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Abstract: This paper investigates an integrated pest management model with pulsed diffusion. As
we all know, humans have been fighting against pests since they entered the age of farming. When
pests are controlled, humans can achieve better harvests. We use the stroboscopic mapping of
discrete dynamic system to obtain some important lemmas. Based on the lemmas, firstly, we give the
conditions for the global asymptotic stability of the periodic solution of the pest eradication boundary;
secondly, the conditions for the permanence of the investigated system are derived; thirdly, numerical
simulations are used to verify our obtained theoretical results; finally, increased dispersal was found
to have the opposite effect on integrated pest management. We conclude that a combination of
impulsive diffusion, spraying pesticides, and releasing natural enemies can play a crucial role in
integrated pest management.

Keywords: integrated pest management; releasing natural enemies; impulsive diffusion; pest eradi-
cation; permanence
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1. Introduction

Integrated pest management (IPM) is a management system for pests which uses ap-
propriate techniques and methods as cooperatively as possible in the light of the population
dynamics of pests and their related environmental relationships, so that pest populations
can be kept below the level of economic harm. By using an integrated pest management
approach, we can effectively manage pests while minimizing the negative impact on the
environment. The measures taken by integrated pest management mainly include tools
of chemical control, biological control, cultural control, mechanical or physical control,
genetic control, etc. In recent years, the models of integrated pest management have been
extensively and deeply studied by many scholars [1–18].

In 1972, the United States Council on Environmental Quality proposed the concept of
“integrated pest management” (IPM). In terms of the definition of the Food and Agriculture
Organization of the United Nations: Integrated management is a pest management system
that keeps pest populations below economic hazard levels in accordance with the popula-
tion dynamics of pests and the environmental relationships associated with them, using
appropriate techniques and control methods in as coordinated a manner as possible [19].

According to the definition of IPM, the aim of integrated control is to control pest
populations within a certain number, so that the damage caused by pests is below the
economically permissible level, rather than to eliminate pests completely. This means that
measures to control the growth of pests are implemented only when pest populations reach
a certain level (i.e., a critical level) and cause damage to crops that humans cannot tolerate.
This so-called critical level is the “economic threshold” (ET) in pest management [20].
Biological control serves as an ecological management strategy aimed at regulating the
population of host pests, rather than eradicating them entirely. The objective is to maintain
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the number of host pests below the economically significant threshold, which ensures
the survival of natural enemies and restores a favorable ecological balance in farmland.
Ultimately, this approach maximizes benefits and promotes a harmonious agricultural
ecosystem [20]. In crops, the presence of a small number of pests can provide food and
intermediate hosts for natural enemies, thereby increasing the natural control ability of
natural enemies. For example, if the number of leaf-eating pests in rice fields is controlled
(less than ET), it is the intermediate host of the parasitic bee of rice bracts, red-eyed bees,
and their presence can maintain the number of red-eyed bees. If they all are killed, rice
bracts will be flooded in the later stages of the rice field [20].

In this paper, we investigate a pest management model with impulsive diffusion,
spraying pesticides, and releasing natural enemies. We aim to uncover the dynamical
properties of the system under investigation. Additionally, we anticipate that employing
impulsive diffusion, spraying pesticides, and releasing natural enemies will establish a
solid foundation for effective pest management.

The structure of this paper is outlined as follows. In Section 2, we introduce the model
and provide some background concepts. Section 3 presents several important lemmas. In
Section 4, we examine the globally asymptotically stable conditions for the periodic solution
of system (1) at the pest eradication boundary, along with the permanent conditions of
system (1). In Section 5, we present simulation analyses and offer a brief discussion. Finally,
we obtain a concluding statement regarding integrated pest management to summarize
our findings.

2. The Model

Based on the basic principles of pest control [1,7,11], in this paper, we hypothesize that
the system consists of two patches connected by diffusion, which are divided by rivers,
highways, or railways. Predator populations can transcend rivers, highways, or railways,
while pest populations cannot. we build a class of pest management model with pesticide
spraying, natural enemies release, and dispersal at different pulse moments as follows:

dx1(t)
dt

= x1(t)(a1 − b1x1(t))− β1x1(t)y1(t),

dy1(t)
dt

= k1β1x1(t)y1(t)− d1y1(t),

dx2(t)
dt

= x2(t)(a2 − b2x2(t))− β2x2(t)y2(t),

dy2(t)
dt

= k2β2x2(t)y2(t)− d2y2(t),


t 6= (n + p)u, t 6= (n + p + q)u, t 6= (n + 1)u,

∆x1(t) = 0,

∆y1(t) = D(y2(t)− y1(t)),

∆x2(t) = 0,

∆y2(t) = D(y1(t)− y2(t)),


t = (n + p)u, n ∈ Z+,

∆x1(t) = −µ11x1(t),

∆y1(t) = −µ12y1(t),

∆x2(t) = −µ21x2(t),

∆y2(t) = −µ22y2(t),


t = (n + p + q)u, n ∈ Z+,

∆x1(t) = 0,

∆y1(t) = µ1,

∆x2(t) = 0,

∆y2(t) = µ2,


t = (n + 1)u, n ∈ Z+,

(1)
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where xi(t) and yi(t) denote the densities of the pest and predator populations in patch
i (i = 1, 2) at time t, D represents the dispersal rate of the predator between two patches;
it is assumed that the net exchange of the predator from the jth patch to the ith patch
is proportional to the difference of yj, yi of the predator densities at time t = (n + p)u,
0 < p < 1, n ∈ Z+. µ11, µ12, µ21, µ22 are, respectively, the killing rates of xi(t), yi(t), i = 1, 2
due to pesticide spraying at time t = (n+ p+ q)u, 0 < p+ q < 1, n ∈ Z+. µi(i = 1, 2) is the
amount of natural enemies released yi(i = 1, 2) at time t = (n + 1)u. ai > 0 represents the
intrinsic growth rate of the prey population in patch i (i = 1, 2), and bi > 0 represents the
coefficient of the intraspecific competition of the prey population in patch i (i = 1, 2). di > 0
stands for the natural death rate i (i = 1, 2), βi(i = 1, 2) is the capture rate of predators in
the ith patch, and ki(i = 1, 2) is the rate of conversion of nutrients into the reproduction
rate of predators in the ith patch [18].

3. The Lemmas

Firstly, similar to the literature [18], we can demonstrate that all solutions of (1) are
uniformly ultimately bounded.

Lemma 1. For every solution (x1(t), y1(t), x2(t), y2(t)) of (1), there exists a positive constant M
such that M ≥ xi(t) and M ≥ yi(t) (where i = 1, 2) for sufficiently large t.

If xi(t) = 0 for i = 1, 2, we have a subsystem of Equation (1).

dy1(t)
dt

= −d1y1(t),

dy2(t)
dt

= −d2y2(t),

t 6= (n + p)u, t 6= (n + p + q)u, t 6= (n + 1)u,

∆y1(t) = D(y2(t)− y1(t)),

∆y2(t) = D(y1(t)− y2(t)),

t = (n + p)u,

∆y1(t) = −µ12y1(t),

∆y2(t) = −µ22y2(t),

t = (n + p + q)u,

∆y1(t) = µ1,

∆y2(t) = µ2,

t = (n + 1)u, n = 1, 2, . . . .

(2)

The analytic solution of Equation (2) among pulses can be obtained easily as follows.

y1(t) =


y1(nu+)e−d1(t−nu), t ∈ (nu, (n + p)u],

y1((n + p)u+)e−d1(t−(n+p)u), t ∈ ((n + p)u, (n + p + q)u],

y1((n + p + q)u+)e−d1(t−(n+p+q)u), t ∈ ((n + p + q)u, (n + 1)u],

y2(t) =


y2(nu+)e−d2(t−nu), t ∈ (nu, (n + p)u],

y2((n + p)u+)e−d2(t−(n+p)u), t ∈ ((n + p)u, (n + p + q)u],

y2((n + p + q)u+)e−d2(t−(n+p+q)u), t ∈ ((n + p + q)u, (n + 1)u].

(3)

Contemplating the third and fourth equations of (2), we have
y1((n + p)u+) = (1− D)e−d1 puy1(nu+) + De−d2 puy2(nu+),

y2((n + p)u+) = De−d1luy1(nu+) + (1− D)e−d2luy2(nu+).
(4)
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Contemplating the fifth and sixth equations of (2), we also have{
y1((n + p + q)u+) = (1− µ12)e−d1quy1((n + p)u+),
y2((n + p + q)u+) = (1− µ22)e−d2quy2((n + p)u+).

(5)

Contemplating the seventh and eighth equations of (2), we also have{
y1((n + 1)u+) = y1((n + p + q)u+)e−d1(1−p−q)u + µ1,
y2((n + 1)u+) = y2((n + p + q)u+)e−d2(1−p−q)u + µ2.

(6)

By substituting (4) and (5) into (6), we have the stroboscopic map of (2)

y1((n + 1)u+) = (1− µ12)(1− D)e−d1uy1(nu+)

+(1− µ12)De−[d1(1−p)+d2 p]uy2(nu+) + µ1,

y2((n + 1)u+) = (1− µ22)De−[d1 p+d2(1−p)]uy1(nu+)
+(1− µ22)(1− D)e−d2uy2(nu+) + µ2.

(7)

System (7) has one fixed point
y∗1 =

µ2F1 + µ1(1− F2)

(1− E1)(1− F2)− E2F1
> 0,

y∗2 =
µ1E2 + µ2(1− E1)

(1− E1)(1− F2)− E2F1
> 0,

(8)

where
E1 = (1− µ12)(1− D)e−d1u < 1,

F1 = (1− µ12)De−[d1(1−p)+d2 p]u < 1,

E2 = (1− µ22)De−[d1 p+d2(1−p)]u < 1,

F2 = (1− µ22)(1− D)e−d2u < 1.

Lemma 2. (y∗1 , y∗2) of (7) has global asymptotic stability.

Proof. For the sake of convenience, we denote (yn
1 , yn

2 ) = (y1(nu+), y2(nu+)). Equation (7)
can be expressed in linear form as follows: yn+1

1

yn+1
2

 = M

 yn
1

yn
2

. (9)

By Jury criteria [21], we obtain

1− trM + det M > 0. (10)

We are prone to see that (y∗1 , y∗2) represents the sole fixed point of Equation (7) and

M =

 E1 F1

E2 F2

. (11)
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Since

1− trM + det M

= 1− (E1 + F2) + (E1F2 − E2F1)

= (1− E1)(1− F2)− E2F1

= [1− (1− µ12)(1− D)e−d1u]× [1− (1− µ22)(1− D)e−d2u]

−(1− µ22)De−[d1 p+d2(1−p)]u · (1− µ12)De−[d1(1−p)+d2 p]u

= [1− (1− µ12)e−d1u]× [1− (1− µ22)e−d2u] + (1− µ22)De−d2u[1− (1− µ12)e−d1u]

+(1− µ12)De−d1u[1− (1− µ22)e−d2u]

= (1− e−d1u)× (1− e−d2u) + µ22e−d2u(1− e−d1u) + µ12e−d1u(1− e−d2u)

+µ12µ22e−(d1+d2)u + (1− µ22)De−d2u[1− (1− µ12)e−d1u]

+(1− µ12)De−d1u[1− (1− µ22)e−d2u]

> 0.

The local stability of (y∗1 , y∗2) implies its global asymptotic stability, thus concluding the
proof.

According to the stroboscopic mapping of discrete dynamical systems, we can obtain
the following lemma.

Lemma 3. The periodic solution (ỹ1(t), ỹ2(t)) of system (2) is globally asymptotically stable,
where 

ỹ1(t) =


y∗1e−d1(t−nu), t ∈ (nu, (n + p)u],

y∗∗1 e−d1(t−(n+p)u), t ∈ ((n + p)u, (n + p + q)u],

y∗∗∗1 e−d1(t−(n+p+q)u), t ∈ ((n + p + q)u, (n + 1)u],

ỹ2(t) =


y∗2e−d2(t−nu), t ∈ (nu, (n + p)u],

y∗∗2 e−d2(t−(n+p)u), t ∈ ((n + p)u, (n + p + q)u],

y∗∗∗2 e−d2(t−(n+p+q)u), t ∈ ((n + p + q)u, (n + 1)u],

(12)

where y∗1 and y∗2 are determined as in (8), y∗∗1 and y∗∗2 are defined as
y∗∗1 = (1− D)e−d1 puy∗1 + De−d2 puy∗2 ,

y∗∗2 = De−d1 puy∗1 + (1− D)e−d2 puy∗2 .
(13)

y∗∗∗1 and y∗∗∗2 are defined as 
y∗∗∗1 = (1− µ12)e−d1quy∗∗1 ,

y∗∗∗2 = (1− µ22)e−d2quy∗∗2 .
(14)

4. The Dynamics

Theorem 1. If

D <
1
2

(15)
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and

max
i=1,2

{
aiu−

βi
di

[
y∗i (1− e−di pu) + y∗∗i (1− e−diqu) + y∗∗∗i (1− e−di(1−(p+q))u))

]}
< 0 (i = 1, 2), (16)

then the pest eradication boundary periodic solution (0, ỹ1(t), 0, ỹ2(t)) of (1) has global asymptotic
stability, where y∗i (i = 1, 2), y∗∗i (i = 1, 2) and y∗∗∗i (i = 1, 2) are determined by (8), (13), and
(14), respectively.

Proof. To establish the local stability of the periodic solution (0, ỹ1(t), 0, ỹ2(t)) for Equation (1),

we introduce new variables and define x1(t) = x1(t), y11(t) = y1(t)− ỹ1(t), x2(t) = x2(t),
y12(t) = y2(t)− ỹ2(t). This leads to a linearly similar system for Equation (1) with a single

periodic solution (0, ỹ1(t), 0, ỹ2(t)):

dx1(t)
dt

dy11(t)
dt

dx2(t)
dt

dy12(t)
dt


=



a1 − β1ỹ1(t) 0 0 0

k1β1ỹ1(t) −d1 0 0

0 0 a2 − β2ỹ2(t) 0

0 0 k2β2ỹ2(t) −d2




x1(t)

y11(t)

x2(t)

y12(t)

.

Acquiring the fundamental matrix is a simple endeavor:

Φ(t) =



exp [
∫ t

0 (a1 − β1ỹ1(s))ds] 0 0 0

exp [
∫ t

0 k1β1ỹ1(s)ds] exp(−d1t) 0 0

0 0 exp [
∫ t

0 (a2 − β2ỹ2(s))ds] 0

0 0 exp [
∫ t

0 k2β2ỹ2(s)ds] exp(−d2t)


.

The linearization of Equation (1) for the fifth, sixth, seventh, and eighth terms results in
the following:

x1((n + p)u+)

y11((n + p)u+)

x2((n + p)u+)

y12((n + p)u+)

 =



1 0 0 0

0 1− D 0 D

0 0 1 0

0 D 0 1− D





x1((n + p)u)

y11((n + p)u)

x2((n + p)u)

y12((n + p)u)

.

The linearization of Equation (1) for the ninth, tenth, eleventh, and twelfth terms yields
the following:

x1((n + p + q)u+)

y11((n + p + q)u+)

x2((n + p + q)u+)

y12((n + p + q)u+)

 =



1− µ11 0 0 0

0 1− µ12 0 0

0 0 1− µ21 0

0 0 0 1− µ22





x1((n + p + q)u)

y11((n + p + q)u)

x2((n + p + q)u)

y12((n + p + q)u)

.
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The linearization of Equation (1) for equations involving the thirteenth, fourteenth, fifteenth,
and sixteenth terms is as follows:

x1((n + 1)u+)

y11((n + 1)u+)

x2((n + 1)u+)

y12((n + 1)u+)

 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





x1((n + 1)u)

y11((n + 1)u)

x2((n + 1)u)

y12((n + 1)u)

.

The stability of the periodic solution (0, ỹ1(t), 0, ỹ2(t)) is determined by the eigenvalues of
the system, i.e.,

M =



1 0 0 0

0 1− D 0 D

D 0 1 0

0 D 0 1− D





1− µ11 0 0 0

0 1− µ12 0 0

0 0 1− µ21 0

0 0 0 1− µ22





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Φ(u),

which are

λ1 = (1− µ11) exp
[∫ u

0

(
a1 − β1ỹ1(s)

)
ds
]

,

λ2 = (1− D)(1− µ12) exp (−d1u),

λ3 = (1− µ21) exp
[∫ u

0
(a2 − β2ỹ2(s))ds

]
,

λ4 = (1− D)(1− µ22) exp (−d2u),

where λ2 < 1, λ4 < 1, and condition (15) holds. In accordance with conditions (15), (16),
and the Floquet theory [22], if

exp
[∫ u

0

(
ai − βi ỹi(s)

)
ds
]
< 1 (i = 1, 2),

then
λ1 < 1

and
λ3 < 1,

Consequently, the local stability of the pest eradication boundary periodic solution

(0, ỹ1(t), 0, ỹ2(t)) of (1) is ensured.
In the subsequent analysis, we will demonstrate the global attraction property. By

utilizing condition (16), we are able to select ε > 0 such that

ρi = exp
[∫ u

0
(ai − βi(ỹi(s)− ε)ds

]
< 1 (i = 1, 2).



Mathematics 2023, 11, 2970 8 of 18

Upon examining the second and fourth equations of (1), it becomes evident that
dyi(t)

dt ≥ −diyi(t) (i = 1, 2). Based on this observation, we consider the subsequent impul-
sive comparative differential equations:

dy21(t)
dt

= −d1y21(t),

dy22(t)
dt

= −d2y22(t),

t 6= (n + p)u, t 6= (n + p + q)u, t 6= (n + 1)u,

∆y21(t) = D(y22(t)− y21(t)),

∆y22(t) = D(y21(t)− y22(t)),

t = (n + p)u,

∆y21(t) = −µ12y21(t),

∆y22(t) = −µ22y22(t),

t = (n + p + q)u.

∆y21(t) = µ1,

∆y22(t) = µ2,

t = (n + 1)u.

(17)

Based on Lemma 3 and the comparison theorem of impulsive equations (refer to Theorem 3.1.1
in [23]), the following inequalities hold: y1(t) ≥ y21(t),y2(t) ≥ y22(t), and as t approaches

infinity, y21(t) converges to ỹ1(t) and y22(t) converges to ỹ2(t). Consequently, we can
conclude that 

y1(t) ≥ y21(t) ≥ ỹ1(t)− ε,

y2(t) ≥ y22(t) ≥ ỹ2(t)− ε,
(18)

for sufficiently large values of t. To simplify the analysis, we can consider that Equation (18)
holds for all t greater than or equal to zero. By combining Equations (1) and (18), we obtain

dxi(t)
dt

≤
[

ai − βi(ỹi(t)− ε)
]

xi(t) (i = 1, 2). (19)

Therefore, for each i = 1, 2, we have xi((n + 1)u) ≤ xi(nu+) exp[
∫ (n+1)u

nu (ai − βi(ỹi(s)−
ε))ds]. Consequently, it follows that xi(nu) ≤ xi(0+)ρn

i (i = 1, 2), and as n approaches
infinity, xi(nu) tends to 0 (i = 1, 2). As a result, xi(t) approaches 0 for each i = 1, 2 as t
tends to infinity.

Next, we aim to demonstrate the convergence of yi(t) to ỹi(t) as t approaches infinity,
where i takes the values 1 and 2. Let ε1 be a positive value. It follows that there exists a
t0 > 0 such that 0 < xi(t) < ε1 holds for all t ≥ 0. Without loss of generality, we can assume
that 0 < xi(t) < ε1 for all t ≥ 0. Considering system (1), we obtain the following expression:

−diyi(t) ≤
dyi(t)

dt
≤ −(di − kiβiε1)yi(t) (i = 1, 2), (20)

Consequently, it follows that y21(t) ≤ y1(t) ≤ y31(t), y22(t) ≤ y2(t) ≤ y32(t) . Furthermore,

as t approaches infinity, we have the convergence of y21(t) to ỹ1(t), y22(t) to ỹ2(t), y31(t) to

ỹ31(t), and y32(t) to ỹ32(t). Here, (y21(t), y22(t)) and (y31(t), y32(t)) represent the solutions
of Equation (17) and
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

dy31(t)
dt

= −(d1 − k1β1ε1)y31(t),

dy32(t)
dt

= −(d2 − k2β2ε1)y32(t),

t 6= (n + p)u, t 6= (n + p + q)u, t 6= (n + 1)u,

∆y31(t) = D(y32(t)− y31(t)),

∆y32(t) = D(y31(t)− y32(t)),

t = (n + p)u,

∆y31(t) = −µ12y31(t),

∆y32(t) = −µ22y32(t),

t = (n + p + q)u,

∆y31(t) = µ1,

∆y32(t) = µ2,

t = (n + 1)u,

(21)

respectively.

ỹ31(t) =


y∗31e−(d1−k1β1ε1)(t−nu), t ∈ (nu, (n + p)u],

y∗∗31 e−(d1−k1β1ε1)(t−(n+p)u), t ∈ ((n + p)u, (n + p + q)u],

y∗∗∗31 e−(d1−k1β1ε1)(t−(n+p+q)u), t ∈ ((n + p + q)u, (n + 1)u],

ỹ32(t) =


y∗32e−(d2−k2β2ε1)(t−nu), t ∈ (nu, (n + p)u],

y∗∗32 e−(d2−k2β2ε1)(t−(n+p)u), t ∈ ((n + p)u, (n + p + q)u],

y∗∗∗32 e−(d2−k2β2ε1)(t−(n+p+q)u), t ∈ ((n + p + q)u, (n + 1)u],

(22)

where y∗31 and y∗32 are determined as
y∗31 =

µ2F31 + µ1(1− F32)

(1− E31)(1− F32)− E32F31
> 0,

y∗32 =
µ1E32 + µ2(1− E31)

(1− E31)(1− F32)− E32F31
> 0,

(23)

The definitions of y∗∗31 and y∗∗32 are as follows:
y∗∗31 = (1− D)e−(d1−k1β1ε1)puy∗31 + De−(d2−k2β2ε1)puy∗32,

y∗∗32 = De−(d1−k1β1ε1)puy∗31 + (1− D)e−(d2−k2β2ε1)puy∗32,
(24)

y∗∗∗31 and y∗∗∗32 are defined as
y∗∗∗31 = (1− µ12)e−(d1−k1β1ε1)quy∗∗31 ,

y∗∗∗32 = (1− µ22)e−(d2−k2β2ε1)quy∗∗32 ,
(25)

where

E31 = (1− µ12)(1− D)e−(d1−k1β1ε1)u < 1,

F31 = (1− µ12)De−[(d1−k1β1ε1)(1−p)+(d2−k2β2ε1)p]u < 1,

E32 = (1− µ22)De−[(d1−k1β1ε1)p+(d2−k2β2ε1)(1−p)]u < 1,

F32 = (1− µ22)(1− D)e−(d2−k2β2ε1)u < 1.
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Given any ε2 > 0, there exists a value t1 such that for all t > t1, we have

ỹ21(t)− ε2 < y1(t) < ỹ31(t) + ε2

and
ỹ22(t)− ε2 < y2(t) < ỹ32(t) + ε2.

By letting ε1 approach 0, we obtain the following result

ỹ1(t)− ε2 < y1(t) < ỹ1(t) + ε2

and
ỹ2(t)− ε2 < y2(t) < ỹ2(t) + ε2

for sufficiently large values of t, it can be deduced that y1(t) approaches ỹ1(t) and y2(t)
approaches ỹ2(t) as t approaches infinity. This conclusion signifies the completion of
the proof.

Our next task is to examine the permanence of system (1).

Definition 1. System (1) is considered to be permanent if the definition of persistence from refer-
ence [18] is satisfied.

Theorem 2. If

min
i=1,2

{
aiu−

βi
di

[
y∗i (1− e−di pu) + y∗∗i (1− e−diqu) + y∗∗∗i (1− e−di(1−(p+q)u))

]}
> 0 (i = 1, 2), (26)

we define y∗i (i = 1, 2), y∗∗i (i = 1, 2), and y∗∗∗i (i = 1, 2) according to Equations (8), (13), and
(14), respectively, then the system (1) can be considered permanent.

Proof. Firstly, according to Lemma 1, uniform boundedness is ensured. By utiliz-

ing Equation (1) and invoking Theorem 1, we can deduce that yi(t) > ỹi(t) − ε2 >

y∗i e−di pu + y∗∗i e−diqu + y∗∗∗i e−di(1−(p+q))u ∆
= mi (i = 1, 2), for a ε2 that is small enough.

Therefore, it suffices to find m3 > 0 and ε3 such that xi(t) > m3 for sufficiently large t.
Suppose the opposite is true, and let us assume xi(t) < m4 for all t ≥ 0, where m4 > 0

is selected to be sufficiently small, satisfying m4 < di
ki βi−di

(di < kiβi) holds. By utilizing
condition (26) and selecting ε3 to be small enough, we can establish that this assumption
is invalid.

Taking

δi = aiu

−
βi[y∗4i(1− e−(di−ki βim4)pu) + y∗∗4i (1− e−(di−ki βim4)qu) + y∗∗∗4i (1− e−(di−ki βim4)(1−(p+q))u)]

di − kiβim4

−βiε3u

> 0,

where y∗4i (i = 1, 2), y∗∗4i (i = 1, 2), and y∗∗∗4i (i = 1, 2) are defined in accordance with
Equations (30)–(32) below.

Then,
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

dy1(t)
dt

< −(d1 − k1β1m4)y1(t),

dy2(t)
dt

< −(d2 − k2β2m4)y2(t),

t 6= (n + p)u, t 6= (n + p + q)u, t 6= (n + 1)u,

∆y1(t) = D(y2(t)− y1(t)),

∆y2(t) = D(y1(t)− y2(t)),

t = (n + p)u,

∆y1(t) = −µ12y1(t),

∆y2(t) = −µ22y2(t),

t = (n + p + q)u,

∆y1(t) = µ1,

∆y2(t) = µ2,

t = (n + 1)u.

(27)

According to Lemma 3, it follows that y1(t) ≤ y41(t), y2(t) ≤ y42(t), with y41(t) converging
to y41(t) and y42(t) converging to y42(t) as t approaches infinity. Here, (y41(t), y42(t))
represents the solution of

dy41(t)
dt

= −(d1 − k1β1m4)y41(t),

dy42(t)
dt

= −(d2 − k2β2m4)y42(t),

t 6= (n + p)u, t 6= (n + p + q)u, t 6= (n + 1)u,

∆y41(t) = D(y42(t)− y41(t)),

∆y42(t) = D(y41(t)− y42(t)),

t = (n + p)u,

∆y41(t) = −µ12y41(t),

∆y42(t) = −µ22y42(t),

t = (n + p + q)u,

∆y41(t) = µ1,

∆y42(t) = µ2,

t = (n + 1)u,

(28)

with

y41(t) =


y∗41e−(d1−k1β1m4)(t−nu), t ∈ (nu, (n + p)u],

y∗∗41 e−(d1−k1β1m4)(t−(n+p)u), t ∈ ((n + p)u, (n + p + q)u],

y∗∗∗41 e−(d1−k1β1m4)(t−(n+p+q)u), t ∈ ((n + p + q)u, (n + 1)u],

y42(t) =


y∗42e−(d2−k2β2m4)(t−nu), t ∈ (nu, (n + p)u],

y∗∗42 e−(d2−k2β2m4)(t−(n+p)u), t ∈ ((n + p)u, (n + p + q)u],

y∗∗∗42 e−(d2−k2β2m4)(t−(n+p+q)u), t ∈ ((n + p + q)u, (n + 1)u],

(29)

where y∗41 and y∗42 are determined as
y∗41 =

µ2F41 + µ1(1− F42)

(1− E41)(1− F42)− E42F41
> 0,

y∗42 =
µ1E42 + µ2(1− E41)

(1− E41)(1− F42)− E42F41
> 0,

(30)

and y∗∗41 , y∗∗42 are defined as
y∗∗41 = (1− D)e−(d1−k1β1m4)puy∗41 + De−(d2−k2β2m4)puy∗42,

y∗∗42 = De−(d1−k1β1m4)puy∗41 + (1− D)e−(d2−k2β2m4)puy∗42,
(31)
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and y∗∗∗41 , y∗∗∗42 are defined as
y∗∗∗41 = (1− µ12)e−(d1−k1β1m4)quy∗∗41 ,

y∗∗∗42 = (1− µ22)e−(d2−k2β2m4)quy∗∗42 ,
(32)

where

E41 = (1− µ12)(1− D)e−(d1−k1β1m4)u < 1,

F41 = (1− µ12)De−[(d1−k1β1m4)(1−p)+(d2−k2β2m4)p]u < 1,

E42 = (1− µ22)De−[(d1−k1β1m4)p+(d2−k2β2m4)(1−p)]u < 1,

F42 = (1− µ22)(1− D)e−(d2−k2β2m4)u < 1.

Therefore, there exist T1 > 0 and ε3 > 0 meeting

y41(t) + ε3 ≥ y41(t) ≥ y1(t)

and
y42(t) + ε3 ≥ y42(t) ≥ y2(t).

Then, [
ai − βi(y4i(t) + ε3)

]
xi(t) ≤

dxi(t)
dt

(i = 1, 2), (33)

for T1 ≤ t, let N1 ∈ Z+ and T1 < N1u. By taking the integral of Equation (33) over the
interval (nu, (n + 1)u) for N1 ≤ n, we have

xi((n + 1)u) ≥ xi(nu+) exp
(∫ (n+1)u

nu

[
ai − βi(y4i(t) + ε3)

]
dt
)

= xi(nu)eδi (i = 1, 2).

Consequently, we have xi((N1 + k)u) ≥ xi(N1u+)ekδi goes to infinity, which contra-
dicts the boundedness of x1(t) and x2(t). Thus, there exists a positive constant t1 satisfying
m3 ≤ xi(t) (i = 1, 2). This concludes the proof.

5. Simulation Analysis and Discussion

This paper presents a pest management model that incorporates pesticide spraying,
natural enemies release, and dispersal at different pulse moments. This integrated pest
management model includes the diffusion of predator populations between two regions,
providing a comprehensive representation of pest management dynamics. Our analysis
establishes that all solutions of the system under investigation are uniformly ultimately
bounded. Additionally, by Theorem 1, if D < 1

2 and

max
i=1,2

{
aiu−

βi
di

[
y∗i (1− e−di pu) + y∗∗i (1− e−diqu) + y∗∗∗i (1− e−di(1−(p+q))u))

]}
< 0 (i = 1, 2),

then solution (0̃, y1(t), 0, ỹ2(t)) of system (1) possesses global asymptotic stability. By
Theorem 2, if

min
i=1,2

{
aiu−

βi
di

[
y∗i (1− e−di pu) + y∗∗i (1− e−diqu) + y∗∗∗i (1− e−di(1−(p+q)u))

]}
> 0 (i = 1, 2),

then system (1) possesses permanence.
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5.1. The Dynamical Behaviors Influenced by Parameter D

Considering the following parameter values: x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0,
y2(0) = 1.0, a1 = 0.7, b1 = 0.2, a2 = 0.7, b2 = 0.2, and

β1 β2 k1 k2 µ1 µ2 d1 d2 u p q D µ11 µ12 µ21 µ22

0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 1.0 0.25 0.3 0.05 0.1 0.1 0.1 0.1

It is evident that conditions (15) and (16) are satisfied. Consequently, the periodic solution
representing pest eradication in system (1) is globally asymptotically stable (see Figure 1). Let
us consider the initial values x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0, y2(0) = 1.0, along with the
parameter values a1 = 0.9, b1 = 0.2, a2 = 09, b2 = 0.2, β1 = 0.5, β2 = 0.5, and

β1 β2 k1 k2 µ1 µ2 d1 d2 u p q D µ11 µ12 µ21 µ22

0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 1.0 0.25 0.3 0.95 0.1 0.1 0.1 0.1
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Figure 1. The global asymptotic stability from verification of the impulsive diffusion parameter D.
System (1) with initial conditions x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0, y2(0) = 1.0, as well as param-
eter values a1 = 0.7, b1 = 0.2, a2 = 0.7, b2 = 0.2, β1 = 0.5, β2 = 0.5, k1 = 0.5, k2 = 0.5, µ1 = 0.5,
µ2 = 0.5, d1 = 0.3, d2 = 0.3, u = 1, p = 0.25, q = 0.3, D = 0.05, µ11 = 0.1, µ12 = 0.1, µ21 = 0.1,
and µ22 = 0.1, exhibits a globally asymptotically stable pest eradication periodic solution. The
time-series of x1(t), x2(t), y1(t), y2(t) are shown in (a–d), respectively.

It is evident that condition (26) is satisfied, indicating that system (1) is permanent
(see Figure 2). By evaluating Equations (16) and (26), we can determine the existence of a
threshold, denoted as D∗, which satisfies the following condition:

max
i=1,2

{
aiu−

βi
di

[
y∗i (1− e−di pu) + y∗∗i (1− e−diqu) + y∗∗∗i (1− e−di(1−(p+q))u))

]}
< 0 (i = 1, 2)

or

min
i=1,2

{
aiu−

βi
di

[
y∗i (1− e−di pu) + y∗∗i (1− e−diqu) + y∗∗∗i (1− e−di(1−(p+q)u))

]}
> 0 (i = 1, 2).
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When the value of D is less than D∗, the pest populations will tend towards extinction.
Conversely, if D is greater than D∗, the system will exhibit its permanence.
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Figure 2. The permanence from verification of the impulsive diffusion parameter D. System (1) with
initial conditions x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0, y2(0) = 1.0, along with parameter values
a1 = 0.9, b1 = 0.2, a2 = 09, b2 = 0.2, β1 = 0.5, β2 = 0.5, k1 = 0.5, k2 = 0.5, µ1 = 0.5, µ2 = 0.5,
d1 = 0.3, d2 = 0.3, u = 1, p = 0.25, q = 0.3, D = 0.95, µ11 = 0.1, µ12 = 0.1, µ21 = 0.1, and µ22 = 0.1,
satisfies the condition of permanence. The time-series of x1(t), x2(t), y1(t), and y2(t) are displayed
in (a–d), respectively.

5.2. The Dynamical Behaviors Influenced by Parameters µ1 and µ2

In this subsection, we assume that µ = µ1 = µ2. The initial values are set as x1(0) = 1.0,
y1(0) = 1.0, x2(0) = 1.0, and y2(0) = 1.0. We consider various parameter values: a1 = 0.8,
b1 = 0.2, a2 = 0.8, b2 = 0.2, and

β1 β2 k1 k2 µ1 µ2 d1 d2 u p q D µ11 µ12 µ21 µ22

0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 1.0 0.25 0.3 0.4 0.1 0.1 0.1 0.1

It is obvious that conditions (15) and (16) are satisfied. Consequently, the periodic solution
representing pest eradication in system (1) is globally asymptotically stable (see Figure 3).
Similarly, assuming initial values x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0, and y2(0) = 1.0, we set
the following parameter values: a1 = 0.9, b1 = 0.2, a2 = 0.9, b2 = 0.2, and

β1 β2 k1 k2 µ1 µ2 d1 d2 u p q D µ11 µ12 µ21 µ22

0.5 0.5 0.5 0.5 0.1 0.1 0.3 0.3 1.0 0.25 0.3 0.2 0.1 0.1 0.1 0.1

It is apparent that condition (26) is satisfied, indicating that system (1) is permanent
(see Figure 4). By analysis, we can establish the existence of a threshold value µ∗. If µ is
greater than µ∗, the pest population will inevitably go extinct. Conversely, if µ is less than
µ∗, the system will exhibit its permanence.
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Figure 3. The global asymptotic stability from verification of the natural enemies release parameters
µ1 and µ2. System (1) with initial conditions x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0, y2(0) = 1.0, along
with parameter values a1 = 0.8, b1 = 0.2, a2 = 0.8, b2 = 0.2, β1 = 0.5, β2 = 0.5, k1 = 0.5, k2 = 0.5,
µ1 = 0.5, µ2 = 0.5, d1 = 0.3, d2 = 0.3, u = 1, p = 0.25, q = 0.3, D = 0.4, µ11 = 0.1, µ12 = 0.1,
µ21 = 0.1, and µ22 = 0.1, exhibits a globally asymptotically stable pest eradication periodic solution.
The time-series of x1(t), x2(t), y1(t), and y2(t) are displayed in (a–d), respectively.

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

t

0

0.5

1

1.5

2

2.5

x 1
(t

)

0 10 20 30 40 50 60 70 80 90 100

t

0

0.5

1

1.5

2

2.5

x 2
(t

)

(c) (d)

0 10 20 30 40 50 60 70 80 90 100

t

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y 1
(t

)

0 10 20 30 40 50 60 70 80 90 100

t

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y 2
(t

)

Figure 4. The permanence from verification of the natural enemies release parameters µ1 and
µ2. System (1) exhibits permanence with initial conditions x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0,
y2(0) = 1.0, and parameters a1 = 0.9, b1 = 0.2, a2 = 0.9, b2 = 0.2, β1 = 0.5, β2 = 0.5, k1 = 0.5,
k2 = 0.5, µ1 = 0.1, µ2 = 0.1, d1 = 0.3, d2 = 0.3, u = 1, p = 0.25, q = 0.3, D = 0.2, µ11 = 0.1,
µ12 = 0.1, µ21 = 0.1, and µ22 = 0.1. The time-series of x1(t), x2(t), y1(t), and y2(t) are shown in
(a–d), respectively.
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5.3. The Dynamical Behaviors Influenced by Parameters µij(i = 1, 2)

In this subsection, we consider the scenario where all values of µ′, µ11, µ12, µ21, and
µ22 are equal. Initially, we set the following conditions for the pest management system:
x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0, y2(0) = 1.0. Furthermore, we assign parameter
values as follows: a1 = 0.6, b1 = 0.2, a2 = 0.6, b2 = 0.2, and

β1 β2 k1 k2 µ1 µ2 d1 d2 u p q D µ11 µ12 µ21 µ22

0.5 0.5 0.5 0.5 0.35 0.35 0.3 0.3 1.0 0.25 0.5 0.2 0.3 0.3 0.3 0.3

It is confirmed that conditions (15) and (16) are satisfied, and the pest eradication
periodic solution of system (1) is demonstrated to be globally asymptotically stable, as
depicted in Figure 5. Subsequently, we maintain the same initial conditions as before but
make adjustments to certain parameter values: a1 = 0.6, b1 = 0.2, a2 = 0.6, b2 = 0.2, and

β1 β2 k1 k2 µ1 µ2 d1 d2 u p q D µ11 µ12 µ21 µ22

0.5 0.5 0.5 0.5 0.35 0.35 0.3 0.3 1.0 0.25 0.5 0.2 0.05 0.05 0.05 0.05

We verify that condition (26) is satisfied and observe that system (1) exhibits its
permanence, as depicted in Figure 6. Through calculations, we determine the existence of a
threshold value, denoted as µ∗∗, if µ′ exceeds µ∗∗, the pest population will become extinct.
Conversely, if µ′ is lower than µ∗∗, the system will exhibit its permanence.
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Figure 5. The global asymptotical stability from verification of the pesticide spraying parameters
µij, i = 1, 2. The periodic solution of system (1) with initial conditions x1(0) = 1.0, y1(0) = 1.0,
x2(0) = 1.0, y2(0) = 1.0 is globally asymptotically stable for pest eradication with parameters
a1 = 0.6, b1 = 0.2, a2 = 0.6, b2 = 0.2, β1 = 0.5, β2 = 0.5, k1 = 0.5, k2 = 0.5, µ1 = 0.35, µ2 = 0.35,
d1 = 0.3, d2 = 0.3, u = 1, p = 0.25, q = 0.5, D = 0.2, µ11 = 0.3, µ12 = 0.3, µ21 = 0.3, and µ22 = 0.3.
The time-series of x1(t), x2(t), y1(t), and y2(t) are shown in parts (a–d), respectively.
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Figure 6. The permanence from verification of the pesticide spraying parameters µij, i = 1, 2. System
(1) exhibits permanence with initial conditions x1(0) = 1.0, y1(0) = 1.0, x2(0) = 1.0, y2(0) = 1.0,
along with the following parameter values: a1 = 0.6, b1 = 0.2, a2 = 0.6, b2 = 0.2, β1 = 0.5, β2 = 0.5,
k1 = 0.5, k2 = 0.5, µ1 = 0.35, µ2 = 0.35, d1 = 0.3, d2 = 0.3, u = 1, p = 0.25, q = 0.5, D = 0.2,
µ11 = 0.05, µ12 = 0.05, µ21 = 0.05, and µ22 = 0.05. The time-series plots of x1(t), x2(t), y1(t), and
y2(t) confirm the system’s permanence (a–d).

6. Conclusions

Based on our numerical simulations, we have found that increasing the diffusion
has a negative impact on integrated pest management. However, we can achieve optimal
pest control at a lower cost by implementing a combination of control strategies such as
population dispersal, pesticide spraying, and natural enemies release. This study concludes
that impulsive diffusion, pesticide spraying, and natural enemies release provide a solid
foundation for effective pest management tactics.
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