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Abstract: The scope of this article is to identify the parameters of bivariate fractal interpolation
surfaces by using convex hulls as bounding volumes of appropriately chosen data points so that the
resulting fractal (graph of) function provides a closer fit, with respect to some metric, to the original
data points. In this way, when the parameters are appropriately chosen, one can approximate the
shape of every rough surface. To achieve this, we first find the convex hull of each subset of data
points in every subdomain of the original lattice, calculate the volume of each convex polyhedron and
find the pairwise intersections between two convex polyhedra, i.e., the convex hull of the subdomain
and the transformed one within this subdomain. Then, based on the proposed methodology for
parameter identification, we minimise the symmetric difference between bounding volumes of an
appropriately selected set of points. A methodology for constructing continuous fractal interpolation
surfaces by using iterated function systems is also presented.

Keywords: convex hull; volume of a convex polyhedron; intersection of two convex polyhedra;
fractal interpolation; iterated function system

MSC: 28A80; 41A30; 65D05

1. Introduction

Interpolation focuses in general on constructing a continuous function which passes
over a set of points that are considered as samples of an unknown function. Since most of
the traditional interpolants are defined or constructed using the infinitely differentiable
functions such as polynomials, exponential functions, trigonometric functions, and rational
functions, generally traditional interpolants are “smooth” in nature.

On the other hand, many real-world and experimental signals are intricate and rarely
show a sensation of smoothness in their traces. To address this issue, the interpolation by
fractal (graph of) functions is introduced by M. F. Barnsley in Refs. [1,2], which is based on
the theory of iterated function system. Fractal interpolation based on iterated function systems
provides a convenient way for constructing continuous functions that intervene sets with
irregular shape, such as seismic, medical, geographic data, etc. Fractal interpolation does
not use an analytical formula or algorithm for computing the graph for given coordinates.
Instead, the whole function is constructed through algorithms as regulated cardinality set
of points.

A fractal interpolation function is a continuous function whose graph has non-integer
Hausdorff–Besicovitch or simply fractal dimension. If its fractal dimension lies between 1 and
2, then it is called fractal interpolation curved line or fractal interpolation curve. Similarly, if its
fractal dimension lies between 2 and 3, then it is called fractal interpolation surface.
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The construction of fractal interpolation surfaces by using an appropriately chosen
iterated function system was initially proposed by Peter R. Massopust [3], who examined
triangular passages with coplanar boundary data. Jeffrey S. Geronimo and Douglas Hardin
in [4] studied polygonal regions with arbitrary interpolation points, but equal vertical
scaling factors. Nailiang Zhao in [5] faced the factors as a continuous ‘contraction function’,
while Peter R. Massopust [6], proposed the construction of FIS as a tensor product of two
continuous univariate functions. Bivariable fractal interpolation functions as non-tensor
products on some rectangular passages were constructed by Xiao-yuan Qian [7]. Hong-
Yong Wang [8] used a wide class of three-dimensional IFS and proved that their attractors
are a class of fractal interpolation surfaces. A method based on bivariable functions on
rectangular grids for generating fractal interpolation surfaces is presented by V. Drakopou-
los and P. Manousopoulos in [9]. Can every attractor of an iterated function system be the
graph of a continuous bivariable fractal function? We answer this question by providing a
necessary condition. Furthermore, we address the advantages and disadvantages of few
foremost constructions of bivariable fractal interpolation functions on rectangular grids.

By exploiting the concepts of geostatistics and trend surface analyses, the partition of
the local field and the determination of a vertical scaling factor are studied in [10]. This is
very useful for simulation of local stochastic irregular roughness on the fracture surface.
By using the principles of the trend surface analyses, the deviations on the information
points are used in [11] as a vertical scaling factor. Another methodology to approximate
any natural surface by using recurrent bivariate fractal interpolation surfaces is outlined
in [12]. The freedom in selecting the parameters that define fractal function plays a vital
role in many applications [13]. At the same time the suitable choice of free parameters is a
tedious inverse problem as the closeness if fit of fractal interpolation function is sensitive
with respective to vertical scaling factors. However, it should be noted that the proper
selection of the free parameters is a challenging “inverse problem”, since the closeness of fit
of a fractal interpolation function is mainly influenced by the determination of its vertical
scaling factors, for which no straightforward method is available.

In this article, the parameter identification presented in [14] is extended to bivariate
fractal interpolation surfaces by reducing the construction to a problem of computational
geometry. Our goal is to find the optimum vertical scaling factors of fractal interpolation,
such as to achieve minimising the symmetric difference between bounding volumes of
appropriately selected points. For the implementation of the proposed methodology, we
use the algorithms of finding the convex hull of a set of points, of computing the volume
of a convex polyhedron as well as the pairwise intersections between two convex polyhe-
dra. The use of optimum vertical scaling factors leads to the maximum overlap between
corresponding bounding volumes, achieving better representation of the data points.

2. Finding the Convex Hull of a Set of Points

The convex hull of a set of points is the smallest convex set that contains these points.
Specifically, for a set S of n points, the convex hull denoted by CH(S) is the minimum
convex polygon in R2 or convex polyhedron in R3 such that each one of the n points
belongs to the boundary of CH(S) or is interior of the CH(S). A convex hull is represented
with a set of facets and a set of adjacency lists giving the neighbours and vertices for each
facet. The boundary elements of a facet are called ridges. Each ridge signifies the adjacency
of two facets.

Various algorithms for finding convex hull have been proposed. Of particular interest
are those which are variations of a randomised incremental algorithm that was proposed
by Clarkson and Shor [15], as they have optimal expected performance. An incremental
algorithm for the convex hull repeatedly adds a point to the convex hull of the previously
processed points.

In this article, the Quickhull algorithm [16] is selected since it optimises the selection
of a point in each step of the procedure, as it processes the furthest point of an outside
set instead of an arbitrary point. It executes faster than the corresponding randomised
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algorithms because it processes fewer interior points and it also reuses the memory occupied
by old facets; see Listing 1. For a precision of the input points equal to O(log n), the
worst-case complexity of Quickhull is O(n log u) for d ≤ 3, and O(n fu/u) for d ≥ 4,
where n the number of input points in Rd and u the number of output vertices. For an
efficient comparison of Quickhull with the randomised incremental algorithms, the effect
of randomisation on time efficiency should be isolated.

Listing 1. Quickhull algorithm for the convex hull in Rd.

1. Create a simplex of d + 1 points
2. For each facet F.

2.1. For each unassigned point p
2.1.1. If p is above F

i. Assign p to F’s outside set
3. For each facet F with a non-empty outside set

3.1. Select the furthest point p of F’s outside set
3.2. Initialize the visible set V to F
3.3. For all unvisited neighbors N of facets in V

3.3.1. If p is above N
i. Add N to V

3.4. The boundary of V is the set of horizon ridges H
3.5. For each ridge R in H

3.5.1. Create a new facet from R and p
3.5.2. Link the new facet to its neighbors

3.6. For each new facet F′

3.6.1. For each unassigned point q in an outside set of a facet in V
i. IF q is above F′,

assign q to F′ outside set,
3.7. Delete the facets in V

3. Calculating the Volume of a Convex Polyhedron

Volume is the quantity of three-dimensional space enclosed by some closed boundary,
for example the space that a substance (solid, liquid, gas or plasma) or shape occupies or
contains. The volume of objects with simple geometric shape like a cube, sphere, pyramid,
cone, etc., can easily be calculated by using arithmetic formulas. However, for polyhedra
with more complicated shape, the procedure becomes much more intricate. The basic idea
of the proposed methodology is to simplify the problem by splitting the initial convex
polyhedron in separate, non-overlapping convex tetrahedra, where it is possible to calculate
their volumes directly. Then, the volume of the initial polyhedron is equal to the sum of
volumes of all encountered tetrahedra.

For partitioning the initial convex polyhedron, one vertex must be selected, that will
be the fixed point for the formation of the tetrahedrons, while it is prerequisite all the facets
of the polyhedron to be triangulated. Each tetrahedron is formed as the compound of
this vertex with one of the triangles of the triangulated polyhedron. Triangles, which are
coplanar with the fixed vertex, are excluded from the procedure, as they would lead to
tetrahedra with zero volume. The algorithm of the procedure is outlined in Listing 2.



Mathematics 2023, 11, 2850 4 of 16

Listing 2. Volume of a convex polyhedron.

1. Select a vertex A from the initial convex polyhedron P as a starting point for the
formation of the tetrahedra that partition P.

2. Set the Volume V of P equal to 0.
3. For each triangle Tri of the triangulated polyhedron P

3.1. If the vertex A isn’t coplanar with the triangle Tri

3.1.1. Form a tetrahedron Ti from the vertices of the triangle Tri and the
vertex A

3.1.2. Compute the Volume Vi of the tetrahedron Ti
3.1.3. Add the Vi to the cumulative calculated Volume V of P

4. Return the Volume V of the convex polyhedron P

The complexity of the algorithm is proportionate to the number of tetrahedrons that
the initial convex polyhedron has been partitioned into, and thus proportionate to the
number of triangles that have emerged during the triangulation. If n is the number of
triangles, then the complexity of the proposed methodology is O(n). As the triangulated
form of the initial polyhedron has resulted from its faces, the complexity of the algorithm
can be expressed as a function of the vertices (v), the edges (e) or the faces ( f ) considering the
relation v + f − e = 2.

4. Intersection between Two Convex Polyhedra

The intersection between two convex polyhedra in three-dimensional space corre-
sponds to their overlapping area. It is equivalent to the finite shape of space, which
is bounded by n polygonal planes, and simultaneously enclosed in both initial con-
vex polyhedra. Provided that the initial polyhedra overlap, their intersection is also a
convex polyhedron.

While the definition of intersection seems simplistic, finding an efficient algorithm to
calculate it, constitutes a complicated problem in computational geometry. The difficulty
lies in the complexity that the schema of the polyhedra may have and in the way that
they overlap.

The backbone structure of the proposed methodology is the creation of a plane from
each facet of the one polyhedron and the partition of the second polyhedron by each
plane that has emerged. The part of the second polyhedron, which is located on the
opposite half-space compared to the first polyhedron, is rejected, while the part located
in the same half-space remains. At each iteration of the algorithm presented as Listing 3,
the second polyhedron is replaced by the polyhedron constructed in the previous step.
A prerequisite for the implementation of the algorithm is the second polyhedron to be
triangulated. This condition has its origin in the way the second polyhedron is partitioned
by each resulting plane.
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Listing 3. Intersection of two convex polyhedra.

1. Take as input the two polyhedra A and B
2. Set the polyhedron B as the processing polyhedron P
3. For each facet of the polyhedron A

3.1. Set the plane E that divides the R3 into two half-spaces
3.2. For each triangle Tri of the triangulated polyhedron P

3.2.1. If all the vertices of the Tri are located in the same half-space with the A
i. Add the triangle to the triangulation form of the polyhedron T

3.2.2. Else, if all the vertices of the Tri are located in the opposite half-space
from the A
i. Reject the triangle

3.2.3. Else, if only one vertex of the Tri is located in the same half-space with
the A
i. Add to the triangulation form of the polyhedron T, the triangle

that is constructed from this vertex and the intersection points
of the sides of the Tri with the plane E.

3.2.4. Else (two vertices of the Tri are located in the same half-space with
the A)
i. Triangulate the quadrilateral that is constructed from the two

vertices of the Tri, that are located in the same half-space with
the A, and the two intersection points of the sides of the Tri
with the plane E

ii. Add to the triangulation form of the polyhedron T, the two
triangles that are constructed from the step (i)

3.3. Triangulate the n-gon that is constructed from the intersection points of the
triangles of P with the plane E, and combine the resulting triangles to construct
the polyhedron T

3.4. Set as the processing polyhedron P the convex polyhedron T and initialise T
4. Return the polyhedron P

5. Parameter Identification of 2D Fractal Interpolation Functions

We apply the methods presented in the previous sections in the field of fractal interpola-
tion for parameter identification in R3. They are constructing blocks for the implementation
of the proposed algorithm for the parameter identification of 2D fractal interpolation
functions by using bounding volumes. In what follows, we abbreviate by f k the k-fold
composition f ◦ f ◦ · · · ◦ f .

5.1. Iterated Function Systems

A (hyperbolic) Iterated Function System, or IFS for short, on the metric space (Rd, ‖ · ‖)
is defined as a pair {Rd; w1−N}, where wn : Rd → Rd, n = 1, 2, . . . , N, is a finite set of
contractions with contractivity factor sn, i.e.,

‖wn(x)− wn(y)‖ ≤ sn ‖x− y‖

for all x, y ∈ Rd and for some sn ∈ [0, 1).
The attractor of a (hyperbolic) IFS is the unique set

A∞ = lim
k→∞

Wk(E0)
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for every starting set E0, where

W(E) =
N⋃

n=1

wn(E) for all E ∈ H(Rd),

where H(Rd) is the metric space of all nonempty, compact subsets of Rd with respect to
some metric, e.g., the Hausdorff metric. The map W is called the Hutchinson operator or the
collage map to alert us to the fact that W(E) is formed as a union or ‘collage’ of sets.

Recall that a transformation w is affine, if it may be represented by a matrix A and
translation t as w(x) = Ax + t, or (if X = R3)

w

 x
y
z

 =

 a b c
d e g
h k s

 x
y
z

+

 l
m
r

.

The code of w is the 12-tuple (a, b, c, d, e, g, h, k, s, l, m, r), and the code of an IFS is a table
whose rows are the codes of w1, w2, . . . , wN .

5.2. Fractal Interpolation Surfaces

Let ∆x,1, ∆x,2 be two partitions of the real compact interval Ix = [a, b], i.e., ∆x,1 =
{u0, u1, . . . , uM′} satisfying a = u0 < u1 < · · · < uM′ = b and ∆x,2 = {x0, x1, . . . , xM} satis-
fying a = x0 < x1 < · · · < xM = b, such that ∆x,1 is a refinement of ∆x,2. Likewise, let ∆y,1,
∆y,2 be two partitions of the real compact interval Iy = [c, d], i.e., ∆y,1 = {υ0, υ1, . . . , υN′}
satisfying c = υ0 < υ1 < · · · < υN′ = d and ∆y,2 = {y0, y1, . . . , yN} satisfying c = y0 <
y1 < · · · < yN = d, such that ∆y,1 is a refinement of ∆y,2.

Let K = D×R, such that D = Ix × Iy, be a complete metric space. Let us represent as

P = {(uk, υl , ẑk,l = ẑ(uk, υl)) ∈ K : k = 0, 1, . . . , M′; l = 0, 1, . . . , N′}

the given set of data points and as

Q = {(xi, yj, zi,j = z(xi, yj)) ∈ K : i = 0, 1, . . . , M; j = 0, 1, . . . , N}

the interpolation points satisfying Q ⊂ P.
The Ixm = [xm−1, xm], Iyn = [yn−1, yn], Dm,n = Ixm × Iyn , correspond to the defined

interpolation intervals, while Pm,n = {(u, υ, ẑ) ∈ P : (u, υ) ∈ Dm,n} are the data points
within the m× n interpolation domain, for all m = 1, 2, . . . , M and n = 1, 2, . . . , N.

Let {K; w1−m,1−n} be an IFS with transformations

wm,n

x
y
z

 =

 am 0 0
cn 0 0

em,n fm,n sm,n

x
y
z

+

 bm
dn

gm,nxy + km,n


constrained to satisfy

wm,n

 x0
y0

z0,0

 =

 xm−1
yn−1

zm−1,n−1

, wm,n

 xM
y0

zM,0

 =

 xm
yn−1

zm,n−1

,

wm,n

 x0
yN

z0,N

 =

 xm−1
yn

zm−1,n

, wm,n

 xM
yN

zM,N

 =

 xm
yn

zm,n


for every m = 1, 2, . . . , M and n = 1, 2, . . . , N. Solving the above equations results in

am =
xm − xm−1

∆x
, bm =

xMxm−1 − x0xm

∆x
, cn =

yn − yn−1

∆y
, dn =

yNyn−1 − y0xn

∆y
,
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gm,n =
zm,n + zm−1,n−1 − zm−1,n − zm,n−1 − sm,n(z0,0 + zM,N − z0,N − zM,0)

∆x∆y
,

em,n =
zm,n−1 − zm−1,n−1 + sm,n(z0,0 − zM,0)− gm,n∆xy0

∆x
,

fm,n =
zm−1,n − zm−1,n−1 + sm,n(z0,0 − z0,N)− gm,n∆yx0

∆y
,

km,n = zm,n − em,nxM − fm,nyN − sm,nzM,N − gm,nxMyN

i.e., the real parameters am, bm, cn, and dn, are determined by the interpolation points while
em,n, fm,n, gm,n, and km,n are determined by the interpolation points as well as by the free
parameters sm,n. The transformations wm,n are bivariable transformations, where sm,n are
their vertical scaling factors, where m = 1, 2, . . . , M and n = 1, 2, . . . , N; see Figure 1.

Figure 1. A collage map W : H(R3)→ H(R3) for M = N = 2.

From [9], we have the following.

Theorem 1. Let {X; w1−N,1−M} be a hyperbolic IFS with contractivity factor s = max{sm,n :
m = 1, 2, . . . , M; n = 1, 2, . . . , N}. The transformation W : H(X)→ H(X), where

W(B) =
M⋃

m=1

N⋃
n=1

wm,n(B), for all B ∈ H(X),

is a contraction mapping of the complete metric space (H(X), h(ρ)) with contractivity factor s.
The unique compact set A ∈ H(X) satisfies

A = W(A) =
M⋃

m=1

N⋃
n=1

wm,n(A),

is called the attractor of the hyperbolic IFS and it is equal to

A = lim
k→∞

Wk(B), for all B ∈ H(X).

5.3. Identifying the Vertical Scaling Factors

Let B ∈ K3
0 be the convex bounding volume of P and Bm,n ∈ K3

0 be the convex
bounding volumes of Pm,n. The parameters sm,n must be computed in such a way as to
derive maximum overlap between the corresponding bounding volumes. The objective is
to minimise the volume of the non-overlapping parts of the convex hull of the set Pm,n and
the transformed by wm,n convex hull of the set P, for all m = 1, 2, . . . , M and n = 1, 2, . . . , N.
That corresponds to the minimisation of the symmetrical distance:
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δs( CH(Pm,n), wm,n(CH(P)) )
= Volume{CH(Pm,n)} + Volume{wm,n(CH(P))} − 2 ·Volume{CH(Pm,n) ∩ wm,n(CH(P))}
= Volume{CH(Pm,n)} + Volume{wm,n(CH(P))} − 2 ·Volume{CH(Pm,n ∩ wm,n(P))}

(1)

Since wm,n are affine, it implies that wm,n(CH(·)) = CH(wm,n(·)). As implied by
Equation (1), the calculation of δS is algorithmic and involves the computation of convex
hulls, intersections of polyhedra and volumes. Therefore, a method for two-dimensional
minimisation without derivatives should be used, such as Brent’s method [17], which is
a bracketing method with parabolic interpolation. Initially, for the method to converge
to optimum ŝ+m,n, we must initially bracket it, i.e., provide three constants sa

m,n, sb
m,n, sc

m,n,
such that

0 ≤ sa
m,n < sb

m,n < sc
m,n ≤ 1,

Vol(sb
m,n) < Vol(sa

m,n), Vol(sb
m,n) < Vol(sc

m,n),
sa

m,n < ŝ+m,n < sc
m,n.

A good approximation is to estimate sb
m,n such that

Vol{wm,n(CH(P))} ≈ Vol{CH(Pm,n)}.

Next sa
m,n, sc

m,n follow from sb
m,n, respectively, by a factor, that is

sb
m,n = Vol{CH(Pm,n}/(am,n · cm,n ·Vol{CH(P)}),

sa
m,n = sb

m,n/c,
sc

m,n = min{csb
m,n, 1},

for some c > 1. The constant c can be determined a priori, e.g., c = 2, or more safely using
an iterative procedure of checking successively larger values until a suitable bracketing
triplet is found. In cases of negative factors, the optimum ŝ−m,n can be similarly calculated
by using the bracketing triplet

sb′
m,n = −sb

m,n,
sa′

m,n = max{csb′
m,n,−1},

sc′
m,n = sb′

m,n/c.

The algorithm for finding the optimum vertical scaling factors can be outlined in
Listing 4.

Listing 4. Calculation of the optimum vertical scaling factors of FIS.

1. Compute the convex hull of the set of the data points P.
2. For each subdomain Dm,n, where m = 1, 2, . . . , M and n = 1, 2, . . . , N

2.1. Compute the known parameters am,n, bm,n, cm,n, dm,n, em,n, fm,n, gm,n, km,n of
the transformation wm,n

2.2. Compute the convex hull of the set Pm,n
2.3. Find the optimum ŝ+m,n ∈ [0, 1) that minimise the volume of non-overlapping

parts of volumes CH(Pm,n) and wm,n(CH(P)), using the bracketing triplet
(sb

m,n/c, sb
m,n, min{csb

m,n, 1}),
where c > 1 and sb

m,n = Volume{CH(Pm,n)} / am,n · cm,n · Volume{CH(P)}
2.4. Find the optimum ŝ−m,n ∈ (−1, 0] that minimise the volume of non-overlapping

parts of volumes CH(Pm,n) and wm,n(CH(P)), using the bracketing triplet
(max{csb′

m,n,−1}, sb′
m,n, sb′

m,n/c), where c > 1 and sb′
m,n = −sb

2.5. If Volume{ŝ+m,n} ≤ Volume{ŝ−m,n}, then ŝm,n = ŝ+m,n, else ŝm,n = ŝ−m,n
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The calculation of a vertical scaling factor sm,n depends on the number of data points
within the respective interpolation interval surface, while in the worst case scenario it
requires time O(K log (K) / (M · N)). Since there are M · N factors sm,n, the worst-case
computational complexity of the algorithm is proportionate to the number of the data
points, i.e., O(K log (K)). Moreover, convex hulls usually have few vertices, so calculations
are quick. Figure 2 shows the results of three examples of fractal interpolation according to
the proposed methodologies.

(a) (b)

Figure 2. Example of fractal interpolation for (a) 3× 3, (b) 4× 4, partitions of the XY plane.

6. Examples and Discussion

In this section, examples for finding the convex hull of a set of points, calculating the
volume of a convex polyhedron and determining the intersection of two convex polyhedra,
and finally identifying the parameters of two-dimensional fractal interpolation functions by
using bounding volumes are presented and discussed. The implementation of the proposed
algorithms and their integration into a software tool were written in the C++ programming
language by using Microso f tr VisualStudior IDE. The library CGAL was extensively used
together with the DirectX library for the three-dimensional representation of the results.

The most common algorithm to compute fractals derived by IFSs is called the chaos
game or random iteration algorithm. It consists of picking a random point in the plane, then
iteratively applying one of the functions chosen at random from the function system and
drawing the point. An alternative algorithm, the deterministic iteration algorithm, or DIA for
short, is to generate each possible sequence of functions up to a given maximum length
and then to plot the results of applying each of these sequences of functions to an initial
point or shape.

As an initial data set of points for 2× 2 partitioning of the XY plane, the points in
Table 1a are used. The interpolation points corresponding to this original data set are listed
in Table 1b. Figure 3 corresponds to the original mesh of the interpolation points of the
example, while Figure 4 corresponds to the convex hull of the original data set, calculated
with the Quickhull algorithm.

To calculate the optimal factors sm,n, with m = 1.2 and n = 1.2 of each subdomain of
the example, according to the algorithm presented in Section 5.3, the factors that minimize
the volume of the non-overlapping parts of the convex hull of the set Pm,n and of the convex
hull of the set P transformed by wm,n for each m = 1, 2 and n = 1, 2 must be chosen. The
convex hulls of Pm,n, for each m = 1, 2 and n = 1, 2, of the subdomains of the example, are
represented in Figures 5–8.
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Table 1. (a) The initial data set for 2× 2 partitioning of the XY plane, (b) the correspong interpolation
points.

(a) (b)

x y z x
y 0 0.5 1

0.00 0.00 0.20 0 0.2 0.2 0.2
0.00 0.50 0.20 0.5 0.2 1.0 0.2
0.00 1.00 0.20 1 0.2 0.2 0.2
0.25 0.25 0.50
0.25 0.75 0.80
0.50 0.00 0.20
0.50 0.50 1.00
0.50 1.00 0.20
0.75 0.25 0.80
0.75 0.75 0.50
1.00 0.00 0.20
1.00 0.50 0.20
1.00 1.00 0.20

Figure 3. The original grid of interpolation points (2 × 2 partition).

(a) (b)

Figure 4. The convex hull of the original data set (a) in the form of coloured vertices, and (b) with its
edge representation.
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(a) (b)

Figure 5. The convex hull of the original data set P1,1 (a) in the form of coloured vertices, and (b) with
its edge representation.

(a) (b)

Figure 6. The convex hull of the original data set P1,2 (a) in the form of coloured vertices, and (b) with
its edge representation.

(a) (b)

Figure 7. The convex hull of the original data set P2,1 (a) in the form of coloured vertices, and (b) with
its edge representation.

(a) (b)

Figure 8. The convex hull of the original data set P2,2 (a) in the form of coloured vertices, and (b) with
its edge representation.
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By applying the algorithm for finding the optimal factors sm,n, for m = 1, 2 and n = 1, 2,
the factors listed in Table 2 are obtained. Based on these optimal factors, the transformed
points for each sub-region are calculated, with their convex hulls depicted in Figures 9–12.

Table 2. (a) Optimum factors sm,n for m = 1, 2 and n = 1, 2, and (b) symmetric differences of
subdomains (m, n).

(a) (b)

m m
n 1 2 n 1 2

1 0.05 0.60 1 0.0 0.0125
2 0.60 0.05 2 0.0125 0.0

(a) (b)

Figure 9. The convex hull of the points resulting from the transformation of the vertices of the convex
hull of the set P by w1,1 (a) in the form of coloured faces, and (b) in its edge representation.

(a) (b)

Figure 10. The convex hull of the points resulting from the transformation of the vertices of the
convex hull of the set P by w1,2 (a) in the form of coloured faces, and (b) in its edge representation.

(a) (b)

Figure 11. The convex hull of the points resulting from the transformation of the vertices of the
convex hull of the set P by w2,1 (a) in the form of coloured faces, and (b) in its edge representation.
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(a) (b)

Figure 12. The convex hull of the points resulting from the transformation of the vertices of the
convex hull of the set P by w2,2 (a) in the form of coloured faces, and (b) in its edge representation.

Their intersections with the corresponding convex hulls of Pm, n, for each m = 1, 2
and n = 1, 2, are illustrated in Figures 13–16.

(a) (b)

Figure 13. The intersection of the convex hull of the original data set P1,1 with the convex hull of the
points resulting from the transformation of the vertices of the convex hull of the set P by w1,1 (a) in
the form of coloured faces, and (b) with its edge representation.

(a) (b)

Figure 14. The intersection of the convex hull of the original data set P1,2 with the convex hull of the
points resulting from the transformation of the vertices of the convex hull of the set P by w1,2 (a) in
the form of coloured faces, and (b) with its edge representation.

The symmetric differences of the convex hulls of Pm,n, for each m = 1, 2 and n = 1, 2
with the convex hulls of the points resulting from the transformations of the vertices of the
convex hull of the set P by wm,n, for each m = 1, 2 and n = 1, 2, respectively, are presented
in Table 2b. The fractal interpolation image constructed with five iterations of the DIA is
shown under two different viewing angles in Figures 17 and 18.
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(a) (b)

Figure 15. The intersection of the convex hull of the original data set P2,1 with the convex hull of the
points resulting from the transformation of the vertices of the convex hull of the set P by w2,1 (a) in
the form of coloured faces, and (b) with its edge representation.

(a) (b)

Figure 16. The intersection of the convex hull of the original data set P2,2 with the convex hull of the
points resulting from the transformation of the vertices of the convex hull of the set P by w2,2 (a) in
the form of coloured faces, and (b) with its edge representation.

Figure 17. Fractal interpolation function for the example with 2× 2 partitioning of the XY plane.

Figure 18. Fractal interpolation function for the example with 2× 2 partitioning of the XY plane.
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7. Conclusions

The subject of this study is the theoretical study and implementation of algorithms
for convex polyhedra and their application in the field of fractal interpolation. The goal is,
by finding and implementing efficient algorithms for convex polyhedra, the computation
of parameters and the algorithmic construction of bivariate fractal interpolation functions
using bounding volumes. Several methods for computing the convex hull of an initial set of
points, calculating the volume of a convex polyhedron and finding the intersection of two
convex polyhedra are presented and analysed. In the selection of a pre-existing algorithm
(convex hull) as well as in the introduction of new algorithms (volume and intersection),
special emphasis was placed on their efficiency.

Furthermore, we present a methodology for constructing continuous fractal interpola-
tion surfaces, which uses the above algorithms for identifying non-free parameters, while it
is based on iterated function systems. Given a set of points in three-dimensional space R3, a
subset of them is selected as interpolation points and a fractal representation is constructed
which passes through them. The identification of the parameters (free or not) of such a
representation is important as is determines the quality of interpolation with respect to
the initial set of points. We present a new method of identifying non-free parameters,
extending in R3 an existing one in R2. The proposed methodology is based on minimising
the symmetric difference between the bounding volumes of appropriately chosen points,
and it achieves a lower error in the accuracy of the result.

These algorithms are applied to identify the parameters, and thus in the algorithmic
construction of bivariable fractal interpolation functions by using bounding volumes. An
algorithm for calculating the vertical scaling factors of fractal interpolation surfaces, such
as to achieve optimal representation of the data points was proposed and implemented. In
the procedure of constructing a fractal interpolation surface, the main difficulty that had to
be addressed was to ensure continuity. The proposed methodology is limited to convex
bounding volumes, since it is uncertain whether non-convex can be combined with efficient
algorithms or improve the results. This will be the subject of our potential future research.
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