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Abstract: Reinforcement learning is an important machine learning method and has become a hot
popular research direction topic at present in recent years. The combination of reinforcement learning
and a recommendation system, is a very important application scenario and application, and has
always received close attention from researchers in all sectors of society. In this paper, we first
propose a feature engineering method based on label distribution learning, which analyzes historical
behavior is analyzed and constructs, whereby feature vectors are constructed for users and products
via label distribution learning. Then, a recommendation algorithm based on value distribution
reinforcement learning is proposed. We first designed the stochastic process of the recommendation
process, described the user’s state in the interaction process (by including the information on their
explicit state and implicit state), and dynamically generated product recommendations through user
feedback. Next, by studying hybrid recommendation strategies, we combined the user’s dynamic
and static information to fully utilize their information and achieve high-quality recommendation
algorithms. Finally, the algorithm was designed and validated, and various relevant baseline models
were compared to demonstrate the effectiveness of the algorithm in this study. With this study, we
actually tested the remarkable advantages of relevant design models based on nonlinear expectations
compared to other homogeneous individual models. The use of recommendation systems with
nonlinear expectations has considerably increased the accuracy, data utilization, robustness, model
convergence speed, and stability of the systems. In this study, we incorporated the idea of nonlinear
expectations into the design and implementation process of recommendation systems. The main
practical value of the improved recommendation model is that its performance is more accurate than
that of other recommendation models at the same level of computing power level. Moreover, due to
the higher amount of information that the enhanced model contains, it provides theoretical support
and the basis for an algorithm that can be used to achieve high-quality recommendation services,
and it has many application prospects.

Keywords: recommendation system; neural networks; value distribution reinforcement learning;
label distribution learning; nonlinear expectation

MSC: 62E86; 68T07; 62B86; 62C86

1. Introduction

As we are in the information explosion era of the Internet, to enhance users’ experi-
ences of retrieving information and to reduce confusion surrounding different choices that
are caused by information overload, recommendation systems have been widely used and
have brought considerable convenience to people’s lives [1]. People are using the Internet
at increasing rates, and many behavior logs and other data on their Internet use have been
recorded. However, the Internet information stock is huge, effectively using it is difficult,
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and this results in information overload [2,3]. The purpose of a recommendation system is
to help users screen the product information they may be interested in by analyzing the
behavior characteristics of the users, and this is performed by using interaction behavior
data on users and products. For example, more than 80% of movie viewing on Netflix is due
to recommendation systems [4], and more than 60% of the videos watched on YouTube are
accessed via the homepage recommendations [5,6]. Interacting with the recommendation
system can not only continuously enhance the user’s interaction experience, but it also has
remarkable commercial value for relevant trading platforms [7,8].

The first recommendation systems to be applied on a large scale were user-based
collaborative filtering systems, such as Tapestry’s email filtering system in the 1990s [9] and
GroupLens’ introduction of collaborative filtering into the news field [10]. In 2003, Amazon
invented the item base collaborative filtering method, which solved the problem of the
user bases having a high time complexity [11]. Breese et al. (1998) proposed a model-based
system filtering method that has been widely used because of its domain-independent
characteristics [12]. Pazzani (1999) proposed a content-based recommendation algorithm
that directly calculates the similarity of items through metric learning; this is performed by
calculating the interaction information between users and items, and the algorithm can be
used to solve the cold start problem [13].

Deep learning can also be used to efficiently and accurately process recommendation
tasks, and it has become an important direction for recommendation system research [14].
Regarding the application of neural networks in recommendation systems, He et al. (2017)
proposed a neural collaborative filtering algorithm that can be used to extract the nonlinear
relationship between users and items [15]. Hidasi et al. (2016) proposed a session-based
RNN recommendation model that takes the coding of items as the input and predicts
the possibility of each item being clicked by the user according to the user’s browsing
history [16]. The combination of deep learning and recommendation technology has broad
development prospects, and various recommendation systems that combine deep learning
have emerged and are endless. Regarding recommendation systems that are sensitive to
the freshness of the data, obtaining satisfactory results by using static methods is difficult.
In this case, creating recommendations by using reinforcement learning is obviously more
effective than using pure static methods is.

A commonly used method is the upper confidence bound algorithm. The disadvantage
is that this method is context free [17]. Yahoo! scientists solved this problem and applied
the LinUCB algorithm to Yahoo!’s news recommendations, and the characteristics of the
users and items were considered. Because more information is used, its performance was
greatly enhanced compared to that of UCB [18]. In recent years, reinforcement learning
has been increasingly developed by scholars, and its combination with recommendation
systems has also received a plethora of attention; as a result, this combination has become
an important research direction for recommendation systems.

Collaborative interactive recommendation systems have gradually developed with
the vigorous development of the recommendation system field. Scholars involved in both
theoretical research and industry practice have proposed that recommendation systems
must meet higher requirements before they can interact with users in a complex manner,
and researchers have gradually developed a system that can explore users’ interests across
multiple dialogue rounds [19–26]. The term collaborative interactive recommenders (CIRs)
defines a recommendation system that can engage in multiple rounds of collaborative explo-
ration with users to more accurately meet their needs [27]. CIRs usually use conversations
to maximize user participation and satisfaction through a series of interactions. Because
the risk and cost of directly using new algorithms to test CIRs on commercial platforms are
very large, using a configurable interactive recommendation simulation environment for
algorithm evaluations and experiments is of considerable practical importance. Currently,
several popular configurable interaction platforms exist. The RecoGym platform is an inter-
active recommendation simulation system that is mainly used in the e-commerce industry.
Its advantage is that data are generated from real data through desensitization modeling, so
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the authenticity of the platform’s data is relatively high. The disadvantage is that it is a rela-
tively fixed industry-direction platform, and some new interaction forms do not support it
or user-state transitions. The RecSim platform is an interactive recommendation simulation
system released by Google that defines user states in any complex form and changes the
definition of observable states for recommenders. Its disadvantage is that configuring a
reasonable environment requires a large amount of expert knowledge or real data, as it
otherwise does not have the credibility of using real data. The RecSim NG platform can
be used to create transparent and configurable end-to-end recommendation ecosystem
models, and it provides a set of methods to evaluate recommendation ecosystems when
combined with the behavior models of other entities.

The optimization objectives of recommendation systems are mainly divided into
the regression problem of scoring [8] and the ranking problem [28]. However, although
machine learning and big data methods have greatly promoted the development of rec-
ommendation systems, problems concerning the interpretability of the models [29] as well
as the cold start [30,31] and static model problems [32,33] still exist. The performance of
traditional recommendation systems has gradually failed to meet the various needs of
people. More recommendation models that can handle nonlinearity have emerged. An im-
portant research direction is the application of reinforcement learning in recommendation
systems. The authors of most previous works have been limited to processing nonlinear
information, such as by using tree models, deep learning, kernel methods, and so on to
deal with nonlinearity in the data. The nonlinear data are transformed into a linear space,
and then a linear model is used for discrimination or regression. This method is usable
when using complete information, but in actual scenarios that the recommendation system
is used in, the expectations that the model needs to deal with are also nonlinear when
modeling with incomplete information. Therefore, determining how to introduce such
nonlinear expectations into reinforcement learning algorithms and conducting innovative
explorations with the recommendation system and from the perspective of engineering
practice is our focus. We used methods such as value distribution reinforcement learning
and label distribution learning on data from e-commerce simulation environments and user
characteristics to design a recommendation algorithm that can balance multiple factors and
meet user needs to the maximum extent, which will provide users with high-quality rec-
ommendation services. Our main contribution is the integration of nonlinear expectations
into the design and implementation process of recommendation systems, which will allow
recommendation systems to efficiently use user behavior information.

2. Research Design and Model Construction
2.1. Fuzzy Mahalanobis Metric Clustering Enhancement

Fuzzy Mahalanobis metric clustering is used to enhance fuzzy C-means (FCM) cluster-
ing. The n vector

→
x i is divided into c fuzzy clusters. The membership degree ui,j represents

the uncertainty and the membership degree of sample i to class j.

c

∑
i=1

n

∑
j=1

ui,j = 1 (1)

Here, U is the membership matrix, ci is each centroid, λj is the weighting index, and
the final objective function is

J(U, c1, · · · cc; λ1, · · · λn) = J(U, c1, · · · , cc) +
n

∑
j=1

λj(
c

∑
i=1

uij − 1) =
c

∑
i=1

n

∑
j=1

um
ij d2

ij +
n

∑
j=1

λj(
c

∑
i=1

uij − 1) (2)

In Formula (2), di,j represents the distance calculation, which is conducted by using
the Euclidean distance calculation of the FCM. Once can replace the formula with the
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Mahalanobis distance and find the partial derivative of the center of mass, c, of the objective
function to obtain Formula (3):

ci =

n
∑

j=1
um

ij xj

n
∑

j=1
um

ij

(3)

Formula (4) can be obtained by finding the partial derivative of the fuzzy matrix of
the objective function:

uij =
1

c
∑

k=1
(

dij
dkj

)
2/(m−1)

(4)

The membership matrix and centroid calculated by the fuzzy Mahalanobis metric
clustering algorithm can be used as the basic part of the model so that the sampling can
have more intuitive and quantitative validity. The advantage of the Mahalanobis dis-
tance measurement over the Euclidean distance measurement is the dimension processing.
Therefore, compared to the Euclidean distance determined by the actual calculation, this
algorithm can calculate the distribution of the user characteristics. Therefore, sublinear
coding is more effective when using this algorithm than the Euclidean distance because it
can be directly used to calculate the sublinear coding as a clustering method.

2.2. Sublinear Coding Enhancement

The existing coding of each user can be decomposed by SVD to obtain the feature root,
which is combined with the obtained sociological attributes of the user to become the linear
coding of the user. However, the sublinear coding of the user that is calculated by using
distributed learning and nonlinear expectation methods can more accurately represent
the user’s interests and hobbies in the recommendation system, so an enhanced sublinear
coding method is designed to enhance the description of the static information of the user.

First, the expectations represented by sublinear coding are defined:

Ê[x] := sup
θ∈Θ

pθ
[x] (5)

E[•] is a functional of random variables and has monotonicity, constancy, nonlinearity,
and positive periodicity. According to the actual situation, the functional has convergence
when it is non-negative and downwardly approaches 0.

According to the nonlinear LLN (law of large numbers), {xi} is assumed to be an i.i.d
sequence, and µ = E[X1], µ = −[−X1] is assumed for each f ∈ Clip(R).

Regarding the uncertainty problem, sampling with the Monte Carlo method is im-
portant for computer simulations to obtain results. The calculation method is shown in
Formula (6):

Mx[ϕ] := lim
n→∞

sup[ϕ(x1) + · · ·+ ϕ(xn)] (6)

Using the group sampling Monte Carlo method to calculate the maximum expected
distribution can accelerate the convergence speed of the calculation. The calculation method
is as follows:

Assuming that {Xi}n×m
i=1 is independent and identically distributed nonlinear data, by

using the maximum mean method, it can be estimated as

M̂[φ] = max{Yk
n : k = 0, · · ·, m− 1} (7)

where Yk
n is defined as

Yk
n =

1
n

n

∑
i=1

φ(Xnk+i) (8)
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According to the law of large numbers, when n→ ∞ , {Yk
n}

m−1
k=0

d⇒ ani.i.d{Yk}m−1
k=0 and

Yk d
= M[µ,µ], and this is expressed in the following Formula (9). Then, the risk functional can

be calculated by using the MMX method of Formula (9), and the maximum group average of
the nonlinear i.i.d samples can be calculated by using the nonlinear Monte Carlo method:

max{φ(X1) + · · ·+ φ(Xn)

n︸ ︷︷ ︸
Y0

n

, . . . ,
. . .
n︸︷︷︸
Yk

n

, . . . ,
φ(X(m−1)n+1) + . . . + φ(Xmn)

n︸ ︷︷ ︸
Ym−1

n

}

E [φ(X)] ∼= Max−Mean[φ({Xi})]
MMX [φ] := max

0≤k≤m−1

∑n
i=1 φXkn+i

n

(9)

Then, the sublinear expectation of the measure can be obtained with Equation (10):

E
[

f (x1)− y1|2
]
= max

k∈[0,··· ,n−1]
{ 1

m

mk+m

∑
i=mk+1

| f (xi)− yi|2} (10)

where y corresponds to the real value and f can be obtained through neural network
training and optimization.

f = argmin
f∈F

max
k∈[0,··· ,n−1]

{ 1
m

mk+m

∑
i=mk+1

| f (xi)− yi|2} (11)

The training complexity of the model is higher than that of the linear calculation
because two termination conditions exist for the operation; one is that the model converges
to a certain threshold, and the other is that the model runs to the maximum number of
running rounds that set the super parameters. For this model, the running complexity
of each round was M times higher than that of the linear model on a year-to-year basis.
However, because the convergence nature of the model determines the number of running
rounds, its theoretical convergence can be proven; the oscillation during model training is
smaller than that of the linear model, and the number of running rounds is lower under the
same circumstances. Therefore, the time complexity of the operation is almost at the same
level or slightly higher by several times, and the details will vary depending on the data.

2.3. Enhancement of Contextual–Quantile Regression Reinforcement Learning Model

The distributional DQN is equivalent to the DQN expansion, which creates a rein-
forcement learning direction; that is, our cognition is expanded from the Q value to the Q
distribution. The reinforcement learning model is enhanced by the distributed DQN to
match the reinforcement learning method of the recommendation system. The purpose of
the modification is mainly to increase the efficiency with which the model utilizes the data
because although the offline data of the recommendation systems are very large, and the
data used to solve the cold start problem and to support the interactive recommendation
simulation system are very scarce. Moreover, because the recommendation system itself
has relatively complete control of and characterizes the environment, scholars recommend
using model-based methods to increase the data analyzing efficiency when using the
reinforcement learning method in the recommendation system.

The quantile regression reinforcement learning model is context-free. If this algorithm
is only applied to the recommendation system, it cannot use the context information of the
recommendation scene. For all users, the strategy of presenting goods is the same, and this
cannot meet the personalized requirements of the recommendation system. Therefore, the
applicability of the contextual–quantile regression reinforcement learning model needs to
be enhanced.
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The random process is redefined as (C, X, A, P, R, γ) where X and A are the state and
action space, respectively, and X is the context feature of the user. P(•|c, x, a) is the state
transition matrix, γ is the discount factor, and P is the return function.

Suppose that the current step is t; the current user is ut; and the observable feature
vectors of each selectable product a are cu and xt,a, which contain the user’s static and
dynamic information and product information. According to the results observed before,
at is selected to return. The return expectation depends on the user’s static and product
characteristics, list order, and other dynamic characteristics. The neural network enhances
its product recommendation strategy according to the new observation (cu, xt, at, rt,at), and
the goal of the whole process is to minimize the loss in the whole process, which is the
regret value.

RA(T) = [
T

∑
t=1

r∗t,at ]− [
T

∑
t=1

rt,at ] (12)

Because the expectation of model processing depends on a variety of aspects, the
information on each aspect may be incomplete or inaccurate, and the selection of actions is
related to the historical context of the user; additionally, the expectation is nonlinear, and
the distribution form is used to represent this nonlinear expectation. Algorithm 1 shows
the algorithm logic of the contextual–quantile regression reinforcement learning network.

Algorithm 1: Contextual–Quantile Regression Reinforcement Learning Network

Hyperparameter : N, K
Input : c, x, a, r, x′, γ ∈ [0, 1)
# Computational distribution Bellman operator
Q(s′, a′) := ∑

j
qjθj(c, x′, a′)

a∗ ← argmax
a′

(c, x, a′)

Tθ′ j = r + γθ′ j, i = 0, 1, · · ·N − 1
# Optimized quantile regression loss

Output :
N
∑

i=1
Ej[ρ

K
τ̂i
(τθj − θi(c, x, a))]

3. Experimental Design and Environmental Configuration
3.1. Encryption Algorithm Description
3.1.1. Platform Selection

Unlike the traditional recommendation system that is concerned with static users,
CIRSs (community information and referral services) need a training platform that can
support simulation interactions so that the model can learn the sequential pattern of the
users’ behavior during the interaction process.

Therefore, the selected simulation platform has the following characteristics: the
environment considers the user’s natural browsing behavior and the commodity interaction
behavior of the user; the platform includes the association definition of user behaviors at
the parameter level; after users and commodities are clustered, the hidden space dimension
can be parameterized; and the platform allows for the parameterization of the relative
impact of the user’s past exposure level on the ad display click through rate at a given time.
Taking the e-commerce CTR as an example, we selected the RecoGym platform to train
the model. The goal of the agent was to display personalized advertisements, encourage
users to access or return to e-commerce websites, and increase the click through rate of
user advertisement pairs. The Markov process of user browsing and interactive session is
shown in Figure 1.
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3.1.2. Parameter Setting

The composition definitions of the environment are shown in Table 1.

Table 1. Definitions of environmental composition.

Name Definition

P Quantity of items
u User
t From the beginning of the session to the current time

Zu,t Current transaction type (enumeration type: organic or bandit)
Vu,t User browsing item ID. If it is bandit, it is none
au,t Item recommendation action. If it is organic, it is none

Cu,tt Whether a click event occurs. If it is organic, it is none

According to the definitions in Table 1, the actual modeling environment can be set, as
shown in Table 2.

Table 2. Environmental modeling parameters.

Name Symbol Interpretation Model Definition Value

K Late factor dimension K 50
P Item quantity num_products 1000
F Difference between organic and bandit number_of_flips 650
µt Average visit duration normal_time_mu 1
σt Access to the box difference during stay normal_time_sigma 1

σ(µ) Potential characteristic difference in user interest sigma_mu_organic 2
σ(ω) Initialization of potential features of user interest sigma_omega_init 1

Noise sigma_omega 0.2
Does omega change with interaction change_omega_for_bandits True

We obtained a set environment by setting the above parameters. This environment
had the following characteristics: users’ interests will slowly shift, the access time of the
user is related to the latent variable of interest, a long tail effect in the users’ behavior is
present, and the latent variable of the users’ interest is unobservable.

3.1.3. Data Description

The data used were divided into two parts: the users’ browsing data and users’
interaction data. The browsing and interactive data had different formats, and they were
uniformly formatted into a table and displayed as a log. The format is shown in Table 3.
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Table 3. Data format description.

Name Function Description Related Matters Value Range

t Serial value or time None Serial value: int, time: float
u User ID None Int
z Interactive identification Enumeration type Browse: organic, interact: bandit
v Browse item identification None in bandit Int
a Action Products displayed to users Int

c User feedback Whether the user provides
positive feedback User click: true, no action: false

ps User click probability None in organic 0–1
ps-a All action probabilities None in organic 0–1

We used logs of 10,000 users to analyze the data and obtain relevant statistical in-
formation. In total, we obtained 1,004,594 log data, including 778,538 interactive data.
From these, we could see the exposure of each product in the exploration stage, with an
average of 778.538 and a standard deviation of 28.159. From the distribution of its actions
(recommended products), we could see that the exploration actions were random. In the
historical records, this met the random condition. All the actions were randomly applied to
all reinforcement learning events. According to the statistics obtained on the interaction
records of the users, the average interaction length was 77.854 and the standard deviation
was 79.336. The interaction length of different users was different, with a range of 683. The
shortest was only 1 and the longest was 684. The segmentation data of the user interaction
length are shown in Figure 2.
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Figure 2 shows that most people engaged in interaction behaviors less than 200 times.
Most of the users’ data were sparse, and only a few users interacted with the recommenda-
tion system more than 500 times. Therefore, huge differences in the interaction behavior
and the number of interactions existed across different users.

The differences can be more intuitively seen in the click through rate indicators of
the different users. As can be seen in Figure 3, the click through rate indicators of the
users were divided into boxes according to the number of exploration behaviors, and the
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corresponding distribution of the users in the boxes was visualized with a violin chart. The
following conclusions could be drawn from the analysis of Figure 3:

(1) If users have more interactive behaviors, their click through rate indicators are rela-
tively stable and remain at the same level.

(2) If the number of user interaction behaviors is higher, the click through rate indicator
is higher in the case of random recommendations.

(3) If the number of user interaction behaviors is too few, the variance is abnormally
large, which should be considered an invalid interaction and eliminated during actual
processing. In the case of insufficient information, the quality of the output training
samples is not high, which will affect the model fitting.
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3.2. Experimental Environment Configuration
3.2.1. Hardware Configuration

The hardware configuration used in this experiment is shown in Table 4.

Table 4. Hardware configuration.

Hardware Model Quantity

CPU Intel E5-2650 V3 2
Memory 32 G 4

Hard disk RAID5 3 T 3
Graphics card NVIDIA Tesla M40 24 GB 1

3.2.2. Software Configuration

The software configuration used for this experiment is shown in Table 5.

3.2.3. Resource Demand

The experiments were divided into a function and index verification and a performance
test. We used different data levels for different experiments. Among them, the purpose of
function verification was to quickly verify the function of the data and to determine the
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effect of the model when a small amount of data were used, whereas the purpose of index
verification was to verify the relevant indicators of the model with larger-scale data; to
facilitate the experiments, the operation time was controlled within days. The purpose of
the performance test was to verify the stability, feasibility, and time complexity of the model
with a large amount of data and to test the stability of the overall recommended system
environment. The amount and level of data required for tests of a different nature and the
resources required for the experiments were also different. The resource requirements are
shown in Table 6.

Table 5. Software configuration.

Environment Edition

Operating system Ubuntu 16.04 Server
Python 3.6.15
Pytorch 1.2.0

RecoGym 0.1.3.0
Hadoop 2.7.2
Hbase 1.2.1
Hive 2.3.X
Spark 3.1.2

Pig 0.13.0

Table 6. Resources required for different experiment types.

Experimental Nature Number of Test Items Number of Test Users Memory Usage Offline Data Volume

Functional verification 1000 10,000 Less than 2 GB About 1,004,594 articles
Indicator verification 1000 50,000 Less than 2 GB About 5,118,051 articles
Performance testing 5000 100,000 No more than 4 GB About 10,104,289 articles

The above data were automatically generated by the RecoGym platform. After the
data were generated and stored in a file, they were outputted in a table by Hive. Then, a
distributed calculation was conducted within the data. After grouping and aggregation,
the calculation was completed and stored in a new Hive table, and the calculated data were
converted into a CSR sparse matrix by another program.

4. Experimental Verification and Result Analysis
4.1. Establishment of Recommendation Algorithm Evaluation Indicators

The model evaluation indicators that we propose are mainly from an economic per-
spective. The CTR (click through rate) and HR@K (HR is the hit ratio) are the main
indicators; the CTR indicator is an indicator that is directly related to commercial realiza-
tion, and HR@K is an evaluation index of user stickiness. These indicators can reflect the
health status of the whole system and the effectiveness of the model and can provide more
effective training data for subsequent model optimization.

The CTR indicator, that is, the click through rate indicator, is an important indicator
with which to measure the recommendation effect in the field of Internet advertising and
recommendation systems. In actual operation, this indicator is an important measure of
the platform economy. If an interaction process is defined as a tuple, where the options are
is action, is context, and is return, then the CTR value can be calculated from Equation (13)
to determine the logging policy:

CTRπt(L) =
−
|L| ∑

(a,x,c)∈L
c

πt(a|x)
πl(a|x) (13)

The Hit− Rate@K (abbreviated as HR@K) indicator is a commonly used evaluation
indicator of the recommendation system. It is defined as the ratio of the number of users
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and the total number of users whose products appear in the Top-K recommendation list
in the test set. HR@K is used to measure how accurate the model is at predicting user
behavior. Its value can be calculated by using Equation (14):

HR@K =
Numbero f Hits@K

|GT| (14)

4.2. Validation Experiment of Static Features

The purpose of conducting the effectiveness verification experiment on the user’s
static features was to verify the effectiveness of the user’s feature engineering. Because the
feature engineering contains nonlinear information, the preconditions of most statistical
testing methods were not satisfied. Here, the experiment was verified by conducting a
comparative experiment under the same environmental conditions.

The commonly used random forest model was selected as the baseline test model for
the experimental model. The data input into the model were processed by using different
feature engineering methods, and different feature engineering processing methods were
used as variables. The results output from the model were horizontally compared. The
feature processing methods were as follows:

(1) A feature engineering method based on counting, which simply counted the data to
calculate the browse and interaction quantity of each product as the baseline method
for comparison.

(2) A feature engineering method based on SVD decomposition: the hidden code length
level of the SVD was set at 5, 20, and 50 levels, and the codes were svd-5, -20, and -50,
respectively.

(3) A feature engineering method based on simple sublinear coding: the levels of the
number of users (M) were 50, 150, 500, and 5000, and the codes were SubLinEmb-50,
-150, -500, and -5 k, respectively.

(4) A systematic design based on the user’s static characteristic data: When processing
the data, the information contained within the data was cleaned, converted, and
processed. After the processing was completed, the data were cached in the memory
system until the near-line and online applications. The code name was Entirety-Plan.

The environmental parameters of the experiments were constructed and presented in
Table 2, by using two indicators in CTR, i.e., HR@5 and HR@2, to measure the performance
of the model algorithm.

The comparison results are shown in Figure 4, where the middle dot represents the
mean value and the line segment represents the standard error. The general information
level included in the feature engineering process can be seen. The following conclusions
can be drawn from the results:

First, the increase in the hidden variables of feature engineering based on SVD can en-
hance the effect of HR@5. When 200 dimensions were present, the indicator was enhanced,
but the enhancement was limited.

Second, sublinear coding was more accurate than feature engineering was based on
SVD. More neighbor samples will not enhance the effects, and too many neighbors will
introduce redundant data, which will have the opposite effect.

Third, for many product recommendations, the effect of popular product recommen-
dations and random recommendations was almost zero.

Fourth, the scheme that combined linear and sublinear and sequential patterns was
optimal, which was not unexpected because the scheme was based on the most compre-
hensive information.

Regarding HR@5 and, correspondingly, HR@2, the result was very similar to that in
Figure 3. At the same time, compared with the HR@5 data, the HR@2 value was slightly worse.

The control results of the CTR are shown in Figure 5. From the CTR indicators, we
found the following:
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(1) Increasing the number of implicit variables will not enhance the index, but it will
decrease the performance of the index.

(2) As a baseline model, the effect of the popularity recommendation was stronger than
that of SVD, but the effect was not very strong overall. The random recommendations
were the worst, which we were expecting.

(3) The feature engineering method using sublinear coding was much more effective than
the linear SVD correlation method was because it considered this situation in theory.

(4) The scheme that combined the linear and sublinear and sequential patterns as a whole was
optimal, which was not unexpected because it had the most comprehensive information.
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From the results of the above experiments, we found that introducing a method to
add nonlinear expectations into the recommendation system is beneficial, and the scheme
whereby the data of various modes are combined resulted in the strongest effect. The
reasons are as follows.

First, when processing the data, a variety of mode information such as information
on the linear and nonlinear data and lists is included, and the information types are
more comprehensive.

Second, the information of multiple modes can output more information when com-
bined, which reduces the impact of data sparsity.
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Third, through some metric learning enhancement methods, the preference estimation is
additionally introduced, which is more robust and an effective supplement to the information.

4.3. Model Comparison Experiment of Interactive Data

The same experimental logic was used to test the model by using interactive data. The
purpose of this experiment was to verify that the enhancement of the contextual–quantile
regression reinforcement learning model was effective. Logical regression and bandit, as
well as a contextual bandit and the random recommendation algorithm, were used for
this experiment. Each algorithm required different parameters; therefore, the parameters
of each algorithm were the approximate optimal parameters obtained by conducting a
random search. Because the statistical caliber of the interactive data was different from that
of the static data, no mutual comparison was made with the static data. The results are
shown in Figure 6.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 16 
 

 

Third, through some metric learning enhancement methods, the preference estima-
tion is additionally introduced, which is more robust and an effective supplement to the 
information. 

4.3. Model Comparison Experiment of Interactive Data 
The same experimental logic was used to test the model by using interactive data. 

The purpose of this experiment was to verify that the enhancement of the contextual–
quantile regression reinforcement learning model was effective. Logical regression and 
bandit, as well as a contextual bandit and the random recommendation algorithm, were 
used for this experiment. Each algorithm required different parameters; therefore, the pa-
rameters of each algorithm were the approximate optimal parameters obtained by con-
ducting a random search. Because the statistical caliber of the interactive data was differ-
ent from that of the static data, no mutual comparison was made with the static data. The 
results are shown in Figure 6. 

 
Figure 6. Model comparison of interactive data. 

Few differences existed between the bandit model and random recommendation be-
cause many goods were involved and the pure interactive data were too sparse for goods 
to be recommended. Moreover, the bandit model does not consider context. Regarding 
the context-based reinforcement learning model, its effect was far stronger than the first 
two because it introduced the information contained in the context. However, because the 
bandit algorithm is linear, it can still be enhanced. Compared with the other models, the 
contextual–quantile regression reinforcement learning model was more accurate because 
it fit more nonlinear information, and the data buffer could alleviate the sparse data prob-
lem. From the results, we concluded that the enhancement of the contextual–quantile re-
gression reinforcement learning model was stronger than that of the traditional reinforce-
ment learning method. 

5. Conclusions 
To introduce nonlinear expectations into the research, design, and practical discus-

sions of reinforcement learning algorithms, we enhanced the way that the recommenda-
tion system utilizes data, introduced the value distribution reinforcement learning 
method, integrated the relevant theories and ideas surrounding nonlinear expectations 
into the applications of recommendation algorithms, and proposed a fuzzy Mahalanobis 
metric clustering and sublinear coding enhancement model to accurately describe the 

Figure 6. Model comparison of interactive data.

Few differences existed between the bandit model and random recommendation
because many goods were involved and the pure interactive data were too sparse for goods
to be recommended. Moreover, the bandit model does not consider context. Regarding
the context-based reinforcement learning model, its effect was far stronger than the first
two because it introduced the information contained in the context. However, because the
bandit algorithm is linear, it can still be enhanced. Compared with the other models, the
contextual–quantile regression reinforcement learning model was more accurate because it
fit more nonlinear information, and the data buffer could alleviate the sparse data problem.
From the results, we concluded that the enhancement of the contextual–quantile regression
reinforcement learning model was stronger than that of the traditional reinforcement
learning method.

5. Conclusions

To introduce nonlinear expectations into the research, design, and practical discus-
sions of reinforcement learning algorithms, we enhanced the way that the recommendation
system utilizes data, introduced the value distribution reinforcement learning method,
integrated the relevant theories and ideas surrounding nonlinear expectations into the
applications of recommendation algorithms, and proposed a fuzzy Mahalanobis metric
clustering and sublinear coding enhancement model to accurately describe the character-
istics of the users. The contextual–quantile regression reinforcement learning model was
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proposed to design and verify an algorithm model based on the user’s static characteristics
and interactive data and to explain the progressiveness and rationality of the algorithm
model based on nonlinear expectations in theory. In addition, because the experiments
on and training of the algorithm model occur in environments that are different from the
traditional recommendation system environment, we used the collaborative interactive
recommender to replace the original core recommendation algorithm model. We found
that when combining the model with the data and user characteristics of the e-commerce
simulation environment, when modeling fresh data, a personalized recommendation was
provided and important indicators such as the CTR were remarkably enhanced; that is, a
recommendation algorithm with a nonlinear expectation that could balance various factors
and meet the needs of users to the maximum extent was used.

The data utilization, robustness, convergence speed, and stability of the model were
greatly increased, which provided theoretical support and an algorithmic basis to provide
high-quality recommendation services to users, and the model also has many application
prospects. However, the feature engineering method that we used integrates nonlinear
expectations into feature engineering. Too many parameters need to be adjusted, and
they need to be adjusted according to the actual design and deployment scheme. In the
future, more automatic auxiliary parameter adjustment modules can be designed to help
optimize the system. At present, though, the model facilitates the rapid transplantation of
different data sources and makes them more widely applicable. Finally, because of their
high synthesis and complexity, recommendation systems often have features that intersect
and fuse with each other. In the face of multimodality, the current contextual–quantile
regression reinforcement learning model cannot flexibly adapt to multimodality, and this
limitation is worthy of more research.
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