . , n} (8a)

ξi ≥ 0, ∀i ∈{1, . . . , n} (8b)
.

wj ≥ 0, ∀j ∈{1, . . . , m + s + h} (8c)

〈w ·φPWL(0)〉 = ρ, (8d)

Model (8) is a quadratic program, where the objective function and restrictions (8a)
and (8b) are identical to those of the OCSVM model (3). We use the PWL transformation
function φPWL from (5), with pk ≥ 0 for all hyperplanes. The algorithm involves two
hyperparameters: ν and µ, which we will now characterize. These will be fine-tuned via a
train-test split in order to obtain the best ones for each dataset. Restriction (8c) will ensure
convexity of the estimated technology, defined by:

Ψ̂(µ, ν) := {z ∈ Rm
− ×Rs

+ : 〈w∗ ·φPWL(z)〉 ≥ ρ∗}.

The corresponding efficient frontier is defined by the boundary of the polyhedral tech-
nology, that is, F(Ψ̂(µ, ν)) := {z ∈ Rm

− ×Rs
+ : 〈w∗ ·φPWL(z)〉 = ρ∗}. Thus, restriction (8d)

will guarantee that the efficient frontier will pass through the origin, that is, 0 ∈ Ψ̂(µ, ν). We
calculate the technical inefficiency of a DMU with respect to this technology by adapting
the DDF formulation (1), with g ∈ Rm+s

+ :

δOCEM(z, g) = max{δ ∈ R : (z + δg) ∈ Ψ̂(µ, ν)} = max{δ : 〈w∗ ·φPWL(z + δg)〉 ≥ ρ∗}. (9)
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With this setup, it can be proved that the estimated technology Ψ̂(µ, ν) satisfies the usual
microeconomic axioms of production technologies. The convexity of Ψ̂(µ, ν) follows as in
([60], section 5), given that the defined φPWL is concaved and w ≥ 0. Free disposability of
inputs and outputs is satisfied as in CNLS (see ([16], section 2.2)) when imposing the condition
that pk ≥ 0 for all hyperplanes, so we will determine hyperplanes satisfying this property. As
a consequence of the properties of the OCSVM algorithm ([29], Proposition 3), we obtain a
bound on the fraction of outliers nOL in terms of the hyperparameter ν, given by

nOL ≤ νn ≤ nSV .

Here, nSV is the number of Support Vectors, that is, those DMUs which are important
to determine the frontier. Therefore, we observe that, if ν < 1/n, then Ψ̂DEA ⊆ Ψ̂(µ, ν), as a
consequence of the principle of minimal extrapolation in DEA. In other words, the technology
estimated by DEA is, when ν is small enough, a subset of the estimated technology.

The property that ν is a lower bound for the fraction of Support Vectors allowed, and
an upper bound for the fraction of outliers, leads us to choose ν in the range [1/(n + 1), 0.1],
except when n ≤ 10, where we choose ν ∈ [0.1, 0.3]. This choice results in a minimum of 0
outliers, and a maximum of 10% of DMUs being outliers.

We now describe the role of the hyperplanes involved in the transformation func-
tion (5), which is closely related to the appropriate range of values of the hyperparameter
µ. The hyperplane coefficients pk ≥ 0 and qk ∈ R involved in the model parameterize a
set of hyperplanes which will allow the polyhedral frontier turning points, that is, where
the edges of the faces of the polyhedral technology will be located. Since the goal is to
estimate an efficient frontier which is close to the data but without overfitting, thus being
close to the theoretical frontier, we are interested in hyperplanes which lie in the region
enveloping the data from above. A known set of hyperplanes in this region is given by the
faces of the convex closure, which we remark can be estimated by the DEA methodology.
Hence, we obtain a set of hyperplanes by solving the following linear DEA problem with
directional function g = 1 corresponding to the Chebyshev norm l∞ (see [61]). Using the
netput notation, the linear program to solve for DMU zi is:

−µi = min
pk ,qk

−〈pk · zi〉 − qk

subject to 〈pk · zr〉+ qk ≤ 0, ∀r ∈ {1, . . . , n}
〈pk · g〉 = 1,
pk ≥ 0,

. (10)

By solving these n linear programs, we obtain, for each DMU zi, a corresponding
hyperplane defined by (pk, qk) which is a hyperplane at distance −µi from this DMU located
on the DEA-estimated efficient frontier along the direction g = 1. Thus, we choose h = n.
Regarding µ, it is a hyperparameter which offsets the defined hyperplanes simultaneously, so
we choose the value µmin = min{µi : i ∈ {1, . . . , n}}, i.e., the negative of the largest distance
from a DMU to the efficient frontier, as a lower bound for potential values of µ, yielding a
potential range of values for µ ∈ [µmin, 0). We remark that, by the first constraint of (10), the
objective value of (10) (i.e.,−µi) is non-negative, hence, µi ≤ 0 for each DMU. We assume that
there is at least one DMU which is strictly inefficient with respect to model (10), which implies
that there is some DMU zi such that the objective value of program (10) is strictly positive,
hence µi < 0. Under this hypothesis, we have that µmin < 0.

At this stage, we have all the information required to set up the quadratic program (8)
which will be solved in order to obtain (w∗, ξ∗, ρ∗). It remains to tune the hyperparameters
ν ∈ [1/(n + 1), 0.1] when (n ≥ 10 and µ ∈ [µmin, 0) . For this task, we choose five equally
spaced values for each variable from these intervals. We then split the data into train and
test sets, where we use 70% of the data as a training set Ztrain and the remaining 30% as a
test set Ztest in order to evaluate the fit of each model trained. We denote their respective
cardinalities by ntrain and ntest. Then, for each pair of hyperparameter values, we fit model
(8) with the train set in order to obtain an estimate of the technology Ψ̂(µ, ν). In order to
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choose among these candidate technologies, we evaluate them using their Mean Squared
Error on the test set as follows. We evaluate model (9) using Farrell’s output distance, that
is, with g(z) = (0, y) = (0, . . . , 0, z(m + 1), . . . , z(m + s)), in order to obtain the efficiency
δ(z, g) of DMU z, and its projection ẑ = z + δ(z, g)g to the estimated efficient frontier. We
then calculate the MSE between the observed values and the estimated output values of
each DMU in the test set, via

1
ntest

∑
z∈Ztest

∑
k∈{m+1,m+s}

(ẑ(k)− z(k))2.

We choose those hyperparameters µ∗, ν∗ which lead to the smallest Mean Squared
Error on the predictions on the test set. With these hyperparameters fixed, we again
fit model (8) using the whole dataset Z to obtain the final estimate of the technology
Ψ̂ := Ψ̂(µ∗, ν∗).

The algorithm described above involves the tuning of appropriate values for hy-
perparameters µ∗, ν∗. However, for computational reasons, we sometimes already have
appropriate valid hyperparameters from a previous estimate of the technology, which we
fix for comparison.

Since Program (8) is quadratic, we can use the standard tools of quadratic program-
ming to obtain the following dual formulation, with hyperparameters µ∗, ν∗. We remark
that the dual of Program (8), which is a minimization problem, is a maximization problem.
However, the objective function of the maximization problem is the negative of the pre-
sented one, and is thus equivalent to the following minimization problem (this is standard
in the SVM literature, see e.g., ([29], eq. (3.11))):

min
α,γ,α0

J =
1
2

∥∥∥∥∥ n

∑
i=1

αiφPWL(zi) + γ + α0φPWL(0)

∥∥∥∥∥
2

subject to 0 ≤ αi ≤ 1/ν∗n, for i ∈ {1, . . . , n}
n
∑

i=1
αi + α0 = 1,

γ ≥ 0,

. (11)

We remark that, in terms of the variables of the primal program (8), we have the

equality w =
n
∑

i=1
αiφPWL(zi) + γ + α0φPWL(0), so that the objective value J = 1

2‖w‖
2 is a

measure of the error of the model.
We now adapt the previously described methods for ranking the relative importance

of the variables to the context of ranking the variables involved in productive processes
using the OCEM algorithm.

We first describe the Shuffling-OCEM methodology involving the random shuffling of
variable values, before moving to the Dual-OCEM proposal, which is based on the variation
of the objective function of the dual program (11).

3.1. Shuffling-OCEM

We proceed to adapt the methodology involving the shuffling of values of a feature to
the OCEM context as follows. We first solve the full OCEM model with the original dataset Z ,
with the tuning of hyperparameters. This yields values for µ∗, ν∗, which we use to obtain the
MSE of the fitted estimator, denoted by E0. We then iterate over each variable l being tested
for inclusion, randomly shuffle its values to obtain dataset Zl, and solve the OCEM model
with the previously established hyperparameters µ∗, ν∗ and dataset Zl . We calculate the error
of this model, El, and calculate the importance measure ∆El of the variable l using (6).

We remark here that we keep the hyperparameters µ∗, ν∗ obtained in the first model
fixed for the shuffled models, since we are interested in evaluating the effect of the change
in each candidate variable on the estimator. Furthermore, we performed some preliminary
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testing, where we observed that the version with further hyperparameter tuning takes
longer computational time, around 5 times longer than without it, but does not yield better
results. Thus, we consider the version where the hyperparameter tuning procedure is only
performed on the full model at each step of the process, and solve the shuffled models with
the hyperparameters obtained from the full model.

Once the measure of importance ∆El has been calculated for every variable, the least
important variable is that with the smallest value of ∆El . We add this variable to the
current ranking, and iterate the method without this variable, in order to continue ranking
the rest of the variables. At each iteration of the method, the hyperparameters µ∗, ν∗ are
recomputed. The final variable, that is, the variable which is never considered as the least
important among those remaining, is then considered the most important variable in the
production process. Algorithm 1 shows the steps followed by Shuffling-OCEM.

Algorithm 1 Shuffling-OCEM algorithm implementation

procedure CALCULATE_RANKING_SHUFFLING_OCEM(Z ,variables_to_rank)
remaining_variables← variables_to_rank
ranking, ∆E← [ ]
while |remaining_variables| > 1 do

n_var = |remaining_variables|
for k← 1 to n do

pk, qk, µi ← solve_program_(10)
end for
µmin = mini{µi}
Ztrain,Ztest ← create_train_test(Z)
Ψ̂, w∗, ξ∗, ρ∗, µ∗, ν∗ ← full_OCEM(Z , pk, qk, µmin)
E0 ← calculate_MSE_OCEM(Z , Ψ̂)
for l ← 1 to n_var do
Zl ← permute_var(Z , l)
Ψ̂l , w∗l , ξ∗l , ρ∗l ← OCEM_no_crossvalidation(Zl , pk, qk, µmin, µ∗, ν∗)
El ← calculate_MSC_OCEM(Zl , Ψ̂l)

∆El ← El−E0
E0

end for
v← arg min{∆E}
ranking← add_variable_to_ranking(v)
remaining_variables← remaining_variables− v
Z ← remove_variable(Z , v)

end while
final_variable← remaining_variables
ranking← add_variable_to_ranking(final_variable)
return ranking

end procedure

3.2. Dual-OCEM

This method evaluates the effect that the omission of a variable has on the model via
the variation in the objective value J of the dual problem (11) of the OCEM model. The
idea is that the removal of a variable will result in a larger effect on J the more important
the removed variable was on the model. In order to obtain values for the parameters
involved in the dual program, we begin by setting up and solving the full OCEM primal
problem (8), obtaining optimal hyperparameters µ∗, ν∗ for this problem, as well as a set of
h hyperplane parameters pk, qk involved in the feature mapping φPWL. We then fix these
hyperparameters throughout this iteration and turn our attention to program (11), the dual
model to the OCEM method.
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We solve the dual program (11) and then, in order to make the computations feasi-
ble, [56] proposes that we keep the solutions (α∗, γ∗, α∗0) of the dual constant. In order
to evaluate the change in the objective function J when removing a variable l, since we
keep the hyperparameters and the dual variables constant, the only changes in J will come
from the effect of removing feature l in the transformation function φPWL. We denote this
transformation, applied to DMU zi by φPWL(zi(−l)), and we calculate it by eliminating all
contributions of variable l to φPWL, i.e., by setting z(l) = 0 whenever it appears. That is,

φPWL(z(−l)) =


−z(k), for k ∈ {1, . . . , m + s}, k 6= l
0, for k = l

−max{µ∗,
m+s
∑

j=1,j 6=l
pk(j)z(j) + qk}, for k ∈ {m + s + 1, . . . , m + s + h}

. (12)

We remark that this has no effect on the vector 0, i.e., φPWL(0) = φPWL(0(−l)). The
change in the objective function J of the dual problem (11) when removing variable l is then:

DJl = Jl − J =
1
2

n

∑
i=1

n

∑
j=1

α∗i α∗j

[〈
φPWL(zi(−l)) ·φPWL(zj(−l))

〉
−
〈
φPWL(zi) ·φPWL(zj)

〉]
+

n

∑
i=1

α∗i
〈[

φPWL(zi(−l))−φPWL(zi)
]
· γ∗

〉
+

n

∑
i=1

α∗i α∗0〈
[
φPWL(zi(−l))−φPWL(zi)

]
·φPWL(0)〉.

(13)

We further remark that, in Equation (13), the terms involving the DMUs with α∗i = 0
vanish, so that we only need to take into account those DMUs zi with α∗i 6= 0 (i.e., the
Support Vectors) in order to calculate DJl . Therefore, we only need to consider a subset of
the data, which may be smaller than the original dataset. We then calculate DJl as l runs
over every variable that remains to be ranked. The measure of importance of variable l
used in this method is (7):

∆J2
l =

(
Jl − J

J

)2
=

(
DJl

J

)2
.

At each step, we calculate ∆J2
l for each variable l remaining. The variable that is

considered the least important is the variable l which attains the minimum value of ∆J2
l , so

we add this variable to the ranking as the next least important variable. We then iterate the
method without this variable being considered in order to continue ranking the rest of the
variables. At each iteration, we recalculate the hyperparameters, hyperplane parameters,
and dual variables. Finally, the last variable remaining is considered the most important
variable for the production process. The steps of Dual-OCEM are shown in Algorithm 2.
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Algorithm 2 Dual-OCEM algorithm implementation

procedure CALCULATE_RANKING_DUAL_OCEM(Z ,variables_to_rank)
remaining_variables← variables_to_rank
ranking, ∆J2 ← [ ]
while |remaining_variables| > 1 do

n_var = |remaining_variables|
for k← 1 to n do

pk, qk, µi ← solve_program_(10)
end for
µmin = mini{µi}
Ztrain,Ztest ← create_train_test(Z)
Ψ̂, w∗, ξ∗, ρ∗, µ∗, ν∗ ← full_OCEM(Z , pk, qk, µmin)
J, α∗, γ∗, α∗0 ← solve_dual_OCEM_(11)(Z)
for l ← 1 to n_var do

φPWL(−l)← calculate_updated_transformation_(12)
DJl ← calculate_using_(13)

∆J2
l ←

(
DJl

J

)2

end for
v← arg min{∆J2}
ranking← add_variable_to_ranking(v)
remaining_variables← remaining_variables− v
Z ← remove_variable(Z , v)

end while
final_variable← remaining_variables
ranking← add_variable_to_ranking(final_variable)
return ranking

end procedure

4. Computational Experience

In order to evaluate and compare the performance of the proposed algorithms, we
use scenarios inspired by [62], with Cobb-Douglas production functions with Variable
Returns to Scale with multiple inputs and a single output. With these production functions,
the magnitude of the exponent of each input represents its level of theoretical marginal
importance, with higher values indicating a more important variable. An irrelevant variable
can be considered to have exponent 0. Furthermore, the sum of the exponents of the inputs
is associated with the returns to scale of the production process. When the sum of the
exponents is less than one, the corresponding production process exhibits non-increasing
returns to scale, whereas a sum greater than one is associated to non-decreasing returns
to scale. Consequently, a sum of one is associated with constant returns to scale. In this
computational experience, we consider functions whose exponents add up to less than one,
thus exhibiting non-increasing returns to scale. Other returns to scale could be considered,
but this extension is beyond the scope of this paper. In particular, we consider scenarios
with 1, 3, or 5 relevant inputs x, one additional irrelevant input a, and one output y, in order
to test how each methodology ranks the variables by their importance. We investigate the
effect on the tests of the specification of the following factors: (1) sample size, (2) inefficiency
distribution, (3) median inefficiency level, and (4) production function.

To calculate the output level of DMU j given inputs xj, we use a production function
f (xj) = qj and an inefficiency term θj, so that yj = qj/θj = f (xj)/θj. The production
functions qj = f (xj) which we simulate are Cobb-Douglas functions, with a variety of
parameters and different exponents in each of the relevant variables, are presented below.
Each function represents the maximum producible output given input profile xj of rele-
vant variables in a scenario. The true inefficiency term θj is defined, as in [62,63], using
θj = 1 + ψj, where ψj is a non-negative random variable taking a variety of probability
distributions. We, furthermore, include an additional input variable aj which is not in-
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volved in the production function. Thus, aj is irrelevant to the production process. The
values for all the inputs xj = (xj(1), xj(2), . . . , xj(m− 1)) and aj of DMU j are generated
independently from Uni[5, 15]. The production functions used are:

• In the case of one relevant input (m = 2):

f (x) = 10x(1)γ, (14)

where γ takes values between 0.1 and 0.9 by 0.1.
• The technologies with three relevant inputs are (m = 4):

f (x) = 10x(1)0.45x(2)0.35x(3)0.1, (15a)

f (x) = 10x(1)0.5x(2)0.25x(3)0.05, (15b)

f (x) = 10x(1)0.4x(2)0.2x(3)0.1, (15c)

f (x) = 10x(1)0.3x(2)0.2x(3)0.15. (15d)

• In the case of five relevant inputs (m = 6):

f (x) = 10x(1)0.3x(2)0.2x(3)0.15x(4)0.1x(5)0.05, (16a)

f (x) = 10x(1)0.4x(2)0.2x(3)0.15x(4)0.1x(5)0.05, (16b)

f (x) = 10x(1)0.25x(2)0.2x(3)0.15x(4)0.1x(5)0.05, (16c)

f (x) = 10x(1)0.35x(2)0.3x(3)0.15x(4)0.1x(5)0.05. (16d)

With each production function, we considered sample sizes of 50 and 100 DMUs, each
of them with two different probability distributions for the inefficiency terms (half-normal
and exponential), and in each case, in both a low and a high level of median inefficiency,
yielding a total of 136 different scenarios, each of which was replicated 100 times, for a
total of 13,600 datasets. Regarding the inefficiency term ψj, we consider the following
configurations. For the half-normal distribution, the low inefficiency setting considers
ψj ∼ |N(0, 0.4)|, whereas for the high inefficiency setting, we choose ψj ∼ |N(0, 0.8)|.
Similarly, for the exponential distribution, we consider ψj ∼ E(0.4) and ψj ∼ E(0.8),
respectively, for the low and high inefficiency settings. With these parameters, the median
values for the inefficiency θj are approximately 1.27 and 1.54, respectively.

With these scenarios, we execute the Shuffling-OCEM and Dual-OCEM algorithms
in order to investigate whether they are able to adequately detect the relative importance
of each variable, obtaining a full ranking of the input variables, which should be ordered
by the values of the exponents, with higher values indicating a higher importance. The
position of the irrelevant variable in the ranking should be last, as it could be considered to
have exponent 0 in the Cobb-Douglas functions below.

We first consider the aggregated results of the overall experiments in Table 1. In all subse-
quent tables, we present on the left-hand side the results for the Shuffling-OCEM methodology
and those for the Dual-OCEM on the right. Furthermore, we split them according to the
number of input variables due to the different nature of each ranking table. Overall, we
observe that Shuffling-OCEM outperforms the Dual-OCEM methodology at this task.
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Table 1. Aggregated ranking results of the shuffling and dual methodologies according to number of
variables.

Shuffling-OCEM Dual-OCEM
Overall Results

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 2% 2% 3% 7% 23% 63% 7% 7% 10% 15% 25% 36%
x(2) 5% 6% 9% 19% 39% 22% 12% 12% 13% 18% 24% 22%
x(3) 10% 13% 20% 32% 19% 8% 17% 16% 17% 19% 17% 14%
x(4) 17% 20% 28% 20% 10% 4% 19% 18% 20% 17% 13% 12%
x(5) 27% 30% 22% 13% 6% 2% 20% 23% 20% 16% 12% 9%

a 39% 29% 18% 9% 4% 1% 25% 24% 20% 14% 10% 8%
4 3 2 1 4 3 2 1

x(1) 1% 3% 16% 80% 6% 11% 27% 56%
x(2) 6% 15% 64% 15% 12% 21% 42% 25%
x(3) 27% 54% 15% 4% 31% 39% 19% 12%

a 66% 28% 5% 1% 52% 29% 12% 7%
2 1 2 1

x(1) 6% 94% 18% 82%
a 94% 6% 82% 18%

From the results, when we consider the effects of comparisons according to various
factors, we observe the following patterns:

(1) We begin with the effects of sample size. In Table 2, we can observe that both
methods improve as the number of DMUs increases from 50 to 100 DMUs, and that
the Shuffling-OCEM methodology with 50 DMUs already outperforms the Dual-OCEM
methodology with 100 DMUs.

(2) We now study the effects of changing the inefficiency distribution. Table 3 reports
the aggregated percentages for the scenarios with exponential and half-normal distributions
separately. We can observe a slightly better performance for both methods with a half-
normal distribution than with an exponential one, but the difference is very small. In fact,
these two tables are almost exactly the same as the overall results in Table 1. Thus, we can
conclude that both methods are robust to the inefficiency distribution.

(3) Next, we compare the performance in the scenarios with low and high average
inefficiency levels. We can observe in Table 4 that both methods perform worse when the
average inefficiency level is high. Furthermore, we observe that the Shuffling-OCEM with a
high average inefficiency still performs better than the Dual-OCEM even with a low average
inefficiency.

Furthermore, we consider the separate effects of low and high average inefficiency
levels with each of the two inefficiency distributions, and, as in the inefficiency distribution
comparison (2), we observe very similar values when changing the inefficiency distribution.
Hence, we can conclude again that the type of inefficiency distribution does not affect the
performance in either the low or high inefficiency. We do not report these tables, as their
values are very similar to those already presented. They are available upon request.

(4) Finally, we consider the results obtained with each of the production functions used
separately. The results for scenarios (16a)–(16d), i.e., those production functions with m = 6
can be observed in Table 5, while those corresponding to scenarios (15a) and (15d), that is,
with m = 4, are presented in Table 6. The results from scenarios with m = 2 according to
the value of γ, that is, with production functions (14), are summarized in Figure 2. We can
observe that the values of the exponents highly affect the quality of the rankings, where
the larger the difference between two consecutive exponents, the smaller the confusion
between them. As before, Shuffling-OCEM clearly outperforms Dual-OCEM throughout.
We now focus on the Shuffling-OCEM behavior according to the values of the exponents.
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Table 2. Results depending on the sample size.

Shuffling-OCEM Dual-OCEM
50 DMUs

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 3% 3% 4% 9% 24% 57% 10% 9% 9% 14% 24% 35%
x(2) 6% 8% 11% 19% 33% 23% 15% 14% 14% 17% 22% 19%
x(3) 12% 14% 20% 27% 18% 9% 20% 18% 16% 17% 16% 14%
x(4) 19% 20% 24% 20% 12% 6% 19% 18% 19% 18% 14% 13%
x(5) 26% 27% 22% 14% 7% 4% 18% 21% 21% 17% 13% 11%

a 34% 28% 19% 12% 6% 2% 19% 21% 22% 17% 12% 9%
4 3 2 1 4 3 2 1

x(1) 2% 4% 19% 75% 7% 13% 28% 52%
x(2) 7% 16% 58% 18% 14% 21% 39% 26%
x(3) 28% 50% 16% 5% 32% 36% 18% 13%

a 62% 29% 7% 1% 47% 30% 15% 8%
2 1 2 1

x(1) 7% 93% 20% 80%
a 93% 7% 80% 20%

100 DMUs
6 5 4 3 2 1 6 5 4 3 2 1

x(1) 1% 1% 2% 6% 21% 70% 4% 5% 10% 17% 26% 38%
x(2) 3% 4% 7% 19% 45% 21% 9% 9% 12% 19% 26% 25%
x(3) 7% 11% 19% 37% 19% 6% 14% 15% 18% 21% 17% 15%
x(4) 14% 21% 33% 21% 9% 2% 19% 19% 21% 17% 13% 11%
x(5) 29% 34% 22% 11% 4% 1% 23% 25% 20% 15% 11% 7%

a 46% 29% 16% 6% 2% 0% 31% 26% 18% 11% 7% 6%
4 3 2 1 4 3 2 1

x(1) 0% 1% 13% 86% 4% 10% 26% 60%
x(2) 4% 13% 71% 12% 10% 21% 45% 25%
x(3) 26% 58% 13% 2% 29% 41% 19% 11%

a 69% 27% 3% 0% 57% 28% 10% 5%
2 1 2 1

x(1) 5% 95% 17% 83%
a 95% 5% 83% 17%

Table 3. Results depending on the inefficiency distribution.

Shuffling-OCEM Dual-OCEM
Exponential Inefficiency Distribution

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 2% 2% 3% 8% 23% 61% 8% 7% 10% 15% 25% 35%
x(2) 5% 6% 10% 19% 39% 22% 13% 11% 13% 18% 23% 22%
x(3) 10% 12% 20% 31% 18% 8% 18% 16% 17% 19% 16% 14%
x(4) 16% 21% 28% 21% 10% 4% 19% 18% 19% 17% 14% 12%
x(5) 28% 30% 21% 12% 6% 3% 20% 23% 20% 17% 11% 9%

a 38% 29% 18% 9% 4% 1% 23% 24% 21% 14% 10% 8%
4 3 2 1 4 3 2 1

x(1) 1% 3% 16% 79% 7% 12% 27% 54%
x(2) 6% 15% 63% 16% 12% 23% 40% 25%
x(3) 29% 52% 15% 4% 31% 36% 20% 13%

a 64% 29% 6% 1% 50% 29% 14% 8%
2 1 2 1

x(1) 6% 94% 17% 83%
a 94% 6% 83% 17%
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Table 3. Cont.

Shuffling-OCEM Dual-OCEM
Half-Normal Inefficiency Distribution

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 2% 2% 3% 7% 23% 63% 6% 7% 9% 16% 24% 37%
x(2) 5% 7% 9% 19% 38% 23% 12% 12% 13% 18% 24% 22%
x(3) 10% 13% 20% 31% 19% 7% 17% 17% 17% 19% 17% 14%
x(4) 18% 20% 27% 20% 10% 4% 20% 19% 21% 18% 13% 11%
x(5) 26% 30% 23% 13% 6% 2% 20% 23% 21% 16% 12% 9%

a 39% 28% 18% 10% 4% 1% 26% 23% 20% 15% 10% 7%
4 3 2 1 4 3 2 1

x(1) 1% 3% 15% 81% 5% 11% 26% 57%
x(2) 6% 16% 64% 14% 13% 21% 42% 24%
x(3) 27% 53% 16% 4% 30% 38% 19% 12%

a 66% 28% 6% 1% 52% 30% 12% 6%
2 1 2 1

x(1) 6% 94% 17% 83%
a 94% 6% 83% 17%

Table 4. Results depending on the average inefficiency setting.

Shuffling-OCEM Dual-OCEM
Low Average Inefficiency

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 0% 1% 2% 5% 22% 70% 5% 5% 8% 15% 26% 42%
x(2) 2% 3% 7% 20% 47% 21% 10% 9% 12% 18% 27% 23%
x(3) 6% 10% 21% 40% 18% 5% 17% 16% 17% 20% 16% 13%
x(4) 14% 20% 35% 20% 8% 2% 19% 19% 21% 18% 12% 10%
x(5) 29% 36% 21% 10% 3% 1% 22% 24% 21% 15% 11% 7%

a 48% 30% 15% 5% 1% 0% 27% 26% 20% 13% 8% 5%
4 3 2 1 4 3 2 1

x(1) 0% 1% 12% 86% 4% 9% 25% 62%
x(2) 2% 13% 74% 11% 10% 20% 46% 24%
x(3) 22% 63% 12% 2% 30% 42% 18% 10%

a 75% 22% 2% 0% 57% 29% 10% 4%
2 1 2 1

x(1) 4% 96% 14% 86%
a 96% 4% 86% 14%

High Average Inefficiency
6 5 4 3 2 1 6 5 4 3 2 1

x(1) 4% 3% 5% 9% 23% 56% 9% 9% 11% 15% 24% 31%
x(2) 8% 9% 11% 18% 31% 24% 14% 14% 14% 17% 21% 21%
x(3) 13% 15% 19% 24% 19% 9% 18% 17% 16% 17% 17% 15%
x(4) 19% 21% 22% 20% 12% 6% 19% 18% 19% 17% 14% 13%
x(5) 26% 25% 23% 15% 8% 3% 18% 21% 20% 17% 13% 11%

a 31% 27% 20% 13% 6% 2% 22% 21% 20% 16% 12% 10%
4 3 2 1 4 3 2 1

x(1) 2% 5% 18% 75% 8% 14% 28% 50%
x(2) 10% 19% 54% 17% 15% 23% 36% 25%
x(3) 32% 43% 19% 6% 31% 34% 20% 15%

a 56% 34% 9% 1% 46% 29% 16% 9%
2 1 2 1

x(1) 8% 92% 22% 78%
a 92% 8% 78% 22%
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In the scenarios with m = 6, we observe that when variables are misclassified, they
are almost always placed in the relative position of other variables with small differences
between the values of the respective exponents. For example, less confusion arises when
the differences between consecutive exponents are larger, such as between x(1) and x(2)
in Scenario (16b) and between x(2) and x(3) in Scenario (16d), whereas the rest of the
consecutive differences are smaller than 0.1 and some confusion arises in the rankings.

In the scenarios with m = 4, we observe that there is still some confusion among
variables when the difference between their exponents is up to 0.10, while larger differ-
ences result in a clear separation between their positions in the ranking. For example in
Scenario (15a), where the exponents of x(1) and x(2), as well as between x(3) and a differ
by 0.1, there is some confusion, whereas variable x(3) is almost always classified in either
3rd or 4th place, and hardly ever as more important. In this case, the difference in exponent
between x(2) and x(3) is relatively large at 0.25. Similar trends can be observed throughout.

Table 5. Scenarios with m = 6.

Shuffling-OCEM Dual-OCEM
Scenario (16a)

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 3% 2% 3% 8% 21% 63% 7% 9% 11% 16% 24% 33%
x(2) 6% 7% 12% 21% 36% 18% 15% 13% 14% 18% 21% 19%
x(3) 10% 13% 19% 28% 21% 9% 17% 16% 16% 18% 17% 16%
x(4) 18% 20% 26% 19% 12% 5% 19% 18% 19% 16% 15% 13%
x(5) 26% 30% 22% 13% 6% 3% 18% 22% 21% 16% 13% 10%

a 38% 29% 17% 10% 4% 1% 24% 22% 19% 15% 11% 9%
Scenario (16b)

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 1% 1% 1% 3% 12% 82% 3% 4% 6% 13% 24% 50%
x(2) 7% 8% 10% 23% 44% 8% 14% 14% 15% 19% 24% 14%
x(3) 10% 12% 20% 31% 22% 4% 17% 17% 17% 20% 17% 12%
x(4) 16% 19% 29% 21% 12% 3% 18% 19% 20% 18% 14% 10%
x(5) 27% 30% 21% 13% 7% 2% 22% 22% 21% 16% 12% 8%

a 39% 30% 18% 9% 4% 1% 25% 24% 21% 14% 10% 6%
Scenario (16c)

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 3% 4% 6% 12% 26% 50% 11% 11% 14% 17% 22% 25%
x(2) 4% 6% 11% 20% 31% 28% 13% 12% 14% 17% 22% 21%
x(3) 8% 12% 18% 28% 22% 12% 16% 15% 15% 17% 18% 17%
x(4) 15% 21% 28% 19% 10% 6% 18% 17% 18% 18% 14% 15%
x(5) 27% 31% 21% 11% 6% 3% 19% 22% 19% 16% 12% 11%

a 42% 26% 17% 9% 5% 2% 23% 22% 20% 14% 11% 10%
Scenario (16d)

6 5 4 3 2 1 6 5 4 3 2 1
x(1) 2% 2% 2% 6% 31% 56% 6% 5% 8% 15% 30% 35%
x(2) 3% 3% 4% 11% 45% 34% 6% 7% 9% 17% 28% 34%
x(3) 10% 14% 22% 39% 10% 5% 19% 18% 19% 20% 14% 11%
x(4) 18% 21% 29% 22% 7% 3% 21% 19% 23% 18% 11% 9%
x(5) 29% 31% 23% 13% 3% 2% 21% 26% 21% 17% 9% 6%

a 39% 30% 19% 9% 3% 1% 27% 26% 21% 13% 8% 5%

Finally, in the scenarios with m = 2, both methodologies improve their performance
as the value of the exponent γ of the relevant variable increases, as shown in Figure 2. In
particular, Shuffling-OCEM accurately identified the relevant variable as the most important
in over 95% of simulations whenever γ was at least 0.3, outperforming the Dual-OCEM
method. When γ is small, the importance of the relevant variable decreases, and the
proportion of successful ranking decreases, until when γ = 0.1, Shuffling-OCEM was
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still able to identify the correct order in 67% of replications, while Dual-OCEM basically
guessed randomly, at around a 50% success rate.

Figure 2. Ranking results in the scenarios (14) with m = 2, according to the value of the exponent γ

of x(1).

Table 6. Scenarios with m = 4.

Shuffling-OCEM Dual-OCEM
Scenario (15a)

4 3 2 1 4 3 2 1
x(1) 1% 2% 26% 71% 4% 8% 33% 55%
x(2) 2% 5% 67% 27% 5% 13% 48% 35%
x(3) 29% 65% 5% 1% 34% 49% 11% 6%

a 69% 28% 2% 0% 58% 31% 8% 4%
Scenario (15b)

4 3 2 1 4 3 2 1
x(1) 0% 1% 6% 93% 3% 7% 21% 69%
x(2) 4% 9% 81% 6% 10% 19% 51% 20%
x(3) 38% 53% 8% 1% 40% 39% 15% 6%

a 57% 37% 5% 0% 48% 35% 13% 5%
Scenario (15c)

4 3 2 1 4 3 2 1
x(1) 1% 2% 10% 88% 5% 11% 24% 59%
x(2) 8% 19% 65% 9% 16% 26% 38% 20%
x(3) 26% 53% 19% 3% 29% 36% 22% 13%

a 65% 27% 7% 1% 50% 27% 15% 8%
Scenario (15d)

4 3 2 1 4 3 2 1
x(1) 3% 7% 21% 69% 11% 19% 29% 41%
x(2) 9% 27% 45% 18% 17% 26% 31% 26%
x(3) 16% 46% 27% 11% 20% 31% 26% 23%

a 73% 19% 7% 1% 51% 24% 14% 10%

We remark that part of the higher confusion in the scenarios between variables in the
scenarios with a larger number of input variables can be attributed to the smaller exponents
that lead to smaller differences while retaining the characteristics of non-increasing returns
to scale of the Cobb-Douglas functions.

Regarding the position of the irrelevant variable a in the production processes under
study, while it is sometimes classified higher in the rankings than some relevant variables,
it is almost always placed in the relative position of variables with exponents of up to 0.2.



Mathematics 2023, 11, 2590 20 of 24

This could indicate that exponents of such magnitudes may not be very important to the
production processes being considered.

Finally, regarding the computational time taken by both methods, we mention that the
programming language used was Python and that CPLEX v12.8 was utilized for solving
the optimization programs. We observe that Shuffling-OCEM takes between 13% and 42%
longer than Dual-OCEM, depending on the number of inputs (m) and the number of DMUs
(n). Average computation times for each combination of number of inputs and number
of DMUs are reported in Table 7. As the number of inputs increases, the computational
time of both methods increases, with Dual-OCEM scaling better than Shuffling-OCEM.
However, we can observe that both methods take longer with larger sample sizes, but as
the number of samples increases, the time taken by Dual-OCEM increases faster than that
of Shuffling-OCEM, resulting in slightly smaller ratios in the cases with 100 DMUs than in
those with 50 DMUs. In particular, Dual-OCEM takes around 2.5 times longer to execute
with 100 DMUs as with 50 DMUs, while Shuffling-OCEM takes around 2.4 times longer.
The simulations were executed on a PC with a 1.8 GHz dual-core Intel Core i7 processor,
8 Gigabytes of RAM, and operating system Microsoft Windows 10 Enterprise.

Table 7. Computational times.

m n Shuffling-OCEM Dual-OCEM Ratio

2 50 64 s 55 s 1.15
100 154 s 140 s 1.135

4 50 147 s 112 s 1.307
100 356 s 280 s 1.269

6 50 244s 171s 1.423
100 590 s 430 s 1.370

These results show that the Shuffling-OCEM method is significantly better than the
Dual-OCEM method at establishing a correct ranking of variables, while taking, on average,
1.25 times the computational time to execute, so it can be considered a better method.

5. Conclusions and Future Work

In this paper, we have presented some methods for measuring the importance of
variables in production processes based on an adaptation of the OneClass Support Vector
Machine estimator to Efficiency Measurement (OCEM), and evaluated their ability to rank
the variables by relative importance to efficiency measurement in a production process.
This adapted estimator applies data-centric optimization to the estimation of the production
technology, which can be viewed as the region of the space where the observed data lies,
while attempting to improve the generalization capability of standard DEA. Based on the
production technologies estimated, we evaluate the importance of variables in determining
this technology, and thus for the production process.

This is an important topic in the efficiency estimation literature due to the effect that
including additional variables has on the estimations, particularly when they are not very
relevant. This allows for the consideration of whether to remove some of the less important
variables from a productive process in order to obtain better model specifications.

In particular, we adapt two classic methodologies from the machine learning literature,
based on shuffling the values of a variables (Shuffling-OCEM) and the dual formulation of
the OCEM estimator (Dual-OCEM). We compare them using Cobb Douglas functions in the
single-output setting, with Variable Returns to Scale and with independently generated inputs.

In these simulated scenarios, we observe that the Shuffling-OCEM methodology
outperforms Dual-OCEM, with a slightly higher computational cost. Both methods improve
their performance as the number of DMUs increase. They are relatively robust to the
compared types of inefficiency distributions, obtaining similar results with both a half-
normal and an exponential distribution. Both methods decrease their accuracy as the
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average level of inefficiency increases, since the effect of the high average inefficiency can
surpass the small relative difference in importance between variables. We observe that
the performance of both methods depends on the exponents of the variables, with higher
differences between these exponents yielding more correct rankings. In particular, as the
exponents decrease as more variables are included, the rankings worsen as the number
of variables increase. Comparing them to each other, the Shuffling-OCEM methodology
clearly outperforms the Dual-OCEM methodology overall, and in each of the comparisons.
In fact, Shuffling-OCEM performs better when the average inefficiency is high or when the
sample size is small than Dual-OCEM in the corresponding lower average or high sample
size scenarios. In particular, we observe that Shuffling-OCEM correctly ranks the variables
in 94% of the scenarios with one relevant and one irrelevant input, while Dual-OCEM
achieves an overall success rate of 82%. When the exponent of the relevant variable is
low, the performance of the Dual-OCEM methodology deteriorates more than that of the
Shuffling-OCEM. Regarding the scenarios with m = 4, Shuffling-OCEM is capable of
ranking each variable correctly in at least 65% of replications of scenario (15a), with varying
results according to the relative differences between consecutive values of the exponents,
while the respective Dual-OCEM percentages lie between 48% and 58%.

Therefore, we conclude that the Shuffling-OCEM methodology should be used over
the Dual-OCEM methodology, at least in situations similar to those considered. This is
further supported by a computational cost that is only slightly higher for the Shuffling-
OCEM than the Dual-OCEM methodology. Further studies could evaluate whether these
conclusions hold in more general cases, such as those with correlations among variables, or
with different production functions which may not satisfy convexity or other properties.

Finally, we mention some possible avenues for further research. These are just some of
the methods available in the literature for the ranking of variables, and other methods could
be adapted to the OCEM estimator in order to compare their performance. The proposed
OCEM estimator uses a PieceWise Linear (PWL) transformation function, but this is not the
only possible choice. There is a variety of kernels and transformation functions which could
be used, such as polynomial, Gaussian, or sigmoid kernels, among others. The proposed
methodology treats both inputs and outputs homogeneously, so these methodologies
could be considered for the ranking of outputs, or even for the ranking of both inputs and
outputs simultaneously, while still taking into account the characteristics of production
processes, which could be an area worth exploring. In practice, the methods proposed in
this paper could be used to measure the importance of variables in real-life datasets, and as
a basis to obtain models for the measurement of efficiency involving only those variables
considered more important by the methods. Furthermore, in addition to the ranking of
variables, these methods could be enriched with stopping rules or thresholds to determine
when a variable is relevant or not, turning them into methods for selection of variables
in production processes. An interesting line of future work in this direction could be the
usage of the proposed methodologies with real-life datasets, to evaluate whether some
variables can be considered irrelevant. Another potential line of future work is to evaluate
the performance of the proposed methods in a wider variety of scenarios, with broader
characteristics such as different assumptions about returns to scale, a variety of production
functions, or relationships between the variables among others. Another interesting future
line of research is the comparison of the new methods with other methodologies available
in the literature in order to compare their performance.

Author Contributions: Conceptualization, R.M. and J.A.; methodology, R.M. and J.A.; software,
M.E.; validation, R.M. and M.E.; formal analysis, R.M., J.A. and M.E.; investigation, R.M., J.A.,
and M.E.; resources, R.M., J.A. and M.E.; data curation, M.E.; writing—original draft preparation,
R.M.; writing—review and editing, R.M., J.A. and M.E.; visualization, R.M. and M.E.; supervision,
J.A.; project administration, J.A.; funding acquisition, J.A. All authors have read and agreed to the
published version of the manuscript.

Funding: R.M. acknowledges financial support from Cátedra Santander en Eficiencia y Productividad.



Mathematics 2023, 11, 2590 22 of 24

Data Availability Statement: Datasets were simulated.

Acknowledgments: The authors are grateful to the four anonymous reviewers for providing con-
structive comments and helping in improving the contents and presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

DEA Data Envelopment Analysis
DMU Decision Making Unit
DDF Directional distance function
OCSVM OneClass Support Vector Machine
OCEM OneClass for Efficiency Measurement
x Inputs
y Outputs
z Netputs
m Number of inputs
s Number of outputs
n Number of DMUs
Ψ Production Possibility Set
Ψ̂ Estimated Production Possibility Set
g Directional vector
µi (Minus) DDF DEA distance of DMU i
Z Dataset in netput notation
Ztrain,
Ztest

Train-test split of dataset Z

w, ξ, ρ Variables of the OCSVM algorithm
ν OCSVM hyperparameter
φ Transformation function of the OCSVM algorithm
φPWL PieceWise Linear Transformation function
pk, qk Hyperplane parameters of the PWL transformation
µ Offset hyperparameter of the PWL transformation function
E MSE of the OCEM estimator in Shuffling-OCEM
J Objective value of the Dual OCEM program
α, γ Variables of the Dual OCEM program.
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