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Abstract: During the service of rotating machinery, the pedestal bolts are prone to looseness due
to the vibration environment, which affects the performance of rotating machinery and generate
potential safety hazard. To monitor the occurrence and deterioration of the pedestal looseness in time,
this paper proposes a data-driven diagnosis strategy for the rotor-bearing system. Firstly, the finite
element model of a rotor-bearing system is established, which considers the piecewise nonlinear
force caused by pedestal looseness. Taking the vibration response as output and periodic unbalanced
force as input, the system’s NARX (Nonlinear Auto-Regressive with exogenous inputs) model is
identified. Then GALEs (Generalized Associated Linear Equations) are used to evaluate NOFRFs
(Nonlinear Output Frequency Response Functions) of the NARX model. Based on the first three-order
NOFRFs, the analytical expression of the second-order optimal weighted contribution rate is derived
and used as a new health indicator. The simulation results show that compared with the conventional
NOFRFs-based health indicator, the new indicator is more sensitive to weak looseness. Finally, a
rotor-bearing test rig was built, and the pedestal looseness was performed. The experiment results
show that as the degree of looseness increases, the new indicator SRm shows a monotonous upward
trend, increasing from 0.48 in no looseness to 0.90 in severe looseness, a rise of 89.7%. However,
the traditional indicator Fe2 has no monotonicity, which further verifies the sensitivity of the first
three-order NOFRFs-based second-order optimal weighted contribution rate and the effectiveness of
the proposed data-driven feature extraction strategy.

Keywords: pedestal looseness; data-driven dynamic; feature extraction; NARX; nonlinear output
frequency response functions

MSC: 37M10

1. Introduction

Affected by installation, vibration environment, and structural deformation, loose-
ness is prone to occur between the bearing seat and foundation (or casing) in rotating
machinery [1]. When the looseness fault becomes serious, the vibration of rotating parts
will exceed the allowable value, which is likely to cause other coupling faults, such as rub
impact [2,3]. Therefore, early detection of looseness is essential to the service life and safe
operation of rotating machinery.

The study on the fault feature extraction of looseness in rotor-bearing systems can be
divided into three categories. The first is the feature extraction based on the physical model
and failure mechanism. By exploring the vibration characteristics of the rotor-bearing
system caused by looseness, the corresponding fault diagnosis methods are proposed.
Jiang [4] proposed to linearize the nonlinear model of a rotor-bearing-pedestal system and
use the difference between the linearized model and the nonlinear model as an indicator to
measure the degree of nonlinearity caused by pedestal looseness. Zhang [5] considered
nonlinear support and loss foundation when modelling a rotor-bearing system and ana-
lyzed the influence of the two kinds of faults on the transient and steady-state response
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when the two faults exist alone or coupled with each other. Ma [6] established a rotor-
bearing finite element model considering pedestal looseness and separately considered the
influence of the pedestal displacement and looseness gap on dynamics. Lu [7] established
a 7-DOF dynamic model considering the pedestal looseness coupling of the ball bearing
and used the modified proper orthogonal decomposition method to reduce the model.
Yang [8] established a 3-DOF rotor model coupling unbalance, rub-impact, loose base, and
rotor geometric nonlinearity and analyzed the influence of coupled faults and geometric
nonlinearity on the resonance characteristics.

For complex rotor systems, sometimes it is impossible to establish an accurate physical
model. The second method is based on signal processing to extract the looseness features
from the vibration signal directly. A [9] proposed to combine ensemble empirical mode
decomposition and Hilbert transform to extract looseness features from the vibration signal
and orbit of the direct-drive wind turbine. The results show that the vibration response
caused by the front and rear bearings under the same looseness gap is also very different.
An [10] also used variational mode decomposition to extract the looseness features, and
the results showed that the steady-state components of the vibration signal extracted have
obvious amplitude modulation. Lee [11] used the Hilbert-Huang transform to extract
the fault time-frequency characteristics of eccentric wear and pedestal looseness in the
rotor system. The results show that when eccentric wear occurs, there is a noticeable
impact signal. When the looseness occurs, there are non-periodic intermittent shock and
friction signals. However, the signal processing-based fault features extraction methods are
seriously affected by working conditions. Therefore, the sensitive features extracted from
the signal do not necessarily reflect the changes in system nonlinearity.

Conventional detection methods based on physical models and signal processing
are limited in real-time monitoring. The third method is based on data-driven dynamic
modeling [12]. Data-driven models are mainly divided into two categories. The first is
to directly use output response to identify dynamics models, such as AR (autoregressive)
model [13] and ARMA (autoregressive moving average) model [14]. The second is to
consider the external input, such as Volterra series models [15], Hammerstein models [16],
NARMAX (nonlinear autoregressive moving average with exogenous inputs) model [17],
and NARX (Nonlinear autoregressive with exogenous inputs) model [18]. When the terms
of the data-driven model are determined in advance, the coefficients of the terms can be
used as the features [19]. However, the number and form of model terms are uncertain in
many cases, and the term coefficients cannot be used as fault features. Therefore, the weak
fault feature extraction of the data-driven model is also an urgent problem to be solved.

For the problem, a novel data-driven fault feature extraction method is proposed. The
first step is to establish the NARX model based on the simulation data or experimental
data of a rotor-bearing system and then use the GALEs (Generalized Associated Linear
Equations) to evaluate the NOFRFs (Nonlinear Output Frequency Response Functions)
of the NARX model [20]. To extract more sensitive health indicators from NOFRFs, this
paper proposes a weighted contribution rate based on the first three-order NOFRFs. The
analytical expression of the second-order optimal weighted contribution rate of NOFRFs is
derived in detail. The effectiveness of the novel health indicator is verified by simulation
and experiment. Finally, the second-order optimal weighted contribution rate of NOFRFs
is used to measure the pedestal looseness of the rotor-bearing system.

The organization of this paper is as follows. Section 2 is the theoretical basis, including
how to obtain the NOFRFs from the NARX model using the GALEs and the theoretical
derivation of the second-order optimal weighted contribution rate of NOFRFs. Section 3
is the dynamic simulation and analysis of a rotor-bearing system with pedestal looseness,
including the establishment of a data-driven model and the measurement of looseness using
the second-order optimal weighted contribution rate of NOFRFs. Section 4 is the experimental
verification based on a rotor-bearing system test rig. Section 5 is the conclusions.
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2. Data-Driven Feature Extraction

This paper mainly uses the NARX model to conduct the data-driven modeling of a
rotor-bearing system. In engineering practice, the NARX model can represent a large class
of nonlinear systems. The structure of a discrete single-input and single-output NARX
model is [21]:

y(k) =
M

∑
m=1

m

∑
p=0

K

∑
k1, kp+q=1

cp,q
(
k1, · · · , kp+q

) p

∏
i=1

y(k− ki)
p+q

∏
i=p+1

u(k− ki) (1)

where M and K are integers, k represents discrete time, p + q = m and ∑K
k1,kp+q=1 =

∑K
k1=1 · · ·∑

K
kp+q=1; cp,q

(
k1, · · · , kp+q

)
are the coefficients of the model terms. y(k) and

u(k) represent the discrete output and input, respectively.
After the NARX model identification based on the real-time or historical vibration

data, the Model Predicted Output (MPO) method is used to verify the model’s effectiveness.
Then the GALEs method mentioned in Ref. [20] is used to decompose the NARX model
and obtain the analytical expression of the system’s first N-order output yn(k). Aiming at
the general NARX model structure represented by Equation (1), the specific decomposition
of GALEs is

yn(k)−
K
∑
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c1,0(k1)yn(k− k1) =

K
∑
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)
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where n = 1, . . . , N, K =
(
k1, . . . , kp+q

)
represents the integer set of delay corresponding to

coefficients cp,q
(
k1, · · · , kp+q

)
. yK

n,p(k) =
n−(p−1)

∑
i=1

yi
(
k− kp

)
yK

n−i,p−1(k)

yK
n,1(k) = yn(k− k1)

(3)

The NARX model that satisfies the MPO criterion can be expanded to any order. At
this time, the NOFRFs of the NARX model can be obtained from the GALEs as [22]

Gn(jω) =
Yn(jω)

Un(jω)
(4)

where the nth (n = 1, . . . , N) order output spectra Yn(jω) and the input spectra Un(jω) can be
obtained from the Discrete Time Fourier Transform (DTFT) of yn(k) and un(k), respectively.
At this time, the output spectrum of the nonlinear system can be expressed as

Y(jω) ≈
N

∑
n=1

Yn(jω) =
N

∑
n=1

Gn(jω)Un(jω) (5)

Previously, identifying NOFRFs under harmonic excitation required two excitations
with different excitation intensities but the same excitation frequency combining the least
square method, which limits the application of NOFRFs in the fault diagnosis of rotating
machinery. For the GALEs method, the NOFRFs can be obtained only by the NARX model
obtained from one harmonic excitation, which significantly facilitates the application of
NOFRFs in engineering. NOFRFs can directly characterize the nonlinearity of a system,
but NOFRFs are multi-valued functions, and some orders of NOFRFs may be not sensitive
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and effective. Therefore, it is necessary to further extract sensitive features from the
obtained NOFRFs.

For NOFRFs, the high-order Gn(jω) (n > 1) can reflect the nonlinearity of a system
properly, while G1(jω) can only reflect the linear characteristics. In addition, the higher
the order, the smaller the Gn(jω). However, the sensitive features of faults are sometimes
included in high-order Gn(jω). For this reason, this paper proposes a weighted contribution
rate of NOFRFs to amplify the weak features in high-order Gn(jω). To improve the contri-
bution rate of the high-order Gn(jω) (n > 1), the Gn(jω) is subjected to feature weighting.
The specific calculation method is as

Tn(jω) =
Gn(jω)

nρ (6)

where, Tn(jω) is the weighted Gn(jω), nρ is the weighting factor, and ρ is an indefinite
constant, which can be selected based on different faults. From Equation (6), the weighted
contribution rate proposed has the following characteristics.

1 =
T1(jω)

G1(jω)
<

T2(jω)

G2(jω)
< · · · < Tn(jω)

Gn(jω)
(7)

The weighting method can amplify the high-order Gn(jω) and increase its proportion
to the contribution rate. Based on this, the weighted contribution rate of NOFRFs (Rn) has
been proposed as [23,24]

Rn(n) =

∫ +∞
−∞ |Tn(jω)|dω

N
∑

i=1

∫ +∞
−∞ |Ti(jω)|dω

=

∫ +∞
−∞

∣∣∣Gn(jω)
nρ

∣∣∣dω

N
∑

i=1

∫ +∞
−∞

∣∣∣Gi(jω)
iρ

∣∣∣dω

(1 ≤ n ≤ N , ρ ∈ (−∞,+∞)) (8)

In combining contribution rate and feature weighting with NOFRFs, the order n is
introduced into calculating the weighted contribution rate. With the increase of the order
n, the higher-order Gn(jω) (n > 1) take up more and more weight. It solves the problem
that the magnitude of high-order Gn(jω) is small by amplifying the contribution rate of
high-order Gn(jω).

When ρ is 0, the weighted contribution rate of NOFRFs (Rn) proposed is the NOFRFs-
based indicator Fe in [25]. Therefore, the weight contribution rate of NOFRFs can be
regarded as a generalized expression of the indicator Fe. Moreover, it can be seen from
Equation (8), when ρ is greater than 0, the value of the weighting factor is greater than
1, and the higher the order, the larger the corresponding weighting factor. It means the
contribution rate of the high-order Gn(jω) (n > 1) reduces rather than increases. Therefore,
ρ = 0 is not an optimal choice.

Only when ρ is less than 0, the weighting factor nρ is less than 1. It means that Gn(jω)
(n > 1) is multiplied by a multiplication factor greater than 1, and the higher the order,
the larger the multiplication factor. In other word, the contribution of higher-order Gn(jω)
(n > 1) is larger. Therefore, the contribution rate of the Gn(jω) will be amplified when ρ is
only less than 0. Next, it needs to find an optimal ρ value.

This paper mainly determines the optimal ρ value based on the second-order weighted
contribution rate. According to Equation (8), the expression of Rn2 is as

Rn2(ρ) =

∫ +∞
−∞ |G2(jω)|dω

2ρ

/
N

∑
i=1

∫ +∞
−∞ |Gi(jω)|dω

iρ ρ ∈ (−∞,+∞) (9)
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where, Rn2(ρ) is only a function of ρ. To simplify the process of solving, denote
ϕi =

∫ +∞
−∞ |Gi(jω)|dω,ϕi is only related to the nonlinearity of the system. When only

the first three orders NOFRFs are considered, the function Rn2(ρ) can be rewrite as

Rn2(ρ) =
ϕ2
2ρ

ϕ1
1ρ + ϕ2

2ρ + ϕ3
3ρ

=
ϕ2

ϕ12ρ + ϕ2 + ϕ3(2/3)ρ ρ ∈ (−∞,+∞) (10)

Calculate the derivative of the function Rn2(ρ) about ρ, as

dRn2(ρ)
dρ

= − ϕ1 ∗ 2ρ ∗ ln(2) + ϕ3 ∗ (2/3)ρ ∗ ln(2/3)

(ϕ2 + ϕ1 ∗ 2ρ + ϕ3 ∗ (2/3)ρ)2 ρ ∈ (−∞,+∞) (11)

When the function dRn2(ρ)/dρ is equal 0, there is only one critical point ρm

ρm= ln(
ϕ3∗ ln(3/2)

ϕ1∗ ln(2)
)/ ln(3) (12)

Thus, the analytical expression of the maximum of the function Rn2(ρ) is

SRm = Rn2(ρm) =
ϕ2

ϕ12ρm + ϕ2 + ϕ3(2/3)ρm (13)

SRm is defined as the second-order optimal weighted contribution rate based on the
first three orders of NOFRFs, and the derived NOFRFs-based feature will be used as a
health indicator to characterize the weak faults. The data-driven sensitive feature extraction
process of the rotor system proposed is shown in Figure 1.
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Figure 1. The data-driven sensitive feature extraction process. 

The proposed algorithm was performed by using the software MATLAB R2022b on a 
laptop equipped with an Intel Core i7 processor. The implementation of the proposed data-
driven feature extraction strategy in the bearing-rotor system in Figure 1 is as follows. 

Step 1: Acquire the vibration displacement signal of the shaft under the health state 
and operating state of a rotor system form simulation data or experiment data. For the 
acquired experiment data, the TSA (Time synchronous Averaging) is used to improve 
signal smoothness and signal-to-noise ratio. 

Step 2: Establish the NARX models characterising the rotor system of health state 
and operating state using the downsampled vibration signal. Use the FROLS (Forward 
Regression with Orthogonal Least Squares) algorithm to determine the model terms and 
their coefficients and apply the stability and accuracy criteria to validate the model. 

Step 3: Extract the sensitive feature from the identified NARX models. Introduce the 
unbalanced excitation to calculate the models’ NOFRFs (Gn(jω), n = 1,…, N) using the 

Figure 1. The data-driven sensitive feature extraction process.

The proposed algorithm was performed by using the software MATLAB R2022b on
a laptop equipped with an Intel Core i7 processor. The implementation of the proposed
data-driven feature extraction strategy in the bearing-rotor system in Figure 1 is as follows.



Mathematics 2023, 11, 2769 6 of 18

Step 1: Acquire the vibration displacement signal of the shaft under the health state
and operating state of a rotor system form simulation data or experiment data. For the
acquired experiment data, the TSA (Time synchronous Averaging) is used to improve
signal smoothness and signal-to-noise ratio.

Step 2: Establish the NARX models characterising the rotor system of health state
and operating state using the downsampled vibration signal. Use the FROLS (Forward
Regression with Orthogonal Least Squares) algorithm to determine the model terms and
their coefficients and apply the stability and accuracy criteria to validate the model.

Step 3: Extract the sensitive feature from the identified NARX models. Introduce the
unbalanced excitation to calculate the models’ NOFRFs (Gn(jω), n = 1, . . . , N) using the
GALEs in Equation (2). Then, obtain the derived NOFRFs-based feature SRm as a health
indicator to characterize the health condition of the rotor system.

3. Data-Driven Feature Extraction of Pedestal Looseness in Rotor-Bearing System
3.1. Dynamic Modelling of a Rotor-Bearing System with Pedestal Looseness

To verify the proposed fault feature extraction method, a rotor-bearing system with
pedestal looseness is considered. First, based on a rotor-bearing test rig, considering the
coupling structure, the finite element model of the rotor-bearing system is established, as
shown in Figure 2. The specific parameters of the finite element model of the rotor-bearing
system are shown in Table 1. The rotor structural parameters in Table 1 are consistent
with the real dimensions of the test rig, while the supporting stiffness and damping are
given by reference to Ref. [26] and combining the measured rotor vibration responses in
the experiment.
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Figure 2. Mechanical model of a rotor-bearing system.

Table 1. The specific parameters of the finite element model.

Parameters Values

Shaft diameter at left bearing/mm 55
Shaft diameter at disc/mm 55

The span between two bearings l/mm 800
Coupling cantilever length lc/mm 165

The span between the right bearing and disc l/mm 164.5
Elastic modulus of shaft E/Pa 2.07 × 1011

Poisson’s ratio υ 0.3
Density ρ/kg/m3 7850

Horizontal and vertical stiffness of left bearing kbl/N/m 1 × 107

Horizontal and vertical damping of left bearing cbl/N·s/m 1 × 104

Horizontal and vertical stiffness of right bearing kbr/N/m 2 × 108

Horizontal and vertical damping of right bearing cbl/N·s/m 2 × 105
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Assume that the bearing seat at the non-driving end has a looseness fault, as shown
in Figure 3. The nonlinearity caused by the looseness is simulated by a piecewise linear
spring element [26,27], and the equivalent looseness stiffness is as

kf =


kf1, z3 > σ

kf2, 0 ≤ z3 ≤ σ

kf3, z3 < σ

(14)

where, kf1 is the tensile stiffness of the bolt, kf2 is the stiffness of the loosened bolt, kf3 is
the stiffness when the bolt is not loosened, δ is the loosening gap, and z3 is the vibration
displacement of the mass point m3 in the z direction.
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At this time, the governing equation of the rotor-bearing system can be expressed as

M
..
q + D

.
q + Kq = Q (16)

M is the mass matrix considering the mass of the shaft, coupling and disc, D is the damping
matrix including bearing damping and rotor gyro moment, K is the stiffness matrix, Q is
the external force vector, and q is the displacement vector.

Assume that the looseness occurs between the right bearing seat and the foundation,
the looseness gap δ = 0.6 mm, the looseness mass m3 = 12 kg, and the foundation stiffness
before looseness is kf3 = 1 × 109 N/m. Assume that the eccentricity only exists at the disc,
and the amount of unbalanced m·r = 880 g·mm. The rotor speed is ω = 2400 r/min, and the
sampling frequency is f s = 10,240 Hz.

This paper only considers that a single pedestal is loose, and the looseness gap is
much larger than the vibration amplitude of the pedestal mass. Therefore, the change in
stiffness only occurs when the pedestal is in contact with the foundation. As the degree
of pedestal looseness increases, the corresponding looseness stiffness gradually decreases.
The simulation mainly considers four different looseness stiffness. The stiffness of the
unloose bolt is kf3 = 1 × 109 N/m, and the stiffness of the loose bolt kf2 is 1 × 109 N/m,
1 × 108 N/m, 5 × 107 N/m, and 1 × 107 N/m. When kf2 = 1 × 109 N/m, the rotor-bearing
system has no pedestal looseness fault.
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3.2. Influence of Looseness Stiffness on Vibration Response

After obtaining the differential motion equation of the rotor-bearing system, since
the equation is a typical nonlinear system, the Newmark-β method is used to obtain the
numerical solution. This paper mainly analyzes the influence of the looseness stiffness of
the right pedestal on the vibration response, including the time domain, frequency domain,
and orbit of the mbr mass point.

As the looseness stiffness decreases, the vibration amplitude of the rotating shaft
gradually increases, as shown in Figure 4. The increase from 0.5 µm, when there is no
looseness to the final 5 µm, is nearly ten times larger, and the increasing direction is only
along the positive z-axis. This proves that the vibration amplitude is less than the looseness
gap, and the pedestal can vibrate freely along the positive z-axis without restriction, which
aligns with the assumption.
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From the orbits in Figure 5, as the degree of looseness increases, the orbit gradually
evolves from a regular ellipse when the base is not loose to an irregular ellipse with a “local
cusp” and restricted on one side. It shows that a serious unilateral collision occurred in
the system at this time. At the same time, from the spectrum in Figure 6, as the looseness
stiffness decreases, the frequency components gradually increase. For the healthy rotor
system that does not have looseness, only rotational frequency is included in the spectrum.
When looseness occurs and deteriorates, namely, the looseness stiffness kf2 gradually
decreases from 1 × 109 N/m to 1 × 107 N/m, the amplitude of the double rotational
frequency in the spectrum increases from 0 µm to 2.4125 µm. The amplitude of the double
rotational frequency changes obviously, which indicates the degree of nonlinearity of the
system is increasing.
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3.3. Data-Driven Fault Feature Extraction

To extract the fault feature of the pedestal looseness in the rotor-bearing system, first
take the responses of mbr in z direction obtained from the numerical analysis as output,
and take the synchronous excitation generated by the unbalanced force of the disc as
input. Based on the FROLS method, the NARX model under different looseness stiffness
is identified. Before identifying the NARX model, the initial model parameters must be
determined through the trial-and-error method to make the final NARX model satisfies
the MPO criterion. The number of NARX model terms is 14, and the maximum time lag of
input and output is 6, respectively. The specific NARX model terms under four different
looseness stiffness are shown in Table 2. The * in [*] represents the corresponding coefficient
of the terms, and the 9th line represents the constant terms.

To ensure the accuracy of the identified NARX model, the MPO prediction output of
the NARX model and the actual output obtained from the numerical simulation are com-
pared and analyzed in the time domain and frequency domain, as shown from Figures 7–10.
The predicted output of the NARX model is the same as the original simulation waveform,
and the frequency domain characteristics of the first seven times the rotational frequency
are consistent. It shows that the NARX model identified under each looseness stiffness
has high accuracy and reliability. The effective NARX model lays the foundation for the
subsequent NOFRF evaluation and further sensitive feature extraction.
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Table 2. NARX model terms and coefficients under four different looseness stiffness in simulation.

No. kf2 = 1 × 109 N/m kf2 = 1 × 108 N/m kf2 = 5 × 107 N/m kf2 = 1 × 107 N/m

1 u(k − 4) [−1.81 × 10−6] y(k − 1) [2.91] y(k − 1) [2.84] y(k − 1) [2.71]
2 u(k − 3) [5.21 × 10−6] y(k − 2) [−3.77] y(k − 2) [−3.57] y(k − 2) [−3.37]
3 y(k − 1) [2.77] y(k − 3) [3.27] y(k − 3) [3.00] y(k − 3) [2.91]
4 y(k − 2) [−2.09] y(k − 4) [−2.31] y(k − 4) [−2.05] y(k − 4) [−2.09]
5 y(k − 3) [−5.32] y(k − 5) [1.21] y(k − 5) [9.76 × 10−1] y(k − 5) [1.13]
6 u(k − 6) [−3.89 × 10−6] y(k − 6) [−3.29] y(k − 6) [−2.22 × 10−1] y(k − 6) [−3.28]
7 y(k − 6) [−3.71 × 10−1] u(k − 1) [1.83 × 10−2] u(k − 1) [3.11 × 10−4] u(k − 6) [2.33 × 10−3]

8 y(k − 5) [8.29 × 10−1] u3(k − 1) u(k − 5)
[3.78 × 10−9]

u3(k − 1)u(k − 6)
[4.87 × 10−10] u3(k − 6) [1.02 × 10−6]

9 [9.36 × 10−8] [−3.01 × 10−3] [−6.12 × 10−3] [−6.58 × 10−2]

10 u(k − 2) [3.39 × 10−6]
u(k − 1)u(k − 2)
[−1.31 × 10−5]

u(k − 1)u(k − 2)
[4.42 × 10−6]

u(k − 1)u(k − 2)y(k − 1)
[−1.91 × 10−5]

11 y(k − 4) [8.60 × 10−2] u(k − 6) [7.26 × 10−2] u3(k − 1) [1.46 × 10−7] u2 (k − 6) [3.83 × 10−4]

12 u(k − 5) [−1.11 × 10−6]
u(k − 1)u(k − 3)

[1.60 × 10−5]
u2(k − 1) y(k − 1)

[−1.71 × 10−5] u2(k − 5) [−3.73 × 10−4]

13 u(k − 1) [8.14 × 10−7] u(k − 1)u2(k − 2)u(k − 4)
[−4.14 × 10−9]

u(k − 1)u(k − 4)y(k − 2)
[1.28 × 10−5]

u3(k − 1)y(k − 1)
[1.67 × 10−7]

14 y3(k − 6) [−8.43 × 10−9] u(k − 5) [−9.05 × 10−2] u(k − 6)y2(k − 1)
[−2.13 × 10−4]

u(k − 1)y(k − 1)
[3.30 × 10−4]
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Figure 10. NARX model predicted output when kf2 = 1 × 107 N/m. 

After the identified NARX model has been decomposed by GALEs, the first three-
order output of the system can be obtained. Combined with the first three-order input of 
the system, the NOFRFs can be evaluated with Equation (4). Finally, the sensitive feature 
indicator SRm can be obtained according to Equation (13). The comparison between SRm 
under different looseness stiffness and the conventional NOFRFs-based indicator Fe2 is 
shown in Figure 11. It can be seen that when the looseness stiffness is greater than 1 × 108 
N/m, the changing trend of the two indicators is the same, with the looseness stiffness 
decreasing. When the looseness stiffness is less than 1 × 108 N/m, the indicator SRm is 
significantly larger than Fe2, indicating that the sensitivity of the new indicator SRm to 
looseness stiffness is better than that of the conventional NOFRFs-based indicator Fe2. 

Figure 9. NARX model predicted output when kf2 = 5 × 107 N/m.
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After the identified NARX model has been decomposed by GALEs, the first three-
order output of the system can be obtained. Combined with the first three-order input
of the system, the NOFRFs can be evaluated with Equation (4). Finally, the sensitive
feature indicator SRm can be obtained according to Equation (13). The comparison between
SRm under different looseness stiffness and the conventional NOFRFs-based indicator
Fe2 is shown in Figure 11. It can be seen that when the looseness stiffness is greater than
1 × 108 N/m, the changing trend of the two indicators is the same, with the looseness
stiffness decreasing. When the looseness stiffness is less than 1 × 108 N/m, the indicator
SRm is significantly larger than Fe2, indicating that the sensitivity of the new indicator SRm
to looseness stiffness is better than that of the conventional NOFRFs-based indicator Fe2.
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4. Experimental Verification

To verify the proposed data-driven feature extraction method and simulation results,
a rotor-bearing test rig was used to analyze the influence of the pedestal looseness on the
vibration response. The specific structure of the test rig is shown in Figure 12. The rotor-
bearing system is a single-disc two-fulcrum structure. The test rig considers the structural
characteristics of the high-pressure rotor of the aero-engine. For the high-pressure rotor, the
structure has the characteristic of mass distribution bias. In addition, the support bearing of
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the high-pressure rotor is a cylindrical roller bearing at one end and an angular contact ball
bearing at the other. The models of the two types of bearings selected for this test rig are
N209E and QJ210M, respectively. The coupling is a rope coupling, which can better prevent
the vibration of the motor from being transmitted to the shaft. The bearing lubrication
method adopts oil-air lubrication. The pedestal at the non-driving end is loose. There are
three different degrees of looseness: no looseness, slight looseness, and severe looseness.
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Figure 12. Test rig structure and sensors installation location.

The measurement system mainly acquires the vibration displacement signal of the
shaft, the acceleration signal of the bearing seat, and the rotational speed signal. The layout
of the sensors and their detailed information are shown in the dashed box in Figure 12. The
eddy current sensors (model RP660677) were used to measure the vibration displacement
in the horizontal and vertical directions of the shaft, respectively. The accelerometers
(model BH5031EX-050-VL) were used to measure the vertical vibration acceleration of
the two bearing housings at the drive and non-drive ends, respectively. A photoelectric
sensor (model OGP700) was used to measure the rotational speed of the shaft through the
reflective sheet pasted on the shaft. The NI-9234 card and Cdaq-9178 chassis are used to
collect and store the acquired data by the self-made Labview program. The motor speed is
set to 2400 rpm, and the sampling frequency f s of the displacement and acceleration signals
are both 5120 Hz.

The original horizontal vibration signal of the shaft near the non-driving end under
no looseness, slight looseness, and severe looseness is shown in Figure 13. As the degree of
looseness increases, the vibration amplitude decreases. The rotor–bearing test rig structure
has a lot of mating gaps, and many factors affect vibration, such as assembly. When the
degree of looseness increases, the vibration amplitude decreases, which may be due to the
initial misalignment of the rotor system. The misalignment weakens gradually when the
looseness occurs and deteriorates. This also shows that because the rotor system sometimes
couples a variety of faults, the diagnosis of looseness faults simply by using changes in
vibration amplitude is unreliable. Therefore, it is necessary to extract sensitive fault features
to characterize looseness from the vibration signal better. From the spectrum in Figure 13,
the amplitude of rotational frequency decreases, and the amplitude of double frequency
increases. As the degree of looseness increases, the lower right part of the orbit becomes
more and more “sharp” in Figure 14. It shows that the bearing seat collides with the
foundation, consistent with the simulation results.
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To effectively identify the data-driven model of the rotor-bearing test rig system
and improve the accuracy of identification, the horizontal vibration signal is first comb-
filtered by the Time Synchronous Averaging method to filter out noise or other frequency
components that are not related to the rotational frequency. Then the vibration signal is
downsampled with the downsampling frequency of 1280 Hz. Finally, the NARX models
of the system in different looseness states are identified for further feature extraction. The
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terms and their corresponding coefficients of the NARX model under three different degrees
of looseness are shown in Table 3.

Table 3. NARX model terms and coefficients under three different looseness stiffness in the experiment.

No. Normal Weak Serious

1 u(k − 1) [−3.58] y(k − 1) [1.17] u(k − 6) [−1.51 × 10−1]
2 y(k − 4) [5.24 × 10−2] y(k − 2) [−3.58 × 10−1] y(k − 1) [9.21 × 10−1]
3 y(k − 1) [5.96 × 10−1] u(k − 1) [−5.61 × 10−1] y(k − 2) [2.14 × 10−1]

4 y(k − 2) [−2.24 × 10−1] u(k − 6)y(k − 1) [−6.66 × 10−3]
u(k − 2)u(k − 6)y(k − 2)y(k − 6)

[6.34 × 10−7]

5 u(k − 2)u(k − 4)u(k − 6)
[−2.08 × 10−2] u(k − 4)y(k − 1) [9.08 × 10−3]

u(k − 1)u(k − 5)y(k − 2)y(k − 5)
[−1.44 × 10−6]

6 y4(k − 6) [1.02 × 10−7] u(k − 5)u2(k − 6)y(k − 1)
[−4.73 × 10−8] u2(k − 5)y(k − 5) [1.33 × 10−4]

7 u(k − 6)y3(k − 4) [−8.85 × 10−8] u4(k − 6) [2.43 × 10−6] u2(k − 1)u(k − 4) [−4.68 × 10−5]
8 y(k − 2)y(k − 6) [3.71 × 10−3] y4(k − 1) [−3.89 × 10−7] u(k − 3)y2(k − 2) [4.46 × 10−5]

9 y3(k − 1)y(k − 6) [9.41 × 10−8] u(k − 1)y3(k − 1) [2.16 × 10−7] u(k − 1)u2(k − 6)y(k − 6)
[7.85 × 10−7]

10 u(k − 2)u2(k − 5) [2.07 × 10−2] u3(k − 4) [9.76 × 10−5] y(k − 3) [−1.91 × 10−1]

11 y(k − 3) y(k − 4)y2(k − 6)
[−5.02 × 10−7] y(k − 3)y3(k − 6) [−1.55 × 10−7] u2(k − 2) [1.72 × 10−3]

12 u(k − 5)y2(k − 1)y(k − 4)
[6.67 × 10−7] u3(k − 1)y(k − 6) [−3.55 × 10−6] u(k − 3)u(k − 6)y2(k − 6)

[7.15 × 10−7]

13 u(k − 1)y(k − 4)y(k − 6)
[8.57 × 10−5]

u(k − 5)y(k − 2)y(k − 6)
[−3.84 × 10−5]

u(k − 2)u(k − 6)y(k − 4)y(k − 5)
[−1.15 × 10−7]

14 y(k − 1)y2(k − 5) [2.39 × 10−6] u(k − 3)u3(k − 6) [−2.99 × 10−6]
u(k − 3)u(k − 6)y(k − 6)

[−3.52 × 10−5]

15 y(k − 1)y(k − 3)y2(k − 6)
[1.72 × 10−7]

u2(k − 1)y(k − 1)y(k − 6)
[−2.37 × 10−6] u2(k − 1)u2(k − 5) [−1.62 × 10−6]

16 u(k − 4)y(k − 1)y(k − 6)
[−6.14 × 10−5] y(k − 3) [−2.14 × 10−1]

u(k − 1)u(k − 6)y(k − 2)y(k − 4)
[1.94 × 10−6]

17 y2(k − 3)y(k − 5) [1.30 × 10−5] u(k − 2)y3(k − 1) [−1.62 × 10−6] y(k − 4) [−2.10 × 10−1]
18 u(k − 6)y(k − 3) [−3.28 × 10−3] u2(k − 1)y(k − 5) [1.18 × 10−5] y4(k − 3) [−2.405065 × 10−8]

The predicted output of the identified NARX model is compared with the experimental
data processed by time synchronous averaging, as shown in Figure 15. The predicted output
is highly consistent with the experimental results, which verifies the effectiveness of the
NARX model under three different degrees of looseness. The identified NARX model is
used to obtain the first three-order NOFRFs using the GALEs method. The second-order
optimal weighted contribution rate of NOFRFs indicator SRm proposed in this paper is
used to extract sensitive features and is compared with the conventional NOFRFs-based
indicator Fe2. The two indicators under different looseness states are shown in Figure 16. As
the degree of looseness increases, Fe2 first decreases and then increases. It is not monotonic
and cannot be used to detect the change in the looseness state. The new indicator SRm
showed a monotonous upward trend, increasing from 0.48 when no looseness occurs
to 0.90 when severe looseness occurs, an increase of 89.7%. Therefore, the data-driven
sensitive feature indicator SRm proposed in this paper can better reflect the occurrence and
deterioration of system nonlinear damage.
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5. Conclusions

This paper proposes a data-driven sensitive feature extraction method. First, the
FROLS (Forward Regression with Orthogonal Least Squares) method is used to identify the
inspected system’s NARX (Nonlinear autoregressive with exogenous inputs) model. Then
the system’s NOFRFs (Nonlinear Output Frequency Response Functions) are obtained
according to the GALEs (Generalized Associated Linear Equations) method. Based on
the first three-order NOFRFs, the concept of the weighted contribution rate of NOFRFs is
proposed, and the analytical expression of the second-order optimal weighted contribution
rate of NOFRFs is derived and used as a sensitive feature. Further, the proposed method
is applied to the feature extraction of the pedestal looseness of the rotor-bearing system.
The dynamic model of the bearing-rotor system is established, and the piecewise linear
function is used to characterize the pedestal looseness. The Newmark-β is used to solve
the governing equation. Taking the unbalanced excitation of the rotor system as the
input and the node response as the output, the NARX models under different degrees of
looseness are identified. The model’s predicted output is compared with the numerical
response, and the weighted contribution rate is used to extract the sensitive feature of
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looseness. Simulation results show that the sensitive feature indicator proposed in this
paper is more effective than the conventional NOFRFs-based indicator. Finally, a single-
disc two-fulcrum rotor-bearing test rig was established, and different degrees of pedestal
looseness was simulated. The simulation analysis and the effectiveness of the proposed
data-driven feature extraction method are verified. In future, the application of data-driven
diagnostic methods in quantitatively analyzing faults and detecting the location of damage
to engineering structures will be further explored.
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