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Abstract: In the present paper, we examined the extendibility of evolution subalgebras generated
by idempotents of evolution algebras. The extendibility of the isomorphism of such subalgebras to
the entire algebra was investigated. Moreover, the existence of an evolution algebra generated by
arbitrary idempotents was also studied. Furthermore, we described the tensor product of algebras
generated by arbitrary idempotents and found the conditions of the tensor decomposability of
four-dimensional S-evolution algebras. This paper’s findings shed light on the field of algebraic
structures, particularly in studying evolution algebras. By examining the extendibility of evolution
subalgebras generated by idempotents, we provide insights into the structural properties and
relationships within these algebras. Understanding the isomorphism of such subalgebras and their
extension allows a deeper comprehension of the overall algebraic structure and its behaviour.
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1. Introduction

In the theory of non-associative algebras, several classes, such as baric, evolution,
Bernstein, train, stochastic, etc. algebras, are located in the intersection of abstract
algebra and biology [1-3]. The study of these algebras has addressed several problems
in population genetics theory [3]. We emphasize that the origin of population genetics
problems first appeared in the work of Bernstein [4], where evolution operators describing
genetic algebras were explored (see [3,5,6]). On the other hand, Tian [7-9] introduced
different types of evolution algebras that have a dynamic nature. These kinds of algebras
are non-associative (see [10]). Later on, evolution algebras appeared in several genetic
law models [10-15]. Moreover, relations between evolution algebras and other branches
of mathematics have studied in many papers (see, for example, [16-21]).

From the definition of evolution algebra, one can canonically associate weighted
digraphs, which identify the algebra. Hence, algebraic tools are used to investigate
certain features of digraphs [8,22,23]. In most investigations, evolution algebras were
taken as nilpotent [22,24-30]. A few papers have been devoted to non-nilpotent evolution
algebras [31-33]. Therefore, in [34], the exploration of Volterra evolution algebras was
initiated; these are related to genetic Volterra algebras [35]. Furthermore, in [36], we
studied S-evolution algebras which are more general than Volterra ones. In the mentioned
paper, solvability, simplicity, semisimlicity, and the structure of enveloping algebras
using the attached graph were carried out. In [37], we introduced an entropy of Markov
evolution algebras, allowing us to treat their isomorphism with entropy. The reader is
referred to [38] for a review on the recent development of evolution algebras.
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Remarkably, a subalgebra and an ideal of a population’s genetic algebra can be
understood as a subpopulation and a dominating subpopulation concerning mating.
On the other hand, to understand the structure of subalgebras, it is essential to explore
idempotent elements of evolution algebras. In general, the existence of idempotent
elements for a given evolution algebra is an open problem [39]. Therefore, in the present
paper, we first studied some evolution algebras that have idempotent elements. Fur-
thermore, the extendibility of subalgebras generated by idempotent elements of some
S-evolution algebras was investigated. Consequently, the question of the extendibility
of isomorphism was also established. One of the main aims of present paper was to
construct algebras with idempotent elements and study when these kinds of algebras
become evolution algebras; this construction allows the production of evolution algebras
that have an idempotent element while, in general, this kind of evolution algebra may
not exist (see [39]). Our research provides an advantage in studying evolution algebras
by addressing the challenging task of their classification. Rather than approaching the
classification problem directly, we focused on the isomorphism of subalgebras generated
by idempotents. This approach simplifies the classification process by leveraging the
isomorphism of subalgebras as a means to understand the isomorphism of the entire al-
gebra. By examining the isomorphism of subalgebras, we gained insights into the overall
structure and properties of the algebra, making the classification task more manageable
and efficient.

The current paper is organized as follows. Section 2 provides some basic properties
of S-evolution algebras. Section 3 deals with idempotent elements of some S-evolution
algebras. Furthermore, the extendibility of subalgebras generated by those idempotent
elements was examined. In Section 4, we construct low dimensional algebras whose
basis is idempotent elements and investigate their evolution algebraic structure. Here,
we stress that the obtained algebras do not belong to the S-evolution algebra class.
Furthermore, it is not solvable and not nilpotent. Finally, Section 5 is devoted to the
specific properties of the tensor product of S-evolution algebras.

2. S-Evolution Algebras

Assume that € is a vector space over a field K equipped with binary operation - and a
basis B := {ey,ep,...,e,}. Atriple (&, -, B) is called an evolution algebra if e; - ej=0,1i# ],
e;j-ej = Y _q4aixex, i > 1. The collection B is referred to as a natural basis. Moreover,
the corresponding matrix A = (a;;)!! j—1 18 called a structural matrix of €, with respect to B.

From the definition of evolution algebra, one infers that it is commutative. Moreover,
one has rankA = dim(€ - €). In what follows, unless otherwise stated, the field K is
assumed to be algebraically closed with zero characteristic.

We recall that [36] a matrix A = (a;;)!;_, is said to be S-matrix if

ij=
(i) a;=0foreveryiec {1,...,n};
(i) a;; #0ifand only if a;; # 0 (i # j).

An evolution algebra € is called an S-evolution algebra if its structural matrix is an
S-matrix. If a structural matrix is skew-symmetric, then the corresponding evolution
algebra is called Lotka—Volterra (or Volterra) evolution algebra [34,40]. One can see that
any Lotka—Volterra algebras form a class of S-evolution algebras. This was one of the
motivation behind introducing S-evolution algebras [36].

By &;(n) and €} (n) (here 1 is even), we will denote the set of all S-evolution algebras
whose structural matrices have the following form, respectively:



Mathematics 2023, 11, 2764 30f 18

0 ay
oo 0
0 {O a3} :
A= ag 0 )
. . 0
0 ay1
0 0 |0 ]
0 b
0 0 0 {bz O}
0 by
0 o [0t
B=| s ; | @
0 bn73
0 [bnz 5 } 0 0
0 bnfl
|:bn 0 ] 0 0 0

where a, £ 0, b #0forallk € {1,...,n}.

Theorem 1. Let & = (e : 1 <k <n)and & = (fy: 1 <k < n) belong to €,(n). Then,
&1 = &y ifand only if

fa1 = AxCerni-n)
fa = BrCerany;

here, T € Sy, such that if (k) = m then t(k+1) = m + 1, and

2
Ay = 3 bk bok—1 , (3)
A7(2k) Ay(2k—1)
by \ [ b
By = 3 <a 2k ) < 2k—1 )/ 4)
m(2k) Ar(2k—1)

—1+4 /=3
2 7

Ce{L,\A}, A= ®)
wherel <k <n/2.

Proof. Assume that the mapping ¢ : £ — &; is an isomorphism, then
n
fi=Y Yirer.
k=1
For any i # j, one has
n
fifi = Y vatier = 0.
k=1
Due to e? # 0 forall 1 < k < n, and ¢? are linearly independent, we infer that YikPjx = 0.

Lett € S, . Then,
fm = lpmn(m)en(m)'
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Hence,
{ fok-1 = Pok—1,x(2k-1)Cr(2k-1) ©)
fox = ParnCrn)-
Let us consider f2,_, and f2. Then,
f22k71 = aﬂ(Zk—l)lpgk—l,n(Zk—l)e”(z) @)
f22k = Ax2) lp%k,n(zk)en(Zk—ly
On the other hand,
f22k71 = bzk*ﬂfb%k,n(Zk) e”(Zk) (8)
2 _ 2
fae = bWy pok—1)Cm(2k-1)-
Comparing the equations of systems (7) and (8), one finds
a 2 = b 2
(2k-1)¥2k—1,7(2k—1) 2k—1¥5 7 (2k) 9
Arg(o0) P2 = byy? :
70(2k) ¥ 2k, 7 (2k) 2k 2k—1,7(2k—1)

Solving the system (9) for ;1 7(2x—1), One gets

)\ (k-1 \° 3 B
( bok >( bor 1 ) Pok—1,m2k-1) — 1 =0 (10)

The solutions of (10) are ;1 (2xk—1) = CAg and P 7(2x) = BiC, where A, By and C
are given by (3)—(5).

Conversely, the isomorphism between €1 and &, can be performed by the following
change of basis

fok-1 = Akcen(Zk—l)
fa = BiCerap)-

This completes the proof. [

3. Idempotents of S-Evolution Algebras

In this section, we describe the set of all idempotent elements of algebras belonging
to &,(n). Recall that an element x € € is called idempotent if x - x = x.

Theorem 2. Let € belong to € (n). Then, the idempotent elements of € have the following form:

1
72 €2i,
\/ a5;a2i—1

-

——0i 1+

i
£ 3/ -
i=1 azl 1a21 =

[y

where K; € {0,1,A,A}.

Proof. To find the idempotent, we have to solve p? = p, let p = YI'_; a;e;; then, one can
rewrite p as follows:
1 n
= Z Npj_1€0i—1 + Z K2;€;.
i=1 i=1
Consider

n n

2

=) 05 165 1+Z"‘zlezz Z"‘zz 102 1‘321+2"‘21“21621 1-
i=1 i=1 i=1 i=1
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Comparing the last two equations, we have the following system:
2 s A2
Kpi—142i—1 = K2i, Qi = &i—1.

Solving this system, we have the following cubic equation, ap;a3; (a3, ; —1 =0. Then,

ily find ay; 1 K here K; € {0,1,A,1}, wh
one can easily find ay; m \/“2”721 where { }, where,

as before, A = _1% V=3 Hence,

1

MN\
mw‘:

0,

i

— 01+ 2
1 ws/ﬂzl 192i i=1 ay;a7i—1
where K; € {0,1,A,A}. O

Remark 1. We emphasize that, for each i, and any choice of K; in the expression

n
. 2
; ——6i1 T+ Z TS
i=1 ’/QZZ 192i i=1 ‘/a21a21 1

one can get the idempotent element.

NIz

The following corollary describes the idempotent elements of an S-evolution algebra
whose structural matrix is given as a one block matrix in (1).

Corollary 1. Let &1 be an S-evolution algebra whose structural matrix is one of the block matrix
in (1) say k. Then the idempotent elements of €1 are as follows:

ng) = S >€2k-1+ . €k,
\/3 (agk) (a2k—1)? v (a21)%(a2k—1)

ng) = S — ~€2k—1 7+ —}\ €2k,
v (a21) (a2x—1)? v (a21)%(a2k—1)

Pék) = —Z =€2%—1 T S —7—=C2%
v (azk)(ﬂzk 1) v (azk)z(ﬂzk—l)

where, as before, A = _1%‘/?3, 1<k<mn/2.
The proof of the corollary can be readily deduced from Theorem (2) and Remark (1).

Remark 2. Here, we stress the followz’ng points:

(i) The idempotents p]({) andp ( # j)are orthogonal ie., p,(c) = 0forany k;, k; € {1,2,3};

(i) Foreachk € {1,.. n/2} any pair of {p1 , Pz /D3 )} is lznearly independent;

(iti) Foreachk € {1,.. n/2} the set {pl , p2 /D3 )} is linearly dependent;

(iv) Each set {pgk) ,’:fl, {Pz 12121/ {p3k)}”/2 itself consists of linearly independent elements.
Let us consider a subalgebra generated by those orthogonal idempotent elements

of evolution algebra € € &,(n). To define it, let us pick a collection ¥ = {k; € {1,2,3} :

1 <i< %} Now, define

M) = a1g<p,§? L1<i< > (11)

NS



Mathematics 2023, 11, 2764

6 of 18

(i)

Here, p; " is an idempotent element corresponding to the block matrix i in (1). We
note that from each block we take only one idempotent element. Furthermore, the num-
ber of subalgebras that can be constructed as in (11) equal 32. However, the following
proposition shows that any different choice of such subalgebras is isomorphic.

Proposition 1. Let x = {k; € {1,2,3} : 1 <i< 5}, & ={k€{1,23}: 1<i< 5} be
two different collections. Assume that Mg{) and Mg?) are the corresponding subalgebras defined
by (11). Then, MY = M.

The proof is straightforward. Hence, it is omitted.
Due to Proposition 1, in what follows, we will consider the following subalgebra:

Mg) = alg<p§i) 1 1<i< n/2>, (12)

where1 = (1,...,1).

Theorem 3. Let €1,Ey € &y(n), such that (&,{e;}! ;) and (€2, {fi}! ). Assume that
Méll) = alg<pg’) :1<i < n/2>, and M((‘Ilz) = alg<q§]) :1<5< n/2> are two subalge-
1)

(1) into MEEZ can

bras of & and &, defined by (12), respectively. Then, any isomorphism from Mg

be extended to an isomorphism between €1 and ;.

Proof. We first notice that idempotent elements have the following forms (see Corollary 1):

1
72321‘
\3/ a2i—145;
1 1
5]1) = s/ + 72](2]*
\3/ b2j—1b2j \3/ b2j—1b2j
1) ; )

Since Mgl) and Mfgz are isomorphic, there exists a bijective mapping, say ¢ from M

onto M(gll), which can be defined by

i 1
i
a3 12

! foi-

ej-1+

N
o) = Y appt).
k=1

Now, for any s # r, we have 4)(qgs>q§r)) = 0, which implies that Ek%:l txsktx,kpgk) =0.
The linear independence of the set { pgk) : 1 <k < 5} yields that aga,, = 0 for any
1 <s # r < 7. Hence, gb(qgs)) = zxw(s)pgg(s)), for some permutation ¢ € Sy. On the
other hand, the equality (/)((qgs))z) = (¢( gs)))2 implies that a,,(;) = 1. Consequently,
(p(qgs)) = p‘f(s). Let us consider

4’(‘79)) = P‘lT(]) T 2 ()1 + T 2 ()
De(j)—1%20(j) 120 (j)=1%4(j)

Define a permutation 77 of {1,2,...,n} by
m(2j —1) =20(j) — 1, (2f) = 20(j).

Hence,
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1 1
o(g0) = p70 = et L)
Tr(2j-1)"m(2) n(2-1)Tn(2)

By Theorem 1, the isomorphism, say 3 between £; and &5, can be chosen as follows:

P(faj-1) = Aerj1)
¥(f2) = Benaj),

2
j= P P ’
7(2)) m(2j-1)
2
go_? by; byj1
! ar2) ) \Orj-1))

where, as before,

Moreover, we have

0y — 1
P(qy") = P(foj-1) + ——=19(f2))
N b%jq \3/b2] 1172]
1
= Alec BE27T
%, 1b2 e/bz] 1b2]
= 7(2j—1) 7(2f)
2] 2] 2] 14 2]
= ()1 T T C2))
\/ 2(7(] 1%20(j) aZV() l6120(])

which yields ¢ = ¢ forall x € Mgl) ; this completes the proof. O

In fact, for a linear subspace €; of an evolution algebra &, the notion of a subalgebra
of € is different than that of the usual one, since the definition of the evolution algebra
depends on a natural basis [39].

Let € be an evolution algebra and £ be a subspace of €. If £; has a natural basis
{ei : i € A1}, which can be extended to a natural basis {¢; : j € A} of €, then &1 is called
an evolution subalgebra, where A1 and A are index sets and A is a subset of A (see [9],
for details).

Define

Supp(p) := {k ta #0, p= i“kek}-

k=1

In what follows, for the sake of simplicity, we always assume that dim(€) = dim(€?).
It is important to note that, if this condition is not satisfied, i.e., if the dimension of € is
not equal to the dimension of £, then several cases may arise and it becomes difficult
to cover all of these cases comprehensively. The analysis and classification of evolution
subalgebras, as well as the extendibility of isomorphisms, become more complex in
such scenarios.

Proposition 2. Let € be an evolution algebra with dim(€) = dim(&?). Let p and q be two
orthogonal idempotents. Then, Supp(p) N Supp(q) =
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Proof. Due todim(&) = dim(€?), theset {e?,¢3,...,e3} is linearly independent. Suppose
that there is s € Supp(p) N Supp(q). Then, from pg = 0 together with

p= Z Xk, 4= Z X,

keSupp(p) meSupp(q)

one finds a2e? = 0, which implies 2> = 0. Hence, we get a contradiction with our
assumption. []

Example 1. Let € be a four dimensional S-evolution algebra that has the structural matrix

oo R o
e e R
—_ o oo
S~ oo

The idempotents of this algebra are (see Theorem 1):
p1=e1+ey, pr = Aep +Aey, p3 = Aeg + Aep

ps =e3+ey, p5 = Aes+ Aey, po = Aez + Aey.

Let us consider subalgebra Mg, generated by orthogonal idempotents. We may choose Mg as

Mg = alg(p1, pa)-

Now, we are going to show that this algebra has a natural basis. Let {wy, w;} be a natural basis
of Mg; then,

w1 = Apl + Bp4
wy = Cpy + Dpg.

From wiwy = 0, we have ACpy + BDp, = 0. Hence, we may assume that
w1 = Apl, wy = Dp4

Next, suppose that {wy, wy, w3, wy} is a natural basis of &; then,

wy = Ap
wy = Dpy
w3 = 7Y11€1 + Y1262 + y13€3 + Y1464
Wy = Y2101 T 72202 + Y2363 + Y2484,

with det(F) # 0 where

A A 0 0

0 0 D D

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24-
However, wyws = 0 yields that y11 = 12 = 0 and wows = 0 implies y13 = Y14 = 0. So,
w3 = 0. Hence, {w1, wo, w3, w4} is not a natural basis of €, which means that {wy, wy} is not
an extendible basis. Thus, Mg is not an extendible evolution subalgebra.

F =

In what follows, by M¢ we denote the subalgebra of € generated by all orthogonal
idempotents of €. It is important to note that € is an evolution algebra, which may or
may not be an S-evolution algebra.
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Theorem 4. Let (&, {e;}_,) be an evolution algebra and Mg be the subalgebra generated by all
orthogonal idempotents of €, then the following statements hold true:

(i) Ifdim(Mg) = dim(&), then Mg is a trivially extendible evolution subalgebra;

(i) Ifdim(Mg) < dim(&), and for each idempotent p € Mg one has |Supp(p)| = 1, then
Me¢ is an extendible evolution subalgebra;

(iii) If dim(Mg) < dim(&) and |Supp(p)| > 1 for some idempotent p € Mg, then Mg is not
an extendible evolution subalgebra.

Proof. Assume that Mg = Alg(p1,p2,--- Pm)-

(i) Since m = dim(¢&), then one can find that {f1, fo,... fu} with f; = p; is an
extendible natural basis;

(ii) Assume that dim(Meg) < dim(€). We need to show that M¢ has a natural basis.
Assume that {f1, f2, ..., fu} is a natural basis for Mg, then f; = YL | aypi- By fif;i =0,
one finds a; e = 0 for any i # j, Hence, we may assume without loss of generality that
fi = a;;p; is a natural basis of M¢. Next, we show that {f1, f2,..., fm, ..., fu} is a natural
basis of £, where

fi=wip, 1<i<m 13)
fi =Xk Bixer, m+1<j<mn

Consider flf] =0, wherel <i <mm+1 < j < n. Then, f] = Zk¢supp(f’_) ﬁjkek,
m+1<j<n.Then, |Supp(f]~)| <n—m.Now, forany r,swithr #s,m+1<r,s<n,
one has
frfs = Z ,Brlﬁslel2 =0,
1¢Supp(f;)
which yields 8,85 = 0 forany m +1 < r # s < n. Therefore, forany m +1 < j <n, we
get |Supp(fj)| = 1.Hence, {f1, f2,---, fm,--., fu} is a natural basis of &;
(iii) By (ii) {f1, f2,- - -, fm } is a natural basis of M¢. Consider f;f; = 0, then

fi= 2 Bikex, m+1<j<n.
k#Supp(f;)
So,
Supp(fj)| = n — UL, Supp(fi)| <n—m.
Then m +1 < I < n exist such that |Supp(f;)| = 0; this means that f; = 0 for some
m+1 <1< n.Hence, {f1, f2,..., fm} is not an extendible basis. []

Theorem 5. Let (&1, {e;}! ;) and (&1, {fi}} ;) be two evolution algebras. Assume that
Mg, =alg(p;:1<i<m), Mg, = alg(q; : 1 < i < m), are two extendible evolution
subalgebras generated by all orthogonal idempotent elements of €1 and &,, respectively. Then, the
isomorphism between Mg, and Mg, can be extendible to an isomorphism between €1 and &,.

Proof. Assume that dim(&;) = dim(Meg, ), then Mg, = &;. In this case, there is nothing
to prove.

Suppose that dim(Mg,) < dim(€;) and let ¢ be an isomorphism between Mg, and
Mg, given by:

o(pi) = Y wird.
=

Using the orthogonality property for any 1 <i # j < m, one finds

n
pirj =Y, Xk jk gk = 0.
k=1
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This implies ajxajx = 0 forany 1 <i # j < m. Thus,

4)(pl) = Qin(i)dn(i), T € Sm.

Due to
¢(p?) = ¢(pipi) = ¢(pi)
one gets &; ;) = 1, which yields
¢(pi) = qni)
for some permutation 7 of {1,...,m}.
Since Mg, Mg, are extendible evolution subalgebras, then

{p1/~ < Pmslm1s - - -/e'rl}

and
{q1/~~~5]m/fm+1/~-,fn}

are the natural basis of €1 and &;, respectively.
Let us construct an isomorphism between &£; and &, as follows:

{tp(ru) = :1<i<m

where 77 is a permutation of {m +1,...,n}. Hence, ) = ¢ forall x € Mg, . This completes
the proof. O

Remark 3. From the above given construction, we infer that an isomorphism could be constructed
in many ways.

Proposition 3. Let € be an n-dimensional S-evolution algebra and let p be any nonzero idempo-
tent, then |Supp(p)| > 1.

Proof. Suppose that p = a;e; is a nonzero idempotent, then p? = a?e? = p = a,e;. Using
the definition of the structural matrix of an S-evolution algebra, one finds e% =) =1 aijej;
then, zx? Zf#]-:l ajjej = aje;. Thus, a; = 0. Therefore, p = 0, which is a contradiction.
Hence, [Supp(p)| > 1. O

Corollary 2. Let € be an n-dimensional S-evolution algebra and let Mg be defined as above.
Ifdim(Mg) < dim(&), then Mg is not an evolution subalgebra.

Proof. The proof immediately follows from Proposition 3 and (iii) of Theorem 4. O

4. Construct Evolution Algebra from Given Idempotent Elements

In this section, we construct a low dimensional algebra generated by idempotent
elements. Namely,
M := Alg(p;: 1 <i<3). (14)

Assume that the table of multiplication of this algebra is defined as follows:
PiPy { pi  i=], (15)

where each of {p;} are linearly independent and ¢;; : I x I — I, I = {1,2,3}.
Now, we are going to study when M becomes an evolution algebra. To answer to
this question, we need the next auxiliary fact.
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Proposition 4. Let ¢;; : I x I — I be given, where I = {1,2,3}. Then, the following statements
hold true:

(i) If ¢;j is surjective such that ¢;; = k, k & {i,j}, then the set {p; : 1 <i < 3} is linearly
dependent;

(ii) If ¢yj is surjective such that ¢;; =k, k € {i,j}, then the set {p; : 1 < i < 3} is linearly
independent;

(iii) If ¢ij is not surjective, then the set {p; : 1 < i < 3} is linearly independent.

Proof. (i). If ¢;; is surjective with ¢;; = k, k & {i,j} and we assume that

3
Ajpj =0, (16)
j=1

then by multiplying both sides of (16) by p;, one gets

3 3
pi (2 AfPf) =) Ajpg,; =0.
j=1 j=1

Hence, we obtain the following system:
A2 = MoAs, A3 = AiAs, A = A,

The solution of the above system is A = Ay = A3. Plugging these values into (16)
and assuming Ay # 0, we get p1 + p» + p3 = 0. Hence, the set {p; : 1 < i < 3}is
linearly dependent;

(ii). If ¢;; is surjective with ¢;; = k, k € {i,j}, then without loss of generality, we
may assume that ¢1p = 1, $13 = 3, P23 = 2. Now, let us assume that

3

]

Now, multiplying both sides of (17) by p;, we find

3 3
pi (Z AfPf) = L Aipg,; = 0.
j=1 j=1
Hence, one gets

()\1 + /\2)p1 + Azps =0, }\1}71 + ()\2 + /\3)p2 =0, /\zpz + ()\1 + )\3)]93 =0.

It is not difficult to find that the solution of the last system is Ay = A, = A3 = 0. Hence,
the set {p; : 1 <i < 3} is linearly independent.
(iii). Assume that ¢;; is not surjective, here we consider two cases as follows:

Case1. If |¢;;| = 1. Without loss of generality, we can assume that ¢;; = 1. Let

3
j=1

Consider now,

n
p2 Y Aipj = (A1 +A3)p1 + Azp2 = 0.
j=1
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Case 2.

Since each of p; are linearly independent, then Ay = —A3, Ay = 0. On the
other hand,

n
p3 Y _Aipj = (A1 + Az2)p1 + Azps = 0.
=1

Again using the linear independence of p;, then A; = —A, =0, A3 = 0. Hence,
the set {p; : 1 <i < 3} is linearly independent.

If |¢;j| = 2, then, without loss of generality, we may assume that ¢;; € {1,2}
such that ¢1o = 2, P13 = 1, ¢3 = 2. The other choices in the same manner will
give the same result. Suppose that

3
j=1
Now, let us consider
n
p1 Z Ajl’j = (/\1 + }\3)}71 + Aapy = 0.
j=1

The linear independence of p; implies A; = —A3, A = 0. On the other hand,

n

p3 Y Ajipj = (A1 +A2)p1+Asp1 =0,
j=1

which again by the linear independence of p;, one gets Ay = —A, =0, A3 =0.
Hence, the set {p; : 1 <i < 3} is linearly independent.

This completes the proof. [

Theorem 6. Let M be an algebra defined by (14) and let ¢p,: I x I — 1, I = {1,2,3} be sur-

jective. Then the following statements hold true:

(i) M is an evolution algebra if ¢y, =k, where k ¢ {l,m};
(ii) M is not an evolution algebra if ¢y, =k, where k € {I,m}.

Proof. (i). Assume that ¢;,, = k, where k ¢ {I, m}. By (i) of Proposition 4, we infer that
the algebra M is two-dimensional. Let us suppose that {wy, w,} is a natural basis for M.
Then, we have the following change of basis:

2
w; = 2 Xk Pk
k=1

with det‘(lx,'j)lz,j:1 # 0. Then, M is an evolution algebra if and only if wyw, = 0, which

implies

a11811 =0, aqqann + apa +a12f2 = 0.

The solution of the last system is

x11 =1, a1p = —aq1, &1 =0, app = 1.

So, we have the following two-dimensional evolution algebra:

w, = p1—pP2
wy = pz.

Thus, M is an evolution algebra;
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(ii). Assume that ¢, = k, k ¢ {I,m}. Then, by (ii) of Proposition 4, M is thee-
dimensional. Let us suppose that {w;, w,, w3} is a natural basis for M. Then, we have
the following change of basis:

3
w; = Z Xk Pk
k=1

with det(oci]-)?, =1 # 0. Then, M is an evolution algebra if and only if w;w; = 0, which
implies that

Nk + Qi Kjm + Kim ] = 0.
Assume that | = k, then the above system becomes as follows:

Nikljk + Q& + Xy Xjk = 0.

One can easily find that the solutions of the last system always have the property
det(rxi]-)f’ i1 =0 A similar result is m = k. Hence, in this case, M is not an evolu-
tion algebra. O

Theorem 7. Let M be an algebra defined by (14) and let ¢y, not be surjective, then M is a
three-dimensional evolution algebra.

Proof. Here, we shall consider two cases:

Casel. If |p;,| = 1. Assume that ¢, = g, q € {1,2,3}. Let w;, i = 1,3 be a natural
basis for M. Then, we have the following change of basis:

3
w; = Z Xk Pk-
k=1

with det(acik)?kzl # 0 if M is an evolution algebra if and only if w;w; = 0 for
anyi#j, i,j= 1, 3. Now, consider wiwj; then, we have the following system:

3 3
Z ocikajkpk + Z (wilﬂé]'m + "‘im"‘jl>i’¢zm =0, #m. (18)
k=1 I,m=1

Rewriting the above system, one has

3 3 3
Nig <Z Déjk> + Z Dé,‘r< Z “j5> =0
k=1 1=r#q 1=r#s
txqtattzo, t#q, 1§t§3

If g = 1, then the solution of the last system is the following one: a7 = a1 =

a31 = 1, 13 = azp = —1 and the remaining values are zero. Hence,
w1 = pP1—P3
w2 = P
w3z = p1— P2

If g = 2, then the solution of the above system is as follows: a1p = a2 = a3 =1,

®13 = a3z = —1 and the remaining values are zero. Hence,
wy = pP2—p3
wy = P2

w3 = Pp1—p2.
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If g = 3, then the solution of the above system is as follows a1y = a3 = a3; =1,

®13 = azp = —1 and the remaining values are zero. Hence,
wy = p2—p3
w2 = Pp3
w3 = pP1— p2.

Hence, in this case, M is an evolution algebra.

Case2. If |¢;,,| = 2. In this case, we have several possibilities of ¢;,,,. We consider one
possible case, and other cases can be proceeded in the same manner. Assume
that ¢1o0 = 13 = 1, ¢p3 = 2. Let w;, i = 1,3 be a natural basis for M. Then, one
can write

3
w; = 2 XikPk-
k=1

with det(a;)?,_; # 0. Then, M is an evolution algebra if and only if w;w; = 0
for any i # j, i,j = 1,3. Simple calculations yield that a1; = ay = az = 1,

®1p = a3z = —1 and the remaining values are zero. Hence,
wy = p1—p2
w2 = P
w3 = Pp2—Pps3.

This completes the proof. [J

Now, we are going to study the structure of the algebra M.

Theorem 8. Let M be an algebra defined by (14), then the following statements are true:

(i) If ppy is surjective with ¢y, =k, k & {1, m}, then M is isomorphic to E1 with the following
table of multiplication:
6% = eq, 6'% = €y,

(i) If ¢y, is not surjective, then M is isomorphic to Ey with the following table of multiplication:
et =ei, €5 =ey 5 =e3.

Proof. (i). Let us first find

W} = (p-p)=p—p=w
wy = p3=p2=w.

A simple change of basis yields that this algebra is isomorphic to Ej;
(ii). If ¢y, is not surjective, then

w = (m—p3)=ps-pr1=-w
wy = pi=pi=w
w3 = (p1—p)=p2—p1=—ws

A simple change of basis yields that this algebra is isomorphic to E,.
This completes the proof. [

Remark 4. We stress the following points:

o Thealgebras Eq and E, are not isomorphic;
*  Both algebras Eq and E, are not solvable, hence are not nilpotent.
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5. Tensor Product of S-Evolution Algebras

In this section, we investigate the relation between the set of idempotent elements
of given two-dimensional S-evolution algebras and the set of idempotent elements of
their tensor product. Let us first define the structure matrix of the tensor product of finite
dimensional evolution algebras.

Definition 1 ([41]). Suppose that &1 and €y are two finite dimensional evolution algebras
(over the field K) with a natural basis By = {ey,...,ex} and By = {f1,..., fm}, respectively.
Assume that A = (a;;) and Ap, = (by,,) are the structure matrices associated to €1 and &5,
respectively. Then, the structure matrix of the evolution algebra &1 @ &, relative to the basis
Bi@By={e1®f1,...,e1 ® fm,---,eNn ® f1,...,en ® fn} is the Kronecker product of Ap,
and ABZ’ ie., A31®Bz = ABl ® ABZ‘

Remark 5. We notice that the multiplication of £1 @ &, in the basis By ® By is defined as follows:

(19)

el®f] Zalkle el®f]

Definition 2. An evolution algebra € is tensor decomposable if it is isomorphic to €1 ® Eo, where
&1 and &, are evolution algebras with dim(€1), dim(&,) > 1. Otherwise, & is said to be tensor
indecomposable.

Proposition 5. Let € be an S-evolution algebra and € be tensor decomposable. Then, € = €1 ® &,
with at least one of €1, &5 is an S-evolution algebra.

Proof. Since & is tensor decomposable, then & = &1 ® &, with dim(&1), dim(&;) > 1.
Suppose that &; = (¢;: 1 <i < N),and & = (fj: 1 < j < M) are evolution algebras.

Assume that (ai]-)N

i1/ (bij)%zl, (clj)f\;i{w are the structural matrices of &1, &, &, respec-

tively. Consider

(20)

el®f] Zﬂzklzb/m ez®f]

However, if the structural matrix of £; ® €, is an S-matrix, then from the above equation
one finds a;;b;; = 0; this implies either a;; = 0 or bj; = 0. We may assume that a;; = 0.
Next, let a;s # 0 for some 1 < i # s < N; then, due to the isomorphism between &1 ® &,
and &, one finds a;; # 0. Hence, &, is an S-evolution algebra. [J

Theorem 9. Any four-dimensional S-evolution algebra is tensor decomposable if it is isomorphic
to the following S-evolution algebras:

L2 2 2 2
Ei:ef = e, 6= 63, e3 = ey, €5 = ey.
E,: e% = e3+taey,e 2 = bes + ¢4, e3 =e] +aep, ei = bey + ep.

Proof. Let € be tensor decomposable, then € = €1 ® €, such that with dim(€1), dim(&;) > 1.
Using Proposition 5, we have either €; or &; is an S-evolution algebra. Let us assume
that &4 is an S-evolution algebra with the following table of multiplication:

&1 e% = aey e% = bey.
After simple scaling, we can write the table of multiplication of the above algebra as

8128%282 e%:el.
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E1®Ey: (61 ®f1)2

Now, assume that &, is an S-evolution algebra, then the table of multiplication of &; is
as follows:

&:fi=f fi=h

Then, € is decomposable in this case if £ = €1 ® &, but €1 ® &; has the following table
of multiplication.

=a®fh (@hH)=00fi, (@A) =a®fh (@ H) =6 fi.

Clearly, this algebra isomorphic to E;.
Now, assume that £, is not an S-evolution algebra, then its table of multiplication is
as follows:

& fR=afi +bfy f3=cfi+dfr.

After simple scaling, we can rewrite the table of multiplication of £; as

& fi=fi+bfr ff=cfi+fo

Then, € is decomposable in this case if £ = &1 ® £;. However, £1 ® &, has the following
table of multiplication:

E10&:  (a®fi)’>=(2®fi)+ble2®f), (1®fH) =cle®fi)+(e2® f),
(2® fi)* = (1 ® f1) +b(e1 ® f2), (e2® f2)> = c(e1 ® f1) + (e1 @ fa).

This algebra is isomorphic to E;. O

Theorem 10. Consider the E1 and E; evolution algebras given in Theorem 8. Then, the following
statements hold true:

(i) Eq ® Eq = E, where E is a four-dimensional evolution algebra with the following table of
multiplication:

87 = &n(i)y 7 € Sy;

(ii) Eq ® Ey = E, where E is a six-dimensional evolution algebra with the following table of
multiplication:

87 = &n(i)s 7 € S6;

(iii) E; ® Ep = E, where E is a nine-dimensional evolution algebra with the following table of
multiplication:

87 = (i), T E So.
Proof. (i) Now, let us consider E; ® Eq; then, the table of multiplication is as follows:
(e®f)=e®f, 1<ij<2
This algebras is isomorphic to E with table of multiplication
g%:gk, 1<k<4

Clearly, E = E. Hence, E; ® E1 2 E. The statements of (ii) and (iii) can be proceeded by
the similar argument. This completes the proof. [

6. Conclusions

This research contributes significantly to the field of algebraic structures, particularly
to the study of evolution algebras. By examining the extendibility of evolution subalge-
bras generated by idempotents, we have gained insights into the structural properties and
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relationships within these algebras. The investigation of the extendibility of isomorphism
from subalgebras to the entire algebra sheds light on the overall algebraic structure and
its behaviour. Moreover, the study of the existence of evolution algebras generated by
arbitrary idempotents adds to our understanding of the algebraic landscape. Addition-
ally, the description of the tensor product of algebras generated by arbitrary idempotents
and the determination of the conditions for tensor decomposability of four-dimensional
S-evolution algebras further enrich the knowledge in this area. Overall, this research has
significant importance for advancing our comprehension of evolution algebras and their
structural properties.
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