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Abstract: In this study, an innovative and sophisticated graphical tuning approach is postulated,
aimed at the design of tilt-integral-derivative (TID) controllers that are specifically customized for
fractional-order interval plants, whose numerators and denominators consist of fractional-order
polynomials that are subjected to parametric uncertainties. By leveraging the powerful value set
concept and the advanced D-composition technique, a comprehensive set of stabilizing TID controllers
is obtained. The validity and effectiveness of the proposed methodology are demonstrated by some
examples, which vividly illustrate its remarkable performance and potential.
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1. Introduction

Fractional calculus is a branch of mathematics that extends the concept of differentia-
tion and integration to non-integer orders. While traditional calculus operations are limited
to integer orders, fractional calculus enables the computation of derivatives and integrals
of any real or complex order, including fractional orders. Fractional calculus has become
increasingly relevant in recent years, with applications in numerous fields, such as physics,
engineering, finance, and biology: for instance, in physics, fractional calculus has been
used to describe anomalous diffusion in systems with memory, while in finance, it has been
applied to the modeling of financial time series with long-range dependence [1–4].

Fractional-order controllers are a type of controller that utilizes fractional calculus prin-
ciples, so as to achieve control performance superior to traditional integer-order controllers.
Fractional-order controllers offer several advantages, such as providing better damping
and faster response, enhanced stability, and robustness against parameter variations [5,6].
Fractional-order controllers can achieve these improvements with fewer components and
less complexity than traditional controllers. Fractional-order controllers are widely used in
various engineering fields, including control systems [7–9], robotics [10], power electron-
ics [11], and process control [12]. Fractional-order controllers have also shown promising
results in biomedical applications, such as controlling glucose levels in diabetic patients [13],
and in active suspension systems for improving vehicle ride quality [14].

The modeling of complex real-world systems is often plagued by inherent uncertain-
ties and inaccuracies that can lead to unstable control performance: to account for this,
engineers frequently employ interval uncertainty structures to incorporate the uncertain
parameters of the system model into a real interval [15,16]. This approach allows for a more
realistic representation of the system’s behavior. The problem of stabilizing and improving
the performance of interval systems, including those of both integer and fractional orders,
has become a crucial challenge in the field of control [17,18]. Indeed, interval uncertainty
modeling has emerged as one of the most popular techniques, among engineers, for dealing
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with uncertain systems, offering a versatile and effective means of mitigating the detri-
mental effects of uncertainty and improving control performance in the face of real-world
complexity [15].

The literature review makes clear that the examination of the stability of an interval
fractional system encompasses two principal categories of methods: the linear matrix
inequalities (LMIs) method [19,20] and the graphical method [21]. The LMI method may
have limitations when applied to fractional-order systems with non-commensurate orders.
Additionally, the process of solving LMIs can occasionally introduce conservatism, which
can affect the accuracy of stability testing [22]. The graphical method for analyzing the
stability of interval fractional systems is primarily rooted in the zero exclusion principle [23].
The graphical method entails plotting the value set of the characteristic function of the
interval fractional system at each frequency, and determining if zero is excluded by the
value set [24]. By presenting both necessary and sufficient conditions for the stabilization
of specific types of interval fractional systems, such as fractional systems with incommen-
surate orders and fractional delay systems, the graphical method offers a powerful tool for
engineers to design and analyze control systems under conditions of significant uncertainty
and variability. Moreover, the graphical method offers the advantage of providing a clear
and intuitive representation of the system’s behavior in the frequency domain, enabling
engineers to identify potential stability issues and make informed decisions about con-
troller design and implementation [25,26]. Paper [27] introduced a robust stability checking
function that employs the zero exclusion principle to assess the stability of fractional-order
interval systems. Furthermore, in a study conducted by [28], a novel method was proposed,
by which to investigate the robust stability of fractional-order interval systems with an
interval time delay, utilizing the concept of the value set.

The quest to determine the stabilizing region of fractional-order controllers has garnered
significant attention in recent years. To this end, several graphical tuning methods have
been developed, to calculate the stabilizing region of fractional-order proportional-integral-
derivative (FOPID) and fractional-order proportional-integral (FOPI) controllers, as outlined
in [29,30]. In addition, an algorithm for stabilizing fractional-order systems using FOPID
controllers was introduced in [31,32]. The computation of the stabilizing region of FOPID
controllers provides several advantages: for example, it enables the identification of a set
of stabilizing FOPID controllers, rather than just a single controller, thus allowing for a
more flexible choice of controller parameters. This approach offers an effective means of
improving the performance and stability of complex control systems, and has the potential
to yield significant advancements in the field of control theory and engineering [33].

In recent years, the tuning methodology applied to TID controllers has garnered
significant scholarly attention [34,35]. In [36], a novel approach was introduced, to devise
TID controllers for fractional-order systems. This technique, however, falls short in ensuring
the robust stability of interval systems, which has spurred the author of the current paper
to develop a novel methodology for achieving robust stabilization of fractional-order
interval systems with TID controllers. In summary, the paper presents the following
novel contributions:

• Analysis of the robust stability of the closed-loop system for interval fractional-order
plants using TID controllers;

• Calculation of the robust stability region of TID controllers for interval fractional-order
systems;

• Introduction of a robust stability testing function, to investigate the robust stability of
the interval system;

• Presentation of an auxiliary function aimed at enhancing the control requirements for
disturbance rejection.

The present paper is structured as follows: Section 2 elaborates on TID controllers
and the corresponding closed-loop control system; Section 3 introduces several robust
stabilization methods utilizing TID controllers in the presence of uncertainties; Section 4
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presents the simulation results conducted to validate the proposed methods; Section 5
concludes the paper with a summary of the key findings.

2. Background and Preliminaries

Upon careful examination of Figure 1, it is pertinent to direct our attention towards
the single-input-single-output (SISO) fractional-order system under consideration. The TID
controller is embodied in the block C(s), which assumes a pivotal role in regulating and
governing the system’s behavior. To be more precise, the TID controller exhibits a highly
intricate and finely-tuned structure, as it operates through a combination of tilt, integral,
and derivative actions, which are designed to achieve system performance and stability.
The transfer function of TID controllers can be precisely defined as follows:

C(s) =
Kt

s
1
n
+

Ki
s
+ Kd s, (1)

where 1
n ∈ (0, 1), and Kt, Ki, and Kd are real numbers. The fractional-order interval plant

G(s) can be defined as follows:

G(s) =
NG(s)
DG(s)

=
∑nb

ib=0 bib sβib

∑na
ia=0 aia sαia

, (2)

where β0 = 0 < β1 < · · · < βnb and α0 = 0 < α1 < · · · < αna . It is imperative to note that
the fractional-order plant G(s) is characterized by a set of coefficients, whose values are
subject to interval uncertainties, i.e., bib ∈ [b−ib , b+ib ], bnb 6= 0 and aia ∈ [a−ia

, a+ia
], ana 6= 0. The

presence of such uncertainties, arising from various sources—such as measurement errors,
modeling approximations, and external disturbances—renders the system’s behavior highly
intricate and nonlinear, thereby posing a formidable challenge to the synthesis of robust
and high-performance control strategies. Based on the preceding explanations and the
information presented in Figure 1, it is possible to derive the characteristic function of the
closed-loop control system, as follows:

∆(s) = s DG(s) + (Kt s1− 1
n + Ki + Kd s2) NG(s). (3)

Figure 1. Closed-loop fractional control system.

Definition 1. According to reference [37], it can be deduced that the value set of NG(s) is a convex
polygon whose vertices can be determined by the following pattern:

VN
1 (s) = b−0 + b−1 sβ1 + · · ·+ b−nb

sβnb ,
VN

2 (s) = b+0 + b−1 sβ1 + · · ·+ b−nb
sβnb ,

VN
3 (s) = b−0 + b+1 sβ1 + · · ·+ b−nb

sβnb ,
· · ·
VN

2nb+1(s) = b+0 + b+1 sβ1 + · · ·+ b+nb
sβnb .

(4)
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The determination of the exposed edges can be accomplished by utilizing (4). Specifically, it can be
observed that VN

1 (s) and VN
2 (s) possess identical structures, with the exception of b−0 . As a result,

it is plausible to designate one of the edges as e(VN
1 (s), VN

2 (s)), where (e(x1, x2) = ηx1 + (1−
η)x2), η ∈ [0, 1]. The remaining edges can be constructed through a comparable method. To form a
comprehensive collection of vertices, all VN

i (s) (where i ranges from 1 to 2nb+1) can be included in
a single set, as follows:

PN
E (s) = {e(VN

1 (s), VN
2 (s)), e(VN

1 (s), VN
3 (s)), · · · , e(VN

2nb+1−1
(s), VN

2nb+1(s))}. (5)

Similarly, VD
r (s) (where r is an integer that ranges from 1 to 2na+1) and PD

E (s) can be defined as
the vertices and exposed edges, respectively, of DG(s).

Remark 1. The aim of this remark is to ascertain the domain of stabilization in the (Kt, Ki) plane,
while keeping the Kd values constant, such that the following polynomial (6) adheres to the Hurwitz
criterion:

∆0(s) = s D0
G(s) + (Kt s1− 1

n + Ki + Kd s2) N0
G(s), (6)

where N0
G(s) and D0

G(s) denote one of the selected elements of NG(s) and DG(s), respectively.
By performing a partition of ∆0(jω) into its constituent real and imaginary components, and
subsequently setting them equal to zero, we are able to derive the following result:{

A11Kt + A12Ki = B1
A21Kt + A22Ki = B2.

(7)

Ultimately, upon solving Equation (7), the parameters Kt and Ki can be ascertained by the following
means: {

Kt =
B1 A22−A12B2

A11A22−A12 A21

Ki =
B2 A11−A21B1

A11A22−A12 A21
,

(8)

where 

A11 = real(s1− 1
n N0

G(s))
A12 = real(N0

G(s))
B1 = −real(s D0

G(s) + Kd s2 N0
G(s))

A21 = imag(s1− 1
n N0

G(s))
A22 = imag(N0

G(s))
B2 = −imag(s D0

G(s) + Kd s2 N0
G(s)).

(9)

The functions denoted by real(.) and imag(.) correspond, respectively, to the real and imaginary
components of a complex number. By verifying a singular test point within each distinct region, it
is feasible to determine the stabilizing region [31,32,36].

In this paper, we utilize the zero exclusion principle, as defined below, to assess the
robust stability of the fractional-order closed-loop control system.

Zero Exclusion Principle [25]: The system is robustly stable if and only if ∆(s) has at
least one stable polynomial and 0 /∈ ∆(jω) for ω ∈ [0, ∞).

3. Main Results

The present section can be subdivided into two distinct subsections. Firstly, within
the confines of the ‘Algorithm to Determine Robust Stability Region of TID Controllers’
subsection, a theorem is presented that facilitates the analysis of the robust stability of the
characteristic function (3). Secondly, an algorithm is proposed that enables the computation
of the stabilizing region of TID controllers for the fractional-order interval plant G(s).
Furthermore, the ‘Robust Stability Checking Function’ subsection features an auxiliary
function that is a tool for investigating the robust stability of the closed-loop control system.
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3.1. Algorithm to Determine Robust Stability Region of TID Controllers

The primary aim of this subsection is to delineate the robust stability region of TID
controllers, with respect to fractional-order interval systems, as portrayed in Figure 1.
Consequently, the subsequent theorem serves to ascertain a comprehensive set both of the
necessary and of the sufficient conditions that are indispensable for verifying the robust
stability of the aforementioned system.

Theorem 1. The characteristic function (4) can be robustly stable if and only if the character-
istic functions ∆N

i1
(s)(i1 = 1, · · · , 2nb+1), stipulated in (10), and ∆D

i2
(s)(i2 = 1, · · · , 2na+1),

enumerated in (11), are also robustly stable:

∆N
i1 (s) = s DG(s) + (Kt s1− 1

n + Ki + Kd s2) VN
i1 (s), i1 = 1, · · · 2nb+1; (10)

∆D
i2 (s) = s VD

i2 (s) + (Kt s1− 1
n + Ki + Kd s2) NG(s), i2 = 1, · · · , 2na+1. (11)

Proof. Drawing on the zero exclusion principle, it is clear that the sole necessity is to
scrutinize the proviso of 0 /∈ ∆(jω).

The ‘if’ portion: In the event that the functions ∆N
i1
(s), with i1 ranging from 1 to

2nb+1, as well as ∆D
i2
(s), with i2 ranging from 1 to 2na+1, are endowed with the trait of

robust stability, it logically follows that for s = jω one can straightforwardly derive the
conclusion that: {

−(Kt s1− 1
n + Ki + Kd s2) VN

i1
(s) /∈ s DG(s)

−s VD
i2
(s) /∈ (Kt s1− 1

n + Ki + Kd s2) NG(s).
(12)

A perspicacious observation can be made from Equation (12) that the value sets s −
(Kt s1− 1

n + Ki + Kd s2) VN
i1
(s) and s DG(s) (consequently −s VD

i2
(s) and (Kt s1− 1

n + Ki +

Kd s2) NG(s)) have no overlap in the complex plane, thus rendering it manifest that 0 is not
an element of ∆(jω).

The ‘only if’ portion: The robust stability of the characteristic function (4) serves as
the foundation upon which the zero exclusion principle is invoked, culminating in the
unequivocal fact that 0 is devoid of membership in ∆(jω). The application of said principle
unequivocally establishes the position of the origin outside the set of values constituting
∆(jω). Thus, by invoking Equation (10), one is able to infer the robust stability of ∆N

i1
(s),

indexed by i1 spanning the set of integers from 1 to 2nb+1, as well as ∆D
i2
(s), indexed by i2

spanning the set of integers from 1 to 2na+1, as outlined in (10) and (11), respectively.

The task at hand now centers exclusively around ascertaining the robust stability
domain that characterizes the characteristic functions ∆N

i1
(s) and ∆D

i2
(s), as enunciated

in (10) and (11), respectively. In order to accomplish this end, the computational pro-
cedure presented in Stabilization Algorithm outlines the method for ascertaining the
stabilizing region.

Stabilization Algorithm:
Step 1. Attain the vertices denoted as VN

i1
(s) and VD

i2
(s), by availing oneself of the

process outlined in Definition 1;
Step 2. Utilize the D-decomposition technique, as delineated in Remark 1, to apply it

proficiently to both s PD
E (s) + (Kt s1− 1

n + Ki + Kd s2)NG(s) and s VD
i2
(s) + (Kt s1− 1

n + Ki +

Kd s2) PN
E (s);

Step 3. The ultimate stabilizing domain of the TID controllers for fractional-order interval
plants can be defined as the intersection of all the stable regions calculated in Step 2.
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3.2. Robust Stability Checking Function

The application of a robust stability checking function constitutes a prevalent method-
ology for evaluating the robust stability of an interval system that has been controlled
by a pre-designed TID controller: hence, the following theorem introduces an auxiliary
function, of ascertaining the robust stability of the closed-loop system, given a pre-designed
controller.

Theorem 2. Assume that the TID controller can stabilize one member of the interval system, and
let HN

1 , HN
2 , · · · , HN

ln and HD
1 , HD

2 , · · · , HD
ld

be all edges of PN
E (s) and PD

E (s), respectively. Then,
the system is robustly stable if and only if it can be ascertained that the inequality H(ω) > 0,
defined in Equation (13), holds true:

H(ω) , min{H−1 (ω), · · · , H−ln (ω), H+
1 (ω), · · · , H+

ld
(ω)},

H−i (ω) = min
r=1,··· ,2na+1

TRsVD
r (s)(Nc HN

i ),

H+
i (ω) = min

r=1,··· ,2nb+1
TRNcVN

r (s)(sHD
i ),

(13)

where Nc = (Kt s1− 1
n + Ki + Kd s2) and, for the polynomials Vx(s), Vy(s), and Vz(s), we define

TRVz(s)(e(Vx(s), Vy(s)) as

TRVz(s)(e(Vx(s), Vy(s)) = |Vx(s) + Vz(s)|+ |Vx(s) + Vy(s)| − |Vz(s)−Vy(s)|. (14)

Proof. Drawing on the findings from Remark 1, it becomes evident that the value sets
of ∆N

i1
(s) and ∆D

i2
(s) constitute two convex polygons, each situated within the complex

plane. Assuming that the triangle inequality holds true for every two consecutive vertices
of ∆N

i1
(s), one can deduce that 0 is not a member of ∆N

i1
(s), which ultimately implies

that the inequalities H−i (ω) > 0, i = 1, · · · , ln are satisfied. Similarly, adherence to the
inequalities H+

i (ω) > 0, i = 1, · · · , ld results in the exclusion of 0 from ∆D
i2
(s) i.e., 0 /∈ ∆D

i2
(s).

Consequently, if the inequality H(ω) > 0 is met, then, leveraging Theorem 1 and the zero
exclusion principle, the proof is established.

3.3. Effective Output Disturbance Attenuation

The sensitivity function is responsible for characterizing critical feedback system
properties, such as robust performance and disturbance rejection. The smallness of the
sensitivity function in the low frequency range helps to achieve the desired performance
of the closed-loop system. Consequently, in order to meet these requirements, a robust
fractional-order controller denoted as C(s) must adhere to the subsequent inequality:

|S(s)| =
∣∣∣∣ 1
1 + C(s)G(s)

∣∣∣∣ < |Ms(s)|, (15)

where Ms(jω) denotes the weighting function that characterizes the performance spec-
ifications’ frequency response and disturbance magnitude [38]. To further enhance the
performance specifications, the designer must satisfy the inequality HS(ω) < 0, in accor-
dance with the maximum modulus principle [39] and Theorems 1 and 2. The function
HS(ω) can be obtained as follows:

HS(ω) , max{HS
i |i = 1, 2}, (16)
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where 

HS
1 (ω) , maxi=1,··· ,2nb+1. Hd

i (ω),

Hd
i (ω) , maxeD

hD∈QD
E

∣∣∣eD
hD

∣∣∣− |Fs(jω)|,
hD = 1, 2, · · · , lD,
QD

E , {hD
1 , hD

2 , · · · , hD
lD
},

hD
1 , 1

1+
(Kt s1− 1

n +Ki+Kd s2)VN
i (jω)

s HD
1

,

hD
2 , 1

1+
(Kt s1− 1

n +Ki+Kd s2)VN
i (jω)

s HD
2

,

...
hD

lD
, 1

1+
(Kt s1− 1

n +Ki+Kd s2)VN
i (jω)

s HD
lD

.

(17)



HS
2 (ω) , maxi=1,··· ,2na+1. Hn

i (ω),

Hn
i (ω) , maxeN

hN∈QN
E

∣∣∣eN
hN

∣∣∣− |Fs(jω)|,
hN = 1, 2, · · · , lN ,
QN

E , {hN
1 , hN

2 , · · · , hN
lN
},

hN
1 , 1

1+
(Kt s1− 1

n +Ki+Kd s2)HN
1

s VD
i (jω)

,

hN
2 , 1

1+
(Kt s1− 1

n +Ki+Kd s2)HN
2

s VD
i (jω)

,

...
hN

lN
, 1

1+
(Kt s1− 1

n +Ki+Kd s2)HN
lN

s VD
i (jω)

.

(18)

4. Illustrative Examples

Example 1. Consider the following plant, as discussed in [36]:

G(s) =
9

s3 + 3 s2 + 11 s + 9
. (19)

Let us now regard G(s) in (19) as an interval plant, expressed as follows:

G(s) =
[8.5, 9.5]

s3 + [2.5, 3.5] s2 + [10.5, 11.5] s + [8.5, 9.5]
. (20)

Utilizing the values of Kd = 0 and 1
n = 0.9 for the TID controller, the first stage of the Stabilization

Algorithm yields a set of vertices for NG(s) = [8.5, 9.5] and DG(s) = [8.5, 9.5] + [10.5, 11.5] s +
[2.5, 3.5] s2 + s3, which can be derived in the following manner:{

VN
1 (s) = 8.5

VN
2 (s) = 9.5

(21)
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

VD
1 (s) = 8.5 + 10.5 s + 2.5 s2 + s3

VD
2 (s) = 9.5 + 10.5 s + 2.5 s2 + s3

VD
3 (s) = 8.5 + 11.5 s + 2.5 s2 + s3

VD
4 (s) = 9.5 + 11.5 s + 2.5 s2 + s3

VD
5 (s) = 8.5 + 10.5 s + 3.5 s2 + s3

VD
6 (s) = 9.5 + 10.5 s + 3.5 s2 + s3

VD
7 (s) = 8.5 + 11.5 s + 3.5 s2 + s3

VD
8 (s) = 9.5 + 11.5 s + 3.5 s2 + s3.

(22)

The exposed edges PN
E (s) and PD

E (s) can be defined as

PN
E (s) = {e(VN

1 (s), VN
2 (s))} (23)

PD
E (s) = {e(VD

1 (s), VD
2 (s)), e(VD

1 (s), VD
3 (s)), e(VD

1 (s), VD
5 (s)), e(VD

2 (s), VD
4 (s)),

e(VD
2 (s), VD

6 (s)), e(VD
3 (s), VD

4 (s)), e(VD
3 (s), VD

7 (s)), e(VD
4 (s), VD

8 (s)),

e(VD
5 (s), VD

6 (s)), e(VD
5 (s), VD

7 (s)), e(VD
6 (s), VD

8 (s)), e(VD
7 (s), VD

8 (s))}.
(24)

Upon the successful execution of steps 2 and 3, delineated in the eminent Stabilization Algorithm,
the robust stability region of the TID controllers can be ascertained, and is shown in Figure 2 (gray
region). In Figure 2, the red color denotes the boundaries of the stability region for all polynomials of
∆N

i1
(s) and ∆D

i2
(s). To test the stability of any member of the uncertainty space of the characteristic

function, the graphical method proposed in [40] is used. As an illustrative example, consider the
subsequent characteristic function:

∆0(s) = s (8.5 + 10.5 s + 2.5 s2 + s3) + 8.5(s0.1 + 1). (25)

Consequently, it is imperative that we generate a graphical representation of the Mikhailov’s plot,

which is expressed as ψ(s) = ∆0(s)
(s+1)4 , where s equals the complex frequency jω, and is graphically

portrayed in Figure 3. The depicted figure shows that the function ∆0(s), due to the fact that
the curve does not encompass the origin, is stable. The approach proposed in reference [36] is
inadequate for computing the robust stability region of TID controllers within the framework of
interval systems; however, as demonstrated by the findings presented in the current paper, this issue
has been effectively addressed and improved upon.

Figure 2. Robust stability region of TID controllers.
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Figure 3. Mikhailov’s plot for ψ(s) = ∆0(s)
(s+1)4 .

Example 2. Given the interval plant G(s), as denoted in (20), Theorem 2 is employed to scrutinize
and determine which controller, either C1(s) in (26) or C2(s) in (28), has the capability to effectively
stabilize the system in a robust manner:

C1(s) =
0.25
s0.9 +

0.15
s

; (26)

C2(s) =
2

s0.9 +
1
s

. (27)

In accordance with Theorem 2, our preliminary task entails evaluating the stability of a singular
selected component of the interval system. To accomplish this, we designate either ∆0

1(s) or ∆0
2(s)

as the elected member, based on the corresponding controller being considered—namely, C1(s), as
represented in (26), or C2(s), as represented in (28):

∆0
1(s) = s (9.5 + 11.5 s + 2.5 s2 + s3) + 8.5(0.25s0.1 + 0.15); (28)

∆0
2(s) = s (9.5 + 11.5 s + 2.5 s2 + s3) + 8.5(2s0.1 + 1). (29)

The Mikhailov’s plots corresponding to ∆0
1(s) (dotted line) and ∆0

2(s) (solid line) have been plotted
in Figures 4 and 5. Consequently, it can be inferred that the system’s stability is easily ascertained.
At present, our sole task is to scrutinize the polarity of H(ω) pertaining to both controllers: namely,
C1(s) in (26) or C2(s) in (28). Furthermore, in accordance with the controllers C1(s) and C2(s)
presented in Equations (26) and (28), respectively, the corresponding H(ω) has been illustrated in
Figures 6 and 7, respectively. A comprehensive analysis of these figures suggests that the controller
C2(s) fails to fulfill the critical condition H(ω) > 0, which, as per Theorem 2, renders the system
incapable of achieving robust stability. Conversely, the controller C1(s) effectively stabilizes the
closed-loop control system. Remarkably, the outcomes obtained from the robust stability region
portrayed in Figure 2 coincide with these results. Furthermore, to enhance the system’s disturbance
rejection capability, a plot of Hs(ω) has been generated for Ms(s) = (s+1000) (s+30.67) (s+0.001)

s2+30.67s+247.3
in Figure 8. It can be observed from Figure 8 that Hs(ω) < 0, ensuring the preservation of
robust performance. With regards to robust performance, we specifically opt for a controller that
satisfies the inequality HS(s) < 0: this selection criterion is motivated by the objective to attain
robust performance. Figure 9 exhibits the step responses, which demonstrate an acceptable level of
performance. Figure 10 shows a comparison of TID (26), PID (30), and FOPID (31) controllers for
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the nominal plant (19), based on the methods proposed in [41]. As shown in Figure 10, the TID has
a better performance, in the sense of faster responses and smaller overshoots.

CPID(s) = 2.12224 +
2.4679

s
+ 0.4563 s (30)

CFOPID(s) = 0.1112 +
0.0694

s1.2 + 0.7 s (31)

Figure 4. Mikhailov’s plot for ψ(s) = ∆0
1(s)

(s+1)4 .

Figure 5. Mikhailov’s plot for ψ(s) = ∆0
2(s)

(s+1)4 .
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Figure 6. Curve of H(ω) corresponding to C1(s).

Figure 7. Curve of H(ω) corresponding to C2(s).

Figure 8. Curve of Hs(ω) corresponding to C1(s).
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Figure 9. Step responses corresponding to C1(s).

Figure 10. Step responses corresponding to FOPID (blue color), PID (black color), and TID (red color).

5. Conclusions

This paper presented a novel approach for obtaining the stabilizing region of TID
controllers applicable to fractional-order interval plants. Initially, a pertinent theorem was
introduced, to analyze the robust stability of a closed-loop system, which comprised a
TID controller and an interval fractional-order plant. Based on the insights gained from
Theorem 1, a practical algorithm was devised for computing the stabilizing region of TID
controllers. An auxiliary function was proposed, to enhance the disturbance rejection
control criteria. Finally, the effectiveness of the proposed approach was verified via the
demonstration of two examples. It is important to acknowledge that the current discussion
has not specifically addressed the matter of finding optimal TID controllers; therefore, future
endeavors could involve exploring techniques to determine the optimal TID control or to
calculate the stabilizing region for fractional TID controllers within fractional-order interval
systems that incorporate an interval time delay. These aspects present potential avenues for
further research and development in this field.
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