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Abstract: The accurate prediction of short-term load is crucial for the grid dispatching department
in developing power generation plans, regulating unit output, and minimizing economic losses.
However, due to the variability in customers’ electricity consumption behaviour and the randomness
of load fluctuations, it is challenging to achieve high prediction accuracy. To address this issue,
we propose an ensemble deep learning model that utilizes reduced dimensional clustering and
decomposition strategies to mitigate large prediction errors caused by non-linearity and unsteadiness
of load sequences. The proposed model consists of three steps: Firstly, the selected load features
are dimensionally reduced using singular value decomposition (S§VD), and the principal features
are used for clustering different loads. Secondly, variable mode decomposition (VMD) is applied to
decompose the total load of each class into intrinsic mode functions of different frequencies. Finally,
an ensemble deep learning model is developed by combining the strengths of LSTM and CNN-GRU
deep learning algorithms to achieve accurate load forecasting. To validate the effectiveness of our
proposed model, we employ actual residential electricity load data from a province in northwest
China. The results demonstrate that the proposed algorithm performs better than existing methods
in terms of predictive accuracy.

Keywords: short-term load forecasting; clustering; decomposition; forecasting strategies; ensemble
deep learning

MSC: 60G25

1. Introduction

As China’s electrification level rises, so does demand for electrical energy [1]. Residen-
tial, commercial, and industrial electricity consumption all show a year-on-year growth
trend. However, the electricity load exhibits obvious randomness and volatility due to ob-
jective and social factors such as weather changes, holidays, and unexpected situations [2,3].
This complicates load forecasting and has an impact on the reliability and efficiency of
power system operation [4-7]. Highly accurate load forecasting enables power dispatching
authorities to develop more scientific and cost-effective power generation plans, reducing
fossil fuel consumption and slowing environmental degradation [8]. Improved load fore-
casting accuracy can lead to better peak regulation in power systems with energy storage.
As a result, finding high-accuracy load forecasting methods has been a hot and difficult
research topic in this field [9-11].

In terms of time scales, there are currently four main types of load forecasts: ultra-short-
term load forecasts [12], short-term load forecasts [13,14], medium-term load forecasts [15-17],
and long-term load forecasts [18-21]. Ultra-short-term forecasts (one hour or 10 min in the
future) are mainly used for real-time security analysis, real-time economic dispatch, and
automatic generation control. Short-term forecasts (one day or one week ahead) are used for
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scheduling daily start-up and shutdown plans and generation plans. Medium-term forecasts
(one year in the future) are used for monthly maintenance plans, operation methods, and
reservoir scheduling plans. Long-term forecasts (10 years in the future) provide key basic data
for grid planning or for determining annual maintenance plans, operation methods, etc.

Load forecasting models can be mainly classified as statistical [22,23], artificial intelli-
gence [24,25], and combined models [26-28].

Statistical models mainly include autoregressive integrated moving average, seasonal
autoregressive integrated moving average, multiple linear regression, exponential smooth-
ing method, etc. Wang Bo et al. constructed an autoregressive and moving average model
with exogenous variables to achieve the short-term forecasting of load [29]. Luiz Felipe
Amaral et al. developed the smooth transition periodic autoregressive model and evaluated
the load forecasting performance of the model [30]. Traditional statistical methods will no
longer be applicable when forecasting complex non-linear trends.

In recent years, artificial intelligence models have been widely applied in the field
of load forecasting with excellent results. Common artificial intelligence models can be
broadly classified into machine learning models [31-33] and deep learning models [34-36].
Support vector machines and neural network models are the most representative machine
learning models. Jian Luo et al. [37] constructed a weighted quadratic surface support
vector regression model to achieve efficient load prediction. The results show that the
support vector function can handle non-linear time series better, but the parameter setting
of the method is too cumbersome. Haoming Liu et al. [38] constructed a combinatorial
model based on support vector regression for short-term load forecasting of integrated
energy systems. Pham et al. [39] used BPNN as a core forecasting algorithm for load
forecasting. Yusha Hu et al. [40] established a parameter-optimised BPNN network to
avoid the problem of prediction results falling into local optima. Deep learning models
are a field of algorithms that has grown from neural network models in machine learning
models. Deep learning models contain more complex structures and are suitable for
processing large amounts of non-linear data. A stacked autoencoder structure based on
a deep LSTM was innovatively proposed by Zahra Fazlipour et al. [41]. Notably, the
study shows that the deep structure is useful for improving prediction accuracy. A stack
LSTM model was developed by Hongbo Ren et al. [42] for implementing load forecasting.
Temporal convolutional networks incorporating an attention mechanism were constructed
by XianlunTang et al. [43].

Various single prediction models have their limitations, and prediction accuracy is
difficult to meet production needs. Combinatorial prediction methods have started to
emerge in recent years. Combinatorial models can be divided into two main categories:
combinations of optimisation algorithms and forecasting models and the integration of
multiple forecasting models. A combined forecasting model, i.e., the ElIman neural network
(ENN) model optimised using the particle swarm optimization algorithm for load power
forecasting was proposed by Kun Xie et al. [44]. Considerable work has also been performed
by groups of multiple researchers in the area of integration of multiple predictive models.
Xifeng Guo et al. [45] used a convolutional neural network to cascade four different scales of
features to fully exploit the potential relationships between continuous and discontinuous
data in the feature maps. The feature vectors at different scales are fused as input to
the LSTM network, and the LSTM neural network is used for short-term load prediction.
Umar Javed et al. [46] combined an expanded causal convolutional network with short
sensory fields and a bi-directional LSTM to build a new load forecasting architecture,
achieving higher accuracy in load forecasting. Sana Arastehfar et al. [47] integrated a
graph convolutional neural network and a long- and short-term memory network into
a unified network. The network can extract both temporal and spatial information. In
addition to the combined models mentioned above, the combination of decomposition
methods and deep learning models is a new trend in the field of load forecasting. Weimin
Yue et al. [48] combined ensemble empirical modal decomposition with long- and short-
term memory neural networks to address the problem of poor load prediction accuracy.
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Qian Zhang et al. [49] combined a variational modal decomposition model with a stacked
integrated model for load prediction. These studies show the outstanding advantages of
combined models in the field of load forecasting.

In everyday life and production processes, there is differentiation in the electricity
consumption behaviour of customers. Load characteristics therefore vary, making it difficult
for generalised forecasts to meet the requirements of forecasting accuracy. When forecasting
the load in an area, if each subarea is forecast individually and then integrated, the forecast
granularity is too fine and prone to over-fitting. At the same time, it would be more time-
consuming to forecast the load using this method. Conversely, if all customer loads are
aggregated and then predicted, the prediction granularity is too large, and the differentiated
characteristics of customer electricity consumption cannot be obtained. Therefore, the
extraction of customer electricity characteristics is also a key technique that affects the
accuracy of load forecasting. KOIVISTO M et al. [50] used principal component analysis
for dimensionality reduction and clustering using K-means. The method can effectively
achieve the clustering of loads, but the stability of the principal component analysis method
is poor, and the accuracy is not high. ZHONG S et al. [51] used the Fourier transform as a
dimensionality reduction method to extract the main load features and achieve classification
of loads, but the method did not specify the weights of the dimensionality reduction
indicators.

Based on previous research, an ensemble load forecasting algorithm based on load
clustering and load decomposition strategies is proposed in this study. The improved
prediction strategy includes three aspects. The first is a load clustering method based on
principal characteristic extraction and dimensionality reduction. The extracted primary
features reflect the fluctuation characteristics of various loads. The dimensionality reduction
strategy can preserve important features while reducing the complexity of the clustering
model, improving clustering efficiency and reducing memory requirements. The clustering
algorithm groups loads with similar trends in variation. By predicting a class of loads
with similar trends in a provincial region, the forecasting accuracy can be improved while
reducing time costs. The second aspect is the load decomposition strategy. Multiple classes
of loads with different characteristics are obtained after clustering. The sum of each type of
load is decomposed into separate components with a single and uncoupled frequency, and
then separate prediction models are constructed for the different frequency components. By
decomposing each class of load, not only can the information contained in the data be fully
explored, but also the interaction between different components at the characteristic scale
can be reduced. Thirdly, an integrated deep learning model based on the LSTM and CNN-
GRU model is constructed. In this model, the LSTM and CNN-GRU models are used for the
prediction of low-frequency and high-frequency components, respectively. The LSTM can
fully reflect the overall trend of the load and has high accuracy in predicting low-frequency
time series. The CNN-GRU neural network, on the other hand, has a strong non-linear
fitting capability and can achieve accurate prediction of high-frequency components with
high randomness. The advantages of these two prediction methods complement each other.
The prediction methods were validated by simulation, yielding desirable prediction results.

This paper is organised as follows. Section 2 presents the novel load forecasting model
and describes the relevant theoretical background of the algorithms involved in this paper.
Section 3 presents a case study of the proposed model. Section 4 concludes the paper.

2. Methodology
2.1. An Ensemble Forecasting Model Based on an Improved Load Clustering and Decomposition Strategy

In this paper, a forecasting strategy based on load clustering and decomposition is
designed to achieve accurate load forecasting for provincial areas containing multiple cities,
and the following detailed steps are given.

Step 1: A load clustering method based on principal feature extraction was used
to cluster loads from multiple cities. The load characteristics are first calculated for all
cities. Secondly, the SVD method is applied to reduce the load characteristics in order to
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extract the main ones. Finally, a K-means algorithm is used to cluster the loads of several
cities based on their main characteristics. In this study, the load data of one province
(containing 10 cities) are used as the study data. The load data of 10 cities are processed by
dimensionality reduction—clustering.

Step 2: The total load of each category is obtained from the clustering results. The
VMD algorithm is used to decompose the various types of loadings obtained by clustering.
Several different frequency components are obtained.

Step 3: Based on the improved prediction strategy, the ensemble prediction algorithm
is proposed. The LSTM and CNN-GRU models are used to predict the low-frequency
and high-frequency IMF components obtained using the VMD algorithm, respectively,
and then the prediction results of each component are superimposed to obtain the final
prediction results of each type of load. Finally, the forecast results of each type of load are
superimposed to obtain the load forecast results of the province.

The flowchart of the ensemble model considering clustering and decomposition strate-
gies to achieve provincial short-term load forecasting is given in Figure 1.

Improved prediction strategies based on dimensionality
reduction-clustering and decomposition

Strategy 1: Strategy 2:
Dimensionality reduction - clustering Load decomposition based on VMD algorithm
Calculate the load characteristics of —»‘ Type 1 Type 2 Type 3 ‘ ‘ Type 4 ‘
each city(10 cities: A-J) ‘ |
V | City E-G City A CityBD | CityHJ |
Using SVD to reduce the b - )
dimensionality to get the main Sum Sum Sum Sum

characteristics of the load for each city

Variational Modal Decomposition
Clustering based on principal features

using K-means algorithm Several different frequency components

Load after clustering

————————— Combined LSTM-GRU model prediction algorithm eSS
Low-frequency components High-frequency components
IMF 1, IMF2, ... IMFm, ...,IMFn
{

LSTM prediction model CNN-GRU prediction model

\’,/

The predicted values of the total load for each type are obtained by superimposing the results of
the predictions of the low-frequency component and the high-frequency component.

The forecast values for each type of city load are superimposed to obtain the provincial load
forecast results.

Figure 1. An ensemble model based on clustering and decomposition strategies for the provincial
short-term load forecasting.

2.2. Load Characteristic Dimensionality Reduction Based on Singular Value Decomposition (SVD)

As the number of dimensions of load data increases, the efficiency of load clustering
decreases significantly. By reducing the dimensionality of the load characteristics, the
efficiency of clustering can be improved and the memory requirements for data storage can
be reduced. SVD, as a matrix decomposition method, enables the dimensionality reduction
of matrices.

Assume that the n load characteristics of m users form a real matrix A = [a1,4p,- - - , ap] T
of order m x n. The nload characteristics of each user are denoted as ay = [ax1, k2, - - , Ak ) T
For matrix A, there exist orthogonal matrices U € R™*™ and V € R"*", such that the following

equation holds [52].
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where A is the diagonal matrix.

The magnitude of the singular value A; indicates the importance of the load character-
istics. A larger singular value indicates that the feature is more important, while a smaller
value indicates that the feature is unimportant and can be ignored. In Formula (1), only
the first (g < n) dominant singular values are retained. Then, the matrix A and a; are
reduced to

q T
A Z)\iuiviT = [Aqug Agug - - /\quq].[le vg vﬂ )
i=1

T
ap = [Muyx Agtigg -+ )‘q”q,k} [vlT vy - vﬂ ®

From Equations (2) and (3), it can be seen that the coordinate system v, vy, - -, vy
can be reduced to the low-dimensional coordinate system vy, vy, - - - , v, after neglecting
the direction of the small variance of the data variation. Accordingly, the coordinate
values of the load characteristic 5 in the low-dimensional coordinate system A;u; can
be used to reflect the main characteristics of the load characteristic. In addition, the
singular values corresponding to each axis describe the importance of the load characteristic.
When clustering coordinates, the higher the singularity value, the more important the
corresponding load characteristic is. Therefore, the singular values of the axes are chosen
as the weights of the dimensionality reduction indicators and are then normalised.

2.3. K-Means Clustering Algorithm

In this study, the K-means algorithm is used to cluster the loads of several cities in the
province based on the main features after dimensionality reduction. The method needs to
determine the number of clusters k in advance, and this paper adopts the sum of squared
error (SSE) as the criterion for evaluating the effectiveness of clustering and determines the
number of clusters accordingly. The SSE metric is defined in the following equation [53].

k
Isse =Y Y d*(c,x) 4

i=1x€Cy

where C; is the class C; sample. ¢; is the cluster centre of the class i sample, and dz(ci, x) is
the squared Euclidean distance between ¢; and sample x. Smaller Ispr means better quality
of clustering.

Suppose X is a collection of n metadata with s dimensions, denoted X = {x7, x2, ... ...
x4} € R®. The steps for clustering load data are as follows:

(1) Determine the number of clusters k according to the clustering validity index SSE.
(2) Randomly select the initial k clustering centres u¢, uy, ... ... U, € R°. Calculate for
each data sample the class lable; it belongs to.

‘ 2
lables = argmionl - u]-H (5)
(8) For each class j, recalculate the cluster centre of that class:

x]t'+1 = |1t| ) X (6)
1

xjelublef

where N is the number of clustering centres recalculated for the t-th time for class i.
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(4) Update the class centre with the class mean.
(5) Repeat (3) and (4) until the class centres are unchanged.
(6) Output the clustering results.

2.4. Load Decomposition Based on VMD Algorithm

Considering the non-linear and non-smooth nature of the load series, the decompo-
sition method is used to decompose the total load for each category. Each type of load
is decomposed into multiple IMFs of different frequencies, and then each load sequence
component is predicted separately.

Variational empirical modal decomposition (VMD) [54] is a new type of adaptive
decomposition algorithm. The algorithm decomposes a complex time series into a number
of single-frequency components based on a pre-determined number of decompositions M.
The optimal solution of the model is obtained by alternating directional multiplication and
iterative updating.

Assume a signal to be decomposed:

M M
y(t) = Zl Om(t) = Zl A (t) cos[@m(t)] ()

where y(t) is the original load signal to be decomposed. vy, (f)(m = 1~M) is the single
frequency signal after load decomposition. M is the number of decompositions. A(t) is
the amplitude of the signal vy, (t). ¢, (t) is the phase angle of vy, (t).

The VMD extracts M modal components when the original signal is non-smooth, such
that the sum of the frequency bandwidths of each component is minimised and the sum of
each modal component is equal to the original signal. The constraint model is

J
2 ®)

where {pn} = {puip2 -, pm} is the decomposed modal component,
{wm} = {w1,wy, -+ ,wy} is the decomposed centre frequency, é(t) is the shock func-
tion, and f is the original load signal.

The Lagrangian multiplier A and the second-order parametric penalty factor « are
used to construct the extended Lagrangian function, and then the alternating direction
multiplier method is used to iteratively find the global optimal solution of the objective
function. The mathematical model of the augmented Lagrangian function is as follows.

R = CORT
s.t.% Um = f

2 2

o +

L({pm} {wm}, A) = o}

at[(é(t)Jr j ).ym(t)]ejwmt

f(t) - Z.”m(t)

+ <A(t),f(t) —Z#m(t)> 9

The optimal solution to the above equation is found by alternately solving the multi-
plicative updates: u/;t1, w1, and A1, The value of ul;t! is expressed as follows:

2

2
A
A . A z A A Mw
= angmin:| | (1 sgn(eo-+ om0+ )|+ |[Fl0) = K it + 252 10)
2 i
2
The minimal value of each IMF component from Fourier transform is as follows:
A A ;\\
g F@) D) + 25
Fon ((U) - l 2 (11)

14 2a(w — wm)
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Similarly, find the central frequency minima as

o | AL P
Jo @|pm(w)| dw
Wit = > (12)
N
0 Um(w)| dw

2.5. LSTM

Long Short-Term Memory (LSTM) [55] is a type of recurrent neural network model
used for processing sequence data such as text, speech, and time series data. The advan-
tage of LSTM models is that they can capture long-term dependencies, which traditional
recurrent neural network models cannot achieve. The memory unit in the LSTM model
can remember information in the input sequence and pass it on to the next time step for
better prediction of future values. In addition, the LSTM model can control the flow of
information through gate mechanisms to reduce the problem of vanishing gradients. These
advantages make LSTM models widely applicable in areas such as speech recognition
and time prediction. The low-frequency component of the load fluctuates smoothly, and
accurate prediction can be achieved using only the LSTM model. Therefore, the LSTM
model is used to implement the low-frequency component prediction in this study.

The structure of the LSTM [54] consists of three gates: the forgetting gate, the input
gate, and the output gate. According to the internal structure of the three gates, the value of
the LSTM hidden layer at this moment depends on the joint action of the current moment
and the previous moment. The three gates act as three control switches to extract and
process the information: delete the historical information that is not useful, retain the
information related to the output characteristics, update the state of the hidden layer, and
improve the convergence of the model.

2.6. CNN-GRU

The CNN-GRU model is a novel neural network architecture that combines the convo-
lutional neural network (CNN) and gated recurrent unit (GRU) models. The CNN-GRU
model is designed to process sequential data, such as time series data, and is particularly
well-suited for high-frequency component prediction. The CNN-GRU model consists of
two main components: a CNN and a GRU. The CNN is responsible for extracting local
features from the input data, while the GRU is used to capture the temporal dependencies
in the data. The output of the CNN is fed into the GRU, which then produces time series
prediction results. This allows the model to accurately predict high-frequency components
in the data, which are often difficult to predict using traditional time series models. Overall,
the CNN-GRU model represents a significant advancement in the field of time series pre-
diction and can greatly improve the accuracy and reliability of high-frequency component
predictions.

2.6.1. CNN

The convolutional neural network (CNN) is a deep learning model used for image
classification, feature extraction, target detection, speech recognition, etc. The CNN mainly
consists of multiple convolutional layers, where the convolutional layers are used to extract
potential features of the data and pooling layers are used to reduce the size of the feature
map. Convolutional layers play a key role in feature extraction. They are responsible for
detecting local features in the input data by sliding a set of learnable filters over the input
volume and computing the dot product between the filter and the corresponding patch of
the input. The result of this operation is a feature map that captures potential fluctuating
features in the input data. Overall, the convolutional layer enables the neural network
to learn hierarchical representations of the input data that are increasingly abstract and
discriminative, thereby improving the accuracy and robustness of the model.
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2.6.2. GRU

GRU is a variant of LSTM that uses its specific memory and forgetting structure
to model time series dynamically in time. It addresses the phenomenon of gradient
disappearance and gradient explosion during the training of loaded time series. Compared
with LSTM, GRU reduces the number of gates, which ensures both the accuracy of load
prediction and the training time.

The GRU has two gates. The GRU integrates the forgetting gate and the input gate
from the LSTM to form a new update gate. The output gate in the LSTM is replaced by a
reset gate, which picks the state at the previous moment and writes it to the candidate set
at this moment [54].

2.7. Performance Evaluation

In this paper, the error evaluation index root mean square error (RMSE) [56] and mean
absolute percentage error (MAPE) [57] are used to evaluate the accuracy of the prediction
model. The mathematical expressions are shown in Equations (13) and (14).

(13)

1 N
MAPE = —
vH

Yi—Ppi

x 100% (14)

Yi

where N is the number of samples. y; is the true value of the load data. p; is the load
forecast value.

3. Case Analysis

To verify the application effectiveness of the proposed ensemble forecasting method
based on an improved forecasting strategy, simulations were carried out using actual load
data. Actual load data from 15 July to 15 August 2017 were collected from 10 cities in a
province in northwest China to forecast the load on August 16. The data sampling period
was 15 min, and a total of 96 points were sampled in 1 day. The typical daily load curves of
10 cities are shown in Figure 2.

(e}
o
o
o

4000 ~

2000

o
y

Typical daily load/ MW

100
60 80

. Cs 20
City A 0 Time/15min

Figure 2. Typical daily load curve of 10 cities in a province.

3.1. Load Characteristic Extraction

In 2005, the National Grid Limited issued the “In-depth Requirements for Load
Characteristics Study Content and Interpretation of Indicators”. In this document, the
definitions of various types of load characteristic indicators are specified. In this paper,
seven types of daily load characteristic indicators are selected and defined, as shown in
Table 1.
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Table 1. Load characteristic index definition.

Indicators Calculation Formula
Maximum daily load &1 = Prmax
Minimum daily load %2 = Prin

Average daily load a3 = Poym /1
Daily load factor otg = (Psym/ 1)/ Pmax
Minimum daily load factor &5 = Pmin/ Pmax
Daily peak-to-valley difference &6 = Pmax — Pmin
Daily peak-to-valley ratio &7 = (Pmax — Prmin) / Pmax

In the table, Pmax, Pmin, and Py, are the maximum daily load, minimum daily load,
and total daily load, respectively.

Based on the above-defined equations of load characteristics, the load characteristics
of each municipality are calculated, and the singular values of each load characteristic
are calculated using the SVD. Seven types of load characteristic singular values and their
Pareto diagrams are shown in Figure 3.

35 2 1 ————100%
: 7 . 0,
Bl £ 90%
3] 80%
o]
2.5 8 70%
S
) < 60%
N f 50%
915 1)
o] 0,
S o 40%
1 ;;: 30%
v 20%
05 Z
S 110%
=
0 : g 0%
1 2 3 4 5 6 7 S 1 2 3 4
Load characteristics Load characteristics

Figure 3. The singular values of load characteristics and their Pareto graphs.

As can be seen from Figure 3, the first three load characteristics have larger singularity
values and the last four have smaller ones. According to the SVD principle, the larger the
singularity value, the more information the load characteristic reflects and the more impor-
tant the load characteristic is. The Pareto diagram shows that the cumulative contribution
of the first three load characteristics is high, reaching 93.92%. It can be observed that the
first three load characteristics contain most of the load information, so the first three load
characteristics are extracted as the main characteristics.

3.2. Analysis of Clustering Results for Ten City Loads

Before clustering, the number of clusters needs to be determined based on the SSE
index to ensure the clustering effect, as shown in Figure 4.

It can be seen that when the number of clusters is four, the SSE index is relatively small.
The number of clusters is chosen to be four, as each category contains a certain number of
cities after clustering. Using the load characteristic matrix obtained after SVD dimension-
ality reduction, the K-means algorithm is applied to achieve clustering of different urban
loads. The clustering results after the SVD dimensionality reduction are shown in Figure 5.
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SSE

O 1 1 1 1
1 2 3 4 5 6

Number of clusters

Figure 4. Clustering effectiveness index after dimensionality reduction.
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0 8 06 0 4 7777777“’”7777—\,4;/

Figure 5. Load clustering results of 10 cities in a province.

The load characteristics of each class of cities after clustering are shown in Figure 6. In
this figure, for each city load, each colour bar represents a characteristic of that city load.
A total of seven load characteristics are plotted for each city load. The seven colour bars
represent, from left to right, the load characteristics: maximum daily load, minimum daily
load, average daily load, daily load factor, minimum daily load factor, daily peak-to-valley
variance, and daily peak-to-valley ratio. The seven load characteristics are defined in
Table 1 above.

As can be seen from Figure 6, the load characteristics of cities clustered into the
same category are similar, and the load characteristics of cities in different categories vary
considerably. The first category contains three cities, E-G. The second category contains
only city A, which is the capital city of the province and has the largest electricity load. The
third category contains cities B-D. The fourth category contains three cities, H-J.

Figure 7 shows the gross regional product (GDP) of the 10 municipalities in the
province.

Electricity load is used as a barometer to measure economic and social development,
and the results of load clustering are correlated with the economic development of each
region.

The comparative analysis revealed that, with the exception of cities C and G, the
clustering results corresponded to the regional GDP for all cities. Geographically, cities C
and G are adjacent to the provincial capital, located to the east and west of the provincial
capital, respectively. The two cities” GDP, climate, and population statistics are extremely
comparable. This demonstrates the effectiveness of the proposed clustering method based
on the extraction of load principal characteristics. Clustering the loads of cities with
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similar characteristics into the same class simplifies and reduces the randomness of load
forecasting.

0.6 ‘ - 1

0.4

Load characteristics
Load characteristics

o MARRET| NARRFD 0
E F G A

Type 1 load Type 2 load

0.6
04
0.2

0.5

L |
B cC D H I G
Type 3 load Type 4 load

Load characteristics
Load characteristics

Figure 6. Load characteristics of various cities after clustering.

Gross production value (RMB billion)

Ill II-lL
B ¢ D E F <« H I I

Figure 7. Regional GDP of 10 cities in a province.

A

3.3. Analysis of the Results of the Frequency Domain Decomposition of the Load

VMD was carried out for each type of load after clustering, and the number of de-
compositions is four. Due to space limitations, only the results of the fourth type of load
decomposition are shown in Figure 8.

As can be seen in Figure 8, each type of load is decomposed into components with
a smooth sequence and a single frequency. The intrinsic variation pattern of the load
is extracted, reducing the complexity of the original load sequence. The effect between
different components at the characteristic scale is greatly reduced, providing a simpler
sequence for the fine prediction of load.
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Figure 8. VMD of the second cluster load.

3.4. Analysis of Prediction Results Based on a Proposed Ensemble Model

The proposed ensemble forecast model is used to forecast four types of loads. Firstly,
the low-frequency component (trend term, IMF1, IMF2) and the high-frequency compo-
nent (IMF3) are predicted separately, and then the predictions for each component are
superimposed.

For each type of load, the prediction results of high-frequency components and low-
frequency components are superimposed to obtain the final prediction results, as shown in
Figure 9. The forecast errors RMSE and MAPE for each type of load are shown in Table 2.

Type 1 load forecast results Type 2 load forecast results
1900 , 6500
. True value

1800 6000|—I  Predicted value

1700 5500
= 1600 = 5000
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: :
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Figure 9. The prediction results of the proposed ensemble model.
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Table 2. Error of the proposed ensemble prediction algorithm.
Error Type 1 Type 2 Type 3 Type 4
RMSE 30.50 94.12 66.69 29.41
MAPE 1.12% 1.76% 0.95% 1.47%

As seen in Table 2, the greater the peak-to-valley difference, the greater the root mean
square error (RMSE) of the load forecast. The average absolute percentage error MAPE
is 1.12% for the first category of load, 1.76% for the second category, 0.95% for the third
category, and 1.47% for the fourth category. The mean absolute percentage error MAPE for
each category of load did not exceed 2%, and the accuracy of the predictions is high.

3.5. Comparison of the Proposed Forecast and Baseline Schemes
3.5.1. Five Comparative Baseline Schemes

In this section, five forecasting schemes are proposed. All five schemes are used to
compare and validate the effectiveness of the proposed ensemble forecasting method with
improved forecasting strategies.

Scheme 1: Based on the prediction strategy proposed in this paper, LSTM is used to pre-
dict the decomposed components. That is, “reduced dimensional clustering—decomposition—
LSTM”.

Scheme 2: The support vector regression (SVR) is applied directly to each class of load
after clustering for prediction, i.e., “reduced dimensional clustering—SVR”".

Scheme 3: The clustered loads of each class are predicted directly using BP neural
networks, i.e., “reduced dimensional clustering—BPNN".

Scheme 4: The LSTM is used directly to predict the load for each class after clustering,
i.e., “reduced dimensional clustering—LSTM".

Scheme 5: Direct forecasting of the total load of the 10 municipalities in the province
using LSTM. This is known as the “LSTM”.

A clearer presentation of the six prediction schemes is given in Table 3. The values of
each model parameter are shown in Table 4.

Table 3. Comparison of six prediction schemes.(y/ indicates that the policy is adopted, x indicates
that the policy is not adopted).

Prediction
Whe.ther R.educed o, Prediction Model Models for Prediction Model
Scheme D1mens1f)nal Decomposition Is for Various Types of for the Overall
Clustering Adopted or Not Each Component Loads When Load of 10 Cities
Is Adopted Decomposition Is
Not Used
Proposed Vv Vv LSTM, CNN-GRU - -
Scheme 1 Vv v LSTM - -
Scheme 2 Vv X - SVR -
Scheme 3 Vv X - BPNN -
Scheme 4 Vv X - LSTM -
Scheme 5 X X - - LSTM
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Table 4. The value of each model parameter.
Scheme Algorithm Parameter Value
LSTM num_layers = 3, units = 128, activation = 'relu’, epochs = 150, optimizer = ‘adam’
Proposed CNN: num_layers = 1, filters = 96, kernel_size = 2, padding = valid
CNN-GRU GRU: num_layers = 3, units = 128, dropout = 0.02
epochs = 150, optimizer = ‘adam’

Scheme 1 LSTM num_layers = 3, units = 128, activation = "relu’, epochs = 150
Scheme 2 SVR Kernel =rbf, C=1
Scheme 3 BPNN num_layers = 3, units = 128, epochs = 150, optimizer = ‘adam’
Scheme 4 LSTM num_layers = 3, units = 128, activation = "relu’, epochs = 150, optimizer = ‘adam’
Scheme 5 LSTM num_layers = 3, units = 128, activation = 'relt’, epochs = 150, optimizer = ‘adam’

In the following study, the prediction performance of the schemes using the reduced
dimensional clustering approach will be compared first (i.e., proposed and Schemes 1-4).
In detail, the prediction performance of these five prediction schemes for each type of load
is compared separately. The forecast results for each type of load under the five schemes
are then integrated to obtain the total load forecast results for the province for the coming
day under the five prediction schemes. Finally, the forecast results of these five schemes are
compared with Scheme 5.

3.5.2. Comparison of Predictive Results for Various Types of Loads (Proposed Scheme and
Schemes 1-4)

Figures 10-13 show a comparison of the results of the four types of load prediction
using the first four schemes and the proposed scheme.

3400 '
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~e=  Scheme 2
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3000 H Scheme 4 A

Load /MW

2400

2200 ; : '
0
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Time/15min

Figure 10. Forecast results for the first type of load using different forecast schemes.
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Figure 11. Forecast results for the second type of load using different forecast schemes.
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Figure 12. Forecast results for the third type of load using different forecast schemes.
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A comparison of the error results for the four types of load forecast is shown in Table 5.
Figure 14 shows a histogram of the forecast error for each type of load under various
schemes.

Table 5. Comparison of prediction errors of different prediction schemes.

Model Error Indicators Type 1 Type 2 Type 3 Type 4
Proposed MAPE 1.12% 1.76% 0.95% 1.47%
Scheme 1 MAPE 1.19% 1.84% 0.97% 1.56%
Scheme 2 MAPE 1.32% 3.04% 0.98% 1.79%
Scheme 3 MAPE 1.30% 2.96% 0.99% 1.77%
Scheme 4 MAPE 1.29% 1.96% 0.98% 1.59%
Proposed RMSE 30.50 94.12 66.69 29.41
Scheme 1 RMSE 31.04 98.84 70.37 31.12
Scheme 2 RMSE 45.69 172.80 71.99 35.98
Scheme 3 RMSE 45.16 163.10 71.79 35.52
Scheme 4 RMSE 44.99 107.81 71.47 32.02

I Proposed rd I Proposed
I scheme 1 200 ¢ I scheme 1
I scheme 2 I scheme 2
[ scheme 3 [ scheme 3
[ scheme 4 r [ scheme 4
7
5 100 -
Type 1 Type 2 Type 3 Type 4 Type 1 Type 2 Type 3 Type 4
Type Type

Figure 14. Histogram of forecast errors for each type of load under various schemes.

It can be seen that both the MAPE and RMSE values of the proposed method are
lower. The dimensionality reduction—clustering and decomposition strategy is used in
Scheme 1, but only the LSTM algorithm is used for the prediction of each component. The
MAPE prediction errors for all types of loads using Scheme 1 are 2.11-6.25% higher than
the proposed method. The RMSE prediction errors for all types of loads using Scheme 1
are 1.77~5.81% higher than the proposed method. This is due to the use of CNN-GRU to
predict the more non-linear stochastic component separately, which improves the prediction
accuracy of the high-frequency component. The results verify the effectiveness and accuracy
of CNN-GRU for predicting the high-frequency components, and the ensemble prediction
can achieve accurate prediction for the characteristics of various load components.

Schemes 2—4 all use a method of forecasting each class of load after clustering the
loads. Compared to the proposed forecasting scheme and Scheme 1, the forecasting error
for each class of load increases to varying degrees. This shows that the decomposition of
the loads can improve the prediction accuracy. Comparing Schemes 24, the error index
MAPE for Scheme 4 is smaller than that of Schemes 2 and 3. The results show that LSTM
has a higher prediction accuracy than the SVR and BPNN algorithms, which reflects the
effectiveness of the LSTM algorithm.

3.5.3. Comparison of the Predicted Results of the Total Provincial Load (Proposed Scheme
and Schemes 1-5)

For the proposed scheme and Schemes 1-4, the predicted results of each type of load
are superimposed to obtain the predicted load for the entire province on August 16th under
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each scheme. The direct forecast of the province’s load on August 16 using Scheme 5 yields
the forecast of the province’s load on August 16 under Scheme 5. The forecast results of
these six schemes are compared with the actual load of the province on August 16, and the
forecast result curves are shown in Figure 15. A comparison of the forecast errors is shown
in Table 6.

4
1 8 S 10 T T T T T T T T T
— Actual load 00!
1.7 Proposed ‘ ‘,.rv".\ =
=0 Qcheme 1 "..,.,\/,!.7 ) _,-.
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Figure 15. Comparison of forecast results for the total provincial load.

Table 6. Comparison of total load forecast errors in the province.

Model MAPE RMSE
Proposed 1.09% 195.40
Scheme 1 1.11% 195.87
Scheme 2 2.97% 535.20
Scheme 3 4.25% 808.90
Scheme 4 1.16% 198.56
Scheme 5 1.30% 214.97

The comparison shows that the proposed prediction scheme is able to achieve higher
prediction accuracy. The table also shows that the prediction error of Scheme 5 is higher than
that of Scheme 4. The MAPE error indicator value of Scheme 5 is 12.07% higher than that
of Scheme 4. The RMSE error indicator of Scheme 5 is 8.26% higher than that of Scheme 4.
It is inferred that the use of the clustering method can effectively improve the prediction
accuracy of provincial load. The effectiveness of frequency domain decomposition of load
sequences in improving prediction accuracy can be readily seen by comparing the error
metrics of Schemes 1 and 4. The proposed scheme has a 1.8% reduction in the MAPE error
metric and a 0.23% reduction in the RMSE error metric compared to Scheme 1. Thus, the
validity of the ensemble model is verified. After a comprehensive comparison and analysis,
the proposed forecasting scheme in this paper has significant advantages, and the scheme
can achieve accurate forecasting of provincial loads.

4. Conclusions

Considering the high demand for short-term load forecasting accuracy in power
dispatch, an ensemble forecasting algorithm based on an improved forecasting strategy
is proposed in this paper. The proposed model is validated with actual load data from a
province in northwest China, leading to the following conclusions:

(1) The proposed load clustering based on principal characteristic extraction improves
the efficiency and quality of clustering. At the same time, the randomness of the load
sequence for each class of users is reduced, as users with similar load characteristics
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are clustered into the same class. This reduces the complexity of load prediction and
facilitates the improvement of prediction accuracy.

(2) After VMD, the load sequence has a single frequency and is not prone to modal
confusion. The VMD method can fully exploit the implicit features of the data and
avoid the mutual interference between different local features. It lays the foundation
for the accurate prediction of load sequences.

(8) The proposed prediction model fully considers the fluctuation characteristics of high-
frequency components and low-frequency components and fully utilizes the respec-
tive advantages of the LSTM and CNN-GRU models. At the same time, the total
prediction error after the superposition of each class of load can offset the prediction
error of each class to a certain extent, so that the prediction error after superposition
can be further reduced. The results show that the proposed model can achieve better
prediction results, and the proposed model can not only predict the change trend
of electric load but also predict the local details. The forecast error (RMSE) of the
proposed scheme is 0.23%, 63.49%, 75.84%, 1.59%, and 9.10% lower than that of the
benchmark scheme.

(4) The CNN-GRU component in the proposed model can better extract the local features
of the high-frequency component, which ensures that the proposed model can track
the load trend more accurately. Compared with the scheme that only uses LSTM to
predict each frequency component, the proposed model increases the complexity of
the model, but the prediction accuracy is improved.
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