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Abstract: In the present paper, we examined the extendibility of evolution subalgebras generated
by idempotents of evolution algebras. The extendibility of the isomorphism of such subalgebras to
the entire algebra was investigated. Moreover, the existence of an evolution algebra generated by
arbitrary idempotents was also studied. Furthermore, we described the tensor product of algebras
generated by arbitrary idempotents and found the conditions of the tensor decomposability of
four-dimensional S-evolution algebras. This paper’s findings shed light on the field of algebraic
structures, particularly in studying evolution algebras. By examining the extendibility of evolution
subalgebras generated by idempotents, we provide insights into the structural properties and
relationships within these algebras. Understanding the isomorphism of such subalgebras and their
extension allows a deeper comprehension of the overall algebraic structure and its behaviour.
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1. Introduction

In the theory of non-associative algebras, several classes, such as baric, evolution,
Bernstein, train, stochastic, etc. algebras, are located in the intersection of abstract
algebra and biology [1–3]. The study of these algebras has addressed several problems
in population genetics theory [3]. We emphasize that the origin of population genetics
problems first appeared in the work of Bernstein [4], where evolution operators describing
genetic algebras were explored (see [3,5,6]). On the other hand, Tian [7–9] introduced
different types of evolution algebras that have a dynamic nature. These kinds of algebras
are non-associative (see [10]). Later on, evolution algebras appeared in several genetic
law models [10–15]. Moreover, relations between evolution algebras and other branches
of mathematics have studied in many papers (see, for example, [16–21]).

From the definition of evolution algebra, one can canonically associate weighted
digraphs, which identify the algebra. Hence, algebraic tools are used to investigate
certain features of digraphs [8,22,23]. In most investigations, evolution algebras were
taken as nilpotent [22,24–30]. A few papers have been devoted to non-nilpotent evolution
algebras [31–33]. Therefore, in [34], the exploration of Volterra evolution algebras was
initiated; these are related to genetic Volterra algebras [35]. Furthermore, in [36], we
studied S-evolution algebras which are more general than Volterra ones. In the mentioned
paper, solvability, simplicity, semisimlicity, and the structure of enveloping algebras
using the attached graph were carried out. In [37], we introduced an entropy of Markov
evolution algebras, allowing us to treat their isomorphism with entropy. The reader is
referred to [38] for a review on the recent development of evolution algebras.
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Remarkably, a subalgebra and an ideal of a population’s genetic algebra can be
understood as a subpopulation and a dominating subpopulation concerning mating.
On the other hand, to understand the structure of subalgebras, it is essential to explore
idempotent elements of evolution algebras. In general, the existence of idempotent
elements for a given evolution algebra is an open problem [39]. Therefore, in the present
paper, we first studied some evolution algebras that have idempotent elements. Fur-
thermore, the extendibility of subalgebras generated by idempotent elements of some
S-evolution algebras was investigated. Consequently, the question of the extendibility
of isomorphism was also established. One of the main aims of present paper was to
construct algebras with idempotent elements and study when these kinds of algebras
become evolution algebras; this construction allows the production of evolution algebras
that have an idempotent element while, in general, this kind of evolution algebra may
not exist (see [39]). Our research provides an advantage in studying evolution algebras
by addressing the challenging task of their classification. Rather than approaching the
classification problem directly, we focused on the isomorphism of subalgebras generated
by idempotents. This approach simplifies the classification process by leveraging the
isomorphism of subalgebras as a means to understand the isomorphism of the entire al-
gebra. By examining the isomorphism of subalgebras, we gained insights into the overall
structure and properties of the algebra, making the classification task more manageable
and efficient.

The current paper is organized as follows. Section 2 provides some basic properties
of S-evolution algebras. Section 3 deals with idempotent elements of some S-evolution
algebras. Furthermore, the extendibility of subalgebras generated by those idempotent
elements was examined. In Section 4, we construct low dimensional algebras whose
basis is idempotent elements and investigate their evolution algebraic structure. Here,
we stress that the obtained algebras do not belong to the S-evolution algebra class.
Furthermore, it is not solvable and not nilpotent. Finally, Section 5 is devoted to the
specific properties of the tensor product of S-evolution algebras.

2. S-Evolution Algebras

Assume that E is a vector space over a field K equipped with binary operation · and a
basis B := {e1, e2, . . . , en}. A triple (E, ·, B) is called an evolution algebra if ei · ej = 0, i 6= j,
ei · ei = ∑n

k=1 aikek, i ≥ 1. The collection B is referred to as a natural basis. Moreover,
the corresponding matrix A = (aij)

n
i,j=1 is called a structural matrix of E, with respect to B.

From the definition of evolution algebra, one infers that it is commutative. Moreover,
one has rankA = dim(E · E). In what follows, unless otherwise stated, the field K is
assumed to be algebraically closed with zero characteristic.

We recall that [36] a matrix A = (aij)
n
i,j=1 is said to be S-matrix if

(i) aii = 0 for every i ∈ {1, . . . , n};
(ii) aij 6= 0 if and only if aji 6= 0 (i 6= j).

An evolution algebra E is called an S-evolution algebra if its structural matrix is an
S-matrix. If a structural matrix is skew-symmetric, then the corresponding evolution
algebra is called Lotka–Volterra (or Volterra) evolution algebra [34,40]. One can see that
any Lotka–Volterra algebras form a class of S-evolution algebras. This was one of the
motivation behind introducing S-evolution algebras [36].

By E2(n) and E∗2(n) (here n is even), we will denote the set of all S-evolution algebras
whose structural matrices have the following form, respectively:
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A =



[
0 a1
a2 0

]
0 · · · 0

0
[

0 a3
a4 0

]
. . .

...

...
. . . . . . 0

0 · · · 0
[

0 an−1
an 0

]


(1)

B =



0 0 · · · 0
[

0 b1
b2 0

]
0 0 · · ·

[
0 b3
b4 0 0

]
...

...
. . .

...
...

0
[

0 bn−3
bn−2 0

]
· · · 0 0[

0 bn−1
bn 0

]
0 · · · 0 0


, (2)

where ak 6= 0, bk 6= 0 for all k ∈ {1, . . . , n}.

Theorem 1. Let E1 = 〈ek : 1 ≤ k ≤ n〉 and E2 = 〈 fk : 1 ≤ k ≤ n〉 belong to E2(n). Then,
E1
∼= E2 if and only if

f2k−1 = AkCeπ(2k−1)

f2k = BkC̄eπ(2k);

here, π ∈ Sn such that if π(k) = m then π(k + 1) = m + 1, and

Ak =
3

√√√√( b2k
aπ(2k)

)(
b2k−1

aπ(2k−1)

)2

, (3)

Bk =
3

√√√√( b2k
aπ(2k)

)2(
b2k−1

aπ(2k−1)

)
, (4)

C ∈ {1, λ, λ̄}, λ =
−1 +

√
−3

2
, (5)

where 1 ≤ k ≤ n/2.

Proof. Assume that the mapping ψ : E1 → E2 is an isomorphism, then

fi =
n

∑
k=1

ψikek.

For any i 6= j, one has

fi f j =
n

∑
k=1

ψikψjke2
k = 0.

Due to e2
k 6= 0 for all 1 ≤ k ≤ n, and e2

k are linearly independent, we infer that ψikψjk = 0.
Let π ∈ Sn . Then,

fm = ψmπ(m)eπ(m).



Mathematics 2023, 11, 2764 4 of 18

Hence, {
f2k−1 = ψ2k−1,π(2k−1)eπ(2k−1)
f2k = ψ2k,π(2k)eπ(2k).

(6)

Let us consider f 2
2k−1 and f 2

2k. Then,{
f 2
2k−1 = aπ(2k−1)ψ

2
2k−1,π(2k−1)eπ(2)

f 2
2k = aπ(2k)ψ

2
2k,π(2k)eπ(2k−1).

(7)

On the other hand, {
f 2
2k−1 = b2k−1ψ2

2k,π(2k)eπ(2k)

f 2
2k = b2kψ2

2k−1,π(2k−1)eπ(2k−1).
(8)

Comparing the equations of systems (7) and (8), one finds{
aπ(2k−1)ψ

2
2k−1,π(2k−1) = b2k−1ψ2

2k,π(2k)
aπ(2k)ψ

2
2k,π(2k) = b2kψ2

2k−1,π(2k−1).
(9)

Solving the system (9) for ψ2k−1,π(2k−1), one gets( aπ(2k)

b2k

)( aπ(2k−1)

b2k−1

)2
ψ3

2k−1,π(2k−1) − 1 = 0. (10)

The solutions of (10) are ψ2k−1,π(2k−1) = CAk and ψ2k,π(2k) = BkC̄, where Ak, Bk and C
are given by (3)–(5).

Conversely, the isomorphism between E1 and E2, can be performed by the following
change of basis

f2k−1 = AkCeπ(2k−1)

f2k = BkC̄eπ(2k).

This completes the proof.

3. Idempotents of S-Evolution Algebras

In this section, we describe the set of all idempotent elements of algebras belonging
to E2(n). Recall that an element x ∈ E is called idempotent if x · x = x.

Theorem 2. Let E belong to E2(n). Then, the idempotent elements of E have the following form:

p =

n
2

∑
i=1

Ki

3
√

a2
2i−1a2i

e2i−1 +

n
2

∑
i=1

K̄i

3
√

a2
2ia2i−1

e2i,

where Ki ∈
{

0, 1, λ, λ̄
}

.

Proof. To find the idempotent, we have to solve p2 = p, let p = ∑n
i=1 αiei; then, one can

rewrite p as follows:

p =

n
2

∑
i=1

α2i−1e2i−1 +

n
2

∑
i=1

α2ie2i.

Consider

p2 =

n
2

∑
i=1

α2
2i−1e2

2i−1 +

n
2

∑
i=1

α2
2ie

2
2i =

n
2

∑
i=1

α2
2i−1a2i−1e2i +

n
2

∑
i=1

α2
2ia2ie2i−1.



Mathematics 2023, 11, 2764 5 of 18

Comparing the last two equations, we have the following system:

α2
2i−1a2i−1 = α2i, α2

2ia2i = α2i−1.

Solving this system, we have the following cubic equation, a2ia2
2i−1α3

2i−1 − 1 = 0. Then,

one can easily find α2i−1 = Ki
3
√

a2
2i−1a2i

, α2i = K̄i
3
√

a2
2ia2i−1

, where Ki ∈
{

0, 1, λ, λ̄
}

, where,

as before, λ = −1+
√
−3

2 . Hence,

p =

n
2

∑
i=1

Ki

3
√

a2
2i−1a2i

e2i−1 +

n
2

∑
i=1

K̄i

3
√

a2
2ia2i−1

e2i,

where Ki ∈
{

0, 1, λ, λ̄
}

.

Remark 1. We emphasize that, for each i, and any choice of Ki in the expression

p =

n
2

∑
i=1

Ki

3
√

a2
2i−1a2i

e2i−1 +

n
2

∑
i=1

K̄i

3
√

a2
2ia2i−1

e2i,

one can get the idempotent element.

The following corollary describes the idempotent elements of an S-evolution algebra
whose structural matrix is given as a one block matrix in (1).

Corollary 1. Let E1 be an S-evolution algebra whose structural matrix is one of the block matrix
in (1) say k. Then the idempotent elements of E1 are as follows:

p(k)1 =
1

3
√
(a2k)(a2k−1)2

e2k−1 +
1

3
√
(a2k)2(a2k−1)

e2k,

p(k)2 =
λ

3
√
(a2k)(a2k−1)2

e2k−1 +
λ̄

3
√
(a2k)2(a2k−1)

e2k,

p(k)3 =
λ̄

3
√
(a2k)(a2k−1)2

e2k−1 +
λ

3
√
(a2k)2(a2k−1)

e2k,

where, as before, λ = −1+
√
−3

2 , 1 ≤ k ≤ n/2.

The proof of the corollary can be readily deduced from Theorem (2) and Remark (1).

Remark 2. Here, we stress the following points:

(i) The idempotents p(i)ki
and p(j)

kj
(i 6= j) are orthogonal, i.e., p(i)ki

p(j)
kj

= 0 for any ki, k j ∈ {1, 2, 3};

(ii) For each k ∈ {1, . . . , n/2} any pair of {p(k)1 , p(k)2 , p(k)3 } is linearly independent;

(iii) For each k ∈ {1, . . . , n/2}, the set {p(k)1 , p(k)2 , p(k)3 } is linearly dependent;

(iv) Each set {p(k)1 }
n/2
k=1, {p(k)2 }

n/2
k=1, {p(k)3 }

n/2
k=1 itself consists of linearly independent elements.

Let us consider a subalgebra generated by those orthogonal idempotent elements
of evolution algebra E ∈ E2(n). To define it, let us pick a collection κ = {ki ∈ {1, 2, 3} :
1 ≤ i ≤ n

2 }. Now, define

M(κ)
E := alg

〈
p(i)ki

: 1 ≤ i ≤ n
2

〉
. (11)



Mathematics 2023, 11, 2764 6 of 18

Here, p(i)ki
is an idempotent element corresponding to the block matrix i in (1). We

note that from each block we take only one idempotent element. Furthermore, the num-
ber of subalgebras that can be constructed as in (11) equal 3

n
2 . However, the following

proposition shows that any different choice of such subalgebras is isomorphic.

Proposition 1. Let κ = {ki ∈ {1, 2, 3} : 1 ≤ i ≤ n
2 }, κ̄ = {ki ∈ {1, 2, 3} : 1 ≤ i ≤ n

2 } be

two different collections. Assume that M(κ)
E and M(κ̄)

E are the corresponding subalgebras defined

by (11). Then, M(κ)
E
∼= M(κ̄)

E .

The proof is straightforward. Hence, it is omitted.
Due to Proposition 1, in what follows, we will consider the following subalgebra:

M(1)
E := alg

〈
p(i)1 : 1 ≤ i ≤ n/2

〉
, (12)

where 1 = (1, . . . , 1︸ ︷︷ ︸
n
2

).

Theorem 3. Let E1,E2 ∈ E2(n), such that (E1, {ei}n
i=1) and (E2, { fi}n

i=1). Assume that

M(1)
E1

= alg
〈

p(i)1 : 1 ≤ i ≤ n/2
〉

, and M(1)
E2

= alg
〈

q(j)
1 : 1 ≤ j ≤ n/2

〉
are two subalge-

bras of E1 and E2 defined by (12), respectively. Then, any isomorphism from M(1)
E1

into M(1)
E2

can
be extended to an isomorphism between E1 and E2.

Proof. We first notice that idempotent elements have the following forms (see Corollary 1):

p(i)1 =
1

3
√

a2
2i−1a2i

e2i−1 +
1

3
√

a2i−1a2
2i

e2i

q(j)
1 =

1
3
√

b2
2j−1b2j

f2j−1 +
1

3
√

b2j−1b2
2j

f2j.

Since M(1)
E1

and M(1)
E2

are isomorphic, there exists a bijective mapping, say φ from M(1)
E1

onto M(1)
E1

, which can be defined by

φ(q(j)
1 ) =

n
2

∑
k=1

αjk p(k)1 .

Now, for any s 6= r, we have φ(q(s)1 q(r)1 ) = 0, which implies that ∑
n
2
k=1 αskαrk p(k)1 = 0.

The linear independence of the set {p(k)1 : 1 ≤ k ≤ n
2 } yields that αskαrk = 0 for any

1 ≤ s 6= r ≤ n
2 . Hence, φ(q(s)1 ) = αsσ(s)p(σ(s))1 , for some permutation σ ∈ S n

2
. On the

other hand, the equality φ((q(s)1 )2) = (φ(q(s)1 ))2 implies that αsσ(s) = 1. Consequently,

φ(q(s)1 ) = pσ(s)
1 . Let us consider

φ(q(j)
1 ) = pσ(j)

1 =
1

3
√

a2
2σ(j)−1a2σ(j)

e2σ(j)−1 +
1

3
√

a2σ(j)−1a2
2σ(j)

e2σ(j).

Define a permutation π of {1, 2, . . . , n} by

π(2j− 1) = 2σ(j)− 1, π(2j) = 2σ(j).

Hence,
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φ(q(j)
1 ) = pσ(j)

1 =
1

3
√

a2
π(2j−1)aπ(2j)

eπ(2j−1) +
1

3
√

aπ(2j−1)a2
π(2j)

eπ(2j).

By Theorem 1, the isomorphism, say ψ between E1 and E2, can be chosen as follows:

ψ( f2j−1) = Aeπ(2j−1)

ψ( f2j) = Beπ(2j),

where, as before,

Aj =
3

√√√√( b2j

aπ(2j)

)(
b2j−1

aπ(2j−1)

)2

,

Bj =
3

√√√√( b2j

aπ(2j)

)2(
b2j−1

aπ(2j−1)

)
.

Moreover, we have

ψ(q(j)
1 ) =

1
3
√

b2
2j−1b2j

ψ( f2j−1) +
1

3
√

b2j−1b2
2j

ψ( f2j)

=
1

3
√

b2
2j−1b2j

Aje2π(j)−1 +
1

3
√

b2j−1b2
2j

Bje2π(j)

=
1

3
√

a2
π(2j−1)aπ(2j)

eπ(2j−1) +
1

3
√

aπ(2j−1)a2
π(2j)

eπ(2j)

=
1

3
√

a2
2σ(j)−1a2σ(j)

e2σ(j)−1 +
1

3
√

a2σ(j)−1a2
2σ(j)

e2σ(j)

= p(σ(j))
1 ,

which yields φ = ψ for all x ∈ M(1)
E1

; this completes the proof.

In fact, for a linear subspace E1 of an evolution algebra E, the notion of a subalgebra
of E is different than that of the usual one, since the definition of the evolution algebra
depends on a natural basis [39].

Let E be an evolution algebra and E1 be a subspace of E. If E1 has a natural basis
{ei : i ∈ Λ1}, which can be extended to a natural basis {ej : j ∈ Λ} of E, then E1 is called
an evolution subalgebra, where Λ1 and Λ are index sets and Λ1 is a subset of Λ (see [9],
for details).

Define

Supp(p) :=

{
k : αk 6= 0, p =

n

∑
k=1

αkek

}
.

In what follows, for the sake of simplicity, we always assume that dim(E) = dim(E2).
It is important to note that, if this condition is not satisfied, i.e., if the dimension of E is
not equal to the dimension of E2, then several cases may arise and it becomes difficult
to cover all of these cases comprehensively. The analysis and classification of evolution
subalgebras, as well as the extendibility of isomorphisms, become more complex in
such scenarios.

Proposition 2. Let E be an evolution algebra with dim(E) = dim(E2). Let p and q be two
orthogonal idempotents. Then, Supp(p) ∩ Supp(q) = ∅.
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Proof. Due to dim(E) = dim(E2), the set {e2
1, e2

2, . . . , e2
n} is linearly independent. Suppose

that there is s ∈ Supp(p) ∩ Supp(q). Then, from pq = 0 together with

p = ∑
k∈Supp(p)

αkek, q = ∑
m∈Supp(q)

αmem,

one finds α2
s e2

s = 0, which implies α2
s = 0. Hence, we get a contradiction with our

assumption.

Example 1. Let E be a four dimensional S-evolution algebra that has the structural matrix

A =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0.


The idempotents of this algebra are (see Theorem 1):

p1 = e1 + e2, p2 = λe1 + λ̄e2, p3 = λ̄e1 + λe2

p4 = e3 + e4, p5 = λe3 + λ̄e4, p6 = λ̄e3 + λe4.

Let us consider subalgebra ME, generated by orthogonal idempotents. We may choose ME as

ME = alg〈p1, p4〉.

Now, we are going to show that this algebra has a natural basis. Let {w1, w2} be a natural basis
of ME; then,

w1 = Ap1 + Bp4

w2 = Cp1 + Dp4.

From w1w2 = 0, we have ACp1 + BDp2 = 0. Hence, we may assume that

w1 = Ap1, w2 = Dp4.

Next, suppose that {w1, w2, w3, w4} is a natural basis of E; then,

w1 = Ap1

w2 = Dp4

w3 = γ11e1 + γ12e2 + γ13e3 + γ14e4

w4 = γ21e1 + γ22e2 + γ23e3 + γ24e4,

with det(F) 6= 0 where

F =


A A 0 0
0 0 D D

γ11 γ12 γ13 γ14
γ21 γ22 γ23 γ24.


However, w1w3 = 0 yields that γ11 = γ12 = 0 and w2w3 = 0 implies γ13 = γ14 = 0. So,
w3 = 0. Hence, {w1, w2, w3, w4} is not a natural basis of E, which means that {w1, w2} is not
an extendible basis. Thus, ME is not an extendible evolution subalgebra.

In what follows, by ME we denote the subalgebra of E generated by all orthogonal
idempotents of E. It is important to note that E is an evolution algebra, which may or
may not be an S-evolution algebra.
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Theorem 4. Let (E, {ei}n
i=1) be an evolution algebra and ME be the subalgebra generated by all

orthogonal idempotents of E, then the following statements hold true:

(i) If dim(ME) = dim(E), then ME is a trivially extendible evolution subalgebra;
(ii) If dim(ME) < dim(E), and for each idempotent p ∈ ME one has |Supp(p)| = 1, then

ME is an extendible evolution subalgebra;
(iii) If dim(ME) < dim(E) and |Supp(p)| > 1 for some idempotent p ∈ ME, then ME is not

an extendible evolution subalgebra.

Proof. Assume that ME = Alg〈p1, p2, . . . pm〉.
(i) Since m = dim(E), then one can find that { f1, f2, . . . fm} with fi = pi is an

extendible natural basis;
(ii) Assume that dim(ME) < dim(E). We need to show that ME has a natural basis.

Assume that { f1, f2, . . . , fm} is a natural basis for ME, then fi = ∑m
k=1 αik pk. By fi f j = 0,

one finds αikαjk = 0 for any i 6= j, Hence, we may assume without loss of generality that
fi = αii pi is a natural basis of ME. Next, we show that { f1, f2, . . . , fm, . . . , fn} is a natural
basis of E, where {

fi = αii pi, 1 ≤ i ≤ m
f j = ∑n

k=1 β jkek, m + 1 ≤ j ≤ n.
(13)

Consider fi f j = 0, where 1 ≤ i ≤ m, m + 1 ≤ j ≤ n. Then, f j = ∑k/∈Supp( fi)
β jkek,

m + 1 ≤ j ≤ n. Then, |Supp( f j)| ≤ n−m. Now, for any r, s with r 6= s, m + 1 ≤ r, s ≤ n,
one has

fr fs = ∑
l /∈Supp( fi)

βrl βsle2
l = 0,

which yields βrl βsl = 0 for any m + 1 ≤ r 6= s ≤ n. Therefore, for any m + 1 ≤ j ≤ n, we
get |Supp( f j)| = 1. Hence, { f1, f2, . . . , fm, . . . , fn} is a natural basis of E;

(iii) By (ii) { f1, f2, . . . , fm} is a natural basis of ME. Consider fi f j = 0, then

f j = ∑
k/∈Supp( fi)

β jkek, m + 1 ≤ j ≤ n.

So,
|Supp( f j)| = n− | ∪m

i=1 Supp( fi)| < n−m.

Then m + 1 ≤ l ≤ n exist such that |Supp( fl)| = 0; this means that fl = 0 for some
m + 1 ≤ l ≤ n. Hence, { f1, f2, . . . , fm} is not an extendible basis.

Theorem 5. Let (E1, {ei}n
i=1) and (E1, { fi}n

i=1) be two evolution algebras. Assume that
ME1 = alg〈pi : 1 ≤ i ≤ m〉, ME2 = alg〈qi : 1 ≤ i ≤ m〉, are two extendible evolution
subalgebras generated by all orthogonal idempotent elements of E1 and E2, respectively. Then, the
isomorphism between ME1 and ME2 can be extendible to an isomorphism between E1 and E2.

Proof. Assume that dim(E1) = dim(ME1), then ME1 = E1. In this case, there is nothing
to prove.

Suppose that dim(ME1) < dim(E1) and let φ be an isomorphism between ME1 and
ME2 given by:

φ(pi) =
m

∑
k=1

αikqk.

Using the orthogonality property for any 1 ≤ i 6= j ≤ m, one finds

pi pj =
n

∑
k=1

αikαjkqk = 0.
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This implies αikαjk = 0 for any 1 ≤ i 6= j ≤ m. Thus,

φ(pi) = αiπ(i)qπ(i), π ∈ Sm.

Due to
φ(p2

i ) = φ(pi pi) = φ(pi)

one gets αiπ(i) = 1, which yields
φ(pi) = qπ(i)

for some permutation π of {1, . . . , m}.
Since ME1 , ME2 are extendible evolution subalgebras, then

{p1, . . . pm, em+1, . . . , en}

and
{q1, . . . qm, fm+1, . . . , fn}

are the natural basis of E1 and E2, respectively.
Let us construct an isomorphism between E1 and E2 as follows:{

ψ(pi) = qπ(i) : 1 ≤ i ≤ m
ψ(ej) = fπ̄(j) : m + 1 ≤ j ≤ n,

where π̄ is a permutation of {m+ 1, . . . , n}. Hence, ψ = φ for all x ∈ ME1 . This completes
the proof.

Remark 3. From the above given construction, we infer that an isomorphism could be constructed
in many ways.

Proposition 3. Let E be an n-dimensional S-evolution algebra and let p be any nonzero idempo-
tent, then |Supp(p)| > 1.

Proof. Suppose that p = αiei is a nonzero idempotent, then p2 = α2
i e2

i = p = αiei. Using
the definition of the structural matrix of an S-evolution algebra, one finds e2

i = ∑n
i 6=j=1 aijej;

then, α2
i ∑n

i 6=j=1 aijej = αiei. Thus, αi = 0. Therefore, p = 0, which is a contradiction.
Hence, |Supp(p)| > 1.

Corollary 2. Let E be an n-dimensional S-evolution algebra and let ME be defined as above.
If dim(ME) < dim(E), then ME is not an evolution subalgebra.

Proof. The proof immediately follows from Proposition 3 and (iii) of Theorem 4.

4. Construct Evolution Algebra from Given Idempotent Elements

In this section, we construct a low dimensional algebra generated by idempotent
elements. Namely,

M := Alg〈pi : 1 ≤ i ≤ 3〉. (14)

Assume that the table of multiplication of this algebra is defined as follows:

pi pj =

{
pφij : i 6= j
pi : i = j,

(15)

where each of {pi} are linearly independent and φij : I × I → I, I = {1, 2, 3}.
Now, we are going to study when M becomes an evolution algebra. To answer to

this question, we need the next auxiliary fact.



Mathematics 2023, 11, 2764 11 of 18

Proposition 4. Let φij : I× I → I be given, where I = {1, 2, 3}. Then, the following statements
hold true:

(i) If φij is surjective such that φij = k, k /∈ {i, j}, then the set {pi : 1 ≤ i ≤ 3} is linearly
dependent;

(ii) If φij is surjective such that φij = k, k ∈ {i, j}, then the set {pi : 1 ≤ i ≤ 3} is linearly
independent;

(iii) If φij is not surjective, then the set {pi : 1 ≤ i ≤ 3} is linearly independent.

Proof. (i). If φij is surjective with φij = k, k /∈ {i, j} and we assume that

3

∑
j=1

λj pj = 0, (16)

then by multiplying both sides of (16) by pi, one gets

pi

(
3

∑
j=1

λj pj

)
=

3

∑
j=1

λj pφi,j = 0.

Hence, we obtain the following system:

λ2
1 = λ2λ3, λ2

2 = λ1λ3, λ2
3 = λ1λ2.

The solution of the above system is λ1 = λ2 = λ3. Plugging these values into (16)
and assuming λ1 6= 0, we get p1 + p2 + p3 = 0. Hence, the set {pi : 1 ≤ i ≤ 3} is
linearly dependent;

(ii). If φij is surjective with φij = k, k ∈ {i, j}, then without loss of generality, we
may assume that φ12 = 1, φ13 = 3, φ23 = 2. Now, let us assume that

3

∑
j=1

λj pj = 0. (17)

Now, multiplying both sides of (17) by pi, we find

pi

(
3

∑
j=1

λj pj

)
=

3

∑
j=1

λj pφi,j = 0.

Hence, one gets

(λ1 + λ2)p1 + λ3 p3 = 0, λ1 p1 + (λ2 + λ3)p2 = 0, λ2 p2 + (λ1 + λ3)p3 = 0.

It is not difficult to find that the solution of the last system is λ1 = λ2 = λ3 = 0. Hence,
the set {pi : 1 ≤ i ≤ 3} is linearly independent.

(iii). Assume that φij is not surjective, here we consider two cases as follows:

Case 1. If |φij| = 1. Without loss of generality, we can assume that φij = 1. Let

3

∑
j=1

λj pj = 0.

Consider now,

p2

n

∑
j=1

λj pj = (λ1 + λ3)p1 + λ2 p2 = 0.



Mathematics 2023, 11, 2764 12 of 18

Since each of pi are linearly independent, then λ1 = −λ3, λ2 = 0. On the
other hand,

p3

n

∑
j=1

λj pj = (λ1 + λ2)p1 + λ3 p3 = 0.

Again using the linear independence of pi, then λ1 = −λ2 = 0, λ3 = 0. Hence,
the set {pi : 1 ≤ i ≤ 3} is linearly independent.

Case 2. If |φij| = 2, then, without loss of generality, we may assume that φij ∈ {1, 2}
such that φ12 = 2, φ13 = 1, φ23 = 2. The other choices in the same manner will
give the same result. Suppose that

3

∑
j=1

λj pj = 0.

Now, let us consider

p1

n

∑
j=1

λj pj = (λ1 + λ3)p1 + λ2 p2 = 0.

The linear independence of pi implies λ1 = −λ3, λ2 = 0. On the other hand,

p3

n

∑
j=1

λj pj = (λ1 + λ2)p1 + λ3 p1 = 0,

which again by the linear independence of pi, one gets λ1 = −λ2 = 0, λ3 = 0.
Hence, the set {pi : 1 ≤ i ≤ 3} is linearly independent.

This completes the proof.

Theorem 6. Let M be an algebra defined by (14) and let φlm: I × I → I, I = {1, 2, 3} be sur-
jective. Then the following statements hold true:

(i) M is an evolution algebra if φlm = k, where k /∈ {l, m};
(ii) M is not an evolution algebra if φlm = k, where k ∈ {l, m}.

Proof. (i). Assume that φlm = k, where k /∈ {l, m}. By (i) of Proposition 4, we infer that
the algebra M is two-dimensional. Let us suppose that {w1, w2} is a natural basis for M.
Then, we have the following change of basis:

wi =
2

∑
k=1

αik pk

with det(αij)
2
i,j=1 6= 0. Then, M is an evolution algebra if and only if w1w2 = 0, which

implies
α11β11 = 0, α11α22 + α12α21 + α12β22 = 0.

The solution of the last system is

α11 = 1, α12 = −α11, α21 = 0, α22 = 1.

So, we have the following two-dimensional evolution algebra:

w1 = p1 − p2

w2 = p2.

Thus, M is an evolution algebra;
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(ii). Assume that φlm = k, k /∈ {l, m}. Then, by (ii) of Proposition 4, M is thee-
dimensional. Let us suppose that {w1, w2, w3} is a natural basis for M. Then, we have
the following change of basis:

wi =
3

∑
k=1

αik pk

with det(αij)
3
i,j=1 6= 0. Then, M is an evolution algebra if and only if wiwj = 0, which

implies that
αikαjk + αilαjm + αimαjl = 0.

Assume that l = k, then the above system becomes as follows:

αikαjk + αikαjm + αimαjk = 0.

One can easily find that the solutions of the last system always have the property
det(αij)

3
i,j=1 = 0. A similar result is m = k. Hence, in this case, M is not an evolu-

tion algebra.

Theorem 7. Let M be an algebra defined by (14) and let φlm not be surjective, then M is a
three-dimensional evolution algebra.

Proof. Here, we shall consider two cases:

Case 1. If |φlm| = 1. Assume that φlm = q, q ∈ {1, 2, 3}. Let wi, i = 1, 3 be a natural
basis for M. Then, we have the following change of basis:

wi =
3

∑
k=1

αik pk.

with det(αik)
3
i,k=1 6= 0 if M is an evolution algebra if and only if wiwj = 0 for

any i 6= j, i, j = 1, 3. Now, consider wiwj; then, we have the following system:

3

∑
k=1

αikαjk pk +
3

∑
l,m=1

(
αilαjm + αimαjl

)
pφlm = 0, l 6= m. (18)

Rewriting the above system, one has

αiq

(
3

∑
k=1

αjk

)
+

3

∑
1=r 6=q

αir

(
3

∑
1=r 6=s

αjs

)
= 0

αqtαtt = 0, t 6= q, 1 ≤ t ≤ 3.

If q = 1, then the solution of the last system is the following one: α11 = α21 =
α31 = 1, α13 = α32 = −1 and the remaining values are zero. Hence,

w1 = p1 − p3

w2 = p1

w3 = p1 − p2.

If q = 2, then the solution of the above system is as follows: α12 = α22 = α32 = 1,
α13 = α33 = −1 and the remaining values are zero. Hence,

w1 = p2 − p3

w2 = p2

w3 = p1 − p2.
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If q = 3, then the solution of the above system is as follows α12 = α23 = α31 = 1,
α13 = α32 = −1 and the remaining values are zero. Hence,

w1 = p2 − p3

w2 = p3

w3 = p1 − p2.

Hence, in this case, M is an evolution algebra.
Case 2. If |φlm| = 2. In this case, we have several possibilities of φlm. We consider one

possible case, and other cases can be proceeded in the same manner. Assume
that φ12 = φ13 = 1, φ23 = 2. Let wi, i = 1, 3 be a natural basis for M. Then, one
can write

wi =
3

∑
k=1

αik pk.

with det(αik)
3
i,k=1 6= 0. Then, M is an evolution algebra if and only if wiwj = 0

for any i 6= j, i, j = 1, 3. Simple calculations yield that α11 = α21 = α32 = 1,
α12 = α33 = −1 and the remaining values are zero. Hence,

w1 = p1 − p2

w2 = p1

w3 = p2 − p3.

This completes the proof.

Now, we are going to study the structure of the algebra M.

Theorem 8. Let M be an algebra defined by (14), then the following statements are true:

(i) If φlm is surjective with φlm = k, k /∈ {l, m}, then M is isomorphic to E1 with the following
table of multiplication:

e2
1 = e1, e2

2 = e2;

(ii) If φlm is not surjective, then M is isomorphic to E2 with the following table of multiplication:

e2
1 = e1, e2

2 = e2, e2
3 = e3.

Proof. (i). Let us first find

w2
1 = (p1 − p2)

2 = p1 − p2 = w1

w2
2 = p2

2 = p2 = w2.

A simple change of basis yields that this algebra is isomorphic to E1;
(ii). If φlm is not surjective, then

w2
1 = (p1 − p3)

2 = p3 − p1 = −w1

w2
2 = p2

1 = p1 = w2

w2
3 = (p1 − p2)

2 = p2 − p1 = −w3.

A simple change of basis yields that this algebra is isomorphic to E2.
This completes the proof.

Remark 4. We stress the following points:

• The algebras E1 and E2 are not isomorphic;
• Both algebras E1 and E2 are not solvable, hence are not nilpotent.
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5. Tensor Product of S-Evolution Algebras

In this section, we investigate the relation between the set of idempotent elements
of given two-dimensional S-evolution algebras and the set of idempotent elements of
their tensor product. Let us first define the structure matrix of the tensor product of finite
dimensional evolution algebras.

Definition 1 ([41]). Suppose that E1 and E2 are two finite dimensional evolution algebras
(over the field K) with a natural basis B1 = {e1, . . . , eN} and B2 = { f1, . . . , fM}, respectively.
Assume that AB1 = (aij) and AB2 = (bkm) are the structure matrices associated to E1 and E2,
respectively. Then, the structure matrix of the evolution algebra E1 ⊗ E2 relative to the basis
B1 ⊗ B2 = {e1 ⊗ f1, . . . , e1 ⊗ fM, . . . , eN ⊗ f1, . . . , eN ⊗ fN} is the Kronecker product of AB1

and AB2 , i.e., AB1⊗B2 = AB1 ⊗ AB2 .

Remark 5. We notice that the multiplication of E1⊗E2 in the basis B1⊗ B2 is defined as follows:

(ei ⊗ f j)
2 =

N

∑
j=1

aik

[
M

∑
m=1

bjm(ei ⊗ f j)

]
. (19)

Definition 2. An evolution algebra E is tensor decomposable if it is isomorphic to E1⊗E2, where
E1 and E2 are evolution algebras with dim(E1), dim(E2) > 1. Otherwise, E is said to be tensor
indecomposable.

Proposition 5. Let E be an S-evolution algebra and E be tensor decomposable. Then, E ∼= E1 ⊗ E2
with at least one of E1, E2 is an S-evolution algebra.

Proof. Since E is tensor decomposable, then E ∼= E1 ⊗ E2 with dim(E1), dim(E2) > 1.
Suppose that E1 = 〈ei : 1 ≤ i ≤ N〉, and E2 =

〈
f j : 1 ≤ j ≤ M

〉
are evolution algebras.

Assume that (aij)
N
i,j=1, (bij)

M
i,j=1, (cij)

N×M
i,j=1 are the structural matrices of E1, E2, E, respec-

tively. Consider

(ei ⊗ f j)
2 =

N

∑
j=1

aik

[
M

∑
m=1

bjm(ei ⊗ f j)

]
. (20)

However, if the structural matrix of E1 ⊗ E2 is an S-matrix, then from the above equation
one finds aiibjj = 0; this implies either aii = 0 or bjj = 0. We may assume that aii = 0.
Next, let ais 6= 0 for some 1 ≤ i 6= s ≤ N; then, due to the isomorphism between E1 ⊗ E2
and E, one finds asi 6= 0. Hence, E1 is an S-evolution algebra.

Theorem 9. Any four-dimensional S-evolution algebra is tensor decomposable if it is isomorphic
to the following S-evolution algebras:

E1 : e2
1 = e4, e2

2 = e3, e2
3 = e2, e2

4 = e1.

E2 : e2
1 = e3 + ae4, e2

2 = be3 + e4, e2
3 = e1 + ae2, e2

4 = be1 + e2.

Proof. LetE be tensor decomposable, thenE ∼= E1⊗E2 such that with dim(E1), dim(E2) > 1.
Using Proposition 5, we have either E1 or E2 is an S-evolution algebra. Let us assume
that E1 is an S-evolution algebra with the following table of multiplication:

E1 : e2
1 = ae2 e2

2 = be1.

After simple scaling, we can write the table of multiplication of the above algebra as

E1 : e2
1 = e2 e2

2 = e1.
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Now, assume that E2 is an S-evolution algebra, then the table of multiplication of E2 is
as follows:

E2 : f 2
1 = f2 f 2

2 = f1.

Then, E is decomposable in this case if E ∼= E1 ⊗ E2 but E1 ⊗ E2 has the following table
of multiplication.

E1 ⊗ E2 : (e1 ⊗ f1)
2 = e2 ⊗ f2, (e1 ⊗ f2)

2 = e2 ⊗ f1, (e2 ⊗ f1)
2 = e1 ⊗ f2, (e2 ⊗ f2)

2 = e1 ⊗ f1.

Clearly, this algebra isomorphic to E1.
Now, assume that E2 is not an S-evolution algebra, then its table of multiplication is

as follows:

E2 : f 2
1 = a f1 + b f2 f 2

2 = c f1 + d f2.

After simple scaling, we can rewrite the table of multiplication of E2 as

E2 : f 2
1 = f1 + b f2 f 2

2 = c f1 + f2.

Then, E is decomposable in this case if E ∼= E1 ⊗ E2. However, E1 ⊗ E2 has the following
table of multiplication:

E1 ⊗ E2 : (e1 ⊗ f1)
2 = (e2 ⊗ f1) + b(e2 ⊗ f2), (e1 ⊗ f2)

2 = c(e2 ⊗ f1) + (e2 ⊗ f2),

(e2 ⊗ f1)
2 = (e1 ⊗ f1) + b(e1 ⊗ f2), (e2 ⊗ f2)

2 = c(e1 ⊗ f1) + (e1 ⊗ f2).

This algebra is isomorphic to E2.

Theorem 10. Consider the E1 and E2 evolution algebras given in Theorem 8. Then, the following
statements hold true:

(i) E1 ⊗ E1
∼= E, where E is a four-dimensional evolution algebra with the following table of

multiplication:
g2

i = gπ(i), π ∈ S4;

(ii) E1 ⊗ E2 ∼= E, where E is a six-dimensional evolution algebra with the following table of
multiplication:

g2
i = gπ(i), π ∈ S6;

(iii) E2 ⊗ E2 ∼= E, where E is a nine-dimensional evolution algebra with the following table of
multiplication:

g2
i = gπ(i), π ∈ S9.

Proof. (i) Now, let us consider E1 ⊗ E1; then, the table of multiplication is as follows:

(ei ⊗ f j)
2 = ei ⊗ f j, 1 ≤ i, j ≤ 2.

This algebras is isomorphic to E with table of multiplication

g2
k = gk, 1 ≤ k ≤ 4.

Clearly, Ẽ ∼= E. Hence, E1 ⊗ E1
∼= E. The statements of (ii) and (iii) can be proceeded by

the similar argument. This completes the proof.

6. Conclusions

This research contributes significantly to the field of algebraic structures, particularly
to the study of evolution algebras. By examining the extendibility of evolution subalge-
bras generated by idempotents, we have gained insights into the structural properties and
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relationships within these algebras. The investigation of the extendibility of isomorphism
from subalgebras to the entire algebra sheds light on the overall algebraic structure and
its behaviour. Moreover, the study of the existence of evolution algebras generated by
arbitrary idempotents adds to our understanding of the algebraic landscape. Addition-
ally, the description of the tensor product of algebras generated by arbitrary idempotents
and the determination of the conditions for tensor decomposability of four-dimensional
S-evolution algebras further enrich the knowledge in this area. Overall, this research has
significant importance for advancing our comprehension of evolution algebras and their
structural properties.
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