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1. Introduction

Various real-world application models incorporate oscillation phenomena; we refer
to the works [1,2] for models from mathematical biology where oscillation and/or delay
actions may be expressed using cross-diffusion terms. This paper examined the study of
nonlinear functional differential equations since these equations are relevant to a number
of practical issues, including non-Newtonian fluid theory and the turbulent flow of a
polytrophic gas in a porous media; see, e.g., the papers [3–11] for more details. Therefore,
we were interested in the oscillatory criteria of the quasilinear differential equation of
even-order

y(n)(s) + p(s)|y(φ(s))|β−1y(φ(s)) = 0, s ∈ [s0, ∞), s0 ≥ 0, (1)

where n ≥ 2 is an even integer, y(j)(s) :=
(

y(j−1)
)′
(s), j = 1, 2, . . . , n with y(0)(s) := y(s),

β > 0, p(s) and φ(s) are positive continuous functions on [s0, ∞), satisfying lims→∞ φ(s) = ∞,
and ϕ(s) := min{s, φ(s)} is nondecreasing on [s0, ∞). By a solution of Equation (1),
we mean a nontrivial real-valued function y ∈ C1[T, ∞) with T ∈ [s0, ∞) such that
y(j) ∈ C1[T, ∞), j = 1, 2, . . . , n− 1 and y(s) satisfies Equation (1) on [T, ∞). We consider
only those solutions y(s) of Equation (1), which satisfy sup{|y(s)| : s ≥ T} > 0 for all
T ∈ [s0, ∞). We shall not investigate solutions that vanish in the neighborhood of infinity.
A solution y(s) of Equation (1) is said to be oscillatory if it is neither eventually positive
nor eventually negative; otherwise, it is said to be non-oscillatory. Equation (1) is said to
be oscillatory if all its solutions are oscillatory, see [12]. In the following, we present some
oscillation criteria for differential equations that will be relevant to our oscillation criteria
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for (1) and expound the fundamental contributions of this paper. Fite [13] constructed an
oscillatory criterion of the linear equation of second-order

y′′(s) + p(s)y(s) = 0, (2)

and proved that, if ∫ ∞

s0

p(µ) dµ = ∞, (3)

then (2) is oscillatory. This result was also established by Wintner [14] without making the
assumption that p(s) > 0. Hille [15] improved criterion (3) and obtained that if

lim inf
s→∞

s
∫ ∞

s
p(µ) dµ >

1
4

, (4)

then (2) is oscillatory. Nehari [16] presented the oscillatory behavior of Equation (2) and
obtained that if

lim inf
s→∞

1
s

∫ s

s0

µ2 p(µ) dµ >
1
4

, (5)

then (2) is oscillatory. Erbe [17] generalized the Hille-type criterion (4) to the delay equation

y′′(s) + p(s)y(φ(s)) = 0, φ(s) ≤ s, (6)

and showed that if

lim inf
s→∞

s
∫ ∞

s

φ(µ)

µ
p(µ) dµ >

1
4

, (7)

then (6) is oscillatory. Ohriska [18] proved that, if

lim sup
s→∞

s
∫ ∞

s

φ(µ)

µ
p(µ) dµ > 1, (8)

then (6) is oscillatory.
We direct the reader to the relevant results [19–35] and the references cited there. It

should be noted that the contributions of Fite [13], Hille [15], Ohriska [18], and Wintner [14]
strongly motivated the research in this paper. The aim of this paper was to extend some
oscillation criteria for even-order quasilinear functional differential Equation (1) in the
cases when β ≥ 1, β ≤ 1, φ(s) ≤ s, and φ(s) ≥ s. All subsequent inequalities are implicitly
supposed to eventually hold. In other words, they are fulfilled for all sufficiently large s.

2. Main Results

This section begins with the subsequent preliminary lemmas. The following essential
lemma is attributed to Kiguradze [36].

Lemma 1 (see [36]). Let y(s) be a function whose derivatives up to order (n− 1) inclusive are
all absolutely continuous and have a constant sign. Assume that y(n)(s) is eventually of one sign
and not identically zero. Then, there is an integer m ∈ {0, 1, . . . , n − 1} with m + n odd for
y(n)(s) ≤ 0, or with m + n even for y(n)(s) ≥ 0 such that

y(h)(s) > 0 for h = 0, 1, . . . , m, (9)

and
(−1)m+hy(h)(s) > 0 for h = m, m + 1, . . . , n, (10)

eventually.
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Lemma 2. If (1) has an eventually positive solution y(s) and m ∈ {1, 3, . . . , n− 1} is offered
as in Lemma 1 such that (9) and (10) are satisfied for s ∈ [s0, ∞), then for u, v ∈ [s0, ∞) and

l = 0, 1, . . . , m,
y(m−l)(v)

(v− u)l is strictly decreasing for v ∈ (u, ∞) and

y(m−l)(v) ≥ y(m)(v)
(v− u)l

l !
for v ∈ [u, ∞). (11)

Proof. From (9) and (10), we obtain for v ≥ u ≥ s0,

y(m−1)(v) = y(m−1)(u) +
∫ v

u
y(m)(µ) dµ,

which implies that
y(m−1)(v) ≥ y(m)(v)(v− u). (12)

By replacing v by µ in (12) and integrating with respect to µ from u to v, we arrive at

y(m−2)(v) ≥ y(m−2)(u) +
∫ v

u
y(m)(µ)(µ− u) dµ ≥ y(m)(v)

(v− u)2

2 !
.

Continuing with this approach, one can easily achieve the desired inequality (11). By virtue

of (12), we have
y(m−1)(v)

v− u
is strictly decreasing for v > u ≥ s. Therefore,

y(m−2)(v) ≥ y(m−2)(u) +
∫ v

u

y(m−1)(µ)

µ− u
(µ− u)dµ ≥ (v− u)

2
y(m−1)(v).

Consequently,
y(m−2)(v)

(v− u)2 is strictly decreasing for v > u ≥ s. Continuing with this ap-

proach, one can reasonably conclude that
y(m−l)(v)

(v− u)l is strictly decreasing for v > u ≥ s.

The proof is complete.

Following that, we present the following notations:

γ :=
{

1, if 0 < β ≤ 1,
β, if β ≥ 1,

(13)

and for any s ∈ [s0, ∞) and for m ∈ {1, 3, . . . , n − 1}, the functions pj(s), j = n − 1,
n− 2, . . ., m, are defined by the following recurrence formula:

pj(s) :=
{

p(s), j = n,∫ ∞
s pj+1(µ) dµ, j = 1, 2, . . ., n− 1,

(14)

provided that the improper integrals converge.

Lemma 3. If (1) has an eventually positive solution y(s) and m ∈ {1, 3, . . . , n− 1} is offered
as in Lemma 1, such that (9) and (10) are satisfied for s ∈ [s0, ∞), then for s ∈ [s0, ∞) and
l = m, m + 1, . . . , n− 1,

pl(s) < ∞ and (−1)l+1y(l)(s) ≥ pl(s)yβ(ϕ(s)). (15)

Proof. By using Lemma 1, we obtain that y(s) is strictly increasing on [s0, ∞). Hence,
from (1) we get for s ∈ [s0, ∞),

−y(n)(s) = p(s)yβ(φ(s)) ≥ pn(s) yβ(ϕ(s)). (16)
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Replacing s by µ in (16), integrating from s to v ∈ [s, ∞), and by (10), we have

y(n−1)(s) ≥ −y(n−1)(v) + y(n−1)(s) ≥
∫ v

s
pn(µ) yβ(ϕ(µ)) dµ

≥ yβ(ϕ(s))
∫ v

s
pn(µ) dµ.

Therefore, let v→ ∞; we can deduce that

y(n−1)(s) ≥ yβ(ϕ(s))
∫ ∞

s
pn(µ) dµ = pn−1(s)yβ(ϕ(s)),

which implies pn−1(s) =
∫ ∞

s pn(µ) dµ < ∞. Integrating again from s to v, and using (9)
and (10), we get

−y(n−2)(s) ≥ y(n−2)(v)− y(n−2)(s) ≥
∫ v

s
pn−1(µ) yβ(ϕ(µ)) dµ

≥ yβ(ϕ(s))
∫ v

s
pn−1(µ) dµ.

Hence, as v→ ∞, we have

−y(n−2)(s) ≥ pn−2(s)yβ(ϕ(s)),

which implies pn−2(s) =
∫ ∞

s pn−1(µ) dµ < ∞. Continuing with this approach, one can
easily achieve the desired inequality (15). Therefore, the conclusion holds.

The first theorem is a Fite–Wintner-type oscillation criterion for the Equation (1).

Theorem 1. If ∫ ∞

s0

p(µ) dµ = ∞, (17)

then (1) is oscillatory.

Proof. Assume that (1) has a non-oscillatory solution y on [s0, ∞). Without loss of generality,
let y(s) > 0 and y(φ(s)) > 0 on [s0, ∞). From Lemma 1, it follows that there is an odd
integer m ∈ {1, 3, . . . , n− 1} such that (9) and (10) are satisfied for s ∈ [s1, ∞) for some
s1 ∈ [s0, ∞). In view of Lemma 3 with l = n− 1, we see that pn−1(s) =

∫ ∞
s0

p(µ) dµ < ∞
on [s1, ∞). This contradicts (17); therefore, the proof is complete.

Example 1. Consider the quasilinear differential equation of even-order (1) with p(s) =
1
sα

, α ≤ 1.
It is easy to see that (17) holds. Therefore, by Theorem 1, (1) is oscillatory if α ≤ 1.

In the next results, we will assume that the improper integrals are convergent. Other-
wise, we see that (1) oscillates in accordance with the preceding theorem.

Theorem 2. If for each an odd integer m ∈ {1, 3, . . . , n− 1},

lim sup
s→∞

sm
∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ > m !, (18)

then (1) is oscillatory.

Proof. Assume that (1) has a non-oscillatory solution y on [s0, ∞). Without loss of generality,
let y(s) > 0 and y(φ(s)) > 0 on [s0, ∞). From Lemma 1, it follows that there is an odd
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integer m ∈ {1, 3, . . . , n− 1} such that (9) and (10) are satisfied for s ∈ [s1, ∞) for some
s1 ∈ [s0, ∞). In view of Lemma 3 with l = m + 1, we obtain that for s ∈ [s1, ∞),

y(m+1)(s) ≤ −pm+1(s) yβ(ϕ(s)). (19)

Integrating (19) from s to v, we obtain∫ v

s
pm+1(µ) yβ(ϕ(µ)) dµ ≤ y(m)(s)− y(m)(v) ≤ y(m)(s). (20)

From Lemma 2 with l = m, v = s, and u = s1, we have that
y(s)

(s− s1)
m is strictly decreasing

on [s2, ∞) for some s2 ∈ (s1, ∞). If β ≤ 1, we get for s ∈ [s2, ∞),

yβ(ϕ(s))
y(s)

=

[
y(ϕ(s))

y(s)

]β

yβ−1(s)

≥
([

ϕ(s)−s1

s−s1

]m)β

yβ−1(s)

=

(
(ϕ(s)−s1)

β

s−s1

)m(
y(s)

(s−s1)
m

)β−1

≥
(
(ϕ(s)−s1)

β

s

)m(
y(s2)

(s2−s1)
m

)β−1
,

whereas if β ≥ 1, using y′(s) > 0 on [s2, ∞), we get for s ∈ [s2, ∞),

yβ(ϕ(s))
y(s)

≥
[(

ϕ(s)−s1

s−s1

)m]β

yβ−1(s)

≥
[(

ϕ(s)−s1

s

)m]β

yβ−1(s2).

Now, setting l = m, v = s, and u = s1 in (11), we have for s ∈ [s2, ∞),

y(s) ≥ (s− s1)
m

m !
y(m)(s).

Let 0 < ς < 1 be arbitrary. There exists a sufficiently large sς ∈ [s2, ∞) such that for
s ∈ [sς, ∞),

yβ(ϕ(s))
y(s)

≥ ς

(
ϕβ(s)

sγ

)m

, (21)

and
y(s) ≥ ς

sm

m !
y(m)(s). (22)

It follows from (21) and (22), and y′ > 0 that

yβ(ϕ(µ)) ≥ ς

(
ϕβ(µ)

µγ

)m

y(s) ≥ ς2 sm

m !

(
ϕβ(µ)

µγ

)m

y(m)(s), (23)

for µ ∈ [T, ∞) and T ∈ [sς, ∞). Using (23) in the inequality (20), we achieve that

ς2sm
∫ v

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ m !.
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By means of 0 < ς < 1 is arbitrary, we get

sm
∫ v

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ m !.

Letting v→ ∞, we have

sm
∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ m !,

and so

lim sup
s→∞

sm
∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ m !.

This contradicts (18); therefore, the proof is complete.

The next result deals with the Hille-type oscillation criterion of (1).

Theorem 3. If for each an odd integer m ∈ {1, 3, . . . , n− 1},

lim inf
s→∞

sm
∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ >
m !
4

, (24)

then (1) is oscillatory.

Proof. Assume that (1) has a non-oscillatory solution y on [s0, ∞). Without loss of generality,
let y(s) > 0 and y(φ(s)) > 0 on [s0, ∞). From Lemma 1, it follows that there is an odd
integer m ∈ {1, 3, . . . , n− 1} such that (9) and (10) are satisfied for s ∈ [s1, ∞) for some
s1 ∈ [s0, ∞). Define

w(s) :=
y(m)(s)

y(s)
. (25)

Hence,

w′(s) =
y(m+1)(s)

y(s)
− y(m)(s)y′(s)

y2(s)
.

In view of Lemma 3 with l = m + 1, we see that

y(m+1)(s) ≤ −pm+1(s) yβ(φ(s)).

Hence,

w′(s) ≤ −pm+1(s)
yβ(φ(s))

y(s)
− w(s)

y′(s)
y(s)

. (26)

Setting l = m− 1, v = s and u = s1 in (11), we have for s ∈ [s2, ∞),

y′(s) ≥ (s− s1)
m−1

(m− 1) !
y(m)(s).

As demonstrated in the proof of Theorem 2, for each 0 < ς < 1, there is a sς ∈ [s1, ∞) such
that for s ∈ [sς, ∞),

y′(s)
y(s)

≥ ς
sm−1

(m− 1)!
w(s), (27)

and
yβ(ϕ(s))

y(s)
≥ ς

(
ϕβ(s)

sγ

)m

. (28)
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Substituting (27) and (28) into (26), we get for s ∈ [sς, ∞),

w′(s) ≤ −ς

(
ϕβ(s)

sγ

)m

pm+1(s)− ς
sm−1

(m− 1)!
w2(s). (29)

Now, for any ε > 0, there is a T ∈ [sς, ∞) such that

smw(s)
m!

≥ B− ε fors ∈ [T, ∞), (30)

where

B := lim inf
s→∞

smw(s)
m!

, 0 ≤ B ≤ 1.

In view of (29) and (30), we have

w′(s) ≤ −ς

(
ϕβ(s)

sγ

)m

pm+1(s)− ς m!(B− ε)2 m
sm+1 . (31)

Integrating (31) from s to v, we deduce that

w(v)− w(s) ≤ −ς
∫ v

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ− ς m!(B− ε)2
∫ v

s

(
−1
µm

)′
dµ.

Considering the fact that w > 0, and taking to the limits as v→ ∞, we get

ς
∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ w(s)− ς m!(B− ε)2 1
sm . (32)

Multiplying both sides of (32) by
sm

m!
, we find that

ς
sm

m!

∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ sm

m!
w(s)− ς (B− ε)2.

Taking the lim inf of the previous inequality as s→ ∞, we obtain

ς

m!
lim inf

s→∞
sm
∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ B− ς (B− ε)2.

By means of ε > 0 and 0 < ς < 1 being arbitrary, we conclude that

1
m!

lim inf
s→∞

sm
∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ B− B2.

We can easily achieve the desired result,

lim inf
s→∞

sm
∫ ∞

s

(
ϕβ(µ)

µγ

)m

pm+1(µ) dµ ≤ m!
4

.

This contradicts (24); therefore, the proof is complete.

As a direct result of Theorems 1, 2 and 3, we can find oscillation criteria for the
Equation (1) when n = 2, i.e., for the second order equation

y′′(s) + p(s)|y(φ(s))|β−1y(φ(s)) = 0. (33)
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Corollary 1. The Equation (33) is oscillatory, provided one of the following conditions holds:

(a)
∫ ∞

s0
p(µ) dµ = ∞;

(b) lim sups→∞ s
∫ ∞

s
ϕβ(µ)

µγ
p(µ) dµ > 1;

(c) lim infs→∞s
∫ ∞

s
ϕβ(µ)

µγ
p(µ) dµ >

1
4

.

Example 2. Consider a second-order quasilinear differential equation,

y′′(s) +
α

3√s4
3
√

y(λs) = 0 for s ∈ [s0, ∞), (34)

where λ, α > 0. Here, n = 2, β =
1
3

, p(s) =
α

3√s4
, and φ(s) = λs. Now,

lim sup
s→∞

s
∫ ∞

s

φβ(µ)

µγ
p(µ) dµ = α

3√
λ lim sup

s→∞
s
∫ ∞

s

dµ

µ2 = α
3√

λ,

and
lim sup

s→∞
s
∫ ∞

s
µβ−γ p(µ) dµ = α lim sup

s→∞
s
∫ ∞

s

dµ

µ2 = α.

Employment of Corollary 1, Part (b) means that (34) is oscillatory if

α >


1

3
√

λ
, if 0 < λ ≤ 1,

1, if λ ≥ 1.

For the Equation (1) with n ≥ 4, we get further oscillation criteria as seen below.

Corollary 2. Let

either
∫ ∞

s0

pn−1(µ) dµ = ∞ or
∫ ∞

s0

pn−2(µ) dµ = ∞. (35)

Then, (1) with n ≥ 4 is oscillatory provided one of the following conditions holds:

(a) lim sups→∞ sn−1
∫ ∞

s

(
ϕβ(µ)

µγ

)n−1
p(µ) dµ > (n− 1) !;

(b) lim infs→∞sn−1
∫ ∞

s

(
ϕβ(µ)

µγ

)n−1
p(µ) dµ >

(n− 1) !
4

.

Proof. Assume that (1) has a non-oscillatory solution y on [s0, ∞). Without loss of generality,
let y(s) > 0 and y(φ(s)) > 0 on [s0, ∞). From Lemma 1, it follows that there is an odd
integer m ∈ {1, 3, . . . , n− 1} such that (9) and (10) hold for s ∈ [s1, ∞) for some s1 ∈ [s0, ∞).
We claim that (35) yields that m = n− 1. If 1 ≤ m ≤ n− 3, then for s ≥ s1

y(n)(s) < 0, y(n−1)(s) > 0, y(n−2)(s) < 0, y(n−3)(s) > 0. (36)

Since y(s) is strictly increasing on [s1, ∞) then for sufficiently large s2 ∈ [s1, ∞), we have
y(φ(s)) ≥y (ϕ(s)) ≥ L > 0 for s ≥ s2. Thus, the Equation (1) becomes

−y(n)(s) = p(s)|y(φ(s))|β−1y(φ(s)) ≥ Lβ p(s) = L pn(s).

Integrating the above inequality from s to v ∈ [s, ∞) and then letting v→ ∞, we get

y(n−1)(s) ≥ Lβ
∫ ∞

s
pn(µ) dµ = Lβ pn−1(s). (37)
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It is known from Theorem 1 that pn−1(s) < ∞.
Let

∫ ∞
s0

pn−1(µ) dµ = ∞. By integrating (37) from s2 to s ∈ [s2, ∞), we obtain

y(n−2)(s)− y(n−2)(s2) > Lβ
∫ s

s2

pn−1(µ) dµ,

which implies that lims→∞y(n−2)(s) = ∞, which contradicts y(n−2) < 0 on [s2, ∞).
Let

∫ ∞
s0

pn−2(µ) dµ = ∞. By integrating (37) from s to v ∈ [s, ∞) and letting v → ∞ and
using (10), we obtain

−y(n−2)(s) ≥ Lβ
∫ ∞

s
pn−1(µ) dµ = Lβ pn−2(s).

Again integrating from s2 to s ∈ [s2, ∞), we have

y(n−3)(s2)− y(n−3)(s) ≥ Lβ
∫ s

s2

pn−2(µ) dµ,

which implies that lims→∞y(n−3)(s) = −∞, which contradicts y(n−3) > 0 on [s2, ∞). This
shows that if (35) holds, then m = n− 1. The remainder of the proof is the same as those
for Theorems 2 and 3 when m = n− 1 and so can be omitted.

Example 3. Consider a fourth-order quasilinear delay differential equation

y(4)(s) +
24
s3

3
√

y2(s/2) sgny(s/2) = 0 for s ∈ [s0, ∞), (38)

Here n = 4, β =
2
3

, p(s) =
24
s3 , and φ(s) =

s
2

. Now

∫ ∞

s0

pn−2(µ) dµ =
∫ ∞

s0

(∫ ∞

µ

12
s2 ds

)
dµ = ∞,

and

lim inf
s→∞

sn−1
∫ ∞

s

(
ϕβ(µ)

µγ

)n−1

p(µ) dµ = 6 lim sup
s→∞

s3
∫ ∞

s

dµ

µ4 = 2.

Employment of Corollary 2, Part (b) means that (38) is oscillatory.

3. Discussions and Conclusions

• Several Fite–Wintner–Hille–Ohriska-type criteria that can be applied to even-order
quasilinear functional differential Equation (1) are presented in this paper. These
results extend prior contributions to second-order differential equations with deviating
arguments and cover the extant classical criteria for ordinary differential equations.
For more details on how our findings extend known relevant thoughts to the second-
order differential equations, see the details below:

(1) Condition (24) reduces to (4) in the case where n = 2, β = 1, and φ(s) = s;
(2) Condition (24) reduce to (7) in the case when n = 2 and β = 1;
(3) Condition (18) reduces to (8) under the assumptions that n = 2 and β = 1.
• It will be important to derive the Nehari-type oscillation criterion (5) of the even-order

differential Equation (1).
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