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Abstract: The optimal control of reactive powers in electrical systems can improve a system’s
performance and security; this can be provided by the optimal reactive power dispatch (ORPD).
Under the high penetration of renewable energy resources (RERs) such as wind turbines (WTs),
the ORPD problem solution has become a challenging and complex task due to the fluctuations
and uncertainties of generated power from WTs. In this regard, this paper solved the conventional
ORPD and the stochastic ORPD (SORPD) at uncertainties of the generated power from WTs and the
load demand. An Adaptive Manta-Ray Foraging Optimization (AMRFO) was presented based on
three modifications, including the fitness distance balance selection (FDB), Quasi Oppositional based
learning (QOBL), and an adaptive Levy Flight (ALF). The ORPD and SORPD were solved to reduce
the power loss (PLoss) and the total expected PLoss (TEPL), the voltage deviations (VD) and the total
expected VD (TEVD). The normal and Weibull probability density functions (PDFs), along with the
scenario reduction method and the Monte Carlo simulation (MCS), were utilized for uncertainty
representations. The performance and validity of the suggested AMRFO were compared to other
optimizers, including SCSO, WOA, DO, AHA, and the conventional MRFO on the IEEE 30-bus
system and standard benchmark functions. These simulation results confirm the supremacy of the
suggested AMRFO for the ORPD and SORPD solution compared to the other reported techniques.
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1. Introduction

The ORPD problem solution is an important task that can play a vital role in improving
the power system’s performance, reliability and stability. The ORPD represents an optimal
power flow (OPF) problem sub-problem that aims to assign the best values of the system
control variables, such as the voltages of the generators, the transformer’ taps and the
Vars output of compensators while satisfying the operational constraints. In the ORPD
solution, the voltage deviations, the power losses, and the system stability are optimized
simultaneously or separately [1–3].

The ORPD is a nonlinear and complex problem where various classical methods can be
utilized to solve this problem, such as an interior point method [4], the unified method [5],
the linear programming approach [6], and the quadratic problem approach [7]. However,
while these classical methods are robust in small power systems, they are difficult to apply
to large-scale systems. Furthermore, these approaches suffer from stagnation. In this regard,
meta-heuristic techniques were developed to optimize the ORPD. These meta-heuristic
algorithms could be categorized as provided in Table 1. As listed in Table 1, the first
meta-heuristic type was evolutionary-based techniques which mimic the evolution process
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of creatures naturally, such as species migration and natural selection. The swarm-based
techniques are nature-based algorithms that mimic the cooperative activities of animals
within specific communities or swarms, such as flocks of birds and ant colonies. Physical-
based techniques are efficient types of optimization algorithms that are conceptualized from
the physical phenomena or laws of physics. Human-based techniques are optimization
algorithms that are conceptualized with human behavior and thinking. The hybrid-based
algorithms are algorithms that are based on the combination of two algorithms from the
previous techniques. The main advantage of the listed optimization techniques in Table 1
is that these methods are simple to apply for solving the conventional ORPD, while the
main shortage of these methods is that the uncertainties and the stochastic nature of the
system, are not considered, including the uncertainties loading and output power of the
renewable energy resources.

Table 1. Review of the applied algorithms for solving the ORPD.

Evolutionary-Based Techniques Swarm-Based Techniques
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 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Differential Evolution [8]
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Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Particle Swarm Optimization (PSO) [9]
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proved marine predator algorithm, and the uncertainties were presented using the sce-
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Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Moth Swarm Algorithm [11]

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 35 
 

 

first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Specialized Genetic Algorithm) [12]
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Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 
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modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Pareto Evolutionary Algorithm [14]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Improved Social Spider Optimization [15]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Modified Differential Evolution [16]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Whale Optimization technique [17]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Evolutionary Programming [2]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Ant Lion Optimizer [18]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Comprehensive Learning PSO [19]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Marine Predators Algorithm [20]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Water Cycle Algorithm [21].
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Biogeography-Based Optimization [22]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Modified Sine Cosine technique [23]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Harmony Search technique [24]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Lightning Attachment Procedure Optimization [25]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Teaching Learning-Based technique [26]

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 35 
 

 

first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Improved Gravitational Search technique [27]
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Gravitational Search Algorithm [28]

Mathematics 2023, 11, x FOR PEER REVIEW 2 of 35 
 

 

first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
process of creatures naturally, such as species migration and natural selection. The swarm-
based techniques are nature-based algorithms that mimic the cooperative activities of ani-
mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

Slime Mould Algorithm [29]

Hybrid-Based Algorithms
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ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
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1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
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Few optimizers solved SORPD considering the uncertainties of the power system,
which was solved using different optimizers; in [33], the SORPD was solved using an
improved marine predator algorithm, and the uncertainties were presented using the
scenario-based method. An improved version of the lightning attachment procedure
optimization was presented for the ORPD solution with RERs and load uncertainties, also
based on the scenario-based method [34]. However, while the scenario-based method is
simple to apply, the obtained solution is an approximate solution. An enhanced grey wolf
optimizer was implemented for the SORPD and considered the load uncertainty only [10].
In [11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs
and loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss
and voltage deviation reduction with the application of the two-point estimate method
for modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization
Gravitational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with
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uncertainties of the load demand, the PV’s power and the WT’s power. The quantum-
behaved particle swarm optimization differential mutation (QPSODM) was implemented
to solve the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36].

The MRFO is an efficient optimization method that has been employed to optimize a
set of problems. However, there are some shortcomings related to the MRFO, including
its premature convergence and its stagnation in cases of solving high nonlinear, complex
and non-convex problems [37]. Thus, several modifications were implemented to boost the
exploitation and exploration mechanisms of the MRFO. In a hybrid version of MRFO, a
Gradient-Based Optimizer was proposed to solve the economic dispatch [38]. An improved
MRFO was proposed based on Opposition-based learning (OBL) to solve the image seg-
mentation problem of COVID-19 CT images [39]. An enhanced MRFO based on a chaotic
mutation has been presented to solve the energy management of an MG [40]. In [41], a
modified MRFO was presented based on an elite search pool (ESP) to enhance the searching
skills of conventional MRFO.

MRFO was selected to solve the ORPD due to its unique and robust searching ability,
which depended upon the chain foraging, cyclone foraging and somersault foraging of
searching mechanisms. However, the MRFO suffers from the stagnation of highly nonlinear
optimization problems such as ORPD and the SORPD. Thus, the AMRFO is a developed
version of the MRFO that enhances its searching abilities and boosts its exploitation and
exploration phases, which can be improved concurrently using three efficient improvement
methods strategies including the fitness distance balance selection (FDB), Quasi Opposi-
tional based learning (QOBL), and an adaptive Levy Flight (ALF). The contributions of this
work are outlined as follows:

1. We propose a developed Adaptive Manta-Ray Foraging Optimization algorithm
(AMRFO) for optimizing ORPD and SORPD.

2. We solve the SORPD under the uncertainties of the loading and the output power of
the WTs.

3. We assess the performance of the system with and without the inclusion of the WTs
for the total expected power loss and the total expected VDs.

4. An extensive comparison is presented between the proposed algorithm with differ-
ent algorithms, including SCSO, WOA, DO, AHA, and the conventional MRFO, to
verify the effectiveness of the AMRFO on a standard benchmark function and IEEE
30-bus system.

The following sections are provided: Section 2 introduces the problem formulation
of the ORPD and the SORPD involving the objective functions and the constraints of the
system. Section 3 explains the methodology of the uncertainties modeling of the system.
Section 4 presents an overview of the MRFO and the suggested AMRFO. Section 5 lists the
yielded results on an IEEE 30-bus system under the ORPD solutions. Section 6 provides the
paper’s conclusions.

2. Problem Formulation

The aim of the ORPD is to assign the best setting of the system’s components involving
the voltages, the transformer taps and the output Vars of the capacitors with constraints
satisfaction. Generally, the ORPD problem can be provided as follows:

Min F(u, x) (1)

In which
gk(u, x) = 0 (2)

hn(u, x) ≤ 0 (3)

where F represents the objective function. u and x refer to the dependent and the control
variables, respectively, which can be described as follows:

u =
[
VG, QC, Tp

]
(4)
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x = [P1, VL, QG, ST ] (5)

where Tp, QC and VG are the tap ratio of the transformers, the injected Vars of the capacitors
and the voltages of the generators, respectively. P1, ST, QG, and VL are the slack bus’s
power, the power flow in the transmission lines, the generators’ reactive powers and the
voltages at the load buses, respectively. The studied fitness functions are represented in the
following subsections:

2.1. Objective Functions
2.1.1. The Power Loss (PLoss)

PLoss =
NTL

∑
i=1

Gmn(V
2
m + V2

n − 2VmVncosδmn) (6)

where NTL is the No. of transmission lines (TLs). Vm and Vn are the voltage magnitudes at
buses m and n, respectively. Gmn refers to TL’s conductance between buses m and n.

2.1.2. The Voltage Deviations (VD)

VD =
NBL

∑
i=1
|(Vi − 1)| (7)

where NBL is the No. of load buses.

2.1.3. The Total Expected Power Losses (TEPL)

TEPL =
NS

∑
k=1

EPLk =
NS

∑
k=1

σk × PLoss,k (8)

where NS represents the number generated scenario. σk and EPL_k are the probability and
the expected power loss of the k-th scenario.

2.1.4. The Total Expected Voltage Deviations (TEVD)

TEVD =
NS

∑
k=1

EVDk =
NS

∑
k=1

σk ×VDk (9)

EVDi refers to the expected VD of the k-th scenario.

2.2. The System Constraints

The operating constraints involve equality and inequality bonds. The inequality
constraints represent the allowable boundaries of the system components, while equality
constraints refer to the balance of the power flow in the electric system [42]:

2.2.1. Equality Constraints

NG

∑
i=1

PGi −
NBL

∑
i=1

PLi = |Vi|
NTL

∑
j=1

∣∣Vj
∣∣(Gijcosδij + Bijsinδij

)
(10)

NG

∑
i=1

QGi −
NBL

∑
i=1

QLi = |Vi|
NTL

∑
j=1

∣∣Vj
∣∣(Gijsinδij − Bijcosδij

)
(11)

where PG is the generated active power and QG is the reactive power. PL and QL refer to
the real and the reactive load powers. NG, NTL and NBL are No. generators, TLs and load
buses, respectively.
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2.2.2. Inequality Constraints

Pmin
G,k ≤ PGk ≤ Pmax

G,k ∀k ∈ NG (12)

Qmin
G,k ≤ QG,k ≤ Qmax

G,k k∀k ∈ NG (13)

Vmin
G,k ≤ VG,k ≤ Vmax

G,k ∀k ∈ NG (14)

Tmin
n ≤ Tn ≤ Tmax

n ∀n ∈ NT (15)

Qmin
C,n ≤ QC,n ≤ Qmax

C,n ∀n ∈ NC (16)

ST,n ≤ Smin
T,n ∀n ∈ NTL (17)

Vmin
k ≤ Vk ≤ Vmax

k ∀k ∈ NBL (18)

where NC and NT are the No. of the capacitors and transformers, respectively. The max
and min superscript terms refer to the higher and lower boundaries of the variables. To
ensure that the yielded solution is a proper solution, these constraints should be considered
with the objective function using the weighted penalty sum method; this can be described
as follows:

F = Fi + ϕ1

(
PG1 − Plim

G1

)2
+ ϕ2

NG
∑

i=1

(
QGi −Qlim

Gi

)2

+ϕ3

NQ

∑
i=1

(
VLi −V lim

Li

)2

+ϕ4∑
N/
i=1

(
SLi − Slim

Li

)2

(19)

where ϕ1, ϕ2, ϕ3 and ϕ4 are penalty factors. lim is a superscript that refers to the upper or
lower boundaries of the variables.

3. The Uncertainty Representation

The SORPD was solved with two uncertain parameters involving the speed of the
wind and the loading. The loading uncertainty was modeled using the normal PDF based
on its mean (µd) and the standard deviation (σd) as follows [43]:

fd(Pd) =
1

σd
√

2π
exp
[
− (Pd − µd)2

2σd
2

]
(20)

The speed wind uncertainty was represented by the Weibull PDF based on its scale (λ)
and shape (k) parameters using (21) [44].

fv(v) =
k
λ

( v
λ

)k−1
exp
[
−
( ν

λ

)k
]

(21)

The generated power from the WT (Pw) could be calculated from (22) [45].

Pw(v) =


0 f or v < vin & vω > vωo

Pr

(
v−vin
vr−vin

)
f or (vin ≤ v ≤ vr)

Pwr f or (vωr < v ≤ vo)

(22)

where Pr is the WT’s rated power. vin, vr and vo refer to the cut-in, rated and cut-out speeds
of WT, respectively.

Here, The MCS was employed to generate a set of scenarios based on the PDFs of the
load demand and the wind speed [46]. In this paper, the mean (µd) is 70, and the standard
deviation (σd) is 10 [47]. The Weibull PDF, based on its scale (λ) and shape (k) parameters,
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was selected to be nine and two, respectively [48]. In this paper, 1000 MCSs were conducted,
and a set of samples for the loading and speed of the wind were obtained, as depicted in
Figures 1 and 2, respectively. The SBR method is a common method that was implemented
to reduce the huge number of scenarios that had been generated from the MCS method.
The steps of the SBR method are depicted as follows in [49,50]:

Step 1: A vector is constructed that includes the uncertain parameters of the load
demand and the wind speed as follows:

Hk = [SL,k, vs,k] ∀i ∈ N0 (23)

where N0 refers to MCS’s number for the generated scenarios.
Step 2: The probability values of the generated scenarios is σk = 1/N0. The norm

distance between each pair of scenarios is calculated using (27) as follows:

Di,j =
∥∥Hi − Hj

∥∥ (24)

Step 3: The D matrix is constructed, which is a square matrix, and its dimension is
N0 × N0. The required number of reduced scenarios is selected.

Step 4: The lowest distance value and the corresponding probability for the (i, j)
scenario are assigned. It is then assumed that the two rows correspond to scenarios m (row
m) and n (row n), respectively, with probabilities of σm and σn.

Step 5: If σm ≥ σn, scenario n is removed. Then probability is updated σm = σm + σn.
Otherwise, scenario m is removed.

Step 6: If the stopping criteria are not satisfied, the previous steps are repeated.
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The scenario-based reduction (SBR) method was implemented to reduce a large num-
ber of the generated scenario and diminish the computational burden. Ten scenarios
generated the application of SBR, the probabilities of each scenario, and the associated
wind speed and loading, which are provided in Table 2.
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Table 2. The generated scenarios by uncertainties representation.

Scenario Number Loading % Wind Speed (m/s) Probability (σi)

1 42.10 5.04 0.011
2 91.46 8.38 0.027
3 78.61 15.57 0.02
4 85.30 13.36 0.023
5 71.11 7.72 0.393
6 106.56 9.42 0.001
7 62.36 10.37 0.245
8 96.91 14.40 0.001
9 77.87 5.70 0.233
10 49.63 8.93 0.046

4. Optimization Algorithm
4.1. Manta Ray Foraging Optimization (MRFO)

The MRFO algorithm mimics the behavior of the manta rays’ foraging behavior which
is based on three movements, including cyclone foraging, chain foraging, and somersault
foraging, to look for the abundant plankton area in oceans [37]. These three movements
can be represented as follows:

4.1.1. Chain Foraging

In this phase, the manta rays move from a foraging chain when they move in one line.
The manta rays proceed to the location that has an abundant concentration of plankton.
This foraging stage is formulated using (25).

Xt+1
i = Xt

i + r
(
Xbest − Xt

i
)
+ α

(
Xbest − Xt

i
)

(25)

Here, Xbest refers to the best location planktons. r refers to a random solution between [0
and 1]. α = 2 · r ·

√
|log(r)|

4.1.2. Cyclone Foraging

Here, the manta ray positions are updated in special motion around the best location
of the plankton. The cyclone foraging is formulated according to the following equations:

Xt+1
i =

{
Xbest(t) + r

(
Xbest(t)− Xt

i
)
+ β

(
Xbest − Xt

i
)

i = 1
Xbest(t) + r

(
Xt

i−1 − Xt
i
)
+ β

(
Xbest − Xt

i
)

i = 1, 2, . . . n (26)

in which:
β = 2er1

T−t+1
T · sin(2πr1) (27)

where β represents a weight coefficient. t and T are the current and the maximum iteration
numbers. r1 and r represent the random values in [0, 1]. To improve the exploration process,
the manta rays update their location randomly as follows:

Xi = Lb + rand× (Ub− Lb) (28)

Xt+1
i =

{
Xrand + r×

(
Xrand − Xt

i
)
+ β×

(
Xrand − Xt

i
)

i = 1
Xrand + r×

(
Xt

i−1 − Xt
i
)
+ β×

(
Xrand − Xt

i
)

i = 2, . . . , N
(29)

where Xrand represents the location of manta rays that are selected randomly from
the populations.
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4.1.3. Somersault Foraging

In this stage, the manta rays swim and move around in the food location, periodically
somersaulting to move to a novel location. Subsequently, they continuously update their
positions around the best place discovered thus far. This stage is formulated as:

Xt+1
i = Xt

i + S ·
(
r2 × Xbest − r3 × Xt

i
)

(30)

where r2 and r3 denote random numbers in the range of 0 to 1. S is a constant value that
equals two.

4.2. The Adaptive Manta-Ray Foraging Optimization (AMRFO)

The AMRFO is based on three improvement techniques, including the fitness distance
balance (FDS), adaptive Levy flight and the QOBL. The FDS method is a powerful selection
method that can be utilized for the global searching ability improvement of algorithms [51].

4.2.1. The Fitness Distance Balance

The FDS is based on the distance between the candidate solutions and the best solution,
as well as the fitness function values. Initially, this distance could be calculated, and the
vector of the distance matrix constructed according to the following equations:

DXi =

√√√√√√√
(

x1[i] − x1[best]

)2
+
(

x2]i] − x2]best

])2
+ · · ·

+
(

xn[i] − xn[best]

)2
(31)

DX ≡

d1
...

dm


mx1

(32)

The vector of the fitness function F was constructed as depicted in Equation (31).

F ≡

 f1
...

fm


mx1

(33)

The fitness values and the distance were normalized to determine the impact of the
distance and fitness. In the FDS, the normalized distance and fitness values were used to
find the score calculation of the candidates according to the following equation [51]:

SPi = w× normFi + (1− w)× normDXi (34)

where w is a weight parameter in the range of 0 and 1 that characterizes the effect of the
distance or fitness values.

4.2.2. The Quasi-Oppositional Based Learning (QOBL)

The second modification is the QOBL, which is an efficient method that can be ap-
plied for performance enhancement and searching abilities of several optimization al-
gorithms [34]. The QOBL is a combination of the oppositional-based learning (OBL)
mechanism along with the Quasi-based method that was applied with several optimization
algorithms [52–55]. In the OLB, these populations update their placement to the opposite
number or the mirror location of the population as follows:

Xo
i,j = Ubj + Lbj − Xi,j, i = 1, 2, . . . , n (35)
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The oppositional-based method is the center point between the upper and the lower
point as follows:

Ci,j =
(
Ubj + Lbj

)
/2 (36)

Finally, the QOBL could be described as follows:
For i = 1:No. manta rays

For j = 1:D
Xo

i,j = Ubj + Lbj - Xi,j
Ci,j = (Ubj + Lbj)/2
If (Xi,j < Ci,j)

Xqo
i,j = Ci,j +

(
Xo

i,j − Ci,j

)
× rand (37)

else
Xqo

i,j = Ci,j +
(

Ci,j − Xo
i,j

)
× rand (38)

End
End

End

4.2.3. Adaptive Levy Flight (ALF)

The ALF has been used to boost the exploitation of the MRFO via updating the
locations of the manta rays around the best location so far based on the adaptive leavy
flight and according to the following equations:

Xt+1
i = r3Xbest − r4Xt

i + C1 · LF ·
(
Xt

r − Xt
i
)

(39)

LF = 0.05× u× σ∣∣v|1/β
(40)

σ =

(
Γ(1 + β)× sin(πβ/2)

Γ((1 + β)/2)× β× 2(β−1)/2

)1/β (41)

Xr denotes the random location of the manta ray. C1 = 2r4(1− t/T). r4 and r5 refer to
parameters in the range [0–1]. u and v refer to the random value obtained by the normal
distribution. β was selected to be 1.5. The procedure for solving SORPD with the proposed
technique is illustrated in Figure 3.

The computational complexity of the AMRFO is based on chain foraging, cyclone
foraging, the somersault foraging phases, FDB, QOBL and levy flight motion which can be
described as follows:

O(MRFO) = O(T(O(cyclone foraging
+ chain foraging)
+O(somersault foraging)
+O(FDB) + O(QOBL)
+O(Levy flight motion)))

(42)

O(MRFO) = O(T(nd + nd + nd + nd + nd))
= O(T(5× nd))

(43)

where n, d and T denote the numbers of the populations, the variables and the maximum
number of iterations.
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5. Results and Discussion
5.1. Application of the AMRFO on Standard Benchmark Functions

Here, the proposed AMRFO was applied and tested on 23 standard benchmark func-
tions. The program was conducted on a PC with Core I7 @ 2.90 GHz and 32 GB RAM by
MATLAB software (R2021a). The acquired results by the AMRFO were compared with
other optimization approaches, including the Sand Cat Swarm Optimization (SCSO) [56],
Grey Wolf Optimizer (GWO) [57], the Whale Optimization Algorithm (WOA) [58], Artificial
Hummingbird Algorithm (AHA) [59], Dandelion Optimizer (DO) [60], and the standard
MRFO [37]. Table 3 provides the parameters of the optimizers. It should be highlighted
here that for a fair comparison, the number of the populations and the maximum number
of iterations were selected to be the same, while the other parameters of the SCSO, GWO,
WOA, AHA and DO, were selected similarly to [56–60]. Three types of these standard func-
tions were considered where F1 to F7 were Unimodal functions, F8 to F13 were Multimodal
functions, and F14 to F23 were Fixed-dimension multimodal functions [61–63]. It should
be highlighted here that the dimensions of the first 13 objective functions were 30, while
the dimensions of F14, F16, F17 and F18 were 2. Furthermore, the dimensions of F15, F21,
F22 and F23 were four, and the dimensions of F19 were three, and F20 were six.

Table 3. The parameters of the studied optimizers.

Algorithm The Parameters

SCSO [56] Max. iterations = 250, No. populations = 25, Phases control range (R) in range
[−2rg, 2rg], Sensitivity range (rg) = [2, 0].

GWO [57] Max. iterations = 250, No. populations = 25, a = [2, 0], A= [2, 0], C = 2. rand (0, 1)

WOA [58] Max. iterations = 250, No. populations = 25, a = [2, 0], A = [2, 0], l = [1,−1], b = 1.

AHA [59] Max. iterations = 250, NO. populations = 25

DO [60] Max. iterations = 250, No. populations = 25, α= [0, 1], k = [0, 1].

MRFO [37] Max. iterations = 100, No. populations = 25, S = 2.

AMRFO Max. iterations = 100, No. populations = 25, S = 2.

The numerical results for the standard benchmark functions with the application of
the studied optimization methods are listed in Appendix A in Table A1. The best, the worst
and mean values, p-value, and the standard deviation (sd) of 25 trail runs are depicted in
Table A1. Referring to Table A1, the proposed AMRFO could provide very competitive
results for the unimodal functions (F1 to F7), multimodal functions (F8 to F13), and the fixed
dimension (F14 to F23). It is worth mentioning here that the results for F9 of the SCSO, AHA,
MRFO, and the proposed AMRFO were converged rapidly as well as for F10, F11, F13,
F17, F18, F19 and F20. Figure 4 shows the convergence carves which were obtained by the
studied optimizers. According to Figure 4, the objective functions converged rapidly by the
suggested AMRFO compared to the other well-known optimizers. However, in some cases,
other optimizers converged to the best solution better than AMRFO, such as AHA, SCSO,
WOA, and MRFO for F9. Likewise, for F11 and F13. The Wilcoxon test was carried out,
and the P-Value between the proposed AMRFO and the other techniques is provided in the
7th column of Table A1. If the p-value was greater than 5%, it suggested that there was no
statistically significant difference between these two optimizers. Conversely, if the p-value
was less than 5%, it indicated that there was a statistically significant difference between
these algorithms. Furthermore, if the value of the p-value was N/A. “-” and was referred
to as “not applicable”, which meant that the corresponding optimizer could not statistically
compare with itself in the rank-sum test, while “N/A” referred to “not available”; this
meant that the difference in the results was identical and could not be statistically compared
in terms of the rank-sum test. The ranking of the Friedman test is listed in the last column
of Table A1, and the average ranking is depicted in Figure 5. It is clear that the proposed
AMRFO was ranked best among the tested algorithms. According to the reported values,
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there were significant differences between the suggested AMRFO and SCSO, WOA, GWO,
AHA, DO, and the conventional MRFO for most cases. However, there were no significant
differences between AMRFO and WOA for F8, F9 and F11. The boxplots of AMRFO and
SCSO, WOA, GWO, AHA, DO, and the conventional MRFO for the benchmark functions
are provided in Figure 6. From the depicted boxplots, the suggested AMRFO had narrow
boxplots, which verified that the distribution of the obtained results went well for this
optimizer compared to the other techniques for most functions except for F20, where AHA
and DO were the best.
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5.2. Application the AMRFO for Solving the ORPD Problems

The suggested AMRFO was used to optimize the conventional ORPD and the SORPD
for the IEEE 30-bus system. The system load was 283.4 MW + j126.2 MVAR [64] and
consisted of 4 transformers, 6 generators, 9 capacitor bank units and 41 transmission lines.
The voltage limits of the load buses were between [0.95–1.05]. The voltage limits at the
generation units were [0.95–1.1]. The injected reactive power by capacitors was in the
range of [0–5], while the boundaries of the transformer tap setting were [0.9–1.1] [65]. The
parameters of the studied algorithms were selected the same as in Table 3, except that the
Max. iterations and No. of populations were 100 and 20 for the conventional ORPD while,
for SORPD, these values were 150 and 50, respectively. The studied cases were outlined
as follows:

5.2.1. Case 1: Solving the Conventional OPRD

The suggested AMRFO solved the ORPD for two functions, including the power losses
and VDs’ reduction. Initially, the value of the power loss was 5.596 MW, while the VDs
were 0.8691 p.u., respectively. In the case of its application, the proposed AMRFO for loss
reduction and the power loss was reduced to 4.5279 MW or by 19.09% compared to the
initial case. The optimal setting of the control variables that were obtained is listed in the
4th column of Table 4. An extensive comparison of the loss reduction with other optimizers
is provided in Table 5. As provided in Table 5, the best-yielded results were captured
by the proposed algorithm. In other words, the power loss reductions compared to the
based case were obtained by the suggested AMRFO, MRFO, SCSO, GWO, WOA, AHA,
DO, MPA, JA [66], ALO [18], HSA [24], PSO [24], STGA [24], TLBO [26], QOTLBO [26],
DE [8], SGA [12], FA [67], HPSO–TS [30], TS [30], PSO [30], WOA [17], PSO-TVAC [17],
IDE [16], BBO [22], CLPSO [19], PSO [19], GSA [27], PSO [27], GSA-CSS [27], and IGSA-
CSS [27], which were 19.09%, 19.04%, 18.01%, 17.27%, 16.35%, 11.95%, 18.65%, 18.99%,
17.35%, 17.98%, 12.33%, 12.01%, 11.71%, 18.46%, 18.52%, 18.6%, 18.35%, 18.35%, 19.2%,
12.07%, 16.26%, 17.9%, 16.96%, 18.65%, 18.67%, 17.29%, 18.49%, 10.48%, 12.16%, 14.35%,
and 14.83%, respectively. The trends of the power losses of the AMRFO, MRFO, SCSO,
GWO, WOA, AHA, and DO algorithms are shown in Figure 7. The proposed AMRFO has
stable convergence characteristics and converges at the 81st iteration, as shown in Figure 7.



Mathematics 2023, 11, 2591 18 of 35

Table 4. The simulation results and optimal control variables from the conventional ORPD.

Control Variables Min. Max. PLoss Minimization VD Minimization

V1 0.9 1.1 1.100 1.006

V2 0.9 1.1 1.094 1.007

V5 0.9 1.1 1.073 1.069

V8 0.9 1.1 1.075 1.000

V11 0.9 1.1 1.098 1.031

V13 0.9 1.1 1.100 1.024

T11 0.9 1.1 1.000 1.040

T12 0.9 1.1 0.930 0.910

T15 0.9 1.1 0.980 1.000

T36 0.9 1.1 0.970 0.970

Q10 0 0.05 2.500 4.570

Q12 0 0.05 4.840 0.380

Q15 0 0.05 4.770 4.810

Q17 0 0.05 4.760 0.870

Q20 0 0.05 4.140 4.740

Q21 0 0.05 4.930 4.980

Q23 0 0.05 3.950 4.970

Q24 0 0.05 4.920 4.850

Q29 0 0.05 2.430 2.850

PLoss(MW) 4.5279 5.7852

VD(p.u) 1.9829 0.0913

Lmax(p.u) 0.1162 0.1367

Table 5. Statistical results for power loss reduction.

Algorithm Worst Mean Best

AMRFO 4.6089 4.5488 4.5279

MRFO 4.6532 4.5740 4.5308

SCSO 4.7373 4.6537 4.5884

GWO 4.7321 4.6795 4.6295

WOA 4.9064 4.7969 4.6813

AHA 5.7434 5.1461 4.9275

DO 4.7657 4.6168 4.5526

Marine predator Algorithm(MPA) [68] 4.6006 4.55389 4.5335

Jaya Algorithm (JA) [66] NA NA 4.625

Ant Lion Optimizer (ALO) [18] NA NA 4.5900

Harmony Search Algorithm (HSO) [24] 4.9653 4.924 4.9059

PSO [24] 5.0576 4.972 4.9239

Standard Genetic Algorithm (SGA) [24] 5.1651 5.0378 4.9408

TLBO [26] 4.57480 4.56950 4.5629

Quasi-oppositional TLBO [26] 4.56170 4.56010 4.5594
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Table 5. Cont.

Algorithm Worst Mean Best

Differential Evolution (DE) [8] NA NA 4.5550

Specialized Genetic Algorithm (SpGA) [12] NA NA 4.5692

Firefly Algorithm (FA) [67] 4.59 4.578 4.5691

Hybrid PSO and Tabu search (HPSO–TS) [30] NA NA 4.5213

Tabu search (TS) [30] NA NA 4.9203

Whale Optimization Algorithm (WOA) [17] NA NA 4.5943

PSO [17] NA NA 4.6469

Improved Differential Evolution (IDE) [16] NA NA 4.5521

Biogeography-Based Optimization (BBO) [22] NA NA 4.5511

Comprehensive Learning PSO (CLPSO) [19] NA NA 4.6282

Gravitational Search Algorithm (GSA) [27] NA NA 5.00954

Improved GSA With Conditional Selection
Strategies (IGSA-CSS) [27] NA NA 4.76601
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In the case of considering the second objective function (VDs reduction), VDs were
reduced from 0.8691 p.u. to 0.0913 p.u. by the application of the proposed algorithm. The
optimal control variables for VDs’ reduction are listed in the 5th column of Table 4. The
extensive comparison between the suggested AMRFO and other algorithms for the VDs
reduction is tabulated in Table 6, including the best, worst and mean values. Judging from
Table 6, the minimum value of the VDs was obtained by the application of the suggested
AMRFO. This was in addition to the percentage reductions of the VDs which were obtained
by the proposed AMRFO, MRFO, SCSO, GWO, WOA, AHA, DO, PSO-TVIW [69], SPSO-
TVAC [69], PSO-TVA [69], PSO-CF [69], PG-PSO [69], SWT-PSO [69], SSO [15], HSSSA [15],
MSSA [15], SSA [15], CSA [15], ALO [13], GSA [18,27], PSO [27], which were GSA-CSS [27]
are 89.49%, 88.01%, 84.60%, 84.40%, 79.88%, 76.11%, 85.41%, 88.06%, 84.42%, 76.25%,
85.19%, 86.17%, 81.43%, 77.79%, 79.90%, 73.53%, 78.32%, 85.40%, 86.28%, 80.16%, 87.96%,
and 85.74%, respectively. The trends of the VDs with iterative progress using different
algorithms are provided in Figure 8. Referring to this figure, the suggested AMRFO had
stable convergence characteristics where it converged at the 88th iteration. The boxplot
is a standard method that has been used to show the distribution of the obtained results.
Figures 9 and 10 show the boxplots of different optimization algorithms for the power loss
and VDs, respectively. From Figures 9 and 10, the proposed AMRFO had narrow boxplots
for the two cases, which verified the efficiency of the AMRFO.
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Table 6. Statistical results for VDs’ minimization.

Algorithm Worst Mean Best

AMRFO 0.1218 0.1068 0.0913

MRFO 0.1309 0.1158 0.1042

SCSO 0.2174 0.1722 0.1338

GWO 0.2021 0.1707 0.1356

WOA 0.5001 0.2556 0.1749

AHA 0.6492 0.3860 0.2076

DO 0.1939 0.1460 0.1268

PSO based TVAC [69] 0.5791 0.1597 0.1038

PSO with TVAC [69] 0.5796 0.2376 0.2064

PG-PSO [69] 0.2593 0.1440 0.1202

Social Spider Optimization [15] 0.42681 0.2863 0.19304

Hybrid Salp Swarm Algorithm with Simulated
Annealing [15] 0.576439 0.308337 0.174701

Modified Salp Swarm Algorithm (MSSA) [15] 1.860037 0.690254 0.230087

Salp Swarm Algorithm (SSA) [15] 0.941759 0.374529 0.188411

Cuckoo search algorithm (CSA) [15] 0.2076 0.16432 0.12692

Ant Lion Optimizer (ALO) [13] NA 0.1575 0.1192

Gravitational Search (GS) [27] NA NA 0.17241

GSA and Conditional Selection Strategies (GSA-CSS) NA NA 0.12394
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5.2.2. Case 2: Solving the SORPD

In this section, the suggested AMRFO solved the SORPD when considering the uncer-
tainties of the loading and WTs’ output powers. In this paper, the wind farm contained
25 × 3 MW turbines, and the cut-in, rated, and cut-out speeds of the wind turbines were
3, 16, and 25 m/s, respectively [30]. The two objective functions have been considered
with the SORPD solution, including the total expected power loss (TEPL) and the total
expected voltage deviations (TEVD). In the base case (without solving the SORPD and
without WTs), the TEPL and the TEVD were 5.1025 MW and 0.7919 p.u. The system voltage
profile at the base case is shown in Figure 10. In the case of solving the SORPD without the
inclusion of WTs, TEPL decreased from 5.1025 MW to 4.5201 MW. The results of this case
are depicted in Table 7, including the percentage load at each scenario, the values of PLoss,
the expected power loss (EPL), the VD and the expected VDs (EVD). Referring to Table 7,
the highest power loss values were in scenarios number 2, 6, and 8 because the values of
the loading were high in these scenarios. Furthermore, the highest value of the EPL was
scenario number 5 because the probability of this scenario was the highest. In the case
of solving SORPD with the inclusion of the WTs, TEPL was reduced from 5.1025 MW to
2.9011 MW compared to the base case. In other words, TEPL was reduced from 4.5201 MW
to 2.9011 MW with the inclusion of WTs. Table 8 tabulates the results for the TEPL with the
inclusion of WTs.

Table 7. The simulation results of the SORPD solution for TEPL reduction without WTs.

Scenario
No. σi Loading % PLoss(MW) EPL(MW) VD(p.u) EVD(p.u)

1 0.011 42.10 2.3387 0.0257 0.3412 0.0038

2 0.027 91.46 9.1826 0.2479 0.5218 0.0141

3 0.02 78.61 5.9414 0.1188 0.5981 0.0120

4 0.023 85.30 7.4740 0.1719 0.3789 0.0087

5 0.393 71.11 4.4702 1.7568 0.3293 0.1294

6 0.001 106.56 14.5927 0.0146 0.3957 0.0004

7 0.245 62.36 3.1513 0.7721 0.6169 0.1511

8 0.001 96.91 10.5326 0.0105 0.4962 0.0005

9 0.233 77.87 5.6409 1.3143 0.4812 0.1121

10 0.046 49.63 1.8994 0.0874 0.5166 0.0238

TEPL = 4.5201 TEVD = 0.4558
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Table 8. The simulation results of the SORPD solution for TEPL reduction with WTs.

Scenario
No. σi Loading % Wind

Speed (m/s) Pw (MW) PLoss(MW) EPL(MW) EVD(p.u) EVD(p.u)

1 0.011 42.10 5.04 11.747 1.3424 0.0148 0.3922 0.0043

2 0.027 91.46 8.38 31.032 5.9965 0.1619 0.4959 0.0134

3 0.02 78.61 15.57 72.496 2.5651 0.0513 0.4199 0.0084

4 0.023 85.30 13.36 59.762 3.7187 0.0855 0.7343 0.0169

5 0.393 71.11 7.72 27.238 2.8301 1.1122 0.4203 0.1652

6 0.001 106.56 9.42 37.034 12.4915 0.0125 0.2707 0.0003

7 0.245 62.36 10.37 42.543 1.5123 0.3705 0.4622 0.1132

8 0.001 96.91 14.40 65.779 4.9598 0.0050 0.4225 0.0004

9 0.233 77.87 5.70 15.581 4.4616 1.0396 0.5034 0.1173

10 0.046 49.63 8.93 34.184 1.0399 0.0478 0.3301 0.0152

TEPL = 2.9011 TVED = 0.4546

In the case of solving the SORPD to reduce the TEVD without incorporating the WTs,
the TEVD was decreased from 0.7919 p.u. to 4.5201 p.u. The voltage profile of the system at
the base case is shown in Figure 11. The results of solving the SORPD without the insertion
of WTs are recorded in Table 9. The voltage profile of the system was enhanced considerably,
as shown in Figure 12, by solving the SORPD. The results of solving the SORPD with the
insertion of WTs are recorded in Table 10. In the case of inclusion, the WTs, when solving
the SORPD optimally with the TEVD, decreased from 0.7919 p.u. to 0.1249 p.u. compared
to the base case. The simulation results are depicted in Table 10. The voltage profile,
incorporating the WTs, is depicted in Figure 13, which verifies the enhancement of the
voltage profile with the inclusion of WTs. The optimal values of the voltages are illustrated
in Figures 12 and 13. The optimal values of the transformers’ tap ratios and the injected
reactive powers for TEPL are listed in Appendix B in Tables A2 and A3, respectively.
Likewise, the optimal values of the transformers’ tap ratios and the injected reactive powers
for TEVD are listed in Appendix B in Tables A4 and A5, respectively.
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Table 9. The simulation results of the SORPD solution for TEVD reduction without WTs.

Scenario
No. σi Loading % PLoss(MW) EPL(MW) VD(p.u) EVD(p.u)

1 0.011 42.10 2.3753 0.0261 0.2164 0.0024

2 0.027 91.46 10.7310 0.2897 0.2510 0.0068

3 0.02 78.61 6.5879 0.1318 0.2130 0.0043

4 0.023 85.30 9.2064 0.2117 0.2145 0.0049

5 0.393 71.11 5.2047 2.0455 0.1282 0.0504

6 0.001 106.56 13.4473 0.0134 0.2799 0.0003

7 0.245 62.36 4.1113 1.0073 0.1292 0.0317

8 0.001 96.91 12.3517 0.0124 0.6952 0.0007

9 0.233 77.87 6.7513 1.5730 0.1130 0.0263

10 0.046 49.63 4.1757 0.1921 0.1559 0.0072

TEPL= 5.5030 TEVD = 0.1349
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Table 10. The simulation results of the SORPD solution for TEVD’s reduction with WTs.

Scenario
NO. σi Loading % Wind

Speed (m/s) Pw (MW) PLoss(MW) EPL(MW) EVD(p.u) EVD(p.u)

1 0.011 0.011 42.10 2.3753 3.5862 0.0394 0.1599 0.0018

2 0.027 0.027 91.46 10.7310 6.2666 0.1692 0.2493 0.0067

3 0.02 0.02 78.61 6.5879 2.6767 0.0535 0.2026 0.0041

4 0.023 0.023 85.30 9.2064 3.8184 0.0878 0.1718 0.0040

5 0.393 0.393 71.11 5.2047 3.7606 1.4779 0.1075 0.0422

6 0.001 0.001 106.56 13.4473 10.5488 0.0105 0.5717 0.0006

7 0.245 0.245 62.36 4.1113 4.9506 1.2129 0.1163 0.0285

8 0.001 0.001 96.91 12.3517 5.4928 0.0055 0.1931 0.0002

9 0.233 0.233 77.87 6.7513 6.3825 1.4871 0.1354 0.0315

10 0.046 0.046 49.63 4.1757 1.1932 0.0549 0.1178 0.0054

TEPL= 4.5989 TEVD = 0.1249
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first meta-heuristic type was evolutionary-based techniques which mimic the evolution 
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mals within specific communities or swarms, such as flocks of birds and ant colonies. Phys-
ical-based techniques are efficient types of optimization algorithms that are conceptualized 
from the physical phenomena or laws of physics. Human-based techniques are optimiza-
tion algorithms that are conceptualized with human behavior and thinking. The hybrid-
based algorithms are algorithms that are based on the combination of two algorithms from 
the previous techniques. The main advantage of the listed optimization techniques in Table 
1 is that these methods are simple to apply for solving the conventional ORPD, while the 
main shortage of these methods is that the uncertainties and the stochastic nature of the 
system, are not considered, including the uncertainties loading and output power of the 
renewable energy resources.  

Table 1. Review of the applied algorithms for solving the ORPD. 

Evolutionary-Based Techniques Swarm-Based Techniques 
 Differential Evolution [8]  Particle Swarm Optimization (PSO) [9]  
 Enhanced Grey Wolf Optimizer (EGWO) [10]  Moth Swarm Algorithm [11] 
 Specialized Genetic Algorithm) [12]  Improved Antlion Optimization technique [13]   
 Pareto Evolutionary Algorithm [14]  Improved Social Spider Optimization [15] 
 Modified Differential Evolution [16]  Whale Optimization technique [17] 
 Evolutionary Programming [2]  Ant Lion Optimizer [18] 
 Comprehensive Learning PSO [19]  Marine Predators Algorithm [20] 
Physical-Based Techniques Human-Based Techniques 
 Water Cycle Algorithm [21].  Biogeography-Based Optimization [22] 
 Modified Sine Cosine technique [23]  Harmony Search technique [24] 
 Lightning Attachment Procedure Optimization [25]  Teaching Learning-Based technique [26] 
 Improved Gravitational Search technique [27]  
 Gravitational Search Algorithm [28]  
 Slime Mould Algorithm [29]  
Hybrid-Based Algorithms   
 The PSO and the tabu-search technique [30]  
 The Salp Swarm technique with Simulated Annealing [15]  
 Hybrid PSO and the Grey Wolf Optimization [31]  
 Hybrid PSO and Gravitational Search Algorithm [32]  

Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

An Adaptive Manta-Ray Foraging Optimization (AMRFO) is proposed based on
the quasi-oppositional based learning fitness distance balance method, which was
successfully applied to solve the conventional and stochastic ORPD problem.
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tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

The suggested AMRFO was validated on the standard benchmark functions compared
to SCSO, WOA, GWO, AHA, DO, and the conventional MRFO in terms of the best,
mean, worst and p-value.
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nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

In the case of solving the conventional ORPD, the minimum power loss and the
VD that was obtained by the application of the AMRFO were 4.5279 MW and
0.0913 p.u., respectively.
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Few optimizers solved SORPD considering the uncertainties of the power system, 
which was solved using different optimizers; in [33], the SORPD was solved using an im-
proved marine predator algorithm, and the uncertainties were presented using the sce-
nario-based method. An improved version of the lightning attachment procedure optimi-
zation was presented for the ORPD solution with RERs and load uncertainties, also based 
on the scenario-based method [34]. However, while the scenario-based method is simple 
to apply, the obtained solution is an approximate solution. An enhanced grey wolf opti-
mizer was implemented for the SORPD and considered the load uncertainty only [10]. In 
[11], the SORPD was solved by the Moth Swarm Algorithm, considering the RERs and 
loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
voltage deviation reduction with the application of the two-point estimate method for 
modeling the uncertainties in a system [35]. In [32], the Particle Swarm Optimization Grav-
itational Search Algorithm (FPSOGSA) was proposed for solving the SORPD with uncer-
tainties of the load demand, the PV’s power and the WT’s power. The quantum-behaved 
particle swarm optimization differential mutation (QPSODM) was implemented to solve 
the SORPD in the IEEE 14-bus and practical Adrar’s isolated power system [36]. 

The MRFO is an efficient optimization method that has been employed to optimize a 
set of problems. However, there are some shortcomings related to the MRFO, including 

The stochastic ORPD problem was solved by considering the uncertainties of the load
demand and wind speed.
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loading uncertainties. S.M. Mohseni-Bonab et al. solved the SORPD for power loss and 
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The TEPL decreased from 5.1025 MW to 4.5201 MW in the case of solving the SORPD
without the inclusion of WTs, while this value was reduced from 5.1025 MW to 2.9011
MW compared to the base case with the inclusion of WTs. Likewise, the TEVD
decreased from 0.7919 p.u. to 0.1349 p.u. without incorporating the WTs, and this
decreased from 0.7919 p.u. to 0.1249 p.u. with the inclusion of WTs compared with
the base case.

The limitation of this work is that the proposed algorithm was implemented for the
IEEE 30-bus system only without considering the energy storage systems. In this regard,
the proposed technique should be applied to solve large-scale systems such as IEEE 57-bus
and IEEE 30-bus with renewable energy and energy storage systems. In addition, the
SORPD should be solved by considering network attacks such as false data injection (FDI)
attacks [70] and denial of service (DoS) attacks [71].

6. Conclusions

This paper presented an efficient Adaptive Manta-Ray Foraging Optimization (AM-
RFO) to solve the conventional optimal reactive power dispatch (ORPD) and the stochastic
optimal reactive power dispatch (SORPD). The AMRFO was based on enhancing the
searching abilities and the exploration and exploitation phases of the standard Manta-Ray
Foraging Optimization (MRFO) using three efficient improvement methods, including the
Fitness distance Balance, the Quasi-Oppositional based learning (QOBL) and the adaptive
Levy Flight (ALF). The normal and the Weibull PDFs, along with a Montel Carlo simulation
and the scenario-based reduction method (SBR), were utilized to represent the uncertainties
of the load demand and the produced power from the WTs to obtain a set of scenarios
for the stochastic representation of uncertain parameters. In total, 1000 scenarios were
obtained from the MCS, and by application, these scenarios were reduced to 10 scenarios.
The suggested AMRFO was applied to 23 standard benchmark functions and on the IEEE
30-bus transmission system. The yielded results were compared to the conventional MRFO,
SCSO, GWO, WOA, AHA, DO, and other well-known optimizers. The obtained results
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revealed that the proposed AMFO was superior when solving the conventional ORPD and
the stochastic ORPD compared to the other algorithms. In addition to this, the system’s
performance was enhanced considerably when solving the ORPD and the stochastic ORPD,
especially with the inclusion of WTs in the system. The power loss was reduced by 19.09%,
and the VD was reduced by 89.49% compared to the initial case of solving the conven-
tional ORPD. Furthermore, the TEVD decreased by 82.97% and 84.23% through solving the
SORPD without and with the inclusion of the WTs, respectively.
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Abbreviations

ORPD Optimal reactive power dispatch
AMRFO Adaptive Manta-Ray Foraging Optimization
MRFO Manta-Ray Foraging Optimization
SORPD Stochastic ORPD
FDB Fitness distance balance selection
ALF An adaptive Levy Flight
QOBL Quasi Oppositional based learning
MCS The Monte Carlo simulation
PLoss The power loss
TEPL The total expected PLoss
VD The voltage deviations
TEVD The total expected VD
PDF Probability density function
SCSO Sand Cat Swarm algorithm
GWO Grey Wolf Optimizer
WOA Whale Optimization Algorithm technique
AHA Artificial Hummingbird Algorithm
DO Dandelion Optimizer
SBR The scenario-based reduction
PSO Particle Swarm Optimization
OBL The Opposition-based learning
WT Wind turbine
TLBO Teach learning-based optimization
HPSO–TS Hybrid PSO and Tabu search
MPA Marine predator Algorithm
PSO-TVAC PSO with time varying acceleration coefficients
CLPSO Comprehensive Learning PSO
QOTLBO Quasi Oppositional Teaching Learning based Optimization
JA Jaya Algorithm
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HSO Harmony Search Algorithm
SGA Standard Genetic Algorithm
DE Differential Evolution
SpGA Specialized Genetic Algorithm
FA Firefly Algorithm
ALO Ant Lion Optimizer
HPSO–TS Hybrid PSO and Tabu search
TS Tabu search
WOA Whale Optimization Algorithm
IDE Improved Differential Evolution
BBO Biogeography-Based Optimization
CLPSO Comprehensive Learning PSO
GSA Gravitational Search Algorithm
GSA-CSS GSA With Conditional Selection Strategies
IGSA-CSS Improved GSA With Conditional Selection Strategies

Appendix A The Simulation Results for the Standard Objective Function

Table A1. Statistical results for the standard benchmark functions.

Fun Algorithms Average Best Worst SD p-Value Mean Rank

F1 SCSO 1.7E−53 3.3E−61 3.8E−52 7.6E−53 9.73E−11 4

GWO 6.4E−11 2.5E−12 3.31E−10 8.1E−11 9.73E−11 6

WOA 9.7E−33 4.3E−43 7.21E−32 2.1E−32 9.73E−11 5

AHA 8.1E−65 8.7E−82 1.81E−63 3.6E−64 9.73E−11 3

DO 8.2E−03 3.3E−03 1.51E−02 3.6E−03 9.73E−11 5

MRFO 1.7E−195 2.3E−215 3.41E−194 0.0E+00 9.73E−11 2

AMRFO 0.0 0.0 0.0 0.0 - 1

F2 SCSO 5.51E−29 6.3E−34 4.5E−28 1.3E−28 1.37E−09 4

GWO 3.61E−07 1.42E−07 7.71E−07 1.71E−07 1.38E−09 6

WOA 4.30E−23 2.01E−27 6.61E−22 1.41E−22 1.37E−09 5

AHA 1.50E−33 3.21E−40 2.9E−32 5.91E−33 1.37E−09 3

DO 3.51E−02 1.11E−02 7.91E−02 1.51E−02 1.37E−09 7

MRFO 2.51E−99 5.2E−108 6.21E−98 1.2E−98 1.37E−09 2

AMRFO 0.0 0.0 0.0 0.0 - 1

F3 SCSO 2.91E−46 1.51E−55 6.91E−45 1.41E−45 9.73E−11 4

GWO 1.51E+00 3.42E−02 2.11E+01 4.21E+0 9.73E−11 5

WOA 8.12E+04 2.81E+04 1.21E+05 2.1E+04 9.73E−11 7

AHA 3.01E−57 5.21E−72 7.42E−56 1.52E−56 9.73E−11 3

DO 6.81E+02 1.12E+02 2.02E+03 5.4E+02 9.73E−11 6

MRFO 6.72E−186 4.6E−200 1.71E−184 0 9.73E−11 2

AMRFO 0 0 0 0 - 1
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Table A1. Cont.

Fun Algorithms Average Best Worst SD p-Value Mean Rank

F4 SCSO 1.22E−24 4.71E−28 2.42E−23 4.81E−24 1.42E−09 4

GWO 1.31E−02 4.52E−03 4.71E−02 1.12E−02 1.42E−09 5

WOA 5.81E+01 1.02E−05 9.02E+01 3.01E+01 1.42E−09 7

AHA 7.82E−31 4.12E−38 1.61E−29 3.12E−30 1.42E−09 3

DO 8.81E+00 2.31E+00 1.91E+01 4.92E+00 1.42E−09 6

MRFO 2.60E−98 4.2E−106 3.41E−97 7.40E−98 1.42E−09 2

AMRFO 0 0 0 0 - 1

F5 SCSO 2.83E+01 2.73E+01 2.93E+01 5.63E−01 1.42E−09 3

GWO 2.83E+01 2.64E+01 2.94E+01 8.23E−01 1.42E−09 4

WOA 2.92E+01 2.83E+01 2.93E+01 2.83E−01 1.42E−09 6

AHA 2.83E+01 2.73E+01 2.92E+01 5.231E−01 1.42E−09 5

DO 4.73E+01 2.53E+01 1.03E+02 2.73E+01 1.6E−09 7

MRFO 2.53E+01 2.43E+01 2.62E+01 4.32E−01 4.1E−07 2

AMRFO 2.41E+01 2.32E+01 2.60E+01 6.40E−01 - 1

F6 SCSO 2.52E+00 1.41E+00 3.31E+00 4.41E−01 1.42E−09 7

GWO 1.31E+00 2.61E−01 2.02E+00 4.61E−01 1.42E−09 6

WOA 1.3E+00 2.12E−01 1.91E+00 4.12E−01 1.42E−09 5

AHA 1.02E+00 2.91E−01 1.81E+00 3.71E−01 1.42E−09 4

DO 3.12E−03 6.61E−04 1.61E−02 3.71E−03 1.42E−09 3

MRFO 1.61E−04 7.52E−06 1.13E−03 2.41E−04 4.46E−08 2

AMRFO 9.52E−06 4.61E−07 4.91E−05 1.31E−05 - 1

F7 SCSO 5.913E−04 1.92E−05 2.43E−03 6.91E−04 2.66E−06 4

GWO 5.91E−03 3.13E−03 1.43E−02 2.72E−03 1.42E−09 5

WOA 7.81E−03 2.03E−04 4.22E−02 9.13E−03 1.42E−09 6

AHA 5.13E−04 5.31E−05 1.22E−03 3.13E−04 2.57E−08 3

DO 6.13E−02 2.03E−02 1.52E−01 3.61E−02 1.42E−09 7

MRFO 3.81E−04 1.43E−05 1.23E−03 2.72E−04 2.2E−06 2

AMRFO 7.61E−05 2.8E−06 1.71E−04 4.8E−05 - 1

F8 SCSO −6.7E+03 −7.7E+03 −5.5E+03 6.4E+02 2.57E−09 4

GWO −6.4E+03 −7.6E+03 −3.5E+03 9.6E+02 1.6E−09 5

WOA −9.7E+03 −1.5E+04 −7.1E+03 2.13E+03 0.077453 6

AHA −9.9E+03 −1.4E+04 −9.2E+03 4.5E+02 7.38E−09 3

DO −7.7E+03 −8.5E+03 −5.6E+03 7.31E+02 8.55E−08 7

MRFO −7.7E+03 −9.2E+03 −6.6E+03 7.41E+02 0.002991 2

AMRFO −8.4E+03 −9.3E+03 −7.3E+03 5.27E+02 - 1
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Table A1. Cont.

Fun Algorithms Average Best Worst SD p-Value Mean Rank

F9 SCSO 0 0 0 0 N/A 1

GWO 1.22E+01 1.12E+00 2.61E+01 7.71E+00 9.73E−11 6

WOA 2.32E−15 0 5.72E−14 1.13E−14 0.337055 5

AHA 0 0 0 0 N/A 2

DO 5.61E+01 1.31E+01 1.42E+02 3.02E+01 9.73E−11 7

MRFO 0 0 0 0 N/A 3

AMRFO 0 0 0 0 - 4

F10 SCSO 8.92E−16 8.91E−16 8.91E−16 0 N/A 2

GWO 1.42E−06 5.1E−07 3.91E−06 7.61E−07 9.73E−11 4

WOA 1.02E−14 8.91E−16 2.22E−14 5.91E−15 2.74E−10 3

AHA 8.91E−16 8.91E−16 8.91E−16 0 N/A 1

DO 9.52E−02 1.32E−02 1.32E+00 2.61E−01 9.73E−11 5

MRFO 8.91E−16 8.91E−16 8.91E−16 0 N/A 1

AMRFO 8.91E−16 8.91E−16 8.91E−16 0 - 1

F11 SCSO 0 0 0 0 N/A 1

GWO 1.13E−02 8.11E−12 4.72E−02 1.42E−02 9.73E−11 3

WOA 4.62E−02 0 6.51E−01 1.63E−01 0.081168 5

AHA 0 0 0 0 N/A 2

DO 3.61E−02 6.02E−03 9.81E−02 2.21E−02 9.73E−11 4

MRFO 0 0 0 0 N/A 2

AMRFO 0 0 0 0 N/A 2

F12 SCSO 1.32E−01 2.61E−02 3.33E−01 6.12E−02 4.13E−09 6

GWO 8.31E−02 3.22E−02 1.81E−01 3.61E−02 1.46E−08 5

WOA 8.13E−02 1.33E−02 2.52E−01 5.72E−02 1.31E−08 4

AHA 2.63E−02 2.72E−03 8.22E−02 1.81E−02 2.57E−08 3

DO 4.92E−01 4.12E−05 2.71E+00 8.12E−01 7.38E−09 7

MRFO 6.61E−06 3.62E−07 2.63E−05 6.91E−06 8.86E−06 1

AMRFO 4.12E−03 1.33E−08 1.02E−01 2.13E−02 - 2

F13 SCSO 2.41E+00 1.42E+00 2.91E+00 4.02E−01 0.006223 5

GWO 1.12E+00 6.31E−01 1.61E+00 3.02E−01 3.7E−07 2

WOA 1.13E+00 3.02E−01 2.13E+00 4.41E−01 7.51E−07 3

AHA 2.31E+00 1.51E−01 2.91E+00 6.01E−01 0.00384 4

DO 4.41E−02 2.41E−04 5.31E−01 1.11E−01 1.8E−09 1

MRFO 2.51E+00 1.41E−02 3.01E+00 1.01E+00 0.004614 6

AMRFO 2.51E+00 3.01E−01 3.01E+00 7.81E−01 - 6
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Table A1. Cont.

Fun Algorithms Average Best Worst SD p-Value Mean Rank

F14 SCSO 4.23E+00 1.02E+00 1.31E+01 4.42E+00 1.38E−10 5

GWO 5.51E+00 1.02E+00 1.31E+01 4.60E+00 1.38E−10 7

WOA 4.41E+00 1.02E+00 1.11E+01 3.61E+00 1.38E−10 6

AHA 1.23E+00 1.02E+00 3.02E+00 6.71E−01 1.83E−10 3

DO 1.43E+00 1.02E+00 3.02E+00 7.31E−01 1.37E−10 4

MRFO 1.01E+00 1.02E+00 1.02E+00 1.72E−16 7.52E−05 2

AMRFO 1.0E+00 1.02E+00 1.02E+00 4.51E−17 - 1

F15 SCSO 5.21E−04 3.11E−04 1.21E−03 2.61E−04 1.42E−09 3

GWO 3.01E−03 3.61E−04 2.01E−02 6.61E−03 1.42E−09 6

WOA 1.31E−03 3.31E−04 1.71E−02 3.31E−03 1.42E−09 5

AHA 3.12E−04 3.12E−04 3.41E−04 7.21E−06 1.42E−09 2

DO 4.71E−03 3.12E−04 2.02E−02 8.01E−03 1.42E−09 7

MRFO 1.22E−03 3.12E−04 2.02E−02 4.01E−03 1.42E−09 4

AMRFO 3.10E−04 3.10E−04 3.11E−04 9.34E−15 - 1

F16 SCSO −1.0E+00 −1.0E+00 −1.0E+00 3.92E−09 1.87E−10 1

GWO −1.0E+00 −1.0E+00 −1.0E+00 2.52E−07 1.87E−10 1

WOA −1.0E+00 −1.0E+00 −1.0E+00 9.22E−08 1.87E−10 1

AHA −1.0E+00 −1.0E+00 −1.0E+00 3.91E−12 8.8E−09 1

DO −1.0E+00 −1.0E+00 −1.0E+00 2.33E−11 1.87E−10 1

MRFO −1.0E+00 −1.0E+00 −1.0E+00 6.11E−16 0.018662 1

AMRFO −1.0E+00 −1.0E+00 −1.0E+00 6.61E−16 - 1

F17 SCSO 4.0E−01 4.0E−01 4.0E−01 3.71E−07 9.73E−11 1

GWO 4.0E−01 4.0E−01 4.0E−01 2.81E−06 9.73E−11 1

WOA 4.0E−01 4.0E−01 4.0E−01 1.41E−04 9.73E−11 1

AHA 4.0E−01 4.0E−01 4.0E−01 0 N/A 1

DO 4.0E−01 4.0E−01 4.0E−01 2.91E−10 9.73E−11 1

MRFO 4.0E−01 4.0E−01 4.0E−01 0 N/A 1

AMRFO 4.0E−01 4.0E−01 4.0E−01 0 - 1

F18 SCSO 3.02E+00 3.02E+00 3.02E+00 3.62E−05 1.24E−09 1

GWO 3.02E+00 3.02E+00 3.02E+00 3.42E−04 1.24E−09 1

WOA 3.02E+00 3.02E+00 3.02E+00 1.51E−03 1.24E−09 1

AHA 3.02E+00 3.02E+00 3.02E+00 2.02E−15 0.483014 1

DO 3.02E+00 3.02E+00 3.02E+00 1.13E−07 1.24E−09 1

MRFO 3.02E+00 3.02E+00 3.02E+00 1.51E−15 0.052141 1

AMRFO 3.02E+00 3.02E+00 3.02E+00 1.51E−15 - 1
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Table A1. Cont.

Fun Algorithms Average Best Worst SD p-Value Mean Rank

F19 SCSO −3.8E+00 −3.8E+00 −3.8E+00 3.1E−03 1.87E−10 1

GWO −3.8E+00 −3.9E+00 −3.8E+00 2.5E−03 1.87E−10 1

WOA −3.7E+00 −3.8E+00 −3.6E+00 4.11E−02 1.87E−10 1

AHA −3.8E+00 −3.8E+00 −3.8E+00 5.82E−15 3.69E−08 1

DO −3.8E+00 −3.8E+00 −3.8E+00 1.1E−06 1.87E−10 1

MRFO −3.8E+00 −3.8E+00 −3.8E+00 2.3E−15 0.232368 1

AMRFO −3.9E+00 −3.9E+00 −3.9E+00 2.13E−15 - 1

F20 SCSO −3.3E+00 −3.3E+00 −2.81E+00 1.12E−01 0.044224 1

GWO −3.3E+00 −3.3E+00 −3.12E+00 8.11E−02 0.144383 1

WOA −3.2E+00 −3.3E+00 −3.1E+00 1.23E−01 0.010339 1

AHA −3.3E+00 −3.3E+00 −3.21E+00 3.92E−02 0.937112 1

DO −3.3E+00 −3.3E+00 −3.22E+00 3.92E−02 0.937112 1

MRFO −3.3E+00 −3.3E+00 −3.21E+00 6.1E−02 0.407218 1

AMRFO −3.3E+00 −3.3E+00 −3.20E+00 6.0E−02 - 1

F21 SCSO −5.2E+00 −1.0E+01 −8.7E−01 1.31E+00 7.19E−10 7

GWO −8.9E+00 −1.0E+01 −2.6E+00 2.51E+00 7.19E−10 3

WOA −7.4E+00 −1.0E+01 −2.5E+00 3.01E+00 7.19E−10 5

AHA −9.4E+00 −1.0E+01 −4.9E+00 1.91E+00 7.19E−10 2

DO −7.3E+00 −1.0E+01 −2.6E+00 3.51E+00 7.19E−10 6

MRFO −7.8E+00 −1.0E+01 E+00 2.61E+00 9.48E−05 4

AMRFO −1.0E+01 −1.0E+01 −1.0E+01 4.40E−15 - 1

F22 SCSO −6.2E+00 −1.0E+01 −9.3E−01 2.62E+00 6.34E−09 6

GWO −1.0E+01 −1.0E+01 −5.3E+00 1.12E+00 7.15E−09 1

WOA −6.6E+00 −1.0E+01 −2.1E+00 3.22E+00 3.91E−09 5

AHA −9.6E+00 −1.0E+01 −5.3E+00 1.92E+00 7.15E−09 3

DO −61+00 −1.0E+01 −1.9E+00 3.52E+00 1.65E−09 7

MRFO −7.2E+00 −1.0E+01 −2.9E+00 2.82E+00 3.66E−05 4

AMRFO −1.0E+01 −1.0E+01 −3.8E+00 1.31E+00 - 2

F23 SCSO −6.1E+00 −1.1E+01 −2.91E+00 2.42E+00 7.54E−10 6

GWO −1.0E+01 −1.1E+01 −2.51E+00 1.61E+00 7.54E−10 2

WOA −5.8E+00 −1.1E+01 −1.81E+00 2.91E+00 7.54E−10 7

AHA −9.9E+00 −1.1E+01 −5.31E+00 1.72E+00 7.54E−10 3

DO −7.6E+00 −1.1E+01 −2.51E+00 3.62E+00 7.54E−10 5

MRFO −8.3E+00 −1.1E+01 −3.91E+00 2.91E+00 1.05E−05 4

AMRFO −1.1E+01 −1.1E+01 −1.11E+01 2.81E−15 - 1
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Appendix B The Optimal Control Variables for Solving the SORPD

Table A2. The optimal tap setting of transformers with and without WTs for TEPL reduction.

Without Incorporating WTs

Scenario No. T11 T12 T15 T36

1 1.02 0.99 0.97 1.03
2 1.02 1.05 1.05 1.02
3 0.98 1.04 1 0.96
4 1.06 0.97 1.04 1
5 1 1.07 1.04 1.02
6 0.97 1.03 1.04 0.99
7 0.95 1.01 1.02 0.99
8 0.99 1 1.05 1.05
9 1.01 1.01 1.03 1.01
10 1.01 1.04 1.04 1.08

Incorporating WTs

Scenario No. T11 T12 T15 T36

1 1.01 1.03 1.05 0.98
2 1 1.04 0.98 0.99
3 1.04 0.98 1.01 0.97
4 1.08 1.04 1.07 1.05
5 1.03 0.97 1.01 1.01
6 1.02 0.97 1.02 0.98
7 0.97 0.99 1.01 0.99
8 1.02 1.06 0.99 0.97
9 1.07 0.93 0.97 1.01
10 1.01 1.06 1.01 1

Table A3. The optimal injected reactive powers by capacitors with and without WTs for
TEPL reduction.

Without Incorporating WTs

Scenario No. Q10 Q12 Q15 Q17 Q20 Q21 Q23 Q24 Q29

1 1.86 2.49 1.82 2.49 1.34 1.63 2.76 2.6 2.04
2 3.36 1.73 3.18 2.12 3.29 1.8 1.67 1.56 3.15
3 1.17 3.61 2.85 1.82 1.21 2.15 2.62 1.47 3.06
4 3.38 1.97 3 3.01 2.53 0.35 3.37 1.84 2.43
5 1.38 2.52 1.89 3.67 3.82 2.76 2.39 4 4.16
6 2.88 1.94 3.24 2.79 1.86 2.17 1.33 2.73 2.69
7 1.58 1.25 2.21 3.17 1.47 3.17 0.89 2.95 1.2
8 1.85 3.14 2.52 3.19 2.26 3.49 2.04 2.22 3.33
9 3.78 0.85 2.87 1.93 2.88 3.91 4.01 1.63 3.39
10 3.27 2.29 2.59 1.81 2.88 2.09 1.61 4.45 3.22

Incorporating WTs

Scenario No. Q10 Q12 Q15 Q17 Q20 Q21 Q23 Q24 Q29

1 3.95 3.28 2.83 2.39 1.49 1.33 2.55 2.98 2.15
2 2.34 1.86 2.92 1.74 2.79 4.02 3.46 2.67 2.27
3 0.49 1.2 3.41 3.83 2.51 1.31 4.1 1.23 3.68
4 1.61 3.37 3.72 2.06 2.79 1.97 2.26 3.54 3.2
5 2.68 2.6 3.21 1.81 4.33 2.97 1.74 2.29 4.41
6 2.05 2.23 2.34 2.18 2.46 3.64 2.8 1.43 2.81
7 1.54 3.95 4.27 2.91 2.64 2.92 2.69 2.5 2.16
8 3.8 3.38 3.05 2.38 3.39 4.05 2.93 0.87 2.37
9 1.83 2.18 3.23 2.88 2.15 3.31 2.84 3.72 2.59
10 1.85 3.97 0.44 4.5 4.1 3.58 2.59 2.32 3.99
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Table A4. The optimal taps setting of transformers with and without WTs for TEVD reduction.

Without Incorporating WTs

Scenario No. T11 T12 T15 T36

1 0.96 0.96 1 0.97
2 1 1.04 1.02 0.95
3 1.03 0.93 0.99 0.97
4 1.01 0.94 1 0.94
5 1.03 0.91 0.96 0.97
6 0.99 1.06 0.98 0.96
7 1 0.96 1.01 0.96
8 0.94 0.94 0.98 1.01
9 1.02 1 0.99 0.97
10 0.93 1.01 1.02 0.98

Incorporating WTs

Scenario No. T11 T12 T15 T36

1 1.01 1.01 0.91 1
2 1.01 1.02 0.95 0.96
3 0.99 0.92 0.98 0.97
4 1 0.94 1 0.96
5 0.97 0.95 0.98 0.98
6 1.03 0.99 0.94 0.98
7 0.98 1.01 1.02 0.96
8 0.96 0.96 0.99 0.92
9 0.96 0.98 0.99 0.95
10 0.98 0.96 1 0.99

Table A5. The optimal injected reactive powers by capacitors with and without WTs for
TEVD reduction.

Without Incorporating WTs

Scenario No. Q10 Q12 Q15 Q17 Q20 Q21 Q23 Q24 Q29

1 3.86 2.05 3.33 4.13 4.67 3.16 3.92 2.36 2.42
2 1.29 3.74 1.72 2.97 2.61 3.18 2.3 4.2 3.42
3 1.81 1.96 2.68 1.82 1.39 2.05 2.66 1.97 3.4
4 2.29 0.79 2.23 2.15 2.69 3.08 1.59 2.56 3.41
5 2.46 1.09 1.52 2.72 1.7 2.71 3.07 3.29 3.12
6 3.4 1.7 3.02 2.22 1.86 3.68 2.76 1.62 2.46
7 2.5 2.4 2.23 4.14 2.92 2.1 1.04 3.03 1.91
8 3.59 1.96 3.3 1.32 3.51 2.96 1.41 1.4 3.01
9 3.69 2.05 2.09 3.33 4.09 2.37 3.47 1.69 4.32
10 3.44 4.01 3.04 0.76 2.52 2.87 2.63 2.68 3.41

Incorporating WTs

Scenario No. Q10 Q12 Q15 Q17 Q20 Q21 Q23 Q24 Q29

1 1.97 3.17 1.7 0.73 2.47 1.33 2.14 3 2.32
2 1.79 1.58 4.3 3.7 3.94 1.32 1.35 2.99 3.7
3 1.71 2.64 2.69 2.71 1.69 2.85 2.05 3.87 3.74
4 3.03 4.27 3.09 1.81 2.9 2.71 1.53 2.24 1.88
5 2.23 2.44 3.35 2.46 2.07 1.8 3.12 3.94 3.82
6 3.61 2.75 3.02 2.97 2.26 1.44 2.16 1.65 2.8
7 3.43 1.71 3.81 2.01 2.54 2.2 0.87 2.48 2.95
8 2.64 2.29 2.66 2.42 2.42 3.25 2.78 2.14 4.32
9 3 2.76 1.41 2 4.73 3.74 3.39 3.31 1.62
10 2.11 1.99 1.73 1.54 1.67 2.35 2.38 3.34 2.96
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