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Abstract: In network analysis, links depict the connections between each pair of network nodes.
However, such pairwise connections fail to consider the interactions among more agents, which may
be indirectly connected. Such non-pairwise or higher-order connections can be signified by involving
simplicial complexes. The higher-order connections become even more noteworthy when it comes to
neuronal network synchronization, an emerging phenomenon responsible for the many biological
processes in real-world phenomena. However, involving higher-order interactions may considerably
increase the computational costs. To confound this issue, map-based models are more suitable since
they are faster, simpler, more flexible, and computationally more optimal. Therefore, this paper
addresses the impact of pairwise and non-pairwise neuronal interactions on the synchronization state
of 10 coupled memristive Hindmarsh–Rose neuron maps. To this aim, electrical, inner linking, and
chemical synaptic functions are considered as two- and three-body interactions in three homogeneous
and two heterogeneous cases. The results show that through chemical pairwise and non-pairwise
synapses, the neurons achieve synchrony with the weakest coupling strengths.

Keywords: higher-order network; simplicial complex; synchronization; neuron; map-based model

MSC: 34D06; 34C28; 70G60

1. Introduction

The word network refers to a set of nodes or agents interacting through links, which
in fact, specify the configuration of the nodes’ connection. The study of the behavior of
such connected nodes becomes more exciting when they have nonlinear dynamics. In
mathematical neuroscience, the dynamics of each network node are defined by a neuronal
model with the purpose of studying the brain’s function. As a result, many studies have
been devoted to investigating neuronal collective behaviors or events that have real-world
instances [1,2]. Among such collective behaviors, synchronization has had dominant im-
portance since this emergent phenomenon [3] includes a variety of subcategories, each of
which is responsible for a biological process, disease, or function [4–6]. Complete synchro-
nization [7], generalized synchronization [8,9], phase or anti-phase synchronization [10,11],
lag synchronization [12], cluster synchronization [13], and chimera [14,15] are well-known
subcategories that have been examined analytically and/or numerically in the literature.
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Different aspects of synchronization and its stability in complex networks have been doc-
umented. For instance, in [16], a novel control strategy that uses intermittent sampling
and local feedback was proposed to achieve synchronization in dynamical networks. New
fixed-time stability lemmas were established in [17] with the application of analyzing the
stability of neutral neural networks and design controllers that ensure fixed-time stabi-
lization. Focusing on the synchronization of epidemic systems with Neumann boundary
value under the delayed impulse, a new method is proposed in [18] based on the delayed
impulses to achieve synchronization. Apart from the control strategy, Pecora and Car-
roll [19] introduced a mathematical tool called master stability functions (MSF) to study
the synchronization of coupled chaotic systems. By connecting the eigenvalues of the
coupling matrix of the network to the natural frequencies of the individual nodes, the MSF
function describes the linear stability of a network. As a result, performing MSF analysis
provides the necessary conditions for the synchronization of complex dynamical networks,
whether flow-based or map-based networks. For instance, the necessary conditions for
synchronizing the Hindmarsh–Rose (HR) neuron model via the diffusive coupling func-
tions were given in [7]. The synchronization of two pre- and post-synaptic HR neurons was
investigated in [20]. The synchronization of memristive HR (mHR) neurons with electrical
and field couplings was explored in [21]. The necessary conditions for the synchronization
of the photosensitive FitzHugh–Nagumo (FHN) neurons were analytically and numerically
studied in [22]. In another study carried out in [23], the synchronization of heterogeneous
FHN neurons was studied. The effect of memristors as the neuronal synaptic pathways
were studied for two HR in [24] and FHN in [25] neurons as well. The synchronization of
the Morris–Lecar (ML) neurons with memristive autapse as the neurons’ self-feedback was
taken into account in [26]. Some recent relevant studies focused on map-based neurons
since it is believed that discrete-time neurons not only are able to mimic natural neuron
behavior, such as spiking and bursting, but also they are more straightforward, faster,
more flexible, and of less computational cost [27]. For illustration, the synchronization
of the Rulkov neuron map under electrical [28,29], inner linking [28], chemical [30,31],
hybrid [32,33], and memristor [34] synapses are thoroughly investigated in the literature.
Another synchronization study, reported in [35], was conducted on the mHR neuron map
in a two-node structure network under different coupling functions, including bidirectional
electrical, chemical, inner linking, and hybrid synaptic functions. The intra- and inter-layer
synchronization of mHR neurons was numerically analyzed in [36].

In the literature, it is noticeable that many studies have paid attention to the pairwise
interactions among neurons, and non-pairwise interactions have been neglected. Nonethe-
less, such non-pairwise or higher-order interactions have been proven to exist not only
among the interconnecting neuron population [37] but also among other coupled systems,
including physical ones [38–40]. To nail the limitation of graph-based networks and to
involve the multi-body interactions, the simplicial complexes can be considered to define
the nodal interactions [40]. In this way, especially in neuronal network analysis, the con-
nections that imply actual neuronal connectivity can be described more insightfully [41].
Consequently, some studies have depicted the effect of higher-order interactions on net-
work synchronization. For instance, the synchronization of a higher-order network with
HR neurons with two- and three-body interactions was investigated [42]. In this study,
electrical and chemical higher-order interactions, as well as pairwise electrical connections,
were studied, and the necessary conditions for the neurons to achieve synchrony are given
analytically and numerically. In a similar study [43], the synchronization of β cells sub-
jected to the two-node and three-node interactions was investigated. This study considered
the higher-order chemical and electrical synapses, while the two-node connections were
assumed as a hybrid synapse. The impact of considering the degree of the higher levels of
multi-node interactions was the objective of the study declared in [44]. This study focused
on the dynamics of the higher-order network of the Rulkov maps with pairwise electrical
and non-pairwise chemical synapses. The synchronization of a higher-order network of ML
neurons with geometrical couplings was investigated in [45]. Besides the neuronal network



Mathematics 2023, 11, 2811 3 of 18

analysis, higher-order interactions were studied on phase oscillators [46] and mathematical
models [41].

Overall, it is crucial to comprehend and analyze higher-order interactions in order to
acquire insights into the dynamics and behavior of complex systems, specifically the func-
tions and processes of the brain, and develop more precise and thorough models of these
systems. The combination of various pairwise and non-pairwise interactions has not been
thoroughly researched, especially in map-based neuronal networks, despite the existence of
a few pieces of research addressing higher-order interactions. The objective of the paper is
to look into the synchronization of a higher-order network of mHR neuron maps subjected
to different synaptic pairwise and non-pairwise coupling conditions, including electrical,
inner linking, and chemical synaptic functions, in light of the aforementioned literature
and the significance of the concept. The rest of the paper is organized as follows: the
higher-order network is described in Section 2. The necessary conditions for synchronizing
the mHR neuron under the assumed coupling schemes are analytically and numerically
given in Section 3. Finally, Section 4 concludes the paper and sums up the important
findings of the paper.

2. Higher-Order Network Model
The addition of simplicial complexes to the network model allows for considering

higher-order interactions, including multi-body interaction, among the neurons involved
in the network. A simplicial complex is a set of connected nodes building a topological
structure [41]. For instance, 0-simplexes, one-simplexes, and two-simplexes are, respec-
tively, known as nodes, links, and triangles. Hence, d-complex structures can model the
d + 1-body interactions, which are called higher-order interactions. In general, a map-based
network with all possible higher-order interactions, by considering simplicial complexes in
1, . . . , d dimensions, can be described as

Xn+1
i = F

(
Xn

i
)
+ σ1 ∑N

j1=1 G(1)
ij1

H(1)
(

Xn
i , Xn

j1

)
+ σ2 ∑N

j1=1 ∑N
j2=1 G(2)

ij1 j2
H(2)

(
Xn

i , Xn
j1 , Xn

j2

)
+

· · ·+ σd ∑N
j1=1 ∑N

j2=1 G(d)
ij1 j2

H(d)
(

Xn
i , Xn

j1 , · · · , Xn
jd

)
,

(1)

where X is the state vector and F(X) is the dynamic vector of the system network. N is
the network size, G(d) =

[
G(d)

ij1 ...jd

]
N(d+1)

is the adjacency tensor whose non-zero elements

show nodes ij1 . . . jd together form a d-simplex, H(d) is the coupling function determining
the relationships among the involved nodes in a d-dimensional simplicial structure, and σd
is the coupling strength of (d + 1)-body interactions. Note that the superscript n shows the
number of iterations, and the subscript i indicates the node’s index.

Taking up to two simplexes, Network (1) can be rewritten in a more straightforward
form below:

Xn+1
i = F(Xn

i ) + σ1 ∑N
j1=1 G(1)

ij1
H(1)

(
Xn

i , Xn
j1

)
+ σ2 ∑N

j1=1 ∑N
j2=1 G(2)

ij1 j2
H(2)

(
Xn

i , Xn
j1 , Xn

j2

)
. (2)

Here, G(1)
ij1

= 1 shows there exists a link between two nodes, and G(2)
ij1 j2

= 1 presents
nodes ij1 j2 together construct a triangle. Figure 1a is a schematic representation of Network
(2) with global couplings for N = 10 as well as its adjacency matrix G(1) (Figure 1b) and
adjacency tensor G(2) (Figure 1c).

Letting F(X) describes the dynamics of the mHR neuron map, and G determines
the all-to-all network configuration for N = 10; this paper studies the effect of different
pairwise and non-pairwise interactions (different H(1) and H(2) conditions) on the network
synchronization. The mHR map is a three-dimensional neuron model proposed in [47]
obtained by discretizing the flow-based model presented in [48]. According to the dynamics
of the mHR neuron map, F(X) can be defined as

F(X) =


f (x, y, φ) = x + ε

(
y− ax3 + bx2 −mtanh(φ)x

)
g(x, y, φ) = y + ε

(
c− dx2 − y

)
h(x, y, φ) = φ− εx

, (3)
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where x is the membrane potential, y is the resting state, and φ is the magnetic flux with
the strength of m. Other parameters are the constants affecting the dynamics of neurons’
spiking activity. Therefore, a = 1, b = 3, c = 1, d = 5, ε = 0.1, and m = 1.4 are selected as
the fixed parameter settings.
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structures. Also, (b) G(1) is the N × N adjacency matrix, and (c) G(2) is the N × N × 2 adjacency
tensors. Light yellow matrix elements indicate the existence of a relation among involved nodes, and

green elements show otherwise. Thus, G(1)
ij1

= 1 shows nodes i and j1 are connected through a link,

and nodes G(2)
ij1

= 1 shows nodes i, j1, and j2 together construct a triangle.
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3. Results

Using MSF analysis, this section provides the necessary conditions for synchronizing
the globally coupled mHR neurons with higher-order interactions under different pairwise
and non-pairwise coupling conditions. First, we consider the cases wherein all interactions
are homogeneous. As a result, electrical synapses, inner linking functions, and chemical
synapses are considered as the two-body and three-body interactions separately. Thereafter,
two heterogeneous cases are taken into account wherein electrical and inner linking func-
tions are considered as the two-body connections while chemical three-body interactions
are maintained the same. Furthermore, to approve the analytical results obtained through
the MSF analysis, time-averaged synchronization error, henceforth called synchronization
error, is regarded as the numerical assessment. The synchronization error is calculatable
according to the following formula:

E =
1

n(N − 1)

n

∑
k=1

N

∑
j=1
j 6=i

‖Xk
j −Xk

i ‖, (4)

in which ‖ . . . ‖ symbolizes the Euclidean norm and X = [x, y, φ].
It should be noted that, in the following investigations, the range of parameter values

studied in the 2D representations are selected such a way that the unbounded regions in
the coupling parameter space are excluded. However, 1D representations demonstrate
some typical cases of the 2D plots to enable us to make better evaluations.

3.1. Electrical Pairwise and Electrical Non-Pairwise Interactions

In the first homogeneous case, both two-body and three-body interactions are as-
sumed to be electrical. Therefore, H(1)

(
Xn

i , Xn
j1

)
=
[

xn
j1
− xn

i , 0, 0
]

and H(2)
(

Xn
i , Xn

j1
, Xn

j2

)
=[

xn
j1
+ xn

j2
− 2xn

i , 0, 0
]
. Thus, Network (2) can be updated as

X(n+1)
i =


x(n+1)

i = f (Xn
i ) + σ1

N
∑

j1=1
G(1)

ij1
[xn

j1
− xn

i ] + σ2
N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2
[xn

j1
+ xn

j2
− 2xn

i ]

y(n+1)
i = g(Xn

i )

φ
(n+1)
i = h(Xn

i )

(5)

According to the MSF formalism, a network can achieve synchrony when the synchro-
nization manifold is stable. In the synchronization state, all neurons follow the same temporal
pattern, i.e., Xn

1 = Xn
2 = . . . = Xn

s . This leads to H(1)
(

Xn
i , Xn

j1

)
≡ 0 and H(2)

(
Xn

i , Xn
j1

, Xn
j2

)
≡ 0.

As a result, the synchronization manifold obeys the following relation:

Xn+1
s = F(Xn

s ) =


xn+1

s = f (Xn
s )

yn+1
s = g(Xn

s )
φn+1

s = h(Xn
s )

. (6)

Remark 1. System (6) implies that the dynamic of the neurons in their synchronous state is
similar to the dynamics of an uncoupled neuron (Equation (3)) due to the diffusive nature of the
coupling function.

To investigate the stability of the synchronization manifold, a negligible perturbation
is added to the synchronous states. Thus, δXn

i = Xn
s −Xn

i and the dynamics of δXn
i can be

obtained through
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δXn+1
i = DF(Xn

s )δXn
i + σ1

N
∑

j1=1
G(1)

ij1
[DH(1)(Xn

s , Xn
s )δXi + DH(1)(Xn

s , Xn
s )δXj1 ]

+σ2
N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2
[DH(2)(Xn

s , Xn
s , Xn

s )δXi + DH(2)(Xn
s , Xn

s , Xn
s )δXj1

+DH(2)(Xn
s , Xn

s , Xn
s )δXj2 ]

(7)

where DF(Xn
s ) is the Jacobian of F

(
Xn

i
)

in the synchronization manifold Xn
s , which can be

defined as

DF(X) =


∂ f (X)

∂x
∂ f (X)

∂y
∂ f (X)

∂φ
∂g(X)

∂x
∂g(X)

∂y
∂g(X)

∂φ
∂h(X)

∂x
∂h(X)

∂y
∂h(X)

∂φ


=

1− ε
(
3ax2 − 2bx + mtanh(φ)

)
ε εmx

−2dε 1− ε 0
−ε 0 1

.

(8)

Applying the assumptions, Equation (7) becomes

δXn+1
i =



δxn+1
i = D f (Xn

s )δXn
i + σ1

N
∑

j1=1
G(1)

ij1

[
δxn

j1
− δxn

i

]
+σ2

N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2

[
δxn

j1
+ δxn

j2
− 2δxn

i

]
δyn+1

i = Dg(Xn
s )δXn

i
δzn+1

i = Dh(Xn
s )δXn

i

. (9)

Letting L(d) be the Laplacian matrix of G(d), then L(d) = D(d) − G(d), where D(d) is
the degree tensor whose elements are non-zero only on the main diagonal. L(d) can be
generally defined as

L(d) =


0 f or i 6= j and G(1)

ij1
= 0

−(d− 1)!k(d)ij1
f or i 6= j and G(1)

ij1
= 1

d!k(d)i f or i = j

, (10)

where k(d)ij1
= 1

(d−1)!

N
∑

j2=1

. . .
N
∑

jd=1

G(d)
ij1 j2 ...jN

.

Since the coupling function is only applied to the membrane potential, δxn+1
i can be

extended as

δxn+1
i = D f (Xn

s )δXn
i + σ1

(
N
∑

j1=1
D(1)

ij1
δxn

j1
−

N
∑

j1=1
L(1)

ij1
δxn

j1
− δxn

i

N
∑

j1=1
G(1)

ij1

)

+σ2

(
N
∑

j1=1

N
∑

j2=1
D(2)

ij1 j2
[δxn

j1
+ δxn

j2
]−

N
∑

j1=1

N
∑

j2=1
L(2)

ij1 j2
[δxn

j1
+ δxn

j2
]− 2δxn

i

N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2

)
= D f (Xn

s )δXn
i − σ1

N
∑

j1=1
L(1)

ij1
δxn

j1
− σ2

N
∑

j1=1

N
∑

j2=1
L(2)

ij1 j2
[δxn

j1
+ δxn

j2
]

. (11)

Since ∑N
j1=1 L(2)

ij1
δxn

j1
= ∑N

j2=1 L(2)
ij2

δxn
j2

, we have

δxn+1
i = D f (Xn

s )δXn
i − σ1

N

∑
j1=1

L(1)
ij1

δxn
j1 − 2σ2

N

∑
j1=1

L(2)
ij1 j2

δxn
j1 . (12)
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In an all-to-all network configuration, L(2) = (N − 2)L(1). Therefore,

δxn+1
i = D f (Xn

s )δXn
i − (σ1 + 2σ2(N − 2))

N

∑
j1=1

L(1)
ij1

δxn
j1 . (13)

Consequently, Equation (9) can be updated as

δXn+1
i =


δxn+1

i = D f (Xn
s )δXn

i − (σ1 + 2σ2(N − 2))
N
∑

j1=1
L(1)

ij1
δxn

j1

δyn+1
i = Dg(Xn

s )δXn
i

δzn+1
i = Dh(Xn

s )δXn
i

. (14)

Note that D f (Xn
s )δXn

i is block diagonal and L(1) is diagonalizable. Considering λi,
where λ1 = 0, λ2 = . . . = λN = N is the eigenvalues of L(1), and new variables ζ, the
perturbation equations (Equation (14)) can be projected to the linearized system below:

ζn+1 =


ζn+1

x = D f (Xn
s )ζ

n − N(σ1 + 2σ2(N − 2))ζn
x

ζn+1
y = Dg(Xn

s )ζ
n

ζn+1
φ = Dh(Xn

s )ζ
n

. (15)

For a synchronization manifold to be stable, System (15) must be stable around the origin.
According to the Lyapunov analysis, the non-positive values of the maximum Lyapunov
exponent (Λ) show the synchronization manifold’s stability. Figure 2a shows the values of Λ
obtained for System (15) as a function of 0 ≤ σ1 ≤ 0.01 and 0 ≤ σ2 ≤ 0.0007. The regions
coded with purple spectra are the stability region for which Λ ≤ 0. In the numeric approach,
which is demonstrated in Figure 2b in the parameter plane σ1-σ2, the stability region coded
in dark blue color with E = 0 is the same as in Figure 2a. Moreover, the results of pure
one-simplex (σ2 = 0) and pure two-simplex (σ1 = 0) cases are presented in Figure 2c,d.
According to Figure 2c,d, the synchronization is acquired for σ1 ≥ 0.0072 and σ2 ≥ 0.000455.
It can be seen that the neurons achieve synchrony in weaker strength of σ2 (higher-order
case), compared to the σ1(pairwise case) value needed to synchronize the neurons.
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approaches, respectively. Second row: The maximum Lyapunov exponent of System (15) (shown
in orange) and the synchronization error of Network (5) (shown in navy blue) for the (c) pure
one-simplex (σ2 = 0) and (d) pure two-simplex (σ1 = 0) cases.
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Remark 2. Figure 2 indicates that the synchronous and asynchronous regions can be distinguished by a
linear line such that the more σ2 increases, the less σ1 is needed to synchronize the neurons, and vice versa.

Figure 3 shows the neuron dynamics in the synchronization state (System (6)) using
the phase diagram and time series. It should be noted that the neurons’ initial conditions
are selected randomly around the origin.
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d = 5, ε = 0.1, and m = 1.4. The initial values are considered randomly around the origin.

3.2. Inner Linking Pairwise and Inner Linking Non-Pairwise Interactions
According to [28], an inner linking function is a more general and nonlinear form

of the electrical synapse. Therefore, here another homogeneous case is taken into ac-
count in which we have H(1)

(
Xn

i , Xn
j1

)
=
[

f
(

Xn
j1

)
− f

(
Xn

i
)
, 0, 0

]
and H(2)

(
Xn

i , Xn
j1

, Xn
j2

)
=[

f
(

Xn
j1

)
+ f

(
Xn

j2

)
− 2 f

(
Xn

i
)
, 0, 0

]
. Thus, the network can be described as

Xn+1
i =



xn+1
i = f

(
Xn

i
)
+ σ1

N
∑

j1=1
G(1)

ij1

[
f
(

Xn
j1

)
− f

(
Xn

i
)]

+σ2
N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2

[
f
(

Xn
j1

)
+ f

(
Xn

j2

)
− 2 f

(
Xn

i
)]

yn+1
i = g

(
Xn

i
)

φn+1
i = h

(
Xn

i
)

. (16)

When all neurons evolve synchronously, H(1)
(

Xn
i , Xn

j1

)
≡ 0 and H(2)

(
Xn

i , Xn
j1

, Xn
j2

)
≡ 0.

Therefore, the synchronization manifold is the same as in System (6) and demonstrated in
Figure 3. To obtain the perturbation equations, similar to the previous case, a small pertur-
bation is added to the synchronous neurons’ state and δXn

i = Xn
s −Xn

i . Using Equation (7)
and considering L(d) = D(d) − G(d), the perturbation system can be obtained through

δxn+1
i = D f (Xn

s )δXn
i + σ1D f (Xn

s )
N
∑

j1=1
G(1)

ij1
[δXn

(j1)
− δXn

i ]

+σ2D f (Xn
s )

N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2
[δXn

(j1)
+ δXn

(j2)
− 2δXn

i ]

= D f (Xn
s )δXn

i

+σ1D f (Xn
s )

(
N
∑

j1=1
D(1)

ij1
δXn

j1 −
N
∑

j1=1
L(1)

ij1
δXn

j1 − δXn
i

N
∑

j1=1
G(1)

ij1

)

+σ2D f (Xn
s )

(
N
∑

j1=1

N
∑

j2=1
D(2)

ij1 j2
[δXn

j1 + δXn
j2 ]

−
N
∑

j1=1

N
∑

j2=1
L(2)

ij1 j2
[δXn

j1 + δXn
j2 ]− 2δXn

i

N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2

)
= D f (Xn

s )δXn
i − σ1D f (Xn

s )
N
∑

j1=1
L(1)

ij1
δXn

j1

−σ2D f (Xn
s )

N
∑

j1=1

N
∑

j2=1
L(2)

ij1 j2
[δXn

j1 + δXn
j2 ].

(17)
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Considering ∑N
j1=1 L(2)

ij1
δxn

j1
= ∑N

j2=1 L(2)
ij2

δxn
j2

and L(2) = (N − 2)L(1) for the globally
coupled neurons, the perturbation system becomes

δXn+1
i =


δxn+1

i = D f (Xn
s )δXn

i − D f (Xn
s )(σ1 + 2σ2(N − 2))

N
∑

j1=1
L(1)

ij1
δXn

j1

δyn+1
i = Dg(Xn

s )δXn
i

δzn+1
i = Dh(Xn

s )δXn
i

. (18)

Thereafter, the above-mentioned perturbation equations (Equation (18)) can be stated
in the linearized form using the new variable ζ.

ζn+1 =


ζn+1

x = D f (Xn
s )(1− N(σ1 + 2σ2(N − 2)))ζn

ζn+1
y = Dg(Xn

s )ζ
n

ζn+1
φ = Dh(Xn

s )ζ
n

. (19)

Similarly, the maximum Lyapunov exponent of System (19), shown in Figure 4a for
0 ≤ σ1 ≤ 0.012 and 0 ≤ σ2 ≤ 0.0009 can provide the necessary conditions to complete
synchronization. Also, Figure 4b confirms the results obtained through the MSF analysis.
However, the pure one-simplex (Figure 4c) and two-simplex (Figure 4d) cases better show
that slightly stronger two- and three-body coupling strengths (σ1 ≥ 0.0095 and σ2 ≥ 0.0006)
required to synchronize the neurons. Thus, compared to Figure 2a,b, the separating line
between the synchronous (in purple spectra in Figure 4a and dark blue in Figure 4b) and
asynchronous regions is shifted towards the higher values of σ1 and σ2. In the synchronous
region, all neurons behave as shown in Figure 3 since the synchronization manifold remains
the same as an isolated neuron’s dynamics.
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Figure 4. First row: (a) The maximum Lyapunov exponent of System (19) and (b) the synchronization
error of Network (16) with N = 10 for 0 ≤ σ1 ≤ 0.012 and 0 ≤ σ2 ≤ 0.0009. The stability region for
which Λ ≤ 0 and E = 0 is coded in purple spectra and dark blue in the analytical and numerical
approaches, respectively. Second row: The maximum Lyapunov exponent of System (19) (shown
in orange) and the synchronization error of Network (16) (shown in navy blue) for the (c) pure
one-simplex (σ2 = 0) and (d) pure two-simplex (σ1 = 0) cases.
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Remark 3. The linear separator is maintained when the inner linking coupling functions are applied
instead of the pairwise and non-pairwise electrical synapses.

3.3. Chemical Pairwise and Chemical Non-Pairwise Interactions

Electrical and inner linking functions are, in fact, more suitable to model the physical
or the short-range neuronal pathway of information. Nonetheless, chemical synapses
are proper to model either short- or long-range neuronal interactions [35]. Hence, in
the last homogeneous case, we consider H(1)

(
Xn

i , Xn
j1

)
=
[(

vs − xn
i
)
Γ
(

xn
j1

)
, 0, 0

]
and

H(2)
(

Xn
i , Xn

j1
, Xn

j2

)
=
[(

vs − xn
i
)(

Γ
(

xn
j1

)
+ Γ

(
xn

j2

))
, 0, 0

]
, where vs = −1.4 is the rever-

sal potential and Γ(x) = 1
1+e−k(x−θ) with the slope of k = 50 and the threshold of θ = −1.4.

As a consequence, the network can be expressed as

Xn+1
i =



xn+1
i = f

(
Xn

i
)
+ σ1

(
vs − xn

i
) N

∑
j1=1

G(1)
ij1

Γ
(

xn
j1

)
+σ2

(
vs − xn

i
) N

∑
j1=1

N
∑

j2=1
G(2)

ij1 j2

[
Γ
(

xn
j1

)
+ Γ

(
xn

j2

)]
yn+1

i = g
(
Xn

i
)

φn+1
i = h

(
Xn

i
)

. (20)

For a network with global couplings, we have ∑N
j1=1 G(1)

ij1
= (N − 1) and

∑N
j1=1 ∑N

j2=1 G(2)
ij1 j2

= (N − 1)(N − 2). Accordingly, in the synchronization state wherein

Xn
1 = Xn

2 = . . . = Xn
s , and H(1)

(
Xn

i ,Xn
j1

)
≡ σ1(N − 1)(vs − xn

s )Γ(xn
s ) andH(2)

(
Xn

i ,Xn
j1

,Xn
j2

)
≡

2σ2(N − 1)(N − 2)(vs − xn
s )Γ(xn

s ), the dynamics of neurons obey the following equations:

Xn+1
s = F(Xn

s ) =


xn+1

s = f (Xn
s ) + (N − 1)(σ1 + 2σ2(N − 2))(vs − xn

s )Γ(xn
s )

yn+1
s = g(Xn

s )
φn+1

s = h(Xn
s )

. (21)

To analyze the stability of the synchronization state expressed in Equation (21), the
general Equation (7) is used. Thus, letting ∑N

j1=1 G(1)
ij1

= (N − 1), ∑N
j1=1 ∑N

j2=1 G(2)
ij1 j2

=

(N − 1)(N − 2), and L(2) = (N − 2)L(1), the purterbation eqauation δxn+1
i reads

δx(n+1)
i = D f (Xn

s )δXn
i + σ1

N
∑

j1=1
G(1)

ij1
[(vs − xn

s )Γx(xn
s )δxn

j1
− Γ(xn

s )δxn
i ]

+σ2D f (Xn
s )

N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2
[(vs − xn

s )Γx(xn
s )δxn

j1

+(vs − xn
s )Γx(xn

s )δxn
(j2)
− 2Γ(xn

s )δxn
i ]

= D f (Xn
s )δXn

i

+σ1

(
(vs − xn

s )Γx(xn
s )

(
N
∑

j1=1
D(1)

ij1
δxn

j1
−

N
∑

j1=1
L(1)

ij1
δxn

j1

)

−Γ(xn
s )δxn

i

N
∑

j1=1
G(1)

ij1

)

+σ2

(
(vs − xn

s )Γx(xn
s )

(
N
∑

j1=1

N
∑

j2=1
D(2)

ij1 j2
[δxn

j1
+ δxn

j2
]

−
N
∑

j1=1

N
∑

j2=1
L(2)

ij1 j2
[δxn

j1
+ δxn

j2
]

)
−2Γ(xn

s )δxn
i

N
∑

j1=1

N
∑

j2=1
G(2)

ij1 j2

)

(22)
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Remark 4. System (21) implies that the dynamic of the neurons in their synchronous state is not similar to
the dynamics of an uncoupled neuron (Equation (3)) since the coupling function is not of diffusive nature.

Finally, considering ∑N
j1=1 L(2)

ij1
δxn

j1
= ∑N

j2=1 L(2)
ij2

δxn
j2

, the perturbation equations can be
obtained as

δXn+1
i =



δxn+1
i = D f (Xn

s )δXn
i + (N − 1)(σ1 + 2σ2(N − 2))×

((vs − xn
s )Γx(xn

s )− Γ(xn
s ))δxn

i

−(σ1 + 2σ2(N − 2))(vs − xn
s )Γx(xn

s )
N
∑

j1=1
L(1)

ij1
δxn

j1

δyn+1
i = Dg(Xn

s )δXn
i

δzn+1
i = Dh(Xn

s )δXn
i

. (23)

Afterward, the expression of the linearized system is

ζn+1 =


ζn+1

x = D f (Xn
s )ζ

n − (σ1 + 2σ2(N − 2))×
((vs − xn

s )Γx(xn
s ) + (N − 1)Γ(xn

s ))ζ
n
x

ζn+1
y = Dg(Xn

s )ζ
n

ζn+1
φ = Dh(Xn

s )ζ
n

. (24)

The maximum Lyapunov exponent of System (24) and the synchronization error of
Network (20) are demonstrated in Figure 5a,b. Although the stability region is presented in
purple spectra in Figure 5a, the light purple color of the significant areas reveals that Λ ∼= 0.
However, Figure 5b, wherein the dark blue color shows the stability region obtained in
the numerical approach, manifests that such areas are stable if the initial conditions are
appropriately selected. The pure one-simplex (σ2 = 0) and two-simplex (σ1 = 0) cases are
also indicated in Figure 5c,d. Accordingly, different minor and major synchronous regions
can be observed within the asynchronous zones. Nevertheless, for σ1 > 0.00062 in the pure
one-simplex case (Figure 5c) and σ2 > 0.00004 in the pure two-simplex case (Figure 5d), no
asynchronous areas can be observed within the synchronous region (shown in orange), and
the synchronization error of Network (20) (shown in navy blue) for the (c) pure one-simplex
(σ2 = 0) and (d) pure two-simplex (σ1 = 0) cases.
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Figure 5. First row: (a) The maximum Lyapunov exponent of System (24) and (b) the synchronization
error of Network (20) with N = 10 for 0 ≤ σ1 ≤ 0.0007 and 0 ≤ σ2 ≤ 0.00005. The stability region
for which Λ ≤ 0 and E = 0 is coded in purple spectra and dark blue in the analytical and numerical
approaches, respectively. Second row: The maximum Lyapunov exponent of System (24) (shown
in orange) and the synchronization error of Network (20) (shown in navy blue) for the (c) pure
one-simplex (σ2 = 0) and (d) pure two-simplex (σ1 = 0) cases.
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Besides, as previously shown (System (21)), the dynamics of the neurons in the syn-
chronization state depend on the value of the first- (σ1) and second-order (σ2) coupling
strengths. For example, Figure 6 points out that the neurons have periodic bursting behav-
ior of period 1 for σ1 = 10 and σ2 = 0.0001 and of period 2 for σ1 = 10 and σ2 = 0.00055,
both differ from the original chaotic dynamics of an uncoupled mHR neuron. The initial
conditions are randomly chosen around the origin.
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Figure 6. (a,c) The phase diagram and (b,d) the time series of the mHR neuron maps in their
synchronous state described in System (21) for σ1 = 10σ2 = 0.0001 (first row) and σ1 = 10σ2 = 0.00055
(second row). Other parameters are a = 1, b = 3, c = 1, d = 5, ε = 0.1, and m = 1.4. The initial values
are considered randomly around the origin.

Remark 5. From Figure 5a,b, it can be noticed that through the first- and second-order chemical
interactions, the neurons synchronize for considerably weaker strength of the σ1and σ2. This drop is
more remarkable for σ1.

Remark 6. Despite the previous cases, when chemical interactions are considered first- and second-
order interactions, several lines are needed to separate the synchronous and asynchronous zones.

Remark 7. Figures 2, 4 and 5 imply that when interactions, whether pairwise or non-pairwise, are
homogeneous, synchronous and asynchronous regions can be distinguished linearly. Nonetheless,
when interactions are of a diffusive nature (electrical or inner linking), one line separates such
regions, while when nonlinear couplings (chemical synapses) are involved, several linear separators
can be observed.

3.4. Electrical Pairwise and Chemical Non-Pairwise Interactions

As the first homogeneous case, we consider the electrical synapses to model the
short-range two-body connections and chemical synapses as the long-range three-body
interactions. Hence, applying H(1)

(
Xn

i , Xn
j1

)
=
[

xn
j1
− xn

i , 0, 0
]

and H(2)
(

Xn
i , Xn

j1
, Xn

j2

)
=[(

vs − xn
i
)(

Γ
(

xn
j1

)
+ Γ

(
xn

j2

))
, 0, 0

]
, the network dynamics can be obtained from
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Xn+1
i =



xn+1
i = f

(
Xn

i
)
+ σ1

N
∑

j1=1
G(1)

ij1

[
xn

j1
− xn

i

]
+σ2

(
vs − xn

i
) N

∑
j1=1

N
∑

j2=1
G(2)

ij1 j2

[
Γ
(

xn
j1

)
+ Γ

(
xn

j2

)]
yn+1

i = g
(
Xn

i
)

φn+1
i = h

(
Xn

i
)

. (25)

Substituting Xn
1 = Xn

2 = . . . = Xn
s , we have H(1)

(
Xn

i , Xn
j1

)
≡ 0 and H(2)

(
Xn

i , Xn
j1

, Xn
j2

)
≡

2σ2(N − 1)(N − 2)(vs − xn
s )Γ(xn

s ); in the synchronization state, the synchronization mani-
fold can be acquired according to

Xn+1
s = F(Xn

s ) =


xn+1

s = f (Xn
s ) + 2σ2(N − 1)(N − 2)(vs − xn

s )Γ(xn
s )

yn+1
s = g(Xn

s )
φn+1

s = h(Xn
s )

. (26)

System (26) shows that the behavior of the synchronous neurons depends on the value
of the higher-order coupling strength (σ2), which is here of chemical synaptic type. Looking
more closely at Equations (14) and (23), the perturbation equations needed to examine the
stability of the synchronous state can be written as

δXn+1
i =



δxn+1
i = D f (Xn

s )δXn
i + 2σ2(N − 2)(N − 1)×

((vs − xn
s )Γx(xn

s )− Γ(xn
s ))δxn

i

−(σ1 + 2σ2(N − 2)(vs − xn
s )Γx(xn

s ))
N
∑

j1=1
L(1)

ij1
δxn

j1

δyn+1
i = Dg(Xn

s )δXn
i

δzn+1
i = Dh(Xn

s )δXn
i

. (27)

Consequently, the linearized system becomes

ζn+1 =


ζn+1

x = D f (Xn
s )ζ

n − σ1Nζn
x

−2σ2(N − 2)((vs − xn
s )Γx(xn

s ) + (N − 1)Γ(xn
s ))ζ

n
x

ζn+1
y = Dg(Xn

s )ζ
n

ζn+1
φ = Dh(Xn

s )

. (28)

The results of the Lyapunov analysis of System (28) and the synchronization error
of Network (25) are given in Figure 7a,b. The regions coded in purple spectra (Λ ≤ 0)
in Figure 7a, and the dark blue regions (E = 0) in Figure 7b are the regions wherein the
neurons achieve complete synchrony. Moreover, two examples of one-dimensional cases for
σ2 = 0.00004 and 0 ≤ σ1 ≤ 0.01 (Figure 7c) and σ1 = 0.008 and 0 ≤ σ2 ≤ 0.00005 (Figure 7d)
are shown. Furthermore, as shown in Figure 8, in this case, the synchronous neurons
can behave chaotically (for σ1 = 0.01 and σ2 = 0.00001) and periodically (σ1 = 0.001 and
σ2 = 0.00004) based on the value of σ2.

Remark 8. Compared to homogeneous cases, Figure 7a,b shows that the edges between the syn-
chronous and asynchronous regions are not linear.

3.5. Inner Linking Pairwise and Chemical Non-Pairwise Interactions

In the final case of the study, the electrical function used as the pairwise
neuronal interactions in the previous case is replaced by the inner linking func-
tion. Hence, we get H(1)

(
Xn

i , Xn
j1

)
=
[

f
(

Xn
j1

)
− f

(
Xn

i
)
, 0, 0

]
and H(2)

(
Xn

i , Xn
j1

, Xn
j2

)
=[(

vs − xn
i
)(

Γ
(

xn
j1

)
+ Γ

(
xn

j2

))
, 0, 0

]
. As a consequence, the Network (25) changes into
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Xn+1
i =



xn+1
i = f

(
Xn

i
)
+ σ1

N
∑

j1=1
G(1)

ij1

[
f
(

Xn
j1

)
− f

(
Xn

i
)]

+σ2
(
vs − xn

i
) N

∑
j1=1

N
∑

j2=1
G(2)

ij1 j2

[
Γ
(

xn
j1

)
+ Γ

(
xn

j2

)]
yn+1

i = g
(
Xn

i
)

φn+1
i = h

(
Xn

i
)

. (29)
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orange) and the synchronization error of Network (25) (shown in navy blue) for (c) 0 ≤ σ1 ≤ 0.01
and σ2 = 0.00004 and (d) σ1 = 0.008 and 0 ≤ σ2 ≤ 0.00005.

Accordingly, due to the diffusive nature of the pairwise inner linking interactions, the
coupling functions become H(1)

(
Xn

i , Xn
j1

)
≡ 0 and H(2)

(
Xn

i , Xn
j1

, Xn
j2

)
≡ 2σ2(N − 1)(N − 2)

(vs − xn
s )Γ(xn

s ), and thus, the synchronization manifold remains the same as in System (26).
Inspired by Equations (18) and (23), the stability of the synchronization manifold can be
examined by performing Lyapunov analysis on the perturbation system below:

δX(n+1)
i =



(δx(n+1)
i = D f (Xn

s )δXn
i + 2σ2(N − 2)(N − 1)×

((vs − xn
s )Γx(xn

s )− Γ(xn
s ))δxn

i

−2σ2(N − 2)(vs − xn
s )Γx(xn

s )
N
∑

j1=1
L(1)

ij1
δxn

j1

−σ1D f (Xn
s )

N
∑

j1=1
L(1)

ij1
δXn

j1

δy(n+1)
i = Dg(Xn

s )δXn
i

δz(n+1)
i = Dh(Xn

s )δXn
i

(30)
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Figure 8. (a,c) The phase diagram and (b,d) the time series of the mHR neuron maps in their syn-
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Network (30) can then be projected to the linearized system as follows:

ζn+1 =


ζn+1

x = D f (Xn
s )ζ

n(1− σ1N)ζn − 2σ2(N − 2)×
((vs − xn

s )Γx(xn
s ) + (N − 1)Γ(xn

s ))ζ
n
x

ζn+1
y = Dg(Xn

s )ζ
n

ζn+1
φ = Dh(Xn

s )ζ
n

. (31)

The maximum Lyapunov exponents of System (31) are reported in Figure 9a for
0 ≤ σ1 ≤ 0.012 and 0 ≤ σ2 ≤ 0.00005. In the same parameter intervals, the synchronization
error of Network (29) is presented in Figure 9b. The purple in Figure 9a or dark blue regions
in Figure 9b specify the coupling strengths for which the neurons achieve synchrony. Also,
Figure 9c,d illustrates two one-dimensional examples for σ2 = 0.000038 and 0 ≤ σ1 ≤ 0.012
(Figure 9c) and σ1 = 0.0091 and 0 ≤ σ2 ≤ 0.00005 (Figure 9d). Note that, in the synchronous
regions, the synchronization manifolds shown in Figure 8 can be observed of almost the
same value as the coupling parameters σ1 and σ2 since the dynamics of the neurons in the
synchronous state remain the same as in System (26).

Remark 9. Compared to Figure 7a,b and Figure 9a,b shows that the stability region occupies a
more significant area of the parameter plane σ1-σ2when inner-linking functions are applied to links
instead of electrical synapses.

Remark 10. Although a few studies have focused on higher-order networks [42–44], investi-
gation and comparison of pairwise and non-pairwise interactions in different homogeneous and
heterogenous cases are elaborated in the presented study.
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Figure 9. First row: (a) The maximum Lyapunov exponent of System (31) and (b) the synchronization
error of Network (29) with N = 10 for 0 ≤ σ1 ≤ 0.012 and 0 ≤ σ2 ≤ 0.00005. The stability region for
which Λ ≤ 0 and E = 0 is coded in purple spectra and dark blue in the analytical and numerical
approaches, respectively. Second row: The maximum Lyapunov exponent of System (31) (shown in
orange) and the synchronization error of Network (29) (shown in navy blue) for (c) 0 ≤ σ1 ≤ 0.012
and σ2 = 0.000038 and (d). σ1 = 0.0091 and 0 ≤ σ2 ≤ 0.00005.

4. Conclusions

Realizing how the brain processes information and performs computations requires
research on higher-order interactions in neuronal networks. Higher-order interactions
have the potential to influence the dynamics and behavior of neural networks significantly
and result in emergent phenomena, including oscillations and synchronization. Yet, the
impact of various two- and three-body interaction combinations, notably on map-based
neural networks, has not been thoroughly studied. In order to address this gap, the
synchronization of the higher-order network of the mHR neuron map was thoroughly
investigated in the present paper, where N = 10 neurons were globally coupled using
various homogeneous and heterogeneous pairwise and non-pairwise coupling functions.
The major goal was to determine how coupling functions that were defined on links and
triangles affected the network’s state of synchronization. The analysis of the stability of
the synchronization state in each studied case was performed using the MSF formalism,
which led to finding the necessary conditions for synchronization. Moreover, to approve
the analytic results, the synchronization error of the corresponding network was calculated
numerically. In homogeneous cases, two- and three-neuron interactions were considered
electrical, inner linking, and chemical, respectively. The results showed weaker pairwise
and non-pairwise coupling strengths were needed to synchronize the mHR maps through
chemical synapses. On the other hand, when neurons purely interacted through the inner
linking functions, synchronization occurred for the higher values of two-node and three-
node coupling strengths. Interestingly, the synchronous and asynchronous regions were
linearly separable in all homogeneous cases, yet when chemical synapses were involved,
multiple lines could be found between the regions. Two heterogeneous cases were also
taken into account, in both of which the three-node interactions were kept chemical since
they are more suitable for long-range neuronal interactions. In the first case, two-node
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interactions were assumed to be electrical since they are more reasonable for short-range
interactions. In the second case, the pairwise electrical synapse was replaced with the
inner linking functions. The result indicated that when the inner linking function was
considered to link each pair of neurons, the synchronous region occupied a significant part
of the parameter plane compared to the pairwise electrical connections. By highlighting
the impact of various higher-order synaptic interactions, we believe that the findings can
assist in a better understanding of how the brain operates.
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