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1. Introduction

Information geometry, as a well-known theory in geometry, is a gadget used to peruse
spaces including of probability measures. At present, this interdisciplinary field, as a
combination of differential geometry and statistics, plays an impressive role in various
sciences. For instance, a manifold learning theory in a hypothetic space consisting of
models is developed in [1]. The semi-Riemannian metric of this hypothesis space, which
is uniquely derived, relies on the information geometry of the probability distributions.
In [2], Amari also presented the geometrical and statistical ideas used to investigate neural
networks, including invisible units or unobservable variables. To see more applications of
this geometry in other sciences, refer to [3,4].

Suppose that ζ is an open subset of Rn, and χ is a sample space with parameters
ξ = (ξ1, · · · , ξn). A statistical model S is the set of probability density functions defined by

S = {p(y; ξ) :
∫

χ
p(y; ξ)dy = 1, p(y; ξ) > 0, ξ ∈ ζ ⊆ Rn}.

The Fisher information matrix g(ξ) = [gls(ξ)] on S is given as

gls(ξ) :=
∫

χ
∂l`ξ∂s`ξ p(y; ξ)dy = Ep[∂l`ξ ∂s`ξ ], (1)

where Ep[`] is the expectation of `(y) with respect to p(y; ξ), `ξ = `(y; ξ) := logp(y; ξ) and
∂l := ∂

∂ξ l . The space S, together with the information matrices, is a statistical manifold.
In 1920, Fisher was the first to offer (1) as a mathematical purpose of information

(see [5]). It is observed that (S, g) is a Riemannian manifold if all components of g are
converging to real numbers and g is positive-definite. Therefore, g is called a Fisher metric
on S. Using g, an affine connection ∇ with respect to p(y; ξ) is described by

Γls,k = g(∇∂l
∂s, ∂k) := Ep[(∂l∂s`ξ)∂k`ξ ]. (2)
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Nearly Kähler structures on Riemannian manifolds were specified by Gray [6] to
describe a special class of almost Hermitian structures in every even dimension. As an odd-
dimensional peer of nearly Kähler manifolds, nearly Sasakian manifolds were introduced
by Blair, Yano and Showers in [7]. They showed that a normal nearly Sasakian structure is
Sasakian and a hypersurface of a nearly Kähler structure is nearly Sasakian if and only if it
is quasi-umbilical with the (almost) contact form. In particular, S5 properly imbedded in S6

inherits a nearly Sasakian structure which is not Sasakian.
A statistical manifold can be considered as an expanse of a Riemannian manifold such

that the compatibility of the Riemannian metric is developed to a general condition. By
applying this opinion in geometry, we create a convenient nearly Sasakian structure on
statistical structures and define a nearly Sasakian statistical manifold.

The purpose of this paper is to present nearly Sasakian and nearly Kähler structures
on statistical manifolds and show the relation between two geometric notions. To achieve
this goal, the notions and attributes of statistical manifolds are obtained in Section 2. In
Section 3, we describe a nearly Sasakian structure on statistical manifolds and present
some of their properties. In Section 4, we investigate nearly Kähler structures on statistical
manifolds. In this context, the conditions needed for a real hypersurface in a nearly Kähler
statistical manifold to admit a nearly Sasakian statistical structure are provided. Section 5
is devoted to studying (anti-)invariant statistical submanifolds of nearly Sasakian statistical
manifolds. Some conditions under which an invariant submanifold of a nearly Sasakian
statistical manifold is itself a nearly Sasakian statistical manifold are given at the end.

2. Preliminaries

For an n-dimensional manifold N, consider (U, xi), i = 1, . . . , n, as a local chart of the
point x ∈ U. Considering the coordinates (xi) on N, we have the local field ∂

∂xi |p as frames
on TpN.

An affine connection ∇ is called Codazzi connection if the Codazzi equations satisfy:

(∇X1 g)(X2, X3) = (∇X2 g)(X1, X3), (= (∇X3 g)(X1, X2)), (3)

for any X1, X2, X3 ∈ Γ(TN) where

(∇X1 g)(X2, X3) = X1g(X2, X3)− g(∇X1 X2, X3)− g(X2,∇X1 X3). (4)

The triplet (N, g,∇) is also called a statistical manifold if the Codazzi connection ∇
is a statistical connection, i.e., a torsion-free Codazzi connection. Moreover, the affine
connection ∇∗ as a (dual) conjugate connection of ∇ with respect to g is determined by

X1g(X2, X3) = g(∇X1 X2, X3) + g(X2,∇∗X1
X3). (5)

Considering ∇g as the Levi–Civita connection on N, one can see ∇g = 1
2 (∇+∇∗)

and
∇∗g = −∇g.

Thus, (N, g,∇∗) forms a statistical manifold. In particular, the torsion-free Codazzi
connection ∇ reduces to the Levi–Civita connection ∇g if ∇g = 0.

A (1, 2)-tensor field K on a statistical manifold (N, g,∇) is described by

KX1 X2 = ∇X1 X2 −∇
g
X1

X2, (6)

from (2) and (3), we have

K = ∇g −∇∗ = 1
2
(∇−∇∗). (7)
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Hence, it follows that K satisfies

KX1 X2 = KX2 X1, g(KX3 X2, X1) = g(X2, KX3 X1). (8)

The curvature tensorR∇ of a torsion-free linear connection ∇ is described by

R∇(X1, X2) = ∇X1∇X2 −∇X2∇X1 −∇[X1,X2]
, (9)

for any X1, X2 ∈ Γ(TN). On a statistical structure (∇, g), denote the curvature tensor of ∇
asR∇ orR for short, and denoteR∇∗ asR∗ in a similar argument. It is obvious that

R(X1, X2) = −R(X2, X1), (10)

R∗(X1, X2) = −R∗(X2, X1). (11)

Moreover, settingR(X1, X2, X3, X4) = g(R(X1, X2)X3, X4), we can see that

R(X1, X2, X3, X4) = −R∗(X1, X2, X4, X3), (12)

R(X1, X2)X3 +R(X2, X3)X1 +R(X3, X1)X2 = 0, (13)

R∗(X1, X2)X3 +R∗(X2, X3)X1 +R∗(X3, X1)X2 = 0. (14)

The statistical curvature tensor field S of the statistical structure (∇, g) is given by

S(X1, X2)X3 =
1
2
{R(X1, X2)X3 +R∗(X1, X2)X3}. (15)

using the definition ofR, it follows that

S(X1, X2, X3, X4) =− S(X2, X1, X3, X4),

S(X1, X2, X3, X4) =− S(X1, X2, X4, X3),

S(X1, X2, X3, X4) = S(X3, X4, X1, X2),

where S(X1, X2, X3, X4) = g(S(X1, X2)X3, X4).
The Lie derivative with respect to a metric tensor g in a statistical manifold (N, g,∇),

for any X1, X2, v ∈ Γ(TN) is given by

(£vg)(X1, X2) =g(∇g
X1

v, X2) + g(X1,∇g
X2

v)

=g(∇X1 v, X2)− g(KX1 v, X2) + g(X1,∇X2 v)− g(X1, KX2 v).

The vector field v is said to be the Killing vector field or infinitesimal isometry if
£vg = 0. Hence, using the above equation and (8), it follows that

g(∇X1 v, X2) + g(X1,∇X2 v) = 2g(KX1 v, X2). (16)

Similarly, (7) implies

g(∇∗X1
v, X2) + g(X1,∇∗X2

v) = −2g(KX1 v, X2).

The curvature tensorRg of a Riemannian manifold (N, g) admitting a Killing vector
field v satisfies the following

Rg(X1, v)X2 = ∇g
X1
∇g

X2
v−∇g

∇g
X1

X2
v, (17)

for any X1, X2, v ∈ Γ(TN) [8].
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3. Nearly Sasakian Statistical Manifolds

An almost contact manifold is a (2n + 1)-dimensional differentiable manifold N
equipped with an almost contact structure (F , v, u) where F is a tensor field of type (1, 1),
v a vector field and u a 1-form, such that

F 2 = −I + u⊗ v, Fv = 0, u(v) = 1. (18)

Additionally, N will be called an almost contact metric manifold if it admits a pseudo-
Riemannian metric g with the following condition

g(FX1,FX2) = g(X1, X2)− u(X1)u(X2), ∀X1, X2 ∈ Γ(TN). (19)

Moreover, as in the almost contact case, (19) yields u = g(., v) and g(.,F ) = −g(F , .).

Theorem 1. The statistical curvature tensor field S of a statistical manifold (N, g,∇) with an
almost contact metric structure (F , v, u, g), such that the vector field v is Killing, which satisfies
the equation

2S(X1, v)X2 = ∇X1∇X2 v−∇∇X1 X2 v +∇∗X1
∇∗X2

v−∇∗∇∗X1
X2

v,

for any X1, X2 ∈ Γ(TN).

Proof. According to (10), (12) and (14), we can write

R∗(X2, X3, X1, v) =−R∗(X3, X1, X2, v)−R∗(X1, X2, X3, v)

=R(X3, X1, v, X2) +R(X1, X2, v, X3)

=−R(X1, X3, v, X2)−R(X2, X1, v, X3).

Applying (9) to the above equation, we find

R∗(X2, X3, X1, v) =g(−∇X1∇X3 v +∇X3∇X1 v +∇[X1,X3]
v, X2) (20)

+ g(−∇X2∇X1 v +∇X1∇X2 v +∇[X2,X1]
v, X3).

Since v is Killing, by differentiating

g(∇X2 v, X3) + g(X2,∇X3 v) = 2g(KX2 v, X3),

with respect to X1, we obtain

2X1g(KX3 X2v) =(∇X1 g)(∇X3 v, X2) + g(∇X1∇X3 v, X2)

+ g(∇X3 v,∇X1 X2) + (∇X1 g)(∇X2 v, X3)

+ g(∇X1∇X2 v, X3) + g(∇X2 v,∇X1 X3).

Setting the last equation in (20), it follows that

R∗(X2, X3, X1, v) = 2g(∇X1∇X2 v, X3)− 2g(∇∇X1 X2 v, X3) + 2(∇X1 g)(∇X3 v, X2)

+ 2g(KX3 v,∇X1 X2)− 2X1g(KX3 X2, v)− 2g(KX1 v, [X3, X2])

+ 2X3g(KX1 X2, v) + 2g(KX2 v, [X1, X3])− 2X2g(KX1 X3, v)

+ 2g(KX3 v,∇X2 X1) +R(X2, X3, v, X1).

As (∇X1 g)(∇X3 v, X2) = −2g(KX1∇X3 v, X2), and using (12) in the above equation,
we can obtain
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R(X2, X3, v, X1) = −g(∇X1∇X2 v, X3) + g(∇∇X1 X2 v, X3) + 2g(KX1 X2,∇X3 v)

− g(KX3 v,∇X1 X2)− g(KX2 v, [X1, X3]) + X1g(KX3 X2, v)

+ g(KX1 v, [X3, X2])− X3g(KX1 X2, v) + X2g(KX1 X3, v)

− g(KX3 v,∇X2 X1).

Similarly, we find

R∗(X2, X3, v, X1) = −g(∇∗X1
∇∗X2

v, X3) + g(∇∗∇∗X1
X2

v, X3)− 2g(KX1 X2,∇∗X3
v)

+ g(KX3 v,∇∗X1
X2) + g(KX2 v, [X1, X3])− X1g(KX3 X2, v)

− g(KX1 v, [X3, X2]) + X3g(KX1 X2, v)− X2g(KX1 X3, v)

+ g(KX3 v,∇∗X2
X1).

Adding the previous relations and using (7) and (15), we obtain the following asser-
tion.

A nearly Sasakian manifold is an almost contact metric manifold (N,F , v, u, g) if

(∇g
X1
F )X2 + (∇g

X2
F )X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1, (21)

for any X1, X2 ∈ Γ(TN) [7]. In such manifolds, the vector field v is Killing. Moreover, a
tensor field h of type (1, 1) is determined by

∇g
X1

v = FX1 + hX1. (22)

The last equation immediately shows that h is skew-symmetric and

h ◦ F = −F ◦ h, hv = 0, u ◦ h = 0,

and

∇g
vh = ∇g

vF = F ◦ h =
1
3

£vF .

Moreover, Olszak proved the following formulas in [9]:

Rg(FX1, X2, X3, X4)+Rg(X1,FX2, X3, X4)+Rg(X1, X2,FX3, X4)

+Rg(X1, X2, X3,FX4)=0, (23)

Rg(FX1,FX2,FX3,FX4)=Rg(X1, X2, X3, X4)−Rg(v, X2, X3, X4)u(X1)

+Rg(v, X1, X3, X4)u(X2), (24)

Rg(v, X1)X2 = g(X1 − h2X1, X2)v− u(X2)(X1 − h2X1), (25)

Rg(FX1,FX2)v = 0, (26)

for any X1, X2, X3, X4 ∈ Γ(TN).

Lemma 1. For a manifold N with a statistical structure (∇, g), and an almost contact metric
structure (F , v, u, g), the following holds

∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = (∇g
X1
F )X2 + (∇g

X2
F )X1

+ KX1FX2 + KX2FX1 + 2FKX1 X2,

for any X1, X2 ∈ Γ(TN).
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Proof. (6) and (7) imply

∇X1FX2−F∇∗X1
X2+∇X2FX1−F∇∗X2

X1=∇
g
X1
FX2+KX1FX2−F∇

g
X1

X2

+FKX1 X2 +∇
g
X2
FX1 + KX2FX1

−F∇g
X2

X1 +FKX2 X1

=(∇g
X1
F )X2+(∇g

X2
F )X1+KX1FX2

+KX2FX1+2FKX1 X2.

Hence, the proof is complete.

Definition 1. A nearly Sasakian statistical structure on N is a quintuple (∇, g,F , v, u) consisting
of a statistical structure (∇, g) and a nearly Sasakian structure (g,F , v, u), satisfying

KX1FX2 + KX2FX1 = −2FKX1 X2, (27)

for any X1, X2 ∈ Γ(TN).

A nearly Sasakian statistical manifold is a manifold that admits a nearly Sasakian
statistical structure.

Remark 1. A multiple (N,∇∗, g,F , v, u) is also a nearly Sasakian statistical manifold if
(N,∇, g,F , v, u) is a nearly Sasakian statistical manifold. In this case, from Lemma 1 and
Definition 1, we have

∇∗X1
FX2 −F∇X1 X2 +∇∗X2

FX1 −F∇X2 X1 = (∇g
X1
F )X2 + (∇g

X2
F )X1,

for any X1, X2 ∈ Γ(TN).

Theorem 2. If (N,∇, g) is a statistical manifold, and (g,F , v) an almost contact metric structure
on N; then, (∇, g,F , v) is a nearly Sasakian statistical structure on N if and only if the following
formulas hold:

∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = u(X1)X2 + u(X2)X1 − 2g(X1, X2)v, (28)

∇∗X1
FX2 −F∇X1 X2 +∇∗X2

FX1 −F∇X2 X1 = u(X1)X2 + u(X2)X1 − 2g(X1, X2)v, (29)

for any X1, X2 ∈ Γ(TN).

Proof. Let (N,∇, g,F , v) be a nearly Sasakian statistical manifold. Applying (21), Lemma 1
and Definition 1, we get (28). Additionally, (29) follows from Remark 1. Conversely,
using (7) and subtracting the relations (28) and (29), we can obtain (27).

Example 1. Let us consider the three-dimensional unite sphere S3 in the complex two-dimensional
space C2. As S3 is isomorphic to the Lie group SU(2), set {e1, e2, e3} as the basis of the Lie algebra
su(2) of SU(2) obtained by

e1 =

√
2

2

(
i 0
0 ī

)
, e2 =

√
2

2

(
0 1
−1 0

)
, e3 =

1
2

(
0 i
i 0

)
.

Therefore, the Lie bracket is described by

[e1, e2] = 2e3, [e2, e3] = e1, [e1, e3] = −e2.

The Riemannian metric g on S3 is defined by the following
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g(e1, e2) = g(e1, e3) = g(e2, e3) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Assume that v = e3 and u is the 1-form described by u(X1) = g(X1, v) for any X1 ∈ Γ(TS3).
Considering F as a (1, 1)-tensor field determined by F (e1) = −e2,F (e2) = e1 and F (v) = 0;
the above equations imply that (S3,F , v, u, g) is an almost contact metric manifold. Using Koszul’s
formula, it follows that ∇g

ei ej = 0, i, j = 1, 2, 3, except

∇g
e1 e2 = v = −∇g

e2 e1, ∇g
e1 v = −e2, ∇g

e2 v = e1.

According to the above equations, we can see that

(∇g
eiF )ej + (∇g

ejF )ei = 0 = −2g(ei, ej)v + u(ei)ej + u(ej)ei, i, j = 1, 2, 3,

unless

(∇g
e1F )e1 + (∇g

e1F )e1 = −2v = −2g(e1, e1)v + u(e1)e1 + u(e1)e1,

(∇g
e1F )v + (∇g

vF )e1 = e1 = −2g(e1, v)v + u(e1)v + u(v)e1,

(∇g
e2F )e2 + (∇g

e2F )e2 = −2v = −2g(e2, e2)v + u(e2)e2 + u(e2)e2,

(∇g
e2F )e3 + (∇g

e3F )e2 = e2 = −2g(e2, e3)v + u(e2)e3 + u(e3)e2,

which gives (g,F , v, u), a nearly Sasakian structure on S3. By setting

K(e1, e1) = e1, K(e1, e2) = K(e2, e1) = −e2, K(e2, e2) = −e1,

while the other cases are zero, one see that K satisfies (8). From (6), it follows that

∇e1 e1 = e1, ∇e1 e2 = e3 − e2, ∇e1 e3 = −e2, ∇e2 e1 = −e2 − e3, ∇e2 e2 = −e1, ∇e2 e3 = e1.

Therefore, we can obtain (∇ei g)(ej, ek) = 0, i, j, k = 1, 2, 3, except

(∇e1 g)(e1, e1) = −2, (∇e1 g)(e2, e2) = (∇e2 g)(e1, e2) = (∇e2 g)(e2, e1) = 2.

Hence, (∇, g) is a statistical structure on S3. Moreover, the equations

Ke1F (e1) + Ke1F (e1) = 2e2 = −2FKe1 e1,

Ke1F (e2) + Ke2F (e1) = 2e1 = −2FKe1 e2,

Ke2F (e2) + Ke2F (e2) = −2e2 = −2FKe2 e2,

hold. Therefore, (S3,∇, g,F , v, u) is a nearly Sasakian statistical manifold.

Proposition 1. For a nearly Sasakian statistical manifold (N,∇, g,F , v, u), the following condi-
tions hold:

(i) FKvv = 0,

(ii) FKFX1 v = 0,

(iii) KvX1 = u(X1)Kvv,

(iv) ∇X1 v = ∇g
X1

v + u(X1)Kvv,

(v) ∇∗X1
v = ∇g

X1
v− u(X1)Kvv,

for any X1 ∈ Γ(TN).
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Proof. Setting X1 = X2 = v in (27), it follows (i). For X2 = v in (27), we have

KFX1 v = −2FKX1 v. (30)

Putting X1 = FX1 in the last equation and using (18), we can obtain

KX1 v = u(X1)Kvv + 2FKFX1 v. (31)

Applying F yields

FKX1 v = −2KFX1 v + 2u(KFX1 v)v.

(30) and the last equation imply that

3KFX1 v = 4u(KFX1 v)v,

which gives us FKFX1 v = 0, so (ii) holds. This and (31) yield (iii). From (6), (7) and (iii),
we have (iv) and (v).

Corollary 1. A nearly Sasakian statistical manifold satisfies the following

u(X2)KX1 Kvv = u(X1)KX2 Kvv = u(KX1 X2)Kvv,

for any X1, X2 ∈ Γ(TN).

Proof. (6) and (30) imply
−F 2(∇X1 v−∇g

X1
v) = 0,

which gives us
∇X1 v = ∇g

X1
v + g(∇X1 v, v)v.

Similarly,
∇∗X1

v = ∇g
X1

v + g(∇∗X1
v, v)v.

Then, subtracting the above two equations yields

KX1 v = g(∇X1 v, v)v,

which gives us Kvv = g(∇vv, v)v. Thus, we obtain

u(X2)KX1 Kvv = u(X2)g(∇vv, v)KX1 v = u(X1)u(X2)g(∇vv, v)Kvv = u(X1)KX2 Kvv.

Moreover, (iii) implies

u(KX1 X2)Kvv = g(KX1 X2, v)Kvv = g(KX1 v, X2)Kvv = u(X1)u(X2)g(∇vv, v)Kvv.

Therefore, the assertion follows.

Corollary 2. In a nearly Sasakian statistical manifold N, let X1 ∈ Γ(TN) and X1⊥v. Then,

1. KX1 v = 0,
2. ∇X1 v = ∇∗X1

v = ∇g
X1

v.

Proposition 2. On a nearly Sasakian statistical manifold, the following holds

g(∇X1 v, X2) + g(∇X2 v, X1) = 2u(X1)u(X2)g(Kvv, v),

for any X1, X2 ∈ Γ(TN).
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Proof. Since v is a Killing vector field in a nearly Sasakian manifold (see [7]); hence, we have

g(∇g
X1

v, X2) + g(∇g
X2

v, X1) = 0.

Setting (6) in the above equation, we have the following assertion.

Lemma 2. Let (N,∇, g,F , v) be a nearly Sasakian statistical manifold. Then, the statistical
curvature tensor field satisfies

S(v, X1)X2 = g(X1 − h2X1, X2)v− u(X2)(X1 − h2X1),

for any X1, X2 ∈ Γ(TN).

Proof. According to (6), (7) and Theorem 1, we can write

∇X1∇X2 v−∇∇X1 X2 v = ∇X1∇
g
X2

v +∇X1(u(X2)Kvv)−∇g
∇X1 X2

v− u(∇X1 X2)Kvv

= KX1∇
g
X2

v +∇g
X1
∇g

X2
v + (∇X1 u)X2Kvv

+ u(X2)(KX1 Kvv +∇g
X1

Kvv)−∇g
∇g

X1
X2

v−∇g
KX1 X2

v.

Applying (17) in the above equation, we have

∇X1∇X2 v−∇∇X1 X2 v = Rg(X1, v)X2 + KX1∇
g
X2

v + (∇X1 u)X2Kvv

+ u(X2)(KX1 Kvv +∇g
X1

Kvv)−∇g
KX1 X2

v.

We can similarly conclude that

∇∗X1
∇∗X2

v−∇∗∇∗X1
X2

v = Rg(X1, v)X2 − KX1∇
g
X2

v− (∇∗X1
u)X2Kvv

+ u(X2)(KX1 Kvv−∇g
X1

Kvv) +∇g
KX1 X2

v.

The above two equations imply

∇X1∇X2 v−∇∇X1 X2 v +∇∗X1
∇∗X2

v−∇∗∇∗X1
X2

v

= 2Rg(X1, v)X2 − 2u(KX1 X2)Kvv + 2u(X2)KX1 Kvv,

from this and Theorem 1, we have

S(X1, v)X2 = Rg(X1, v)X2 − u(KX1 X2)Kvv + u(X2)KX1 Kvv. (32)

Thus, the assertion follows from (25), (32) and Corollary 1.

Corollary 3. On a nearly Sasakian statistical manifold N, the following holds

S(X1, X2)v = g(−X1 + h2X1, X2)v + u(X2)(X1 − h2X1) (33)

+ g(X2 − h2X2, X1)v− u(X1)(X2 − h2X2),

S(FX1,FX2)v=0, (34)

for any X1, X2 ∈ Γ(TN).

Proof. We have

S(X1, X2)v = −S(v, X1)X2 − S(X2, v)X1.
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Applying Lemma 2 in the last equation, it follows that (33). To prove (34), using
X1 = FX1 and X2 = FX2 in the above equation and using the skew-symmetric property
of h, we can obtain

S(FX1,FX2)v =g(−FX1 + h2FX1,FX2)v + g(FX2 − h2FX2,FX1)v = 0.

Proposition 3. The statistical curvature tensor field S of a nearly Sasakian statistical manifold N
satisfies the following

S(FX1, X2, X3, X4)+S(X1,FX2, X3, X4) + S(X1, X2,FX3, X4)

+ S(X1, X2, X3,FX4) = 0, (35)

S(FX1,FX2,FX3,FX4) = S(X1, X2, X3, X4) + u(X2)Rg(v, X1, X3, X4)

− u(X1)Rg(v, X2, X3, X4), (36)

for any X1, X2, X3, X4 ∈ Γ(TN).

Proof. Applying (7) in (15), it follows that

S(X1, X2)X3 = Rg(X1, X2)X3 + [KX1 , KX2 ]X3. (37)

Thus, using (23) and (37) , we can write

S(FX1, X2, X3, X4)+S(X1,FX2, X3, X4) + S(X1, X2,FX3, X4)

+ S(X1, X2, X3,FX4)

= g(KFX1 KX2 X3 − KX2 KFX1 X3 + KX1 KFX2 X3

− KFX2 KX1 X3 + KX1 KX2FX3 − KX2 KX1FX3, X4)

+ g(KX1 KX2 X3 − KX2 KX1 X3,FX4). (38)

On the other hand, (27) implies

g(KX1FX2 + KX2FX1, X3) = 2g(KX1 X2,FX3),

which gives us

g(KFX1 KX2 X3 − KX2 KFX1 X3 + KX1 KFX2 X3 − KFX2 KX1 X3 + KX1 KX2FX3

− KX2 KX1FX3, X4) + g(KX1 KX2 X3 − KX2 KX1 X3,FX4)

= 2g(KX2 X3,FKX1 X4)− 2g(KX1 X3,FKX2 X4) + 2g(FKX2 X3, KX1 X4)

− 2g(FKX1 X3, KX2 X4)

= 0.

Using the above equation in (38), we obtain (35). Considering X1 = FX1 in (35) and
using (18), it follows that

−S(X1, X2, X3, X4)+u(X1)S(v, X2, X3, X4)+S(FX1,FX2, X3, X4)

+S(FX1, X2,FX3, X4) + S(FX1, X2, X3,FX4)= 0. (39)

Similarly, setting X2 = FX2, X3 = FX3 and X4 = FX4, respectively, we have

S(FX1,FX2,X3, X4)− S(X1, X2, X3, X4)+u(X2)S(X1, v, X3, X4)

+S(X1,FX2,FX3, X4)+S(X1,FX2, X3,FX4)= 0, (40)
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S(FX1, X2,FX3, X4)+ S(X1,FX2,FX3, X4)− S(X1, X2, X3, X4)

+ u(X3)S(X1, X2, v, X4)+ S(X1, X2,FX3,FX4)= 0, (41)

and

S(FX1, X2,X3,FX4)+ S(X1,FX2, X3,FX4)+ S(X1, X2,FX3,FX4)

− S(X1, X2, X3, X4)+ u(X4)S(X1, X2, X3, v)= 0. (42)

By adding (39) and (40), and subtracting the expression obtained from (41) and (42),
we obtain

2S(FX1,FX2, X3, X4)− 2S(X1, X2,FX3,FX4) + u(X1)S(v, X2, X3, X4)

+ u(X2)S(X1, v, X3, X4)− u(X3)S(X1, X2, v, X4)− u(X4)S(X1, X2, X3, v) = 0.

Replacing X1 and X2 by FX1 and FX2, we can rewrite the last equation as

2S(F 2X1,F 2X2, X3, X4)− 2S(FX1,FX2,FX3,FX4)

− u(X3)S(FX1,FX2, v, X4)− u(X4)S(FX1,FX2, X3, v) = 0.

Applying (34) in the above equation, we obtain

S(F 2X1,F 2X2, X3, X4) = S(FX1,FX2,FX3,FX4).

On the other hand, using (18), it can be seen that

S(F 2X1,F 2X2, X3, X4) = S(X1, X2, X3, X4)− u(X2)S(X1, v, X3, X4)

− u(X1)S(v, X2, X3, X4).

According to Corollary 1 and (32), we have

Rg(v, X1, X3, X4) = Rg(X3, X4, v, X1) = S(X3, X4, v, X1) = S(v, X1, X3, X4).

The above three equations imply (36).

Corollary 4. The tensor field K in a nearly Sasakian statistical manifold, N, satisfies the relation

F [KFX2 , KFX1 ]F = [KX1 , KX2 ],

for any X1, X2 ∈ Γ(TN).

Proof. Using (24) and (37), we obtain

S(FX1,FX2,FX3,FX4)− S(X1, X2, X3, X4)− u(X2)Rg(v, X1, X3, X4)

+ u(X1)Rg(v, X2, X3, X4)

= g(KFX1 KFX2FX3 − KFX2 KFX1FX3,FX4)− g(KX1 KX2 X3 − KX2 KX1 X3, X4)

= g(F [KFX2 , KFX1 ]FX3 − [KX1 , KX2 ]X3, X4).

Comparing this with relation (36) yields the following assertion.

A statistical manifold is called conjugate symmetric if the curvature tensors of the
connections ∇ and ∇∗, are equal, i.e.,

R(X1, X2)X3 = R∗(X1, X2)X3,

for all X1, X2, X3 ∈ Γ(TN).
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Corollary 5. Let (N,∇, g,F , v) be a conjugate symmetric nearly Sasakian statistical manifold.
Then, the following holds

R(FX1,FX2,FX3,FX4)−R(X1, X2, X3, X4)

= u(X2)R(X3, X4, v, X1)− u(X1)R(X3, X4, v, X2),

R(X1, X2)v = Rg(X1, X2)v,

R(FX1,FX2)v = 0,

for any X1, X2, X3, X4 ∈ Γ(TN).

4. Hypersurfaces in Nearly Kähler Statistical Manifolds

Let Ñ be a smooth manifold. A pair (g̃, J) is said to be an almost Hermitian structure
on Ñ if

J2 = −Id, g̃(JX1, JX2) = g̃(X1, X2),

for any X1, X2 ∈ Γ(TÑ). Let ∇̃g denote the Riemannian connection of g̃. Then, J is Killing
if and only if

(∇̃g
X1

J)X2 + (∇̃g
X2

J)X1 = 0.

In this case, the pair (g̃, J̃) is called a nearly Kähler structure and if J is integrable, the
structure is Kählerian [7].

Lemma 3. Let (∇̃, g̃) be a statistical structure, and (g̃, J) a nearly Kähler structure on Ñ. We
have the following formula:

∇̃X1 JX2− J∇̃∗X1
X2 + ∇̃X2 JX1 − J∇̃∗X2

X1= K̃X1 JX2 + K̃X2 JX1+ 2JK̃X1 X2,

for any X1, X2 ∈ Γ(TÑ), where K̃ is given as (8) for (∇̃, g̃).

Remark 2. A multiple (Ñ, ∇̃∗, g̃, J) is also a nearly Kähler statistical manifold if (Ñ, ∇̃, g̃, J) is a
nearly Kähler statistical manifold. In this case, from the above lemma, we have

∇̃∗X1
JX2− J∇̃X1 X2 + ∇̃∗X2

JX1 − J∇̃X2 X1= −(K̃X1 JX2 + K̃X2 JX1+ 2JK̃X1 X2),

for any X1, X2 ∈ Γ(TÑ).

Definition 2. A nearly Kähler statistical structure on Ñ is a triple (∇̃, g̃, J), where (∇̃, g̃) is a
statistical structure, (g̃, J) is a nearly Kähler structure on Ñ and the following equality is satisfied

K̃X1 JX2 + K̃X2 JX1 = −2JK̃X1 X2,

for any X1, X2 ∈ Γ(TÑ).

Let N be a hypersurface of a statistical manifold (Ñ, g̃, ∇̃, ∇̃∗). Considering n and
g as a unit normal vector field and the induced metric on N, respectively, the following
relations hold

∇̃X1 X2 = ∇X1 X2 + h(X1, X2)n, ∇̃X1 n = −AX1 + τ(X1)n, (43)

∇̃∗X1
X2 = ∇∗X1

X2 + h∗(X1, X2)n, ∇̃∗X1
n = −A∗X1 + τ∗(X1)n, (44)
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for any X1, X2 ∈ Γ(TN). It follows that

g(AX1, X2) = h∗(X1, X2), g(A∗X1, X2) = h(X1, X2), τ(X1) + τ∗(X1) = 0. (45)

Furthermore, the second fundamental form hg is related to the Levi–Civita connections
∇̃g and ∇g by

∇̃g
X1

X2 = ∇g
X1

X2 + hg(X1, X2)n, ∇̃g
X1

n = −AgX1,

where g(AgX1, X2) = hg(X1, X2).

Remark 3. Let (Ñ, g̃, J) be a nearly Kähler manifold, and N be a hypersurface with a unit normal
vector field n. Let g be the induced metric on N, and consider v, u and F as a vector field, a 1-form
and a tensor of type (1, 1) on N, respectively, such that

v =− Jn, (46)

JX1 =FX1 + u(X1)n, (47)

for any X1 ∈ Γ(TN). Then, (g,F , v) is an almost contact metric structure on N [7].

Lemma 4. Let (Ñ, ∇̃, g̃, J) be a nearly Kähler statistical manifold. If (N, g,F , v) is a hypersurface
with the induced almost contact metric structure as in Remark 2, and (∇, g) is the induced statistical
structure on N as in 42, then the following holds

(i) FAv = 0,

(ii) g(AX1, v) = u(Av)u(X1),

(iii) AX1 = ∇vFX1 −F∇∗vX1 −F∇∗X1
v + u(X1)Av,

(iv) τ(X1) = g(∇∗X1
v, v)− g(X1,∇vv)− u(X1)τ(v),

(v) ∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = −2g(AX1, X2)v + u(X2)AX1

+ u(X1)AX2,

(vi) g(∇X1 v, X2) + g(∇X2 v, X1) = g(FA∗X1, X2) + g(FA∗X2, X1)− u(X1)τ(X2)

− u(X2)τ(X1),

for any X1, X2 ∈ Γ(TN). For the induced statistical structure (∇∗, g) on N, we have

(i)∗ FA∗v = 0,

(ii)∗ g(A∗X1, v) = u(A∗v)u(X1),

(iii)∗ A∗X1 = ∇∗vFX1 −F∇vX1 −F∇X1 v + u(X1)A∗v,

(iv)∗ τ∗(X1) = g(∇X1 v, v)− g(X1,∇∗vv)− u(X1)τ
∗(v),

(v)∗ ∇∗X1
FX2 −F∇X1 X2 +∇∗X2

FX1 −F∇X2 X1 = −2g(A∗X1, X2)v + u(X2)A∗X1

+ u(X1)A∗X2,

(vi)∗ g(∇∗X1
v, X2) + g(∇∗X2

v, X1) = g(FAX1, X2) + g(FAX2, X1)− u(X1)τ
∗(X2)

− u(X2)τ
∗(X1).

Proof. According to Definition 2 and (46), we can write

0 =∇̃X1 Jv− ∇̃X1 n = J∇̃∗X1
v− ∇̃v JX1 + J∇̃∗vX1 − ∇̃X1 n.

Applying (43), (44) and (47) in the above equation, we have
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0 = J(∇∗X1
v + g(AX1, v)n)− ∇̃v(FX1 + u(X1)n) + J(∇∗vX1 + g(Av, X1)n)

+ AX1 − τ(X1)n

= F (∇∗X1
v)− g(AX1, v)v−∇vF (X1) + u(X1)Av +F (∇∗vX1)− g(Av, X1)v + AX1

+ {u(∇∗X1
v)− g(A∗v,FX1)− v(u(X1))− u(X1)τ(v) + u(∇∗vX1)− τ(X1)}n. (48)

The vanishing tangential part yields

AX1 = ∇vFX1 −F∇∗vX1 −F∇∗X1
v + 2g(AX1, v)v− u(X1)Av. (49)

Setting X1 = v in the above equation, it follows that

Av = u(Av)v, (50)

hence, FAv = 0 and implies (i), from which (ii) follows because 0 = g(FAv,FX1) =
g(Av, X1)− u(Av)u(X1). From (49) and (50) we have (iii). Vanishing vertical part in (48),
and using (i)∗ and

v(u(X1)) = g(∇∗vX1, v) + g(X1,∇vv),

we obtain (iv). As

∇̃X1 JX2 − J∇̃∗X1
X2 + ∇̃X2 JX1 − J∇̃∗X2

X1 = 0;

thus, (43), (44), (46) and (47) imply

∇X1FX2 − u(X2)AX1 −F (∇∗X1
X2) + g(AX1, X2)v +∇X2FX1 − u(X1)AX2 −F (∇∗X2

X1)

+ g(AX2, X1)v + {g(A∗X1,FX2) + g(∇X1 v, X2) + u(X2)τ(X1) + g(A∗X2,FX1)

+ g(X1,∇X2 v) + u(X1)τ(X2)}n = 0.

From the above equation, (v) and (vi) follow. In a similar fashion, we have (i)∗–
(vi)∗.

Theorem 3. Let (Ñ, ∇̃, g̃, J) be a nearly Kähler statistical manifold and (N,∇, g,F , v) be an
almost contact metric statistical hypersurface in Ñ given by (43), (44), (46) and (47). Then,
(N,∇, g,F , v) is a nearly Sasakian statistical manifold if and only if

AX1 = X1 + u(X1)(Av− v), (51)

A∗X1 = X1 + u(X1)(A∗v− v), (52)

for any X1 ∈ Γ(TN).

Proof. Let (∇, g,F , v) be a nearly Sasakian statistical structure on N. According to
Definition 1, we have

∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1,

which gives us

∇vFX1 −F∇∗X1
v−F∇∗vX1 = −u(X1)v + X1.

Placing the last equation in part (iii) of Lemma 4, we obtain (51). Similarly, we can
prove (52). Conversely, let the shape operators satisfy (51). Part (v) of Lemma 4 yields
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∇X1FX2 −F∇∗X1
X2 +∇X2FX1 −F∇∗X2

X1 = −2g(X1 + u(X1)(Av− v), X2)v

+ u(X2)(X1 + u(X1)(Av− v))

+ u(X1)(X2 + u(X2)(Av− v))

= −2g(X1, X2)v + u(X1)X2 + u(X2)X1.

In the same way, (v)∗ and (52) imply

∇∗X1
FX2 −F∇X1 X2 +∇∗X2

FX1 −F∇X2 X1 = −2g(X1, X2)v + u(X1)X2 + u(X2)X1.

According to the above equations and Theorem 2, the proof is completed.

5. Submanifolds of Nearly Sasakian Statistical Manifolds

Let N be a n-dimensional submanifold of an almost contact metric statistical manifold
(Ñ, ∇̃, g, F̃ , ṽ, ũ). We denote the induced metric on N by g. For all U1 ∈ Γ(TN) and
ζ ∈ Γ(T⊥N), we put F̃U1 = FU1 + FU1 and F̃ζ = Fζ + Fζ, where FU1,Fζ ∈ Γ(TN)
and FU1,Fζ ∈ Γ(T⊥N). If F̃ (TpN) ⊂ TpN and F̃ (TpN) ⊂ T⊥p N for any p ∈ N, then N is
called F̃ -invariant and F̃ -anti-invariant, respectively.

Proposition 4 ([10]). Any F̃ -invariant submanifold N embedded in an almost contact metric
manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ) in such a way that the vector field ṽ is always tangent to N, induces an
almost contact metric structure (g,F , v, u).

For any U1, U2 ∈ Γ(TN), the corresponding Gauss formulas are given by

∇̃U1U2 = ∇U1U2 + h(U1, U2), ∇̃∗U1
U2 = ∇∗U1

U2 + h∗(U1, U2). (53)

It is proved that (∇, g) and (∇∗, g) are statistical structures on N, and h and h∗ are
symmetric and bilinear. The mean curvature vector field with respect to ∇̃ is described by

H =
1
m

trace(h).

The submanifold N is a ∇̃ totally umbilical submanifold if h(U1, U2) = g(U1, U2)H
for all U1, U2 ∈ Γ(TN). The submanifold N is called ∇̃-autoparallel if h(U1, U2) = 0
for any U1, U2 ∈ Γ(TN). The submanifold N is said to be dual-autoparallel if it is both
∇̃- and ∇̃∗-autoparallel, i.e., h(U1, U2) = h∗(U1, U2) = 0 for any U1, U2 ∈ Γ(TN). If
hg(U1, U2) = 0 for any U1, U2 ∈ Γ(TN), the submanifold N is called totally geodesic.
Moreover, the submanifold N is called ∇̃-minimal (∇̃∗-minimal) if H = 0 (H∗ = 0).

For any U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N), the Weingarten formulas are

∇̃U1 ζ = −AζU1 + DU1 ζ, ∇̃∗X1
ζ = −A∗ζ U1 + D∗U1

ζ, (54)

where D and D∗ are the normal connections on Γ(T⊥N) and the tensor fields h, h∗, A and
A∗, satisfy

g(AζU1, U2) = g(h∗(U1, U2), ζ), g(A∗ζ U1, U2) = g(h(U1, U2), ζ).

The Levi–Civita connections ∇g and ∇̃g are associated with the second fundamental
form hg by

∇̃g
U1

U2 = ∇g
U1

U2 + hg(U1, U2), ∇̃g
U1

ζ = −Ag
ζ U1 + Dg

U1
ζ, (55)

where g(Ag
ζ U1, U2) = g(hg(U1, U2), ζ).
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On a statistical submanifold (N,∇, g) of a statistical manifold (Ñ, ∇̃, g), for any tan-
gent vector fields U1, U2 ∈ Γ(TN), we consider the difference tensor K on N as

2KU1U2 = ∇U1U2 −∇∗U1
U2. (56)

From (7), (53) and the above equation, it follows that

2K̃U1U2 = 2KU1U2 + h(U1, U2)− h∗(U1, U2). (57)

More precisely, for the tangential part and the normal part, we have

(K̃U1U2)
> = KU1U2, (K̃U1U2)

⊥ =
1
2
(h(U1, U2)− h∗(U1, U2)),

respectively. Similarly, for U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N) we have

K̃U1 ζ = (K̃U1 ζ)> + (K̃U1 ζ)⊥,

where
(K̃U1 ζ)> =

1
2
(A∗ζ U1 − AζU1), (K̃U1 ζ)⊥ =

1
2
(DU1 ζ − D∗U1

ζ).

Now, suppose that (N, g) is a submanifold of a nearly Sasakian statistical manifold
(Ñ, ∇̃, g, F̃ , ṽ). As a tensor field, h̃ of type (1, 1) on Ñ is described by ∇̃gṽ = F̃ + h̃; we can
set h̃U1 = hU1 + hU1 and h̃ζ = hζ + hζ where hU1, hζ ∈ Γ(TN) and hU1, hζ ∈ Γ(T⊥N) for
any U1 ∈ Γ(TN) and ζ ∈ Γ(T⊥N). Furthermore, if h̃(TpN) ⊂ TpN and h̃(TpN) ⊂ T⊥p N,
then N is called h̃-invariant and h̃-anti-invariant, respectively.

Proposition 5. Let N be a submanifold of a nearly Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ),
where the vector field ṽ is normal to N. Then,

g(F̃U1, U2) = g(U1, h̃U2), ∀U1, U2 ∈ Γ(TN). (58)

Moreover,
(i) N is a h̃-anti-invariant submanifold if and only if N is a F̃ -anti-invariant submanifold.
(ii) If h̃ = 0, then N is a F̃ -anti-invariant submanifold.
(iii) If N is a h̃-invariant and F̃ -invariant submanifold, then hU1 = −FU1, for any U1 ∈ Γ(TN).

Proof. Using (22) and Proposition 1 for any U1, U2 ∈ Γ(TN), we can write

g(F̃U1 + h̃U1, U2) = g(∇̃g
U1

ṽ, U2) = g(∇̃U1 ṽ, U2).

(54) and the above equation imply

g(F̃U1 + h̃U1, U2) = g(−AṽU1 + DU1 ṽ, U2) = −g(AṽU1, U2) = −g(ṽ, h∗(U1, U2)).

As h∗ is symmetric and the operators h̃ and g are skew-symmetric, the above
equation yields

g(F̃U1 + h̃U1, U2) = g(F̃U2 + h̃U2, U1) = −g(F̃U1 + h̃U1, U2).

Hence, g(F̃U1 + h̃U1, U2) = 0, which gives (58). If N is a h̃-anti-invariant submanifold,
we have g(U1, h̃U2) = 0. Thus, (i) follows from (58). Similarly, we have (ii) and (iii).

Lemma 5. Let (N,∇, g) be a F̃ -anti-invariant statistical submanifold of a nearly Sasakian statis-
tical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ) such that the structure (F , v, u) on N is given by Proposition 4.
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(i) If ṽ is tangent to N, then

∇U1 v = u(U1)Kvv = −∇∗U1
v, h(U1, v) = FU1 + hU1 = h∗(U1, v), ∀U1 ∈ Γ(TN).

(ii) If ṽ is normal to N, then

Aṽ = 0 = A∗ṽ , DU1 ṽ = FU1 + hU1 = D∗U1
ṽ, ∀U1 ∈ Γ(TN).

Proof. Applying (22), (53) and Proposition 1, and using K̃vv = Kvv = g(∇vv, v)v, we have

FU1 + hU1 + u(U1)Kvv = ∇̃g
U1

v + u(U1)Kvv = ∇̃U1 v = ∇U1 v + h(U1, v).

Thus, the normal part is h(U1, v) = FU1 + hU1 and the tangential part is ∇U1 v =
u(U1)Kvv. Similarly, we can obtain their dual parts. Hence, (i) holds. If ṽ is normal to N,
from (22) and (54), it follows that

FU1 + hU1 = ∇̃g
U1

ṽ = ∇̃U1 ṽ = −AṽU1 + DU1 ṽ.

Considering the normal and tangential components of the last equation, we obtain (ii).
Since ∇̃U1 v = ∇̃g

U1
v = ∇̃∗U1

v, we have the dual part of the assertion.

Lemma 6. Let (N,∇, g) be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly
Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ). Then, for any U1 ∈ Γ(TN), if
(i) ṽ is tangent to N, then

∇U1 v = FU1 + hU1 + u(U1)Kvv, ∇∗U1
v = FU1 + hU1 − u(U1)Kvv,

h(U1, v) = 0 = h∗(U1, v).

(ii) ṽ is normal to N, then

AṽU1 = −FU1 − hU1 = A∗ṽU1, Dṽ = 0 = D∗ṽ.

Proof. The relations are proved using the method applied to the proof of Lemma 5.

Theorem 4. On a nearly Sasakian statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ), if N is a F̃ -anti-invariant
∇̃ totally umbilical statistical submanifold of Ñ and ṽ is tangent to N, then N is ∇̃-minimal in Ñ.

Proof. According to Lemma 5, h(v, v) = 0. As N is a totally umbilical submanifold,
it follows that

0 = h(v, v) = g(v, v)H = H,

which gives us the assertion.

Theorem 5. Let N be a F̃ -invariant submanifold of a nearly Sasakian statistical manifold
(Ñ, ∇̃, g, F̃ , ṽ, ũ), where the vector field ṽ is tangent to N. If

hg(U1,FU2) =F̃hg(U1, U2), (59)

h(U1,FU2)− h∗(U1,FU2) =F̃h∗(U1, U2)− F̃h(U1, U2), (60)

for all U1, U2 ∈ Γ(TN), then (∇, g,F , v, u) forms a nearly Sasakian statistical structure on N.

Proof. According to Proposition 4, N induces the almost contact metric structure (g,F , v, u).
Furthermore, (53) shows that (∇, g) is a statistical structure on N. By applying (55), we
can write
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∇̃g
U1
F̃U2 =∇g

U1
FU2 + hg(U1,FU2)

=(∇g
U1
F )U2 +F∇

g
U1

U2 + hg(U1,FU2).

As hg is symmetric, from (59), we have hg(FU1, U2) = hg(U1,FU2). Hence, the
above equation implies

∇̃g
U1
F̃U2 + ∇̃

g
U2
F̃U1 =(∇g

U1
F )U2 + (∇g

U2
F )U1 +F∇

g
U1

U2 +F∇
g
U2

U1 + 2hg(U1,FU2).

On the other hand, since Ñ has a nearly Sasakian structure, we have

∇̃g
U1
F̃U2 + ∇̃

g
U2
F̃U1

= (∇̃g
U1
F̃ )U2 + (∇̃g

U2
F̃ )U1 + F̃ (∇̃

g
U1

U2 + ∇̃
g
U2

U1)

= (∇̃g
U1
F̃ )U2 + (∇̃g

U2
F̃ )U1 + F̃ (∇

g
U1

U2 +∇
g
U2

U1 + 2hg(U1, U2))

= −2g(U1, U2)v + u(U1)U2 + u(U2)U1 + F̃ (∇
g
U1

U2 +∇
g
U2

U + 2hg(U, U2))

= −2g(U1, U2)v + u(U1)U2 + u(U2)U1 +F∇
g
U1

U2 +F∇
g
U2

U1 + 2F̃hg(U1, U2).

(59) and the above two equations yield

(∇g
U1
F )U2 + (∇g

U2
F )U1 =− 2g(U1, U2)v + u(U1)U2 + u(U2)U1.

Thus, (N,∇g, g,F , v, u) is a nearly Sasakian manifold. For the nearly Sasakian statisti-
cal manifold Ñ, using (27), we have

K̃U1FU2 + K̃U2FU1 = −2F̃ K̃U1U2,

for any U1, U2 ∈ Γ(TN). Applying (57) in the last equation, it follows

KU1FU2 +
1
2
(h(U1,FU2)− h∗(U1,FU2)) + KU2FU1 +

1
2
(h(U2,FU1)− h∗(U2,FU1))

= −2FKU1U2 + F̃h∗(U1, U2)− F̃h(U1, U2).

From the above equation and (60), we obtain

KU1FU2 + KU2FU1 = −2FKU1U2.

Therefore, (N,∇g, g,F , v, u) is a nearly Sasakian statistical manifold. Hence, the proof
is completed.

Proposition 6. Let N be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly Sasakian
statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ), such that ṽ is tangent to N. Then,

(∇̃U1 h)(U2, v) = (∇̃∗U1
h)(U2, v) = (∇̃g

U1
h)(U2, v) = −h(U2,FU1 + hU1),

and

(∇̃U1 h∗)(U2, v) = (∇̃∗U1
h∗)(U2, v) = (∇̃g

U1
h∗)(U2, v) = −h∗(U2,FU1 + hU1),

for any U1, U2 ∈ Γ(TN).

Proof. We have

(∇̃U1 h)(U2, v) = ∇̃U1 h(U2, v)− h(∇̃U1U2, v)− h(U2, ∇̃U1 v),
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for any U1, U2 ∈ Γ(TN). According to Proposition 1, part (i) of Lemma 6 and the above
equation, we have

(∇̃U1 h)(U2, v) = −h(U2, ∇̃U1 v) = −h(U2,FU1 + hU1 + u(U1)Kvv) = −h(U2,FU1 + hU1).

Similarly, other parts are obtained.

Corollary 6. Let N be a F̃ -invariant and h̃-invariant statistical submanifold of a nearly Sasakian
statistical manifold (Ñ, ∇̃, g, F̃ , ṽ, ũ). If ṽ is tangent to N, then the following conditions are
equivalent
(i) h and h∗ are parallel with respect to the connection ∇̃;
(ii) N is dual-autoparallel.
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