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Abstract: In this manuscript, we discuss the Tarig transform for homogeneous and non-homogeneous
linear differential equations. Using this Tarig integral transform, we resolve higher-order linear
differential equations, and we produce the conditions required for Hyers–Ulam stability. This is
the first attempt to use the Tarig transform to show that linear and nonlinear differential equations
are stable. This study also demonstrates that the Tarig transform method is more effective for
analyzing the stability issue for differential equations with constant coefficients. A discussion of
applications follows, to illustrate our approach. This research also presents a novel approach to
studying the stability of differential equations. Furthermore, this study demonstrates that Tarig
transform analysis is more practical for examining stability issues in linear differential equations with
constant coefficients. In addition, we examine some applications of linear, nonlinear, and fractional
differential equations, by using the Tarig integral transform.

Keywords: differential equation; Hyers–Ulam stability (HUS); Tarig transform

MSC: 26D10; 34A40; 39B82; 44A45; 45A05; 45-02

1. Introduction

The investigation of differential equations is a modern science that provides a very
effective method of managing critical thoughts and associations in the assessment, using
variable-based mathematical concepts, such as balance, linearity, and fairness. While the
systematic examination of such conditions is fairly late in the mathematical survey, they
have been seen before in various designs by mathematicians. The hypothesis of differential
equations is an evolving science that has contributed greatly to progress towards strong
mechanical assemblies in current math. Many new applied issues and speculations have
studied differential equations, to encourage new philosophies and methods. Differential
equations are a notably neglected area of math. This is not because they lack importance.
Extending the direct factor-based numerical method, which oversees straight limits, to
commonsense variable-based mathematical covers is an altogether more expansive area.
Generally, dynamical systems are depicted by differential conditions in an unending time
region. For discrete-time systems, the components are portrayed by an unmistakable
condition or an iterated map. Fostering a bearing or choosing various properties of the
system requires overseeing helpful conditions. Notwithstanding differential logical or
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straight factor-based math, differential equations are only occasionally used to deal with
suitable issues. This may be a direct result of the particular difficulties with the valuable
math. The layout of the reaction of differential and integral conditions, and a system of
differential and integral conditions, benefit greatly from the use of the Tarig transform
technique.

Evidently, the Laplace transform, whose integral kernel has a different formulation, is
a generalization of the Tarig integral transform, which we have utilized in this study. It
should be noted that the Sumudu transform and the Elzaki transform are analogous gener-
alizations of the Laplace transform ([1–6]). It is thought that other differential equations
can be defined in distribution spaces, by using the distributional Tarig transform to obtain
solutions, despite the fact that the current paper investigates the solution and stability of
the differential equations using the Tarig transform, and further expresses the differential
equations in specific distribution spaces through the distributional Tarig transform. The
applications (or examples demonstrating how to apply the Tarig transform to solve dif-
ferential equations) are shown in Section 6, to support the Tarig transform’s applications
through the use of linear, nonlinear, and fractional differential equations (see [7–9]).

This study offers several novel concepts in the area of integral transforms, as well as ap-
plications to calculus. We have also discovered connections between additional transforms,
with the aid of the generalized Tarig transform. We conclude that the generalized Tarig
transform can be used to solve differential equations properly, which is still a relatively
unknown concept in the calculus field: thus, by applying alternative conditions to the
generalized Tarig transform, other transforms can be created. These transforms can then be
used to solve differential equations, and the concept of a transform may be expanded, to
include higher dimensions.

The following seven parts make up the bulk of the paper. We define the generalized
Tarig transform and some of its characteristics in the Sections 1 and 2. To solve differential
equations with constant coefficients, we provide some basic definitions of HUS in the
Section 3. In the Sections 4 and 5, we use the Tarig transform to demonstrate various types
of HUS for both homogeneous and non-homogeneous differential equations. In Section 6,
the Tarig transform application is studied, and our manuscript concludes with a discussion
of the outcomes. We provide the fundamental definitions required to support our key
findings, in the sections that follow.

In this manuscript, the Tarig transform is used in scenarios where it is crucial and
integral that solutions to these problems play a major role in science and design. When
an actual framework is shown in the differential sense, it yields a differential equation, a
critical condition, or an integro-differential equation system. A recent transform introduced
by Tarig M. Elzaki is termed the Tarig transform [10], and it is described by

Υ[ψ(z), φ] = Ψ(φ) =
1
φ

∫ ∞

0
e
− z

φ2 ψ(z)dz, φ 6= 0 (1)

or a function ψ(z) is of exponential order,

|ψ(z)| <

Me−
z

k1 , z ≤ 0

Me
z

k2 , z ≥ 0,
(2)

where k1, k2 are finite or infinite, and M is a finite real number.
The operator Υ[·] is defined by

Υ[ψ(z)] = Ψ(φ) =
1
φ

∫ ∞

0
ψ(φz)e−

z
φ dz, φ 6= 0. (3)

Obloza’s publications [11,12] were among the main commitments managing the HUS
of the differential equations. According to Alsina [13], the HUS of differential equation
y′(z) = y(z) was demonstrated. Huang [14] studied the mathematical HUS of a few certain
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classes of differential equations, using the fixed point approach, iteration method, direct
method, and open mapping theorem. HUS concepts were generalized in [15] for a class of
non-independent differential systems. Recently, Choi [16] considered the generalized HUS
of the differential equation

y′′(z) + ψ(z)y′(z) + ξ(z)y(z) = r(z).

For more details about the stability of differential equations, we refer the reader
to [17–25].

In this paper, we were strongly motivated by [14,16], and we prove the various types
of HUS results of homogeneous and non-homogeneous linear differential equations,

ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z) = 0, (4)

ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z) = r(z), (5)

by using the Tarig transform method; here:

1. υ1, υ2, . . . υϕ−1, υϕ are scalars;
2. ψ(z)—continuously differentiable function.

2. Tarig Transform of Derivatives

We introduce the fundamental ideas and characteristics of the Tarig transform of
derivations in this section (Table 1).

Table 1. Tarig Transform of Simple Functions.

S.No ω(z) S{ω(z)} = T(σ)

1 1 φ
2 z φ3

3 eaz φ

1− aφ2

4 zϕ ϕ!φ2ϕ−1

5 za Γ(a + 1)φ2a+1

6 sin az aφ3

1 + a2φ4

7 cos az φ

1 + a2φ4

8 sinh az aφ3

1− a2φ4

9 cosh az φ

1− a2φ4

Proposition 1 ([9]). If Υ[ψ(z)] = Ψ(φ), then:

(i) Υ[ψ′(z)] = Ψ(φ)
φ2 − 1

φ ψ(0);

(ii) Υ[ψ′′(z)] = Ψ(φ)
φ4 − 1

φ3 ψ(0)− 1
φ ψ′(0);

(iii) Υ[ψ(ϕ)(z)] = Ψ(φ)
φ2ϕ −∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0).

(i) Let ψ(z) = 1; then, according to (1), we have

Υ[ψ(z), φ] =
1
φ

∫ ∞

0
e
− z

φ2 ψ(z)dz

=
1
φ

∫ ∞

0
e
− z

φ2 dz

Υ[1] = φ.



Mathematics 2023, 11, 2778 4 of 25

(ii) Let ψ(z) = z; then, according to (1), we have

Υ[ψ(z), φ] =
1
φ

∫ ∞

0
ze
− z

φ2 dz.

Using the Tarig transform of first-order derivatives, we obtain

T(z) =
1
φ

[
φ2
∫ ∞

0
e
− z

φ2 dz
]

= φ3.

(iii) Let ψ(z) = eaz; then, according to (1), we have

Υ[ψ(z), φ] =
1
φ

∫ ∞

0
eaze

− z

φ2 dz.

Tarig transforms of the first and second derivations, as well as the integration by parts
rules, are used to obtain

Υ[eaz] =
1
φ

φ2 + φ2a
∫ ∞

0
e
−
(

aφ2−1
φ2

)
z
dz


=

1
φ

[
φ2

1− aφ2

]
Υ[eaz] =

[
φ

1− aφ2

]
.

3. Preliminaries

We introduce a few definitions in this section, which will help to support our primary
findings.

Definition 1. The conversion to change in the form of a value or expression without a change in
the value and conversion of ψ(z) and ξ(z) is defined by

ψ(z) ? ξ(z) = (ψ ? ξ)z =
∫ z

0
ψ(s)ξ(z− s)ds =

∫ z

0
ψ(z− s)ξ(s)ds.

Theorem 1. If Υ[ψ(z)] = Ξ(φ) and L[ψ(z)] = Ψ(s), then Ξ(φ) =
Ψ
(

1
φ2

)
φ , where Ψ(s) is the

Tarig transform of ψ(z).

Proof. Given
Υ[ψ(z)] = Ψ(φ) =

1
φ

∫ ∞

0
ψ(φz)e−

z
φ dzΞ(φ),

let w = φz; then

Ξ(φ) =
∫ ∞

0
ψ(w)e

− w
φ2 dw

φ
=

Ψ
(

1
φ2

)
φ

.

Definition 2. The function ψ(z) is called the inverse Tarig transform of Ψ(φ) if it has the property
Υ{ψ(z)} = Ψ(φ), i.e., Υ−1{Ψ(φ)} = ψ(z).
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Definition 3 (Linearity property). If Υ−1{Ψ(φ)} = ψ(z) and Υ−1{Ξ(φ)} = ξ(z), then
Υ−1{aΨ(φ) + bΞ(φ)} = aψ(z) + bξ(z), for some arbitrary constants a and b.

Theorem 2. Let ψ(z) and ξ(z) have Tarig transform Ψ(s) and Ξ(s) and Tarig transform M(φ)
and N(φ), respectively; then, T[(ψ ? ξ)(z)] = φM(φ)N(φ).

Proof. The Tarig transform of (ψ ? ξ) is given by

L[(ψ ? ξ)(z)] = Ψ(s)Ξ(s).

According to Theorem 1, we obtain

Υ[(ψ ? ξ)(z)] =
1
φ

L[(ψ ? ξ)(z)].

Given M(φ) =
Ψ
(

1
φ2

)
φ , N(φ) =

Ξ
(

1
φ2

)
φ , the Tarig transform of (ψ ? ξ) is obtained as

follows:

T[(ψ ? ξ)(z)] =
Ψ
(

1
φ2

)
× Ξ

(
1

φ2

)
φ

= φM(φ)N(φ).

Definition 4. The Mittag-Leffler function of one parameter is defined by

Eβ(z) =
∞

∑
k=0

zk

Γ(βk + 1)
,

where z, β ∈ C and R(β) > 0. If we put β = 1, then

E1(z) =
∞

∑
k=0

zk

Γ(k + 1)
=

∞

∑
k=0

zk

k!
= ez.

Throughout this paper, we consider k > 0 to be a constant, σ : [0, ∞)→ (0, ∞) to be an
increasing function, and Ψ = {ψ : [0, ∞)→ k} to be a class of all continuously differentiable
functions with exponential order. In addition, we let r : [0, ∞)→ k be a continuous function,
with exponential order σ : [0, ∞)→ (0, ∞) being an increasing function.

Definition 5. The differential Equation (4) has HUS (for class Ψ) if k > 0 exists, such that

|ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)| ≤ ε, ε > 0, z ≥ 0; (6)

then, there exists a solution ξ : [0, ∞)→ k of (4), such that ξ ∈ Ψ and |ψ(z)− ξ(z)| ≤ kε.

Definition 6. Let σ : [0, ∞)→ (0, ∞); then, (4) has σHUS (for the class Ψ) if k > 0 exists, such
that

|ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)| ≤ σ(z)ε, ε > 0, z ≥ 0; (7)

then, there exists a solution ξ : [0, ∞) → k of (4), such that ξ ∈ Ψ and |ψ(z) − ξ(z)| ≤
kσ(z)ε, ∀ z ≥ 0.
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Definition 7. Let Eβ(z) be the Mittag-Leffler function; then, (4) has Mittag-Leffler–HUS if k > 0
exists, such that

|ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)| ≤ Eβ(z)ε, ε > 0, z ≥ 0; (8)

then, there exists a solution ξ : [0, ∞)→ k of (4), such that ξ ∈ Ψ and |ψ(z)− ξ(z)| ≤ kEβ(z)ε,
∀ z ≥ 0.

Definition 8. Let σ : [0, ∞) → (0, ∞) and Eβ(z) be the Mittag-Leffler function; then, (4) has
Mittag-Leffler–σHUS, if k > 0 exists, such that

|ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)| ≤ σ(z)Eβ(z)ε, ε > 0, z ≥ 0; (9)

then, there exists a solution ξ : [0, ∞)→ k of (4), such that ξ ∈ Ψ and |ψ(z)− ξ(z)| ≤ kσEβ(z)ε,
∀ z ≥ 0.

Similarly, we can define the various stability results of (5).

4. Stability of (4)

In this section, we prove several types of the HUS of (4), by using the Tarig transform.
For any constant υ, we denote the real part of υ by R(υ).

Theorem 3. Let (υ1 + . . . + υϕ−1 + υϕ) be a constant, with R(υ1 + . . . + υϕ−1 + υϕ) > 0; then,
(4) is Hyers–Ulam stable in the class Ψ.

Proof. Let ψ ∈ Ψ satisfy (6), ∀ z ≥ 0, and the function m : [0, ∞)→ k be defined by

m(z) = ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z), ∀ z ≥ 0. (10)

Taking Tarig transform on above equation, we have

Υ{m(z)} = M(φ) = Υ{ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)}

M(φ) = Υ{ψϕ(z)}+ υ1Υ{ψ(ϕ−1)(z)}+ . . . + υϕ−1Υ{ψ′(z)}+ υϕΥ{ψ(z)},

where Υ{ψ(z)} = Ψ(φ), given

Υ{ψ′(z)} = Ψ(φ)

φ2 − 1
φ

ψ(0)

Υ{ψ′′(z)} = Ψ(φ)

φ4 − 1
φ3 ψ(0)− 1

φ
ψ′(0).

...

For any positive integer ϕ, we obtain

Υ{ψ(ϕ−1)(z)} = Ψ(φ)

φ2(ϕ−1)
−

ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ψ(`−1)(0)

Υ{ψϕ(z)} = Ψ(φ)

φ2ϕ
−

ϕ

∑
`=1

φ2(`−ϕ)−1ψ(`−1)(0)
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M(φ) =
Ψ(φ)

φ2ϕ
−

ϕ

∑
`=1

φ2(`−ϕ)−1ψ(`−1)(0)

+ υ1(z)

[
Ψ(φ)

φ2(ϕ−1)
−

ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ψ(`−1)(0)

]

+ . . . + υϕ−1

[
Ψ(φ)

φ2 − 1
φ

ψ(0)
]
+ υϕΨ(φ),

allowing

Υ{ψ(z)} = Ψ(φ)

=
M(φ) + ∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) . (11)

If we put z = 0 in ξ(z) = e−(υ1+...+υϕ−2+υϕ)zψ(z), then ξ(0) = ψ(0) and ξ ∈ Ψ. The
Tarig transform of ξ(z) produces the following:

Υ{ξ(z)} = Ξ(φ)

=
∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) ; (12)

thus,

Υ{ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)}

=
Ξ(φ)
φ2ϕ

−
ϕ

∑
`=1

φ2(`−ϕ)−1ξ(`−1)(0)

+ υ1(z)

[
Ξ(φ)

φ2(ϕ−1)
−

ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ξ(`−1)(0)

]

+ . . . + υϕ−1

[
Ξ(φ)

φ2 −
1
φ

ξ(0)
]
+ υϕΞ(φ).

In general, for any n ≥ 0 ∈ Z,

Ξ(φ)
φ2ϕ

−
ϕ

∑
`=1

φ2(`−ϕ)−1ξ(`−1)(0) + υ1(z)
Ξ(φ)

φ2(ϕ−1)
− υ1(z)

ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ξ(`−1)(0)

+ . . . + υϕ−1
Ξ(φ)

φ2 − υϕ−1
1
φ

ξ(0) + υϕΞ(φ) = 0

Ξ(φ)
φ2ϕ

+ υ1(z)
Ξ(φ)

φ2(ϕ−1)
+ . . . + υϕ−1

Ξ(φ)
φ2 + υϕΞ(φ)

=
ϕ

∑
`=1

φ2(`−ϕ)−1ξ(`−1)(0) + υ1(z)
ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ξ(`−1)(0)

+ . . . + υϕ−1
1
φ

ξ(0)υϕ−1
1
φ

ξ(0)
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Ξ(φ)
[

1
φ2ϕ

+ υ1(z)
1

φ2(ϕ−1)
+ . . . + υϕ−1

1
φ2 + υϕ

]

=
ϕ

∑
`=1

φ2(`−ϕ)−1ξ(`−1)(0) + υ1(z)
ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ξ(`−1)(0)

+ . . . + υϕ−1
1
φ

ξ(0)υϕ−1
1
φ

ξ(0),

substituting

Υ{ξ(z)} = Ξ(φ)

=
∑

ϕ
`=1 φ2(`−ϕ)−1ξ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ξ(`−1)(0) + . . . + υϕ−1

1
φ ξ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) .

According to (12), we obtain

Υ{ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)} = 0.

Given that T is an injective operator, then

ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z) = 0.

Here, ξ(z) is a solution of (4). According to (11) and (12), we obtain

Υ{ψ(z)} − Υ{ξ(z)} = Ψ(φ)− Ξ(φ)

=
M(φ)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= φM(φ)

1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= uM(φ)N(φ)

= Υ{m(z) ? n(z)},

where

N(φ) =
1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
Υ{n(z)} = N(φ) =

1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
=

φ2ϕ

φ(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

Υ{n(z)} = (φ2)ϕ

φ(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

n(z) = Υ−1

[
φϕ

(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

]
(n(z)) = e−(υ1+...+υϕ−1+υϕ)z.

Consequently,

Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)}.
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This implies that

ψ(z)− ξ(z) = m(z) ? n(z).

Taking the modulus on each side, we obtain

|ψ(z)− ξ(z)| = |m(z) ? n(z)|

= |
∫ ∞

0
m(s)n(z− s)ds|

≤
∫ ∞

0
|m(s)||n(z− s)|ds

|ψ(z)− ξ(z)| ≤ ε
∫ ∞

0
n(z− s)ds.

Given n(z) = e−(υ1+...+υϕ−2+υϕ)z (or) n(z) = e−R(υ1+...+υϕ−2+υϕ)z, then

|ψ(z)− ξ(z)| ≤ ε
∫ ∞

0
e−R(υ1+...+υϕ−2+υϕ)(z−s)ds

≤ εe−R(υ1+...+υϕ−2+υϕ)z.
∫ ∞

0
eR(υ1+...+υϕ−2+υϕ)sds,

≤ εe−R(υ1+...+υϕ−2+υϕ)z

R(υ1 + . . . + υϕ−2 + υϕ)
.
[
eR(υ1+...+υϕ−2+υϕ)z − 1

]
≤ ε

R(υ1 + . . . + υϕ−2 + υϕ)
.
[
e−R(υ1+...+υϕ−2+υϕ)zeR(υ1+...+υϕ−2+υϕ)z − 1

]
≤ ε

R(υ1 + . . . + υϕ−2 + υϕ)
.
[
1− e−R(υ1+...+υϕ−2+υϕ)z

]
≤ kε, ∀ z ≥ 0,

where k = 1
R(υ1+...+υϕ−2+υϕ)

. This implies that (4) has HUS in Ψ.

Note: If −R(υ1 + . . . + υϕ−1 + υϕ) < 0, then ε
R(υ1+...+υϕ−1+υϕ)

(
1− e−R(υ1+...+υϕ−1+υϕ)z

)
diverges to ∞, as z→ ∞, i.e., we cannot prove the HUS by applying the Tarig transform
method when −R(υ1 + . . . + υϕ−1 + υϕ) < 0.

Theorem 4. Let υ1 + . . . + υϕ−1 + υϕ be a constant, with R(υ1 + . . . + υϕ−1 + υϕ) > 0 and
σ : [0, ∞)→ (0, ∞) being an increasing function; then, (4) has σHUS in Ψ.

Proof. Given (7) holds, ∀ z ≥ 0 and σ : [0, ∞) → (0, ∞) is an increasing function. Define
m : [0, ∞)→ k by

m(z) = ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z), ∀ z ≥ 0.

We prove |m(z)| ≤ σ(z)ε, ∀ z ≥ 0.
By Theorem 3, we can prove that ξ(z) = e−(υ1+...+υϕ−1+υϕ)zψ(z) is a solution of (4) and

ξ ∈ Ψ; then,

N(φ) =
1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) ,
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which yields

n(z) = Υ−1

[
φϕ

(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

]
(n(z)) = e−(υ1+...+υϕ−1+υϕ)z.

Moreover, according to (11) and (12),

Υ{ψ(z)} − Υ{ξ(z)} = Ψ(φ)− Ξ(φ)

=
M(φ)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= φM(φ)

1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= φM(φ)N(φ)

Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)},

which yields

Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)}; (13)

therefore,

ψ(z)− ξ(z) = m(z) ? n(z)

ψ(z)− ξ(z) = m(z) ? e−(υ1+...+υϕ−1+υϕ)z.

According to Theorem 10, we can show that

|ψ(z)− ξ(z)| = |m(z) ? e−(υ1+...+υϕ−1+υϕ)z|

= |
∫ z

0
m(s) ? e−(υ1+...+υϕ−1+υϕ)(z−s)ds|

≤
∫ z

0
|i(s)||e−(υ1+...+υϕ−1+υϕ)(z−s)|ds

≤ σ(z)εe−R(υ1+...+υϕ−1+υϕ)z
∫ z

0
eR(υ1+...+υϕ−1+υϕ)sds

≤ σ(z)ε

R(υ1 + . . . + υϕ−1 + υϕ)
(1− e−R(υ1+...+υϕ−1+υϕ)z)

≤ kσ(z)ε, ∀ z ≥ 0,

where k =
1

R(υ1 + . . . + υϕ−1 + υϕ)
.

Theorem 5. Given (υ1 + . . .+ υϕ−1 + υϕ) and β > 0 are constants satisfying R(υ1 + . . .+ υϕ−1
+υϕ) > 0, then (4) has Mittag-Leffler–HUS in Ψ.

Proof. Given ψ ∈ Ψ satisfies (8), ∀ z ≥ 0 and m : [0, ∞)→ k are defined by

m(z) = ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z), ∀ z ≥ 0.

According to (8), we obtain |m(z)| ≤ ε, ∀ z ≥ 0. The Tarig transform of m(z) yields

M(φ) = Υ{m(z)} = Υ{ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)}.
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Setting

Υ{ψ(z)} = Ψ(φ)

=
M(φ) + ∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) . (14)

Given ξ(z) = e−(υ1+...+υϕ−1+υϕ)zψ(z), then ξ(0) = ψ(0) and ξ ∈ Ψ. The Tarig trans-
form of ξ(z) yields

Υ{ξ(z)} = Ξ(φ)

=
∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) . (15)

It follows from (15) that

Υ{ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)}

=
Ξ(φ)
φ2ϕ

−
ϕ

∑
`=1

φ2(`−ϕ)−1ξ(`−1)(0)

+ υ1(z)

[
Ξ(φ)

φ2(ϕ−1)
−

ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ξ(`−1)(0)

]

+ . . . + υϕ−1

[
Ξ(φ)

φ2 −
1
φ

ξ(0)
]
+ υϕΞ(φ).

Given Υ is injective operator,

ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z) = 0,

if we set

N(φ) =
1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) ,

then we obtain

n(z) = Υ−1

[
φϕ

(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

]
(n(z)) = e−(υ1+...+υϕ−1+υϕ)z. (16)

According to (14) and (15), we obtain

Υ{ψ(z)} − Υ{ξ(z)} = Ψ(z)− Ξ(z)

=
M(φ)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= φM(φ)

1(
1

φ2ϕ + υ1(z)
1

φ2(ϕ−1) + . . . + υϕ−1
1

φ2 + υϕ

)
= φM(φ)N(φ)

Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)}, (17)
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which gives us

ψ(z)− ξ(z) = m(z) ? n(z)

ψ(z)− ξ(z) = m(z) ? e−(υ1+...+υϕ−1+υϕ)z.

Given |m(z)| ≤ εEβ(z) for z ≥ 0 and Eβ(z) is increasing for z ≥ 0, then we obtain

|ψ(z)− ξ(z)| = |m(z) ? e−(υ1+...+υϕ−1+υϕ)z|

= |
∫ z

0
m(s) ? e−(υ1+...+υϕ−1+υϕ)(z−s)ds|

≤
∫ z

0
|i(s)||e−(υ1+...+υϕ−1+υϕ)(z−s)|ds

≤ Eβ(z)εe−R(υ1+...+υϕ−1+υϕ)z
∫ z

0
eR(υ1+...+υϕ−1+υϕ)sds

≤
Eβ(z)ε

R(υ1 + . . . + υϕ−1 + υϕ)
(1− e−R(υ1+...+υϕ−1+υϕ)z)

≤ kEβ(z)ε, ∀ z ≥ 0,

where k =
1

R(υ1 + . . . + υϕ−1 + υϕ)
.

Theorem 6. Let the constants β > 0, R(υ1 + . . . + υϕ−1 + υϕ) > 0 and σ : [0, ∞)→ (0, ∞) be
an increasing function; then, (4) has Mittag-Leffler–σHUS in Ψ.

Proof. Let ψ ∈ Ψ satisfy (9) ∀ z ≥ 0, and σ : [0, ∞)→ (0, ∞) be an increasing function. We
will prove that k > 0 exists (independent of ε), and a solution ξ : [0, ∞) → k of (4), such
that ξ ∈ Ψ and

|ψ(z)− ξ(z)| ≤ kσ(z) ∈ Eβ(z), ∀ z ≥ 0.

Define ξ : [0, ∞)→ k by

m(z) = ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z), ∀ z ≥ 0; (18)

then, |m(z)| ≤ σ(z)εEβ(z) ∀ z ≥ 0. According to Theorem 5, we obtain

|ψ(z)− ξ(z)| = |m(z) ? e−(υ1+...+υϕ−1+υϕ)z|

= |
∫ z

0
m(s) ? e−(υ1+...+υϕ−1+υϕ)(z−s)ds|

≤
∫ z

0
|i(s)||e−(υ1+...+υϕ−1+υϕ)(z−s)|ds

≤ σ(z)Eβ(z)εe−R(υ1+...+υϕ−1+υϕ)z
∫ z

0
eR(υ1+...+υϕ−1+υϕ)sds

≤
σ(z)Eβ(z)ε

R(υ1 + . . . + υϕ−1 + υϕ)
(1− e−R(υ1+...+υϕ−1+υϕ)z)

≤ kσ(z)Eβ(z)ε, ∀ z ≥ 0,

where k =
1

R(υ1 + . . . + υϕ−1 + υϕ)
.

5. Stability of (5)

In this section, we prove several types of the HUS of (5), by using the Tarig transform.
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Theorem 7. Given (υ1 + . . . + υϕ−1 + υϕ) is a constant with R(υ1 + . . . + υϕ−1 + υϕ) > 0,
and r : [0, ∞)→ ∞ is a continuous function, then (4) has HUS in Ψ.

Proof. Let ψ ∈ Ψ satisfy HUS. Define m : [0, ∞)→ k by

m(z) = ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)− r(z), ∀ z ≥ 0; (19)

then, |m(z)| ≤ ε holds, ∀ z ≥ 0. The Tarig transform of m(z) yields

Υ{m(z)} = M(φ) = Υ{ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)− r(z)}, (20)

which implies

Υ{ψ(z)} = Ψ(φ)

=
M(φ) + ∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) . (21)

If we set

ξ(z) = e−(υ1+...+υϕ−2+υϕ)zψ(z) +
(

m(z) ? e−(υ1+...+υϕ−2+υϕ)z
)

,

then ξ(0) = ψ(0) and ξ ∈ Ψ. The Tarig transform of ξ(z) yields

Υ{ξ(z)} = Ξ(φ)

=
∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) . (22)

On the other hand,

Υ{ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)}

=
Ξ(φ)
φ2ϕ

−
ϕ

∑
`=1

φ2(`−ϕ)−1ξ(`−1)(0)

+ υ1(z)

[
Ξ(φ)

φ2(ϕ−1)
−

ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ξ(`−1)(0)

]

+ . . . + υϕ−1

[
Ξ(φ)

φ2 −
1
φ

ξ(0)
]
+ υϕΞ(φ).

According to (22), we obtain

Υ{ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)} = T(r(z)) = R(φ),

and thus,

ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z) = r(z);
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here, ξ(z) is a solution to (4). According to (21) and (22), we can obtain

Υ{ψ(z)} − Υ{ξ(z)} = Ψ(φ)− Ξ(φ)

=
M(φ)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= φM(φ)

1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= uM(φ)N(φ)

= Υ{m(z) ? n(z)},

where

N(φ) =
1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) ,

which yields

Υ{n(z)} = N(φ) =
φϕ

(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

n(z) = Υ−1

[
φϕ

(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

]
(n(z)) = e−(υ1+...+υϕ−1+υϕ)z;

therefore,

Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)}

and

ψ(z)− ξ(z) = m(z) ? e−(υ1+...+υϕ−1+υϕ)z.

Furthermore,

|ψ(z)− ξ(z)| = |m(z) ? e−(υ1+...+υϕ−1+υϕ)z|

= |
∫ z

0
m(s) ? e−(υ1+...+υϕ−1+υϕ)(z−s)ds|

≤
∫ z

0
|m(s)||e−(υ1+...+υϕ−1+υϕ)(z−s)|ds

≤ εe−R(υ1+...+υϕ−1+υϕ)z
∫ z

0
eR(υ1+...+υϕ−1+υϕ)sds

≤ ε

R(υ1 + . . . + υϕ−1 + υϕ)
(1− e−R(υ1+...+υϕ−1+υϕ)z)

≤ kε, ∀ z ≥ 0,

where k =
1

R(υ1 + . . . + υϕ−2 + υϕ)
.

Theorem 8. Given r : [0, ∞)→ k is a continuous function, σ : [0, ∞)→ (0, ∞) is an increasing
function, and υ1 + . . . + υϕ−1 + υϕ is a constant with R(υ1 + . . . + υϕ−1 + υϕ) > 0, then (5) has
the σHUS in Ψ.
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Proof. Let ψ ∈ Ψ satisfy σHUS, and define m : [0, ∞)→ k by

m(z) = ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z), ∀ z ≥ 0;

then, |m(z)| ≤ σ(z)ε ∀ z ≥ 0. It is straightforward to verify

Υ{ψ(z)} = Ψ(φ)

=
M(φ) + ∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) . (23)

If we set

ξ(z) = e−(υ1+...+υϕ−2+υϕ)zψ(z) +
(

m(z) ? e−(υ1+...+υϕ−2+υϕ)z
)

,

then ξ(0) = ψ(0) and ξ ∈ Ψ. Furthermore, if we apply the Tarig transform, we obtain

Υ{ξ(z)} = Ξ(φ)

=
∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) ; (24)

then,

Υ{ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)}

=
Ξ(φ)
φ2ϕ

−
ϕ

∑
`=1

φ2(`−ϕ)−1ξ(`−1)(0)

+ υ1(z)

[
Ξ(φ)

φ2(ϕ−1)
−

ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ξ(`−1)(0)

]

+ . . . + υϕ−1

[
Ξ(φ)

φ2 −
1
φ

ξ(0)
]
+ υϕΞ(φ).

According to (24), it is implied that

Υ{ξ ϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)} = T(r(z)) = R(φ)

and

ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z) = r(z),

and ξ(z) is a solution to (5); using (23) and (24), we obtain

Υ{ψ(z)} − Υ{ξ(z)} = Ψ(φ)− Ξ(φ)

=
M(φ)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= φM(φ)

1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= uM(φ)N(φ)

Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)},
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where

N(φ) =
1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) ,

which yields

n(z) = Υ−1

[
φϕ

(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

]
(n(z)) = e−(υ1+...+υϕ−1+υϕ)z;

therefore, we obtain Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)}, which yields ψ(z)− ξ(z) = m(z) ?
n(z).

According to Theorem (4), we obtain

|ψ(z)− ξ(z)| = |m(z) ? n(z)|

= |
∫ z

0
m(s) ? n(z− s)ds|

≤
∫ z

0
|m(s)||e−(υ1+...+υϕ−1+υϕ)(z−s)|ds

≤ σ(z)εe−R(υ1+...+υϕ−1+υϕ)z
∫ z

0
eR(υ1+...+υϕ−1+υϕ)sds

≤ σ(z)ε

R(υ1 + . . . + υϕ−1 + υϕ)
(1− e−R(υ1+...+υϕ−1+υϕ)z)

≤ kσ(z)ε, ∀ z ≥ 0,

where k =
1

R(υ1 + . . . + υϕ−2 + υϕ)
.

Theorem 9. Given (υ1 + . . .+ υϕ−1 + υϕ), β > 0 are constants with R(υ1 + . . .+ υϕ−1 + υϕ) >
0, and r : [0, ∞)→ ∞ is a continuous function, then (5) has Mittag-Leffler–HUS in Ψ.

Proof. Let ψ ∈ Ψ satisfy Mittag-Leffler–HUS, and m : [0, ∞)→ k be defined by

m(z) = ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)− r(z), ∀ z ≥ 0.

From the definition of Mittag-Leffler–HUS, we obtain |m(z)| ≤ Eβ(z)ε, ∀ z ≥ 0. The
Tarig transform of m(z) yields

Υ{m(z)} = M(φ) = Υ{ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)− r(z)},

which is

Υ{ψ(z)} = Ψ(φ)

=
M(φ) + ∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) . (25)

If we set

ξ(z) = e−(υ1+...+υϕ−2+υϕ)zψ(z) +
(

m(z) ? e−(υ1+...+υϕ−2+υϕ)z
)

,

then ξ(0) = ψ(0) and ψ ∈ Ψ. By applying the Tarig transform on each side, we obtain
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Υ{ξ(z)} = Ξ(φ)

=
∑

ϕ
`=1 φ2(`−ϕ)−1ψ(`−1)(0) + υ1(z)∑

ϕ−1
`=1 φ2(`−(ϕ−1))−1ψ(`−1)(0) + . . . + υϕ−1

1
φ ψ(0)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) ; (26)

then,

Υ{ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)}

=
Ξ(φ)
φ2ϕ

−
ϕ

∑
`=1

φ2(`−ϕ)−1ξ(`−1)(0)

+ υ1(z)

[
Ξ(φ)

φ2(ϕ−1)
−

ϕ−1

∑
`=1

φ2(`−(ϕ−1))−1ξ(`−1)(0)

]

+ . . . + υϕ−1

[
Ξ(φ)

φ2 −
1
φ

ξ(0)
]
+ υϕΞ(φ).

According to (26), we then obtain

Υ{ξ ϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z)} = T(r(z)) = R(φ)

and

ξϕ(z) + υ1(z)ξ
(ϕ−1)(z) + . . . + υϕ−1ξ ′(z) + υϕξ(z) = r(z);

here, ξ(z) is a solution to (5). Applying (25) and (26), we obtain

Υ{ψ(z)} − Υ{ξ(z)} = Ψ(φ)− Ξ(φ)

=
M(φ)(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= φM(φ)

1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

)
= uM(φ)N(φ)

Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)}, (27)

where

N(φ) =
1

φ
(

1
φ2ϕ + υ1(z)

1
φ2(ϕ−1) + . . . + υϕ−1

1
φ2 + υϕ

) ;

therefore,

n(z) = Υ−1

[
φϕ

(1 + υ1(z)φ2 + . . . + υϕ−1φ2(ϕ−1) + υϕφ2ϕ)

]
(n(z)) = e−(υ1+...+υϕ−1+υϕ)z (28)
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and Υ{ψ(z)− ξ(z)} = Υ{m(z) ? n(z)}, which yields ψ(z)− ξ(z) = m(z) ? n(z). Furthermore,

|ψ(z)− ξ(z)| = |m(z) ? e−(υ1+...+υϕ−1+υϕ)z|

= |
∫ z

0
m(s) ? e−(υ1+...+υϕ−1+υϕ)(z−s)ds|

≤
∫ z

0
|m(s)||e−(υ1+...+υϕ−1+υϕ)(z−s)|ds

≤ Eβ(z)εe−R(υ1+...+υϕ−1+υϕ)z
∫ z

0
eR(υ1+...+υϕ−1+υϕ)sds

≤
Eβ(z)ε

R(υ1 + . . . + υϕ−1 + υϕ)
(1− e−R(υ1+...+υϕ−1+υϕ)z)

≤ kEβ(z)ε, ∀ z ≥ 0,

where k =
1

R(υ1 + . . . + υϕ−2 + υϕ)
. This completes the proof.

Theorem 10. Given r : [0, ∞)→ ∞ is a continuous function, σ : [0, ∞)→ (0, ∞) is an increasing
function, and (υ1 + . . .+ υϕ−1 + υϕ) and β > 0 are constants with R(υ1 + . . .+ υϕ−1 + υϕ) > 0,
then (5) obtains Mittag-Leffler–σHUS in Ψ.

Proof. Given ψ ∈ Ψ satisfies Mittag-Leffler–σHUS, then there exists a solution ξ : [0, ∞)→ k
to (5), such that ξ ∈ Ψ and

|ψ(z)− ξ(z)| ≤ kσ(z)Eβ(z)ε, ∀ z ≥ 0, k > 0.

We define m : [0, ∞)→ k by

m(z) = ψϕ(z) + υ1ψ(ϕ−1)(z) + . . . + υϕ−1ψ′(z) + υϕψ(z)− r(z), ∀ z ≥ 0;

then, we have |m(z)| ≤ σ(z)εEβ(z), ∀ z ≥ 0.
According to Theorem 9, ξ : [0, ∞)→ k is a solution to (5) satisfying ξ ∈ Ψ and

|ψ(z)− ξ(z)| = |m(z) ? e−(υ1+...+υϕ−1+υϕ)z|

= |m(s) ? e−(υ1+...+υϕ−1+υϕ)(z−s)ds|

≤
∫ z

0
|m(s)||e−(υ1+...+υϕ−1+υϕ)(z−s)|ds

≤ σ(z)Eβ(z)εe−R(υ1+...+υϕ−1+υϕ)z
∫ z

0
eR(υ1+...+υϕ−1+υϕ)sds

≤
σ(z)Eβ(z)ε

R(υ1 + . . . + υϕ−1 + υϕ)
(1− e−R(υ1+...+υϕ−1+υϕ)z), ∀ z ≥ 0,

where k =
1

R(υ1 + . . . + υϕ−2 + υϕ)
.

6. Application of Tarig Transform

In this section, we examine the stability of linear, nonlinear, and fractional differential
equations, by using the Tarig transform technique.

6.1. Stability of Linear Differential Equation

Example 1. Consider the linear differential equation,

2Z(s)− 3Z′(s) + Z′′(s) =
1√

10 + e−s
, (29)



Mathematics 2023, 11, 2778 19 of 25

with initial conditions Z(0) = Z0 = 1
3 , Z′(0) = Z1 = 11

9 . We can assert that γ0 = 2, γ1 = −3,
and

$(s, Z(s), Z′(s)) =
1√

10 + e−s
.

For ε = 1
3 , it is straightforward to verify that the function Za(s) = 1

2 es satisfies∣∣∣∣2Z(s)− 3Z′(s) + Z′′(s)− 1√
10 + e−s

∣∣∣∣ ≤ 1
3

, (30)

for each s > 0, and by employing initial values, we obtain an exact solution to (29):

Z(s) = −e2s

(
e−s −

√
10 ln

(
es +

√
10

10

)
+
√

10 s

)

− es

(
ln

(√
10

10
+ 1

)
+
√

10− 10(1 +
√

10)√
10 + 10

+
5
9

)

− e2s

(
√

10 ln

(√
10

10
+ 1

)
−
√

10 +
10(1 +

√
10)√

10 + 10
− 17

9

)

− es

(
s− ln

(
es +

√
10

10

))
. (31)

One can see these results in Table 2, and in the graphical representation of 2Za(s)− 3Z′a(s) +
Z′′a (s) whenever Za(s) = 1

2 es, $(s, Z(s), Z′(s)), and Inequality (30) for s > 0, in Figures 1a,b
and 2, respectively; therefore, all the conditions of Theorem 3 are satisfied, and (29) has HUS in
class Ψ.

s

0 2 4 6 8 10 12 14 16 18 20

2
Z
a
(
s
)
−

3
Z

′ a
(
s
)
+

Z
′
′

a
(
s
)

×10
-8

-1

-0.5

0

0.5

1

1.5
Za(s) =

1
2 exp(s)

(a)

s

0 2 4 6 8 10 12 14 16 18 20

̺
(
s
,
Z
(
s
)
,
Z

′
(
s
)
)

0.26

0.27

0.28

0.29

0.3

0.31

0.32

(b)

Figure 1. 2D plot of 2Za(s)− 3Z′a(s) + Z′′a (s), whenever Za(s) = 1
2 es, $(s, Z(s), Z′(s)), and Inequal-

ity (30) for s > 0 in Example 1; (a) 2Za(s)− 3Z′a(s) + Z′′a (s); (b) $(s, Z(s), Z′(s)).
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s

0 2 4 6 8 10 12 14 16 18 20

0.26

0.27

0.28

0.29

0.3

0.31

0.32

|2Z(s)− 3Z′(s) +Z′′(s)− ̺(s, Z(s), Z′(s))| ≤ ε =
1

3

Figure 2. 2D plot of Inequality (30) for s > 0 in Example 1.

Table 2. Numerical results of Za(s), $(s, Z(s), Z′(s)), and Inequality (30) for s > 0 in Example 1.

s Za(s) $(s, Z(s), Z′(s)) Ineq. (30) Exact Solution

0.50 0.82436 0.26534 0.26534 1.5525
1.00 1.35914 0.28327 0.28327 5.4320
1.50 2.24085 0.29539 0.29539 16.9203
2.00 3.69453 0.30325 0.30325 49.7102
2.50 6.09125 0.30823 0.30823 141.4213
3.00 10.04277 0.31133 0.31133 394.9732
3.50 16.55773 0.31324 0.31324 1091.2161
4.00 27.29908 0.31441 0.31441 2995.3715
4.50 45.00857 0.31512 0.31512 8190.4806
5.00 74.20658 0.31556 0.31556 22,343.7060
5.50 122.34597 0.31582 0.31582 60,868.0217
6.00 201.71440 0.31598 0.31598 165,673.4726
6.50 332.57082 0.31608 0.31608 450,705.1967
7.00 548.31658 0.31614 0.31614 1,225,734.1757
7.50 904.02121 0.31617 0.31617 3,332,864.5664
8.00 1490.47899 0.31619 0.31619 9,061,270.6082
8.50 2457.38442 0.31621 0.31621 24,633,734.3046
9.00 4051.54196 0.31622 0.31622 66,965,796.7799
9.50 6679.86342 0.31622 0.31622 182,039,104.4573
10.00 11,013.23290 0.31622 0.31622 494,845,453.9945

...
...

...
...

...

6.2. Stability of Nonlinear Differential Equation

Example 2. Consider the nonlinear differential equation,

−Z(s) + 3Z′(s)− 3Z′′(s) + Z′′′(s) =
s2

e−s , (32)

with initial conditions Z(0) = Z0 = 2
5 , Z′(0) = Z1 = 1

7 , and Z′′(0) = Z2 = −3
2 . We can assert

that γ0 = −1, γ1 = 3, γ2 = −3, and

$(s, Z(s), Z′(s), Z′′(s)) =
s2

e−s .
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For ε = 1
5 , it is straightforward to verify that the function Za(s) = −s2

e2s satisfies∣∣∣∣−Z(s) + 3Z′(s)− 3Z′′(s) + Z′′′(s)− s2

e−s

∣∣∣∣ ≤ 1
5

φ(s), (33)

for each s > 0 where φ(s) = 99,999s4, and by employing initial values, we obtain an exact solution
to (29):

Z(s) =
31 es

40
− 159 s2 es

280
−

e−s (16 s4 + 32 s3 + 48 s2 + 48 s + 24
)

64

− 177 s es

280
+

s e−s (8 s3 + 12 s2 + 12 s + 6
)

16
−

s2 e−s (4 s2 + 4 s + 2
)

16
. (34)

One can see these results in Table 3, and in the graphical representation of

−Z(s) + 3Z′(s)− 3Z′′(s) + Z′′′(s),

whenever Za(s) = −s2

e2s , $(s, Z(s), Z′(s), Z′′(s)), Inequality (33), and |Z(s)− Za(s)|, for s > 0
in Figures 3a,b and 4a,b, respectively. Therefore, all the conditions of Theorem 7 are satisfied. Hence,
(32) has HUS in the class Ψ.

Table 3. Numerical results of Za(s), $(s, Z(s), Z′(s), Z′′(s)), Inequality (33), and |Z(s)− Za(s)|,
Mφ(s)ε for s > 0 in Example 2.

s Za(s) $(s, Z(s), Z′(s)) Ineq. (30) Exact Solution |Z(s)− Za(s)| Mφ(s)ε

0.50 −0.09197 0.15163 0.97936 0.1625 0.2544 5624.9438
1.00 −0.13534 0.36788 1.58590 −1.4772 1.3418 89,999.1000
1.50 −0.11202 0.50204 0.61406 −6.7744 6.6624 455,620.4438
2.00 −0.07326 0.54134 0.21166 −20.6190 20.5457 1,439,985.6000
2.50 −0.04211 0.51303 0.16434 −53.2201 53.1780 3,515,589.8438
3.00 −0.02231 0.44808 0.20269 −125.3066 125.2843 7,289,927.1000
3.50 −0.01117 0.36992 0.22425 −278.0600 278.0489 13,505,489.9438
4.00 −0.00537 0.29305 0.21455 −591.8759 591.8706 23,039,769.6000
4.50 −0.00250 0.22496 0.18525 −1221.4710 1221.4685 36,905,255.9438
5.00 −0.00114 0.16845 0.14925 −2461.0444 2461.0433 56,249,437.5000
5.50 −0.00051 0.12363 0.11464 −4864.3699 4864.3694 82,354,801.4438
6.00 −0.00022 0.08924 0.08514 −9464.7453 9464.7451 116,638,833.6000
6.50 −0.00010 0.06352 0.06170 −18,175.6012 18,175.6011 160,654,018.4438
7.00 −0.00004 0.04468 0.04388 −34,516.5370 34,516.5369 216,087,839.1000
7.50 −0.00002 0.03111 0.03077 −64,923.2572 64,923.2572 284,762,777.3438
8.00 −0.00001 0.02147 0.02132 −121,101.4220 121,101.4220 368,636,313.6000
8.50 0.00000 0.01470 0.01464 −224,240.7191 224,240.7191 469,800,926.9438
9.00 0.00000 0.01000 0.00997 −412,533.7924 412,533.7924 590,484,095.1000
9.50 0.00000 0.00676 0.00674 −754,550.2155 754,550.2155 733,048,294.4438
10.00 0.00000 0.00454 0.00454 −1,372,956.8133 1,372,956.8133 899,991,000.0000

...
...

...
...

...
...

...
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Figure 3. 2D plot of 2Za(s)− 3Z′a(s) + Z′′a (s) whenever Za(s) = −s2

e2s and $(s, Z(s), Z′(s)) for s > 0 in
Example 2; (a) −Z(s) + 3Z′(s)− 3Z′′(s) + Z′′′(s); (b) $(s, Z(s), Z′(s), Z′′(s)).
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Figure 4. 2D plot of Inequality (33) and |Z(s)− Za(s)| ≤ φ(s)ε for s > 0 in Example 2; (a) Inequal-
ity (33); (b) |Z(s)− Za(s)| ≤ Mφ(s)ε.

6.3. Stability of Fractional Differential Equation

In this section, we look at a few fractional differential equation applications of the
Tarig transform technique.

We take into account the following general fractional-order linear differential equation:

cDµ
0+(z) =

ϕ

∑
`=0

e`y(`)(z) + ξ(z), ϕ− 1 < µ ≤ ϕ, (35)

subject to the initial condition,

y(`)(0) = c`, i = 0, . . . , ϕ− 1, c`, ej ∈ R. (36)
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Through the Tarig transform of (35), we obtain

Υ(cDµ
0+(z)) = Υ

(
ϕ

∑
`=0

e`y(`)(z) + ξ(z)

)
, ϕ− 1 < µ ≤ ϕ.

Using the linearity of the Tarig transform, we obtain

Υ(cDµ
0+(z)) = Υ

(
ϕ

∑
`=0

e`y(`)(z)

)
+ Υ(ξ(z)), ϕ− 1 < µ ≤ ϕ

= e0y(z) +
ϕ

∑
`=1

e`Υ
(

y(`)(z)
)
+ Υ(ξ(z)).

Applying the Tarig transform to the derivatives, we obtain

(
φ

v

)µ

Ḩ(v, φ)−
ϕ−1

∑
k=0

(
φ

v

)k+1−µ

y(k)(0) = e0Ḩ(v, φ) +
ϕ

∑
`=1

e`

[(
φ

v

)−`
Ḩ(v, φ)−

`−1

∑
k=0

(
φ

v

)k+1−`
y(k)(0)

]
+ Υ(ξ(z))

(
φ

v

)µ

Ḩ(v, φ)−
ϕ−1

∑
`=0

e`

(
φ

v

)−`
Ḩ(v, φ) =

ϕ−1

∑
k=0

ck

(
φ

v

)k+1−µ

−
ϕ

∑
`=1

e`
`−1

∑
k=0

ck

(
φ

v

)k+1−`
+ Υ(ξ(z))

Ḩ(v, φ) =

((
φ

v

)µ

−
ϕ−1

∑
`=0

e`

(
φ

v

)−`)−1(ϕ−1

∑
k=0

ck

(
φ

v

)k+1−µ

−
ϕ

∑
`=1

e`
`−1

∑
k=0

ck

(
φ

v

)k+1−`
+ Υ(ξ(z))

)
. (37)

Applying the inverse Tarig transform to both sides of Equation (37) yields the solution
to Equation (35):

y(z) = Υ−1

((φ

v

)µ

−
ϕ−1

∑
`=0

e`

(
φ

v

)−`)−1(ϕ−1

∑
k=0

ck

(
φ

v

)k+1−µ

−
ϕ

∑
`=1

e`
`−1

∑
k=0

ck

(
φ

v

)k+1−`
+ Υ(ξ(z))

). (38)

Remark 1. If n = 1, e0 = −1 and e1 = ξ(z) = 0, then

cDµy(z) + y(z) = 0, 0 < µ ≤ 1, z > 0 (39)

with initial condition
y(0) = 1. (40)

Substituting ϕ, e0, e1 and ξ in (38), we obtain

y(z) = Υ−1

((φ

v

)−µ

−
ϕ−1

∑
`=0

e`

(
φ

v

)−`)−1(
φ

v

)1−µ


= Υ−1

[(
φ

v

)
−
(

1− (−1)
(

φ

v

))−1
]

and
Ḩ(v, φ) = Υ(Eµ(−zµ)). (41)

Through the inverse Tarig transform of (41), we obtain the exact solution to Equation (39), as
follows:

y(z) = Eµ(−zµ). (42)

Figures 5 and 6 show the two-dimensional surfaces of the exact solution (42) of the differential
Equation (35), as well as its graphical results, with regard to µ.
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Figure 5. Solution curve y(z) for µ = 0.1, 0.2, 0.3, 0.4.

Figure 6. Solution curve y(z) for µ = 0.6, 0.7, 0.8, 0.9.

7. Conclusions

This manuscript has discussed the Tarig transform for non-homogeneous and homo-
geneous linear differential equations. Using this unique integral transform, we resolved
higher-order linear differential equations, and we produced the conditions required for
HUS, by using the Tarig transform to show that a linear differential equation was stable.
This study also demonstrated that the Tarig transform method is more effective for ana-
lyzing the stability issue for differential equations with constant coefficients. A discussion
of applications followed, to illustrate our approach. Moreover, this paper proposes a new
method of investigating the HUS of differential equations. In the future, we will investigate
the stability of fractional differential equations.

Author Contributions: All authors equally conceived the study, participated in its design and
coordination, drafted the manuscript, participated in the sequence alignment, and read and approved
the final manuscript. All authors have read and agreed to the published version of the manuscript.



Mathematics 2023, 11, 2778 25 of 25

Funding: This research was funded by Deanship of Scientific Research at King Khalid University for
funding this work through its research groups program, under Grant No. R.G.P2/194/44.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Debnath, L.; Bhatta, D.D. Integral Transforms and Their Applications, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007.
2. Kılıçman, A.; Gadain, H.E. An application of double Laplace transform and double Sumudu transform. Lobachevskii J. Math. 2009,

30, 214–223. [CrossRef]
3. Zhang, J. A Sumudu based algorithm for solving differential equations. Comput. Sci. J. Moldova 2007, 15, 303–313.
4. Eltayeb, H.; Kılıçman, A. A note on the Sumudu transforms and differential equations. Appl. Math. Sci. (Ruse) 2010, 4, 1089–1098.
5. Kılıçman, A.; Eltayeb, H. A note on integral transforms and partial differential equations. Appl. Math. Sci. (Ruse) 2010, 4, 109–118.
6. Eltayeb, H.; Kılıçman, A. On some applications of a new integral transform. Int. J. Math. Anal. (Ruse) 2010, 4, 123–132.
7. Manjarekar, S.; Bhadane, A.P. Applications of Tarig transformation to new fractional derivatives with non singular kernel. J. Fract.

Calc. Appl. 2018, 9, 160–166.
8. Loonker, D.; Banerji, P.K. Fractional Tarig transform and Mittag-Leffler function. Bol. Soc. Parana. Mat. 2017, 35, 83–92. [CrossRef]
9. Elzaki, T.M.; Elzaki, S.M. On the relationship between Laplace transform and new integral transform “Tarig Transform”. Elixir

Appl. Math. 2011, 36, 3230–3233.
10. Elzaki, T.M.; Elzaki, S.M. On the Connections Between Laplace and Elzaki transforms. Adv. Theor. Appl. Math. 2011, 6, 1–11.
11. Obłoza, M. Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 1993, 13 , 259–270.
12. Obłoza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt.

Prace Mat. 1997, 14 , 141–146.
13. Alsina, C. ; Ger, R. On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 1998, 2, 373–380.

[CrossRef]
14. Huang, J.; Li, Y.J. Hyers-Ulam stability of linear functional differential equations. J. Math. Anal. Appl. 2015, 426, 1192–1200.
15. Zada, A.; Shah, S.O.; Shah, R. Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems.

Appl. Math. Comput. 2015, 271, 512–518. [CrossRef]
16. Choi, G.; Jung, S.-M. Invariance of Hyers-Ulam stability of linear differential equations and its applications. Adv. Differ. Equ. 2015,

2015, 277. [CrossRef]
17. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [CrossRef]
18. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2004, 17, 1135–1140. [CrossRef]
19. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. III. J. Math. Anal. Appl. 2005, 311, 139–146.

[CrossRef]
20. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. II. Appl. Math. Lett. 2006, 19, 854–858. [CrossRef]
21. Li, Y.J.; Shen, Y. Hyers-Ulam stability of nonhomogeneous linear differential equations of second order. Int. J. Math. Math.

Sci.2009, 2009, 576852. [CrossRef]
22. Li, Y.J.; Shen, Y. Hyers-Ulam stability of linear differential equations of second order. Appl. Math. Lett. 2010, 23, 306–309.

[CrossRef]
23. Miura, T.; Miyajima, S.; Takahasi, S.-E. A characterization of Hyers-Ulam stability of first order linear differential operators. J.

Math. Anal. Appl. 2003, 286, 136–146. [CrossRef]
24. Ulam, S.M. A Collection of Mathematical Problems; Interscience Tracts in Pure and Applied Mathematics, no. 8; Interscience

Publishers: New York, NY, USA, 1960.
25. Wang, G.W.; Zhou, M.R.; Sun, L. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2008, 21,

1024–1028. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1134/S1995080209030044
http://dx.doi.org/10.5269/bspm.v35i2.29388
http://dx.doi.org/10.1155/S102558349800023X
http://dx.doi.org/10.1016/j.amc.2015.09.040
http://dx.doi.org/10.1186/s13662-015-0617-1
http://dx.doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/10.1016/j.aml.2003.11.004
http://dx.doi.org/10.1016/j.jmaa.2005.02.025
http://dx.doi.org/10.1016/j.aml.2005.11.004
http://dx.doi.org/10.1155/2009/576852
http://dx.doi.org/10.1016/j.aml.2009.09.020
http://dx.doi.org/10.1016/S0022-247X(03)00458-X
http://dx.doi.org/10.1016/j.aml.2007.10.020

	Introduction
	Tarig Transform of Derivatives
	Preliminaries
	Stability of (4)
	Stability of (5)
	Application of Tarig Transform
	Stability of Linear Differential Equation
	Stability of Nonlinear Differential Equation
	Stability of Fractional Differential Equation

	Conclusions
	References

