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Abstract: The rapid development of digital image inpainting technology is causing serious hidden
danger to the security of multimedia information. In this paper, a deep network called frequency
attention-based dual-stream network (FADS-Net) is proposed for locating the inpainting region.
FADS-Net is established by a dual-stream encoder and an attention-based blue-associative decoder.
The dual-stream encoder includes two feature extraction streams, the raw input stream (RIS) and the
frequency recalibration stream (FRS). RIS directly captures feature maps from the raw input, while
FRS performs feature extraction after recalibrating the input via learning in the frequency domain.
In addition, a module based on dense connection is designed to ensure efficient extraction and full
fusion of dual-stream features. The attention-based associative decoder consists of a main decoder
and two branch decoders. The main decoder performs up-sampling and fine-tuning of fused features
by using attention mechanisms and skip connections, and ultimately generates the predicted mask for
the inpainted image. Then, two branch decoders are utilized to further supervise the training of two
feature streams, ensuring that they both work effectively. A joint loss function is designed to supervise
the training of the entire network and two feature extraction streams for ensuring optimal forensic
performance. Extensive experimental results demonstrate that the proposed FADS-Net achieves
superior localization accuracy and robustness on multiple datasets compared to the state-of-the-art
inpainting forensics methods.

Keywords: inpainting forensics; deep convolutional neural network; learning in frequency domain;
dual-stream feature extraction; attention mechanism

MSC: 68M25; 68T07

1. Introduction

With the rapid development of digital image processing techniques, increasingly
advanced image editing software provides more convenience and fun for modern human
life. Nevertheless, a large number of forged digital images are generated by malicious use
of these techniques, which has led to a serious security and trust crisis of digital multimedia.
Therefore, image forensics has gradually attracted an increasing concern in the digital
multimedia era, such as JPEG compression forensics [1,2], median filtering detection [3],
copy-moving and splicing localization [4,5], universal image manipulation detection [6,7],
and so on.

Image inpainting is an effective image editing technique which aims to repair damage
or removed image regions based on known image information in a visually plausible
manner, as shown in Figure 1. A variety of image inpainting methods have been constantly
proposed in recent years, and these can be classified roughly into three categories: the
diffusion-based approaches [8,9], the exemplar-based approaches [10,11], and the deep
learning (DL)-based approaches [12,13]. Due to its effective and efficient editing ability,
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image inpainting has been widely applied in many image processing fields [11], such as
image restoration, image coding and transmission, photo-editing and virtual restoration
of digitized paintings, etc. However, the powerful image editing tool is also conveniently
used to maliciously modify an image even by non-professional forgers with less visible
traces, which poses a serious threat to multimedia information security.

Figure 1. An illustrative example of image tampering by image inpainting: the real image (left), the
inpainted image (middle), and the utilized mask (right).

The major forensic tasks for image inpainting are to locate the inpainted regions of
an input image, so inpainting forensics require pixel-wise binary classification at the ma-
nipulation level, i.e., binary semantic segmentation. In fact, the goal of binary semantic
segmentation is to classify pixels in an image into two categories: foreground and back-
ground. Specifically, for the inpainting forensics task, the pixels in the image are classified
into inpainted pixels and uninpainted pixels. Generally, this is more difficult than the
common manipulation detection, which only makes a decision regarding whether a certain
manipulation took place or not.

There has been limited research on inpainting forensics until now. Some traditional
forensic methods employ hand-crafted features to identify inpainted pixels. For instance,
the features depending on image patch similarity were extracted for the detection of
exemplar-based inpainting operation [14,15], and the features based on image Laplacian
transform were designed to identify the diffusion-based inpainting operation [16,17]. How-
ever, the manipulation traces left by image inpainting on the image are so weak that it
is hard to reveal by manually designed features. In addition, the emerging DL-based
inpainting methods can not only achieve more realistic inpainting results than traditional
methods, but also generate new objects, which brings greater challenges to inpainting
forensics. Recently, deep convolutional neural networks (DCNNs) have made great success
in many fields [18–20] via their powerful learning capabilities. Inspired by these works,
some researchers have made some attempts to develop CNN-based forensics methods,
such as median filtering forensics [3], camera model identification [21], copy-move and
splicing localization [4], as well as JPEG compression forensics [2]. A few research efforts
have been also devoted to deep learning-based forensics for image inpainting [22,23].

DL-based methods learn the discriminant features and make the decisions for target
tasks in a data-driven way and thus bring about a significant performance advantage
on large-scale datasets. In this paper, we propose a new end-to-end network for image
inpainting forensics. The network is established by considering the following factors.

First, manipulation feature extraction is a key problem for the DL-based inpainting
forensics. Although DCNN is employed to directly extract features from the inpainted
image through end-to-end training [22,24], it tends to learn image content rather than
manipulate features [25]. To this end, the preprocessing modules are constructed to en-
hance image manipulation traces in many deep forensic approaches [7,23,26]. However,
most of these methods rely on prior knowledge and cannot be effectively applied to all
inpainting methods.

In addition, down-sampling operations are inevitably used in a DCNN for the ex-
traction of high-level features, causing detail information loss on image regions [27].
For dense prediction forensics, it is necessary to study the strategies for compensating
spatial information.

Last, cross-entropy and weighting strategies are generally selected for most deep
inpainting forensics [23,24,26]. In practice, the loss function is extremely important for
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training DL-based methods, and its selection should be closely related to the proposed
network structure and mission objectives. Thus, the design of loss function needs to be
carefully considered based on our methods.

Based on the above considerations, we propose a novel dual-stream network for image
inpainting forensics, called frequency attention-based dual-stream network (FADS-Net) in
this paper. The main contributions of this work are three-fold, as below:

1. We develop the DCNN for image inpainting forensics following the encoder–decoder
network structure [18,28] to directly regress the ground truth binary mask, represent-
ing the pixel-wise class labels (inpainting and uninpainting). In order to capture richer
inpainting clues, the encoder is designed as a dual-stream structure that consists of
the raw input stream (RIS), the frequency recalibration stream (FRS), and a fusion
module. The RIS, like most forensics methods, takes the original inpainted image as
the input, and image information adaptively recalibrated in the frequency domain is
used as input to the FRS. Then, the extracted dual-streamed features are fused into
more effective and comprehensive feature responses through a well-designed fusion
module. Finally, the fused features will be gradually enlarged to the full resolution
through the decoder, and the final prediction mask is generated.

2. We design the comprehensive up-sampling module combining transpose convolu-
tion [29], skip connection [30], and attention mechanism [31]. Through transpose
convolution, the fed features are refined to enhance the feature representations for the
purpose of forensics while increasing the feature resolution. Information fusion can be
effectively performed between coarse high-level features and fine low-level features
by combination of skip connection and attention mechanism, which compensates for
the spatial information loss caused by the down-sampling operations in the encoder.

3. We design a new joint loss function based on the intersection-over-union (IoU) metric
to train the proposed forensics network. The loss is obtained by combining a proposed
IoU loss and the cross entropy (CE) loss, where the IoU loss can directly guide the
FADS-Net to optimize the IoU performance metric. CE loss is used to supervise
the training of the entire network and two feature extraction streams, respectively,
which ensures stable training of the network and efficient operation of each feature
extraction stream.

The structure of this paper is as follows. Section 2 briefly introduces the related work
of inpainting forensics. In Section 3, a frequency attention-based dual-stream forensics
network is proposed and details of the network are presented. A series of experiments
are carried out to evaluate the proposed network in Section 4. Finally, Section 5 concludes
this paper.

2. Related Works

A few research efforts have been devoted to developing forensic methods for image
inpainting. They can be roughly divided into the following two categories.

2.1. Conventional Inpainting Forensics Methods

The conventional inpainting forensic methods rely on manually designed features to
predict the inpainted pixels. Initially, for exemplar-based inpainting [10], a zero-connectivity
length (ZCL) feature was designed to measure the similarity among image patches, and the
inpainted patches were recognized by a fuzzy membership function of patch similarity [32].
A similar forensics method depending on patch similarity was presented in [33] for video
inpainting. However, the similar patch searching process is very time-consuming, especially
for a large image. In addition, a high false alarm rate may be provided by these methods
for an image with uniform background.

The skipping patch matching was explored for inpainting forensics and copy-move
detection in [34]. A two-stage patch searching method based on weight transformation
was proposed in [14]. The two patch search methods accelerate the search of suspicious
patches, but may cause accuracy loss. Furthermore, by multi-region relations based ZCL
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features, the inpainted image regions are identified in [14], achieving an improved false
alarm rate. The work was further improved by exploiting the greatest ZCL feature and
fragment splicing detection in [15]. Meanwhile, the suspicious patch search was sped up by
the central pixel mapping method. The resulting problem is that a truly inpainted region is
prone to be recognized as some isolated suspicious regions and they might be removed by
fragment splicing detection.

The inpainted patch set was determined by the hybrid feature including Euclidean
distance, the position distance, and the number of same pixels between two image patches
in [35]. Unfortunately, the feature is very weak against the image post-processing opera-
tions and the forensics performance is highly image-dependent.

A few works were dedicated to improving the robustness of the inpainting forensics.
For the compressed inpainted image, the forensics was performed by computing and
segmenting the averaged sum of absolute difference images between the target image and
a resaved JPEG compressed image at different quality factors [36]. However, the feature
effectiveness is not clear if the image samples are modified using other manipulations. The
method in [37] was developed based on high-dimensional feature mining in the discrete
cosine transform domain to resist the compression attack. Many combinations of inpainting,
compression, filtering, and resampling are recognized by extracting the marginal density
and neighboring joint density features in [38]. The obtained classifiers only distinguish the
considered specific forgery methods and do not locate the inpainted region.

To detect image tampering by sparsity-based image inpainting schemes [39,40], the
forensics method based on canonical correlation analysis (CCA) was proposed in [41]. The
method exhibits the advantage of robustness against some image post-processing opera-
tions, but has the same drawback as [38]. For diffusion-based inpainting technologies [8,9],
a feature set based on the image Laplacian was constructed to identify the inpainted regions
in [16]. The performance was further enhanced by weighted least squares filtering and the
ensemble classifier in [17]. However, these methods fail to resist even quite weak attacks.

Principally, hand-crafted features for image inpainting are designed according to
the observations in some images, which cannot be guaranteed to be valid in all cases.
Moreover, the design of robust hand-crafted features is usually very difficult, since no
obvious traces are left by image inpainting operations, particularly deep learning-based
inpainting methods. In addition, the optimization of classifiers is carried out on a relatively
small dataset or in a certain small parameter range and is dependent upon feature extraction,
causing the restricted forensic performance.

2.2. Deep Learning-Based Inpainting Forensics Methods

The strategy of the method based on deep learning is different from the conven-
tional one, which can automatically learn the inpainting features and makes decisions in a
data-driven way. As the first attempt in [22], the fully convolutional network (FCN) was
constructed to locate the tampered regions by exemplar-based inpainting method [10], and
the weighted CE loss was designed to tackle the imbalance between the inpainted and
normal pixels. The method is significantly superior to the conventional forensics methods
in terms of detection accuracy and robustness, which can be further improved by skip
connections [42]. A deep learning approach combining CNN and long short-term memory
(LSTM) network was proposed in [43] to accomplish the spatially dense prediction for
exemplar-based inpainting. As to the network design, attention is mainly concentrated
on the improvement of the robustness and false alarm performance. The ResNet-based
approach [44] merged the networks of object detection and semantic segmentation. The ap-
proach is developed to achieve the hybrid forensic purpose for exemplar-based inpainting,
including manipulated localization, recognition, and semantic segmentation. The forensic
approach for deep inpainting was first addressed in [23], and an FCN with a high-pass
filter was designed to identify the inpainted pixels in an image.

Recently, some of the latest advances in deep learning have also been applied to the
design of inpainting forensics methods. A deep forensic network was proposed in [26]
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which is automatically designed through the one-shot neural structure search algorithm [45]
and includes a preprocessing module to enhance inpainting traces. A backbone network
with multi-stream structure [46] was employed to establish a progressive network for
image manipulation detection and localization [24], which could gradually fine-tune the
prediction results from low resolution to high resolution.

DL-based methods can learn the discriminant features directly from the data, avoiding
the difficulties of manually extracting features. Moreover, relying on end-to-end learning,
DCNNs permit the optimization of the feature extraction and the final decision steps in a
unique framework. With these characteristics, DL-based methods manifest a significant
performance advantage on large-scale datasets. This motivates us to further investigate the
deep learning-based methods for inpainting forensics.

3. Frequency Attention-Based Dual-Stream Inpainting Forensics Network

In this section, a dual-stream inpainting forensics network based on attention in the
frequency domain, abbreviated as FADS-Net in this paper, is presented. We build our
forensic network based on the encoder–decoder network structure by considering the fact
that such networks are widely used for dense prediction tasks and produce remarkable
results [18,28]. The overall architecture of FADS-Net is illustrated in Figure 2. As shown in
Figure 2, FADS-Net first encodes a given input image into feature maps by a dual-stream
encoder and then sends features to an attention-based associative decoder to generate final
predictions for the entire network and individual feature streams. The network is carefully
designed by considering the network architecture, the main function modules, and the loss
function, which are described in the following one by one.

Skip Connection

of RIS

Down-sampling 
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Up-sampling 
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Figure 2. The architecture of the proposed frequency attention-based dual-stream inpainting forensics
network (FADS-Net). FADS-Net has the same structure as encoder–decoder networks. The two
feature extraction streams extract features from the input image, and two features are fused using
a dense feature fusion module (DFFM) to generate the final feature response of the encoder. Then
through the attention-based decoder, the fed features are progressively refined and the spatial
resolution is restored for the final dense predictions.

3.1. Dual-Stream Encoder with Attention in Frequency Domain

The encoder part of the proposed network contains two branches of feature extraction:
raw input stream (RIS) and frequency recalibrated stream (FRS). As feature extraction
sub-networks with the same backbone structure, they are able to capture the features
of the inpainting trace by utilizing their respective input information. The RIS learns
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manipulation features directly, which represent the difference between the inpainted and
uninpainted regions, through the original image I, that is,

XRIS = FRIS(I) (1)

where composite function FRIS(·) represents the feature extraction operation performed by
RIS. Meanwhile, the image IFR recalibrated by a frequency-domain preprocessing module,
called the adaptive frequency recalibration module (AFRM), serves as the input of another
branch, namely the FRS. The overall process can be written as

IFR = FAFR(I) (2)

XFRS = FFRS(IFR) (3)

where FAFR(·) represents the operation of the AFRM on the input image, and FFRS(·) is a
composite function that represents the operation of extracting features from IFR performed
by FRS. The application of AFRM can enhance the inpainting traces and suppress irrelevant
information through the data-driven method. The network backbones of the above two
streams are constructed based on the single-stream CNN for inpainting forensics proposed
in our other recent work (under submission). The feature responses extracted from the two
feature streams are fully fused through a dual-stream feature fusion module (DFFM) to
obtain more abundant and more effective inpainting feature representation, as follows:

XDSF = FDFF(XRIS, XFRS) (4)

where FDFF(·, ·) represents the feature fusion operation performed in DFFM.
A more detailed description of the AFRM, the network backbone of two feature

extraction streams, and DFFM will be provided in the following sections.

3.1.1. Adaptive Frequency Recalibration Module

Some researchers attempt to combine manually designed features with DCNN [3,23,26]
for further mining of latent artifacts. However, these prior knowledge-based methods are
insufficient to capture comprehensive inpainting traces. Moreover, faced with the challenge
of increasingly advanced inpainting technologies to forensic science, frequency-related fea-
tures may provide extra and abundant forensic clues [3,47], except for the visual inpainting
traces revealed in RGB space.

Based on the above considerations and inspired by [47,48], the adaptive frequency
recalibration module is proposed to adaptively enhance frequency-related inpainting
features through a data-driven approach. The process of this module is illustrated in
Figure 3.

Split DCT Reshape Concatenate Split Reshape Concatenate

Frequency Channel Attention 

IDCT

GAP

MLP

I
FR
I

r
X

r
¢X

Figure 3. The architecture of the adaptive frequency recalibration module.
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First, we attempt to employ discrete cosine transform (DCT) to convert the input
inpainted image I ∈ RW×H×3 from the spatial domain to frequency domain, where W
and H denote the width and height of the image, respectively. Thanks to its positive
decorrelation and excellent energy compaction, DCT has been applied extensively to the
field of image processing. However, the complexity of DCT is relatively high, so the block-
based DCT is usually selected to process images. Considering the computational cost, we
apply 2-D DCT with a block of size 8× 8 (marked as 8× 8 DCT) to each channel of I. Thus,
the DCT result X(i)

d of the i-th channel I(i) can be expressed as

X(i)
d = D(I(i)) (5)

where i ∈ {1, 2, 3}, and D(·) indicates the 8× 8 DCT. Through applying 8× 8 DCT, there
are a total of W/8× H/8 blocks with size 8× 8 generated on each channel. As a result
of converting to the frequency domain, all elements in each block represent the DCT
coefficients of the corresponding frequency components, which are regularly distributed at
various locations in each block according to the frequency.

Then, the 2-D DCT resulting on each RGB channel needs to be reshaped into a 3-D
shape for further processing. Specifically, the components with the same frequency in all
8× 8 blocks of each channel are grouped into the same channel, and still maintain the
spatial relationships with each other. In this way, each of the R, G, and B components of the
inpainted image forms a tensor with 64 channels, which correspond to different frequencies.
The overall reshaped result Xr ∈ RW/8×H/8×192 is achieved through concatenating these
generated tensors. The above process can be expressed as

Xr = [R(X(1)
d ),R(X(2)

d ),R(X(3)
d )] (6)

whereR(·) and [·] denote the reshaping and concatenating operations, respectively.
At present, each channel of Xr represents the different frequency information of an

inpainted image. The inpainting manipulation fills the tampered region with known image
information, which inevitably causes changes in energy in some frequency bands of the
original image. To adaptively enhance the weak inpainting trace and suppress irrelevant
information, we attempt to employ channel attention [49] to learn a frequency attention
map MF of Xr, which would be utilized to recalibrate information on different frequency
bands of Xr. To be specific, Xr is first converted into a global descriptor X F ∈ R1×1×192

through the global average pooling (GAP) G(·), that is,

X (k)
F = G(xr(i, j, k)) =

1
W/8× H/8

W/8

∑
i=1

H/8

∑
j=1

xr(i, j, k) (7)

where xr(i, j, k) represents the DCT coefficient located at (i, j) on the k-th channel of Xr, and
X (k)

F is the k-th element of XF, which represents the global information of the k-th channel
of Xr. Then, the XF is input into a multi-layer perceptron (MLP) with the sigmoid function
σ(·) to derive MF. The process can be expressed as

MF = σ(W2δ(W1XF)) (8)

where W1 and W2 denote the weight parameters of the hidden layer and output layer,
respectively, of MLP, and δ(·) denotes a rectified linear unit (ReLU) activation function.
Finally, the recalibrated frequency information X ′r is achieved by

X ′r = MF ⊗ Xr (9)

where ⊗ refers to element-wise multiplication.
By applying the channel attention mechanism, the dynamic weight is provided for

each frequency channel of Xr, so as to improve the effectiveness of frequency information
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for forensics. However, the forensics network infers the final pixel-wise prediction, which
depends on the spatial information of the image. Therefore, the recalibrated result X ′r in
the frequency domain is reconverted into an image IFR in the spatial domain by inverse
reshapingR−1(·) and inverse DCT D−1(·), which is implemented as follows:

IFR = [D−1(R−1(X
′(1)
r )),D−1(R−1(X

′(2)
r )),D−1(R−1(X

′(3)
r ))] (10)

where [·] denotes the concatenating operation, and X
′(i)
r is the recalibration result of the

i-th channel of the input image I through channel attention.
Although CNN has superior feature learning capabilities, it may be insufficient that

only RIS is utilized to learn features of inpainting operation. This is because, in the
spatial domain, the inpainting traces are hidden in the content information of an image,
while CNN tends to learn the features of content information. According to the previous
description, through DCT and reshaping, AFRM can first alleviate the coupling between
image content and inpainting artifact, which have different frequency information in the
frequency domain. Furthermore, channel attention is employed to adaptively enhance or
suppress corresponding frequency information through data-driven approaches, so as to
meet the requirement of forensic tasks. Therefore, the FRS can also extract extra abundant
features from the images recorrected by AFRM, and these features extracted by FRS will be
fused with the features obtained by RIS to ultimately improve the forensic performance.
The comparative and ablation experiments have demonstrated the effectiveness of FRS
with AFRM.

3.1.2. Sub-Network for High-Resolution Feature Extraction

In general, depending on the progressive down-sampling and deep structure, DCNN
can learn abstract high-level features. However, the continuous down-sampling results in
the serious loss of spatial details, which is harmful to the dense prediction task [50].

Thus, a network structure in Figure 2 proposed in our recent work is employed to
establish the sub-networks of two feature extraction streams which can effectively extract
high-resolution feature responses from their respective input information.

Thus, a single-stream network with the structure in Figure 2 proposed in our recent
work is introduced as a sub-network to efficiently extract high-resolution feature responses.
For readers to better understand our work, the network is re-described in the following.

At the beginning, a convolution block is employed to generate shallow feature maps
from input information. Subsequently, the combination of down-sampling block and
multi-stream dense modules (MSDMs) is repeatedly applied three times to further learn
higher-level features. As a result, the spatial resolution of the final feature responses on
each stream is adjusted to 1/8 of that of the input, which effectively reduces the loss of
detail information on the inpainted regions.

As the basic unit of the network and the component of other modules, the convolution
block implements the feature extraction through the convolution operations, followed by a
batch normalization (BN) layer and ReLU activation layer.

By setting the stride to 2, the above convolution block is converted into a down-
sampling block, so as to reduce the spatial resolution of input feature maps by half. Com-
pared to ordinary prior-based pooling, this trainable down-sampling is more suitable for
forensics tasks of learning inpainting trace rather than image content.

MSDM is the main unit and was designed in our recent work to efficiently learn
feature representation after each down-sampling. It has three parallel information flows:
local feature stream, global feature stream, and residual stream.

Through multiple densely connected dilated convolutional blocks, the local feature
stream is employed to learn a set of local features from the input of MSDM. For the n-th
dilated convolution block in the k-th MSDM, the local features X(k,n)

L extracted by it can be
expressed as

X(k,n)
L = FDCB([X

(k)
I , X(k,1)

L , · · · , X(k,n−1)
L ]) (11)
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where X(k)
I denotes the input feature of the k-th MSDM in the feature extractor, [·] denotes

the concatenating operation, and FDCB denotes the operation performed by the n-th con-
volutional block. Dense connection can not only strengthen information propagation and
promote feature reuse, but also effectively improve model compactness [19,51,52].

Then, the global feature stream can aggregate the global context of input by global
average pooling (GAP) G(·) to obtain the image-level features. For the k-th MSDM, the
image-level features X(k)

G can be obtained as follows:

X(k)
G = U (G(C(X(k)

I ))) (12)

where C(·) and U (·) represent convolution and up-sampling operations, respectively, which
are used to adjust the dimensions of feature maps so as to facilitate subsequent feature
fusion performed by MSDM.

Finally, the input features and local and global features are fused by a 1× 1 convolu-
tional block, and the derived results as residuals are combined with the inputs of MSDM,
forming the residual stream. When N densely connected convolutional blocks are set on the
local feature stream of MSDM, the final output X(k)

O of the k-th MSDM can be expressed as

X(k)
O = FFCB([X

(k)
I , X(k,1)

L , · · · , X(k,N)
L , X(k)

G ])⊕ X(k)
I (13)

where FFCB(·) and ⊕ refer to feature fusion performed by the 1× 1 convolutional block
and pixel-wise addition, respectively. The detailed description of MSDM is provided in our
recent work.

3.1.3. Dense-Scale Feature Fusion

The final feature responses XRIS and XFRS extracted from the two feature streams
contain abundant and valid forensic information. We utilize a dense-scale feature fusion
module (DFFM) to promote their full fusion and finally obtain a fusion feature representa-
tion XDSF.

The DFFM is composed of a convolution block and a specially set MSDM, as illustrated
in Figure 4. Firstly, XRIS and XFRS are concatenated along the channel dimension. Then, a
convolution block is used to resize the channel depth of the concatenated feature maps by a
factor of 0.5, which can reduce the computation cost of subsequent processing. Furthermore,
we employ the specially set MSDM (marked as MSDMDF) to capture a set of dense-scale
context information from the concatenated feature maps and then fuse them together, so as
to promote the in-depth mining and interacting of feature maps on dense scales.

CC

DFFM

Dilated Conv RF Equivalent RF Global RF
R=3

R=5

R=7

R=9

R=11

R=13

R=15

Feature Fusion with 

Dense RF

X
FRS

X
RIS

DFMSDM
X

DSF

Figure 4. The architecture of dense-scale feature fusion module (DFFM). An example of receptive
field (RF) formed in the MSDMDF is shown on the right side of the figure.

Specifically, for a dilated convolution layer with kernel size S and dilation rate λ, its
receptive field R can be obtained by

R = S + (S− 1)× (λ− 1) (14)
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Obviously, we can flexibly adjust the receptive fields R to incorporate different contexts by
setting dilated rate λ. In addition, N dilated convolution blocks with the dense connection
can form a total of ∑N

i=1 Ci
N = 2N − 1 information propagation paths on local feature stream

of MSDMDF, where Ci
N represents the number of all combinations of i elements taken from

N different elements. Furthermore, when there are k convolution blocks on a path, a larger
equivalent receptive field Re would be obtained.

Re =
k

∑
i=1

Ri − k + 1 (15)

Hence, by adjusting the dilation rate of each dilated convolution block in MSDM, a set of
receptive fields can be generated to capture contextual information with dense scales.

In this paper, we set the dilation rates in MSDMDF to 1, 2, 4 in order. According to
the above design, the scale of the i-th local receptive field is 2i + 1, i = 1, . . . , 7. Moreover,
the purple plane represents the receptive field that aggregates the global context on the
global feature stream, which can not only further enrich the feature information, but also
effectively avoids the degradation of equivalent receptive fields caused by dilation rate
settings [50]. Simulations indicate that the performance of the proposed network can be
effectively improved by the proposed DFFM.

3.2. Attention-Based Associative Decoder

We propose an attention-based associative decoder, which consists of a main decoder
and two branch decoders in parallel. The main decoder can gradually restore the spatial
resolution of features and refine them, thereby yielding the final prediction for dense
forensics. Moreover, two decoders with the same structure are applied on two individual
feature streams, which is facilitated to further supervise their training and ensures that they
both work effectively.

3.2.1. Main Decoder and Branch Decoder

The main decoder consists of up-sampling blocks, locality-sensitive attention modules
(LSAMs), skip connection units, convolution blocks, and Softmax layer, as shown in
Figure 2.

The up-sampling block resizes the resolution of the input feature maps by a factor of 2,
which is constructed by replacing the convolutional layer with a transposed convolutional
layer in the down-sampling block. Different from linear interpolation and inverse pooling,
the up-sampling operation based on transposed convolution can learn feature representa-
tion with trainable parameters while increasing the feature resolution. This is obviously
favorable for the forensic task.

A skip connection unit is usually directly arranged behind the up-sampling block,
which can introduce the encoder features to compensate for the lost spatial information
due to down-sampling via simple addition [30] or concatenation [18]. However, the non-
selective information fusion ignores the different importance of each feature on the spatial
and channel dimensions for the forensic task. To address this issue, we propose LSAM to
learn an optimal attention map MLS to recalibrate up-sampled feature maps XU, and then
enable it to achieve better fusion with decoder features XS. The overall fusion process can
be expressed as

X(l)
F = (M(l)

LS ⊗ X(l)
U )⊕ X(l)

S (16)

where ⊗ and ⊕ stand for element-wise multiplication and addition, respectively, and X(l)
F

stands for the feature maps fused by LSAM following the l-th up-sampling block. The
specific design of LSAM will be addressed in the next section. Here, the additive skip
connection is explored for a global residual learning [53], which can ensure training stability
and accelerate network convergence.



Mathematics 2023, 11, 2593 11 of 23

The implementation details for the fusion stream decoder are given as follows. The
combination of an up-sampling block, an LSAM, and a skip connection unit is repeated
three times to gradually restore the initial spatial resolution of features. The kernel size of
all the up-sampling blocks is set to 3× 3 as the convolution block. Through the first two
up-sampling blocks, the channel number of input feature maps remains unchanged, but is
resized by half through the third one. Two convolutional blocks with 8 and 2 kernels of size
3× 3, respectively, are placed at the end of the main decoder to generate 2-channel logits.
Through them, we can obtain the receptive field 5× 5 with fewer parameters to be trained
according to Equation (15) than using one 5× 5 convolutional block directly. The logits are
finally fed to the Softmax layer, yielding the confidence map ŶDSF for the inpainted image.

In addition, two simplified branch decoders without LSAM are added at the ends of
two feature extraction streams to yield two prediction confidence maps ŶRIS and ŶFRS for
joint supervision. This is facilitated to ensure the effectiveness of both streams and prevent
forensic performance from over-dependence on one of them.

3.2.2. Locality-Sensitive Attention Module

The attention mechanism was proposed by learning the important property of the
human visual system [54–56], which can improve feature representation power and exhibits
a performance advantage in many vision tasks, such as object detection [20], semantic
segmentation [57], and human pose estimation [58].

In the study, our goal is to take into account the individual importance of different
features by using the attention mechanism while performing the additive skip connections.
Therefore, we design a novel locality-sensitive attention module, i.e., LSAM, by considering
the local importance of input feature maps for the forensics task. As shown in Figure 5,
LSAM is composed of channel and spatial attention sub-modules. To achieve the channel
attention maps, it is necessary to first compress the spatial dimension of input feature maps
to capture the global descriptor. So far, the global maximum and average pool have been
widely employed to implement this operation [49,59,60]. However, these two methods
are not the best choice for inpainting forensics, since the pixels of the input image need
to be classified into two classes, i.e., inpainting and uninpainting. The global descriptors
captured by the above methods are not sufficient to represent the global information of
inpainting features. Based on this consideration, as the input of LASM in the decoder, the
up-sampled feature map XU in the channel attention module is first normalized by the
sigmoid function σ(·), that is,

X̂U = σ(XU) (17)

MLP

3×3

Conv

3×3

Conv

a>0.5

a<0.5

Averaging 

value a 

Averaging the 

results of 1-a 

LS

CCCCCC

SSSSSSX
U

X
U

XS

XF

Figure 5. The structure of the locality-sensitive attention module (LSAM). LSAM is composed of chan-
nel and spatial attention modules, where the upper network branch depicts the structure of channel
attention module and the bottom network branch depicts the structure of spatial attention module.

In each channel of the normalized feature maps X̂U, the features with values above 0.5
may be thought to describe inpainting traces to some extent, and other features are more
closely related with the uninpainting class. Therefore, important clues about the two object
classes are obtained by carrying out two novel methods of aggregating global information
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such as Equations (18) and (19) on each channel of normalized features maps, resulting in
two different spatial context descriptors X in and X un. The k-th elements X in

k and X un
k on

the two descriptors are calculated as follows:

X in
k =

1
Πin

H′

∑
i=1

W ′

∑
j=1

[x̂i,j,k × sign(max{x̂i,j,k − 0.5, 0})] (18)

X un
k =

1
Πun

H′

∑
i=1

W ′

∑
j=1

[(1− x̂i,j,k)× sign(max{0.5− x̂i,j,k, 0})] (19)

where x̂i,j,k refers to the element at (i, j) on the k-th channel of XU, Πin and Πun are the
total number of two classes of elements, and sign(·) is the Sign function. H′, W ′, and C′

represent the width, height, and channel depth of XU, respectively.
Furthermore, the two feature descriptors are used to fully capture channel-wise depen-

dencies by a shared network. The shared network is composed of MLP with one hidden
layer, and the hidden activation size is set to 1/16 of the channel depth of X̂U to reduce
parameter overhead. The final channel attention MC for XU is produced by merging the
outputs of MLP, that is,

MC = W2 ⊗ δ(W1 ⊗X in) + W2 ⊗ δ(W1 ⊗X un) (20)

The orange branch in Figure 5 depicts the structure of the channel attention module.
Clearly, the derived attention is relatively sensitive to local changes of the input feature
maps due to the adopted operations before MLP.

The structure of the spatial attention module is illustrated in Figure 5 (see the green
branch). The spatial attention module learns which information to emphasize or suppress
along the spatial dimensions. Feature normalization is first performed on the input feature
maps XU, carried out in the channel attention module. This effectively alleviates the impact
of feature scale difference on the spatial attention inference. Subsequently, the channel
dimension of input feature maps X̂U is squeezed, resulting in feature map XS. The feature
channel depth is in turn reduced by half and to 1 through two consecutive 3× 3 convolution
layers. Here, the two fully trainable network layers allow us to learn the spatial attention
map in a data-driven way, which is apparently superior to one derived by hand-selected
processing methods [59] in feature diversity. Moreover, since the kernel size of the first
convolution layer is larger than 1× 1, the local information of XS can be considered during
the attention inference. The above process can be expressed as

MS = C2(C1(XS)) (21)

where C1(·) and C2(·) denote two consecutive convolution operations.
Last, the overall attention map MLS for XU is obtained by normalizing the fusion

results of MC and MS as
MLS = σ(MC ⊕MS) (22)

LSAM is constructed based on the characteristics of the forensics task, by which the feature
fusion is accomplished better in the skip connection units. Simulations indicate that the
performance of the proposed network can be effectively improved by the proposed LSAM.

3.3. IoU-Aware Joint Loss

In this study, we design the IoU-aware joint loss (IJL) composed of IoU loss and CE
loss to train our network, which can perform joint supervision on the entire network and
two feature extraction streams. The overall IoU-aware joint loss LIJL is as follows:

LIJL = LM + λ1LB1 + λ2LB2 (23)
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where LM represents the main loss that supervises the final prediction result yielded by the
main decoder, and the branch loss LBi is employed to measure the difference between the
output of the i-th branch decoder and the ground truth label. The weight λi, i ∈ {1, 2} is
the hyper-parameter representing the importance of LBi.

CE loss and its variants have been used for image inpainting forensics [22–24], but
they are actually accuracy-oriented, which is different from the IoU metric used to evaluate
the performance of dense prediction in inpainting forensics. Thus, we employ a loss based
on IoU metrics and CE loss together to supervise the final output of the main decoder. As a
common performance metric for image segmentation tasks, IoU can effectively measure the
difference between predicted results and ground truth masks. According to the definition
of IoU, its value ξ is calculated as follows:

ξ =
NTP

NTP + NFP + NFN
(24)

where NTP, NFN, and NFP denote the numbers of true positive, false negative, and false
positive pixels of the dense prediction, respectively. The above three items count the
numbers of various pixels in the predicted results, but the output of the proposed network
is the probability of each pixel being inpainted. Thus, for inpainting forensics, NTP, NFN,
and NFP are approximately derived by the ground truth mask Y and the confidence map Ŷ
output by the decoder in our recent work, and their corresponding approximate values
ÑTP, ÑFP, and ÑFN can be calculated as follows:

ÑTP =
W

∑
i=1

H

∑
j=1

(Yi,j × Ŷi,j) (25)

ÑFP =
W

∑
i=1

H

∑
j=1

((1−Yi,j)× Ŷi,j) (26)

ÑFN =
W

∑
i=1

H

∑
j=1

(Yi,j × (1− Ŷi,j)) (27)

where Yi,j ∈ {0, 1} and Ŷi,j ∈ [0, 1] are the corresponding elements of Y and Ŷ at (i, j), re-
spectively. Then, through substituting Equations (25)–(27) to Equation (24), the approximate
value ξ̃ of IoU can be obtained as

ξ̃ =
ÑTP

ÑTP + ÑFP + ÑFN
(28)

Finally, the IoU loss LIoU is defined as the negative logarithm of ξ̃, that is,

LIoU(Y , Ŷ) = − log(ξ̃) (29)

Based on the above considerations, the loss LM for the main decoder is written as

LM = LIoU(Y , ŶM) + λ0LCE(Y , ŶM) (30)

where λ0 represents the weight of cross-entropy loss LCE, and ŶM is the confidence maps
output by the main decoder. The loss function combines the stability of cross entropy and
the property that IoU loss is not affected by class imbalance, as well as directly guides the
network to optimize the IoU performance metric.

In addition, CE loss is also employed to supervise the confidence maps ŶB1 and ŶB2
output by two branch decoders, that is,

LB1 = LCE(Y , ŶB1), LB2 = LCE(Y , ŶB2) (31)
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In this way, it can ensure that two feature extraction streams all play their role effectively
rather than relying on a certain branch for forensic performance. This results in the
remarkable performance gain showed in our ablation experiments.

4. Experimental Results

In order to validate the proposed inpainting forensics method, we train and test the
established network on image databases set up by representative inpainting technologies.
Experiments are conducted on the datasets to compare our FADS-Net with the state-of-the-
art forensic networks in terms of localization accuracy and robustness. An ablation study is
also performed to verify the major components of our network.

4.1. Training and Testing Datasets

In the MIT Place dataset [61], we randomly select 79,200 color images of size 256× 256
to set up experimental datasets. These images are divided into four datasets on aver-
age, each of which is tampered with by one of the four inpainting methods, including
diffusion-based inpainting [62], exemplar-based inpainting [10], and two state-of-the-art
deep learning-based methods [12,13]. The region to be inpainted is produced by a random
mask in shape and location. Circular, rectangular, and irregular masks are randomly gener-
ated and located at a given image. The mask size is indicated by the tampering ratio of the
tampered pixels to all the pixels in an image. It is randomly set to one of 0.1%, 0.4%, 1.56%,
or 6.25% for diffusion-based inpainting and 1.0%, 5.0%, or 10.0% for others. The parameter
settings are applied considering the fact that diffusion-based inpainting is more appropriate
for inpainting a smaller missing region. The inpainted images with the associated binary
masks form four datasets, called, for convenience, diffusion, exemplar, ICT, and DeepfillV2
datasets, corresponding to the utilized inpainting. Several sample images are shown in
Figure 6 with the masked regions in green.

Figure 6. Examples for images in datasets. From left to right: original images, images with the
missing regions (marked in green), inpainted images, and ground truth masks.

4.2. Training Details on Synthetic Datasets

The proposed FADS-Net with the input of size 256× 256 is implemented using PyTorch.
It is trained and tested on a single Nvidia GeForce GTX 3080Ti GPU. For training, the ADAM
optimizer with a batch size of 32 is adopted. The parameters β1 and β2 of ADAM take the
default values of 0.9 and 0.999, respectively. The learning rate is initialized to 0.001 for all
layers and remains unchanged during training. Training is carried out on the constructed
synthetic datasets for 100 epochs to ensure convergence.
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Moreover, data augmentation technologies are involved to prevent our model from
overfitting and improve the forensic performance on robustness. Specifically, each training
image is a JPEG compressed under quality factors (QFs) of 95, 85, 75, and additive white
Gaussian noise (AWGN) with 30 dB signal-to-noise ratio (SNR). The processed images
together with the original are further randomly flipped horizontally and vertically and
rotated by 90 degrees before they are fed into the network.

For comparisons, the state-of-the-art deep learning-based forensics methods are
chosen, including FCN with the high-pass pre-filtering module, called HP-FCN [23],
IID-Net [26], PSCC-Net [24], and our early work named VGG-FNet [22]. These methods
were retrained on our dataset. The training procedures and parameter settings introduced
in their papers are strictly followed during training.

4.3. Forensic Performance on Inpainting Images without Any Distortions

Firstly, we evaluate the forensics performance of FADS-Net by qualitative and quan-
titative methods on each testing dataset without postprocessing. Figure 7 visually dis-
plays the forensic results obtained on several sample images generated by four typical
inpainting methods.
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tampering regions marked by the pink rectangles are shown in a corner.
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Figure 7. Qualitative comparisons of different forensic methods on the images tampered by
(a) diffusion-based inpainting [62], (b) exemplar-based inpainting [10], (c) DeepfillV2 [12], and
(d) ICT [13]. The original uninpainted images, inpainted images, forensic results obtained by the
methods in [22–24,26] and our method, as well as ground truth masks are shown in columns 1 to 8,
where the pixels in white, black, green, and red indicate true positive, true negative, false positive,
and false negative, respectively. For better visual comparison, the zoom-in versions of the predicted
tampering regions marked by the pink rectangles are shown in a corner.

Figure 7a,b exhibit the forensic effects for two traditional inpainting methods, i.e.,
diffusion-based and exemplar-based inpainting [10,62], respectively. Apparently, our
method (see the 7th column) achieves quite accurate predictions with little error, while
the comparison methods (see columns 3 to 6) yield significant false positive and false
negative regions, especially in the 3rd row of Figure 7b. The forensic results illustrate that
VGG-FNet [22] (the third column) manifests more false negative errors, while HP-FCN [23]
(the fourth column) presents worse false positive performance. For these given sample
images, the predictions of IID-Net [26] and PSCC-Net [24] (the fifth and sixth columns) are
only slightly better than the previous two methods, and worse than our results.

For two deep learning-based inpainting methods, i.e., ICT [13] and DeepfillV2 [12], the
forensic results are shown in Figure 7c,d, respectively. It is noticeable that the performances
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of VGG-FNet [22], HP-FCN [23], and IID-Net [26] are similar, and there are prediction
results with significant false positive or negative errors, e.g., the results of VGG-FNet, HP-
FCN, and IID-Net in the third row of Figure 7c and first row of Figure 7d. PSCC-Net [24]
reaches a better performance, but it is still inferior to our model.

In principle, the forensic effects of all the tested methods become much worse for the
inpainted regions with lower tampering ratios (e.g., the first row of Figure 7a) or uniform
regions (e.g., the third row of Figure 7d). Generally, the inpainting effects of small or uni-
form regions are more realistic, and fewer inpainting traces are left, thus causing difficulties
in forensics. In addition, the edges of inpainting regions, especially irregular regions (e.g.,
the third rows of Figure 7a–d), are more prone to prediction errors. Impressively, our
FADS-Net obtains forensic results (in the penultimate columns of Figure 7a–d) best fitting
with the ground truth masks (in the last columns of Figure 7a–d) for inpainted regions with
different shapes and scales.

Then, the forensic performance is measured by two objective metrics: IoU and F1-score.
The average values of IoU and F1-score obtained by the tested methods are summarized in
Table 1 on four testing datasets. The best results are marked in bold.

Table 1. Average IoU (%) and F1 (%) values of forensic results on different forensic datasets with
no postprocessing. The best results are marked in bold.

Method
Diffusion Exemplar ICT DeepfillV2

IoU F1 IoU F1 IoU F1 IoU F1

VGG-FNet [22] 62.05 68.44 76.64 84.96 69.50 75.97 67.65 76.65
HP-FCN [23] 71.25 76.68 76.28 85.03 78.44 85.81 62.85 72.45
IID-Net [26] 71.01 75.17 88.05 93.18 81.36 87.55 60.92 68.26

PSCC-Net [24] 61.54 67.21 86.15 92.26 85.72 91.84 80.63 88.47
FADS-Net 88.07 91.56 94.67 97.18 91.95 95.61 91.27 95.30

All compared methods achieve relatively low forensic performance on the forensic
dataset for diffusion-based inpainting, mainly due to the image with a smaller inpainting
ratio and weak inpainting traces left. For example, PSCC-Net achieves IoU of approximately
61.5% and F1-score of approximately 67.2%, which is close to the performance of VGG-FNet.
IID-Net also has a similar performance to HP-FCN, both reaching slightly higher than IoU
of 70.0% and F1 score of 75.0%. Surprisingly, FADS-Net presents IoU of approximately
88.07% and F1 score of approximately 91.56%, which is obviously superior to other methods.
The performance gain of FADS-Net may be obtained by the design of mining inpainting
traces and refining spatial information.

On the forensic dataset for exemplar-based inpainting, each tested method yields
larger IoU and F1 than the previous inpainting dataset. For instance, the IoU of PSCC-Net
increases from approximately 61.5% to 86.2%. Clearly, the phenomenon indicates that it is
easier to locate a larger inpainted region. IID-Net also has a performance close to PSCC-Net
and outperforms VGG-FNet and HP-FCN by approximately 10% in IoU and more than
8% in F1 score. Our FADS-Net is approximately 6.7% and 4.0% higher in IoU and F1 score,
respectively, than the second-best IID-Net. This is consistent with the qualitative results
given previously.

For the ICT dataset, the forensic performance of PSCC-Net presents approximately
85.7% in IoU and 91.8% in F1-score, and ours (91.34% in IoU and 95.27% in F1-score)
explicit exceed its performance. Other compared methods reach IoU from 69% to 82%,
and F1 score from 75% to 88%. On the DeepfillV2 dataset, except for VGG-FNet and our
FADS-Net, the tested methods emerge with significant performance degradation. Similarly,
FADS-Net once again exhibits the best performance and has quite a large margin in IoU,
approximately 10.6%, compared with the second-best method.

Figure 8a–c respectively show the influence of the inpainted regions with various
shapes and scales on the forensics performance. Observing Figure 8a, as the scale of the
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inpainting region decreases, the forensic performance of all methods decreases dramatically.
The effect is the most prominent on the dataset for diffusion-based inpainting, which again
confirms the difficulty of forensics for the small inpainted region. In addition, through
comparing the results of the diffusion dataset in Figure 8a–c, all the tested methods gener-
ally have the lower IoU for irregular masks and the larger one for circular or rectangular
masks. This situation also almost obtains on the other three datasets. According to the
above analysis, due to the AFRM, dual-stream feature fusion encoders, and attention-based
feature fusion, the proposed method provides optimal and stable forensic performance for
masks with various shapes and scales.
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(b) Rectangular mask
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Figure 8. Comparison of different forensic methods for inpainted regions (IRs) with different scales
on Diffusion, Exemplar, ICT, and DeepfillV2 datasets, respectively.

4.4. Quantitative Evaluation under Typical Attacks

In practice, some postprocessing operations might be performed by forgers after
inpainting to hide traces of tampering and evade forensic detection. Thus, we investigate
the robustness of the proposed method against JPEG compression and AWGN. These
manipulations are considered because they are often employed in many applications.

Specifically, forensics is performed on the distorted images by JPEG compression with
QFs of 95, 85, and 75, and AWGN with signal-to-noise ratios (SNRs) of 50 dB, 45 dB, 40 dB,
and 35 dB. The average values of IoU and F1-score obtained by the tested methods on the
established datasets are reported in Tables 2–5. Notice that none of these postprocessing
operations with the above parameter settings are used to create our training datasets. The
best results are marked in bold.
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From Table 2, all tested methods experience significant performance degradation
as QF or SNR decrease. For instance, FADS-Net receives IoU of 86.03% and F1-score of
89.76% for the case of QF = 0.95, which are slightly lower than those obtained under no
attacks, while only approximately IoU of 73% and F1-score of 77% are received under
QF = 75. Notice that some forensic networks are relatively insensitive to JPEG compression
since they obtain a little lower IoU and F1-score on the images with no distortions, e.g.,
VGG-FNet [22]. For AWGN with SNR from 50 dB to 35 dB, the IoU and F1-score of
FADS-Net are reduced to 92.45% from 94.54% and 95.51% from 97.10%, respectively. The
performance degradation is approximately 2%, and the compared methods are subjected to
a similar slight performance drop. The above results reveal that all tested methods have
more stable robustness against AWGN than JPEG compression. The main reason is that
JPEG compression tries to remove the content-unrelated information while guaranteeing
the image quality; thus, some inpainting traces are further masked during this process.
Similar observations can be made from Tables 3–5 on the other three datasets. Impressively,
our model outperforms other methods significantly despite different datasets and attack
parameters. As an example, FADS-Net outperforms the second-best PSCC-Net [24] by
nearly 10.0% in IoU and 8.0% in F1-score under QF = 75 in Table 4. This reveals that our
forensic method is more effective for capturing inpainting traces.

Table 2. Average IoU (%) and F1 score (%) values of different methods on the dataset for diffusion-
based inpainting [8] under JPEG compression (QF) and AWGN (SNR) attacks. The best results are
marked in bold.

Attack
VGG-FNet [22] HP-FCN [23] IID-Net [26] PSCC-Net [24] FADS-Net

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
w/o Dis. 62.05 68.44 71.25 76.68 71.01 75.17 61.54 67.21 88.07 91.56
JPEG 95 60.89 67.11 68.99 74.36 69.93 74.10 60.14 65.75 86.03 89.76
JPEG 85 59.41 65.44 64.48 69.61 67.76 71.94 57.89 63.51 80.13 84.15
JPEG 75 56.93 62.75 58.41 63.28 63.46 67.42 54.37 59.96 73.25 77.22

AWGN 50 61.78 68.13 70.68 76.09 70.82 74.99 61.33 67.00 87.72 91.19
AWGN 45 61.61 67.98 69.77 75.18 70.53 74.69 60.91 66.58 86.41 89.83
AWGN 40 61.15 67.48 68.78 74.21 70.00 74.17 59.93 65.63 85.38 88.86
AWGN 35 60.26 66.46 66.14 71.64 68.58 72.76 58.60 64.30 83.13 86.63

Table 3. Average IoU (%) and F1 score (%) values of different methods on the dataset for exemplar-
based inpainting [10] under JPEG compression (QF) and AWGN (SNR) attacks. The best results are
marked in bold.

Attack
VGG-FNet [22] HP-FCN [23] IID-Net [26] PSCC-Net [24] FADS-Net

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
w/o Dis. 76.64 84.96 76.28 85.03 88.05 93.18 86.15 92.26 94.67 97.18
JPEG 95 69.79 78.58 71.62 81.11 85.54 91.48 83.40 90.51 92.91 96.20
JPEG 85 56.66 65.48 50.75 61.08 70.95 78.15 70.86 79.90 86.81 92.13
JPEG 75 49.65 58.26 33.27 42.66 50.23 57.98 47.59 56.57 72.10 79.73

AWGN 50 76.02 84.31 75.20 84.17 87.34 92.54 85.71 91.90 94.54 97.10
AWGN 45 75.28 83.55 74.14 83.29 86.72 91.97 85.15 91.43 94.17 96.81
AWGN 40 74.08 82.38 73.80 82.82 85.99 91.37 84.14 90.61 93.47 96.28
AWGN 35 72.21 80.68 72.39 81.33 84.65 90.32 82.20 88.95 92.45 95.51
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Table 4. Average IoU (%) and F1 score (%) values of different methods on the ICT [13] dataset under
JPEG compression (QF) and AWGN (SNR) attacks. The best results are marked in bold.

Attack
VGG-FNet [22] HP-FCN [23] IID-Net [26] PSCC-Net [24] FADS-Net

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
w/o Dis. 69.50 75.97 78.44 85.81 81.36 87.55 85.72 91.84 91.95 95.61
JPEG 95 66.09 72.32 68.70 77.31 74.60 80.73 80.27 87.66 90.93 95.03
JPEG 85 62.71 68.57 55.14 63.49 63.53 69.19 71.59 79.51 83.87 89.08
JPEG 75 59.01 64.77 41.37 49.60 51.91 56.77 61.95 69.97 72.43 78.59

AWGN 50 69.29 75.76 77.57 85.13 81.10 87.32 85.55 91.72 91.72 95.45
AWGN 45 68.68 75.08 75.97 83.92 79.93 86.18 85.09 91.34 91.57 95.40
AWGN 40 67.87 74.27 73.17 81.24 78.29 84.53 83.82 90.22 90.91 94.90
AWGN 35 65.98 72.31 69.64 77.65 74.79 80.92 81.20 87.75 89.66 93.88

Table 5. Average IoU (%) and F1 score (%) values of different methods on the DeepfillV2 [12] dataset
under JPEG compression (QF) and AWGN (SNR) attacks. The best results are marked in bold.

Attack
VGG-FNet [22] HP-FCN [23] IID-Net [26] PSCC-Net [24] FADS-Net

IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
w/o Dis. 67.65 76.65 62.85 72.45 60.92 68.26 80.63 88.47 91.27 95.30
JPEG 95 60.19 68.8 54.53 63.72 55.25 62.69 76.15 84.94 90.43 94.81
JPEG 85 53.58 62.22 46.89 56.39 45.75 52.67 61.71 71.02 84.55 90.53
JPEG 75 52.88 61.58 40.91 49.95 41.38 48.06 50.54 58.88 65.42 72.94

AWGN 50 67.44 76.41 60.56 70.43 60.22 67.51 78.81 86.99 90.85 95.00
AWGN 45 66.87 75.94 58.84 68.98 59.00 66.27 78.07 86.34 90.34 94.72
AWGN 40 64.83 73.65 57.18 67.26 56.27 63.52 77.06 85.25 88.48 94.14
AWGN 35 62.42 71.15 54.55 63.99 52.59 59.62 72.96 81.20 87.33 92.38

4.5. Ablation Analysis

We perform ablation experiments to investigate the effect of two feature extraction
streams (RIS and FRS), dense-scale feature fusion module (DFFM), Locality-Sensitive
Attention Module (LSAM), and IoU-aware joint loss (IJL) through ablation experiments.
For this purpose, we construct the following variants of our full model (FADS-Net).

1. RISS-Net: The variant refers to a single-stream encoder network, which takes the
original inpainted image as input. Because the encoder is changed to a single-stream
structure, the DFFM is removed, but the LSAM module in the decoder is still retained.
Moreover, the network training makes use of a hybrid loss that combines CE loss and
IoU loss.

2. FRSS-Net: The setting of this network is consistent with RIS, except that its single-
stream encoder employs FRS.

3. DSCF-Net: The network architecture is the same as that of our full model but it
discards DFFM and uses simple concatenation to fuse features.

4. DSAF-Net: This variant employs the full encoder and loss function of the full model,
yet the decoder employs element-wise addition to recover spatial information instead
of LSAM.

5. FADS-Net (MCL): The network has the same structure as the full model but removes
two branch decoders and uses CE loss to supervise the difference between the output
of the main decoder and the ground truth label.

6. FADS-Net (JCL): CE loss is applied to optimize the results of the main decoder and
branch decoder of the full model during training.

7. FADS-Net (MHL): The network utilizes a hybrid loss established by combining CE
loss and IoU loss to train the full model removing two branch decoders.
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All these variants are trained on the DeepfillV2 dataset with the same training options
as those of the full model. The average quantitative results are listed in Table 6, where
no extra distortions, JPEG compression with QF = 75, and AWGN with SNR = 35 dB
are considered. The best results are marked in bold.

Table 6. Average IoU (%) and F1 score (%) values of forensic results on the DeepfillV2 [12] dataset for
different variants of FADS-Net without and with postprocessing. The best results are marked in bold.

Variant
w/o Dis. JPEG 75 AWGN 35 dB Mean

IoU F1 IoU F1 IoU F1 IoU F1
RISS-Net 89.07 94.04 56.67 65.33 84.03 90.21 76.59 83.19
FRSS-Net 89.47 94.33 59.22 68.20 84.35 90.55 77.68 84.36
DSCF-Net 90.45 94.86 63.53 72.16 86.24 91.81 80.07 86.28
DSAF-Net 90.75 95.03 61.84 69.39 86.64 91.97 79.74 85.46

FADS-Net (MCL) 89.72 94.43 60.73 68.09 85.87 91.56 78.77 84.69
FADS-Net (JCL) 90.93 95.12 59.94 66.87 87.28 92.30 79.38 84.76

FADS-Net (MHL) 90.27 94.74 61.09 69.44 85.43 91.00 78.93 85.06
FADS-Net 91.27 95.30 65.42 72.94 87.33 92.38 81.34 86.87

As shown in Table 6, by removing two feature extraction streams, the network with a
single-stream encoder only achieves IoU of near 89% and F1 scores of approximately 94%
with no distortions averaged on the whole testing dataset, and obtains lower IoU and F1
score under attacks, particularly JPEG compression. The performance is much worse than
that of our full model, but is still competitive or superior to that of the former state-of-the-
art models for comparison in the considered cases. This shows that the high-resolution
structure of encoder and efficient feature extraction module MSDM are beneficial to forensic
performance. In addition, FRS has a significant performance improvement over RIS under
JPEG compression, which indicates that learning in the frequency domain plays a key role
in enhancing the inpainting trace.

The performance is further improved by two variants with dual-stream feature extrac-
tion. Although DFFM and LSAM were removed, DSCF-Net and DSAF-Net still exceed
two single-stream variants by approximately 2.5% to 3.5% in both average scores of IoU
and F1. These results imply that the dual-stream feature fusion can effectively improve
the performance of inpainting forensics. By comparing the above two variants with the
full model, we may get to know the contribution of DFFM and LSAM. For example, the
full model outperforms DSCF-Net by approximately 1.1% in IoU score at SNR = 35 db and
produces larger performance margin in the case of DSAF-Net with QF = 75.

Through analyzing the performance of the remaining three variants, the full model
has the best performance despite whether or not the tested images undergo some attacks.
From the results of the full model and variant FADS-Net (MCL), the use of IoU-aware joint
loss increases the performance margin by approximately 2.0% in average IoU and 2.1% in
average F1. In particular, the performance of the complete model is approximately 4.5%
higher than that of the methods without IAL in the case of QF = 75. Thus, we can confirm
that IoU-aware joint loss can drive networks to focus on the inpainted regions more than
CEL and ensure that the two-stream feature extraction works effectively.

All the results of the above ablation experiments exhibit that all the components
present performance improvement and contribute to the overall performance.

5. Conclusions

In this paper, a novel deep learning method for image inpainting forensics, called
FADS-Net, has been presented. In order to locate the tampered regions by inpainting
operation, FADS-Net is constructed by following the encoder–decoder network structure.
The encoder is a dual-stream network composed of an adaptive frequency recalibration
module, two feature extraction sub-networks, and a feature fusion module. The two feature
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streams can efficiently extract feature maps from the original input and the one recalibrated
by this adaptive frequency recalibration module. Then, through the feature fusion module,
these extracted features are fully fused to generate more comprehensive and effective
feature representations. By introducing the attention mechanism, the decoder can restore
more spatial information while improving the feature resolution. Last, we propose an
IoU-aware joint loss to guide the training of FADS-Net, where the item of IoU loss takes the
forensics performance as the optimization objective, and CE loss can ensure the stability of
training and the validity of various parts.

FADS-Net has been extensively tested on various images and several typical inpaint-
ing methods and compared with the state-of-the-art forensics methods. Qualitative and
quantitative experimental results show that the proposed network can locate the inpainting
region more accurately and achieve superior performance in terms of IoU and F1-score.
Moreover, our network shows excellent robustness against commonly used post-processing,
including JPEG compression and AWGN.
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