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Abstract: The availability of computational power in the domain of Prognostics and Health Manage-
ment (PHM) with deep learning (DL) applications has attracted researchers worldwide. Industrial
robots are the prime mover of modern industry. Industrial robots comprise multiple forms of rotating
machinery, like servo motors and numerous gears. Thus, the PHM of the rotating components of
industrial robots is crucial to minimize the downtime in the industries. In recent times, deep learning
has proved its mettle in different areas, like bio-medical, image recognition, speech recognition, and
many more. PHM with DL applications is a rapidly growing field. It has helped achieve a better
understanding of the different condition monitoring signals, like vibration, current, temperature,
acoustic emission, partial discharge, and pressure. Most current review articles are component- (or
system-) specific and have not been updated to reflect the new deep learning approaches. Also, a
unified review paper for PHM strategies for industrial robots and their rotating machinery with DL
applications has not previously been presented. This paper presents a review of the PHM strategies
with various DL algorithms for industrial robots and rotating machinery, along with brief theoretical
aspects of the algorithms. This paper presents a trend of the up-to-date advancements in PHM
approaches using DL algorithms. Also, the restrictions and challenges associated with the available
PHM approaches are discussed, paving the way for future studies.

Keywords: prognostics and health management (PHM); deep learning (DL); industrial robots; rotat-
ing machinery

MSC: 68T01

1. Introduction

Industrial robots (IRs) have drawn a lot of attention over the past two decades due to
the availability of cutting-edge technologies and the need for high production. Industrial
robots have found applications in almost every sector, like manufacturing, underwater
exploration, hazardous material disposal, steel exploration, and entertainment [1–5]. IRs
include multiple forms of rotating machinery, like servo motors and gears, which are also
prone to failures [6]. In general, IRs are robust machines; however, faults are inevitable. The
rotating machines are vital components of the IRs and act as a driving force [7]. IRs have
seen a surge in their applications in recent years [1,8–14]. This has aided human efforts to
reduce the operational costs. The World Robotics 2021 industrial reports show that more
than three million IRs are operating globally, almost 10% more than the previous year. In
2020, despite the global epidemic, new robot sales climbed by 0.5%, with 384,000 units
shipped worldwide [15]. With a compound annual growth rate (CAGR) of 11.7% between
2021 and 2030, the size of the worldwide IRs market is predicted to increase from USD
37,876.0 million in 2020 to USD 116,848.7 million by 2030 [15]. In 2021, the size of the global
IRs market was estimated at USD 15.60 billion [16]. The market for IRs was estimated to be
worth USD 26.52 billion in 2022 and is anticipated to grow at a CAGR of 10.5% between
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2023 and 2030 [17]. The global trend of publications containing the keywords “industrial
robot fault” in the title that were published per year, as determined by the Web of Science
and PubMed, is given in Figure 1.
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Figure 1. Global trend of the publications containing the Keyword “industrial robot fault” in the title
that were published per year, as determined by the Web of Science and PubMed.

The market trend shows that IRs will be a driving force in industry. The robot system
applications in those industries help to improve productivity, efficiency, and quality. The
technological improvement in sensors, motors, and drives has improved the performance
and efficiency of IRs. Due to advancements in robot system position and trajectory precision,
arc welding has gained popularity over spot welding in various applications.

The technologies involved in robots have become complex and require a lot of feed-
back from the environment for efficient operation and precise control. The reliability of
robots and their associated components is critical for minimum downtime and maximum
production [18]. Robotic system health monitoring, diagnostics, prognostics, and mainte-
nance have received a lot of attention as a result of the high-reliability requirements. The
PHM of advanced robotics setup in industries are crucial for the smooth functioning of
production and serviceable units. An efficient PHM approach for industrial robots and
their rotating machines is the need of the hour [19]. A holistic framework for PHM [20–24]
is shown in Figure 2. It comprises the data collection, data conditioning, fault detection
(FDT), fault diagnosis (FDG), fault prognosis (FP), and decision support in a chronologi-
cal manner [25–28]. The domains of fault detection, diagnosis, and prognosis have been
extensively studied. The focus of this paper will be restricted to these topics.
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Figure 2. Holistic framework of PHM.

PHM is a modern engineering strategy that amalgamates advanced sensing method-
ologies, failure physics, statistical analysis, artificial intelligence (AI), and reliability analysis
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to enable the real-time health monitoring and prognostics of a system’s future state based on
the existing data [27]. PHM refers to a collection of strategies and processes for monitoring,
diagnosing, prognosticating, and maintaining a machine or process [29]. Manufacturing
systems use PHM technologies to reduce unplanned downtime and expenses. PHM aids
engineers in transforming data into interpretable information and assessing health, improv-
ing the system’s understanding. It makes it possible to create strategies for the system’s
efficient and planned operation. Initially, aerospace industries used PHM strategies, but
they have also found applications in several fields, like manufacturing, automobile, and
railways [9–13]. The ability to estimate a system’s remaining useful life (RUL) through
PHM while it is in use makes condition-based maintenance (CBM) possible. It helps de-
velop a maintenance strategy in which only damaged parts are repaired or replaced [30–34].
CBM is a systematic approach that combines hardware and software to continuously as-
sess the equipment performance and deterioration without interfering with the system’s
normal operations [35,36]. CBM uses the actual condition of the equipment as opposed to
system/component breakdowns or planned maintenance. Prognostics is a vital element for
CBM as it enables timely maintenance decisions [37–39]. The concept of preventive mainte-
nance leads to a rise in expenses for many industrial companies, as many components are
replaced before the end of their lifecycle. Therefore, maintenance should be carried out as
needed to ensure a high level of safety and dependability. This is the core concept of CBM,
and PHM is the key technology for realizing it.

At present, diagnostics is conducted with the help of instruments, like sensors, meters,
controllers, and computational devices [40]. These devices are used to obtain signals
from the machine or process for diagnostic purposes. The root causes of failure can
be identified using sophisticated diagnostic approaches [41,42]. The diagnostic task is a
reactive maintenance process that is performed when a fault actually occurs. The standalone
application of diagnostic approaches does not have a significant effect on reducing the
occurrence of downtime and the related expenses. To improve the management of the
maintenance scheduling and production optimization, maintenance should be conducted
in a proactive manner [43]. This can be accomplished by switching maintenance strategies
from typical break-and-repair (diagnostics) to predict-and-avoid (prognostics). The aim of
PHM is to establish and deliver an integrated strategy for viewing the machine’s health to
users. PHM involves both prognostics and diagnostics [44]. By identifying and establishing
the causal connection between cause and effect, diagnostics is the method of discovering
defects and identifying the primary causes of failure. The practice of evaluating and
predicting health, which includes anticipating an impending failure and the remaining
usable life, is known as prognostics [17–19]. Implementing timely and suitable maintenance
actions and making precise logistics decisions based on the diagnostic and prognostic
outputs, available resources, and operational demand are all parts of health management.

With the advancement in sensor technology and computational power, artificial intel-
ligence (AI) has attracted researchers to improving the existing PHM approaches, as well
as developing new methodologies. Different AI algorithms, like support vector machine
(SVM), random forest (RF), k-nearest neighbor (kNN), decision trees (DT), artificial neu-
ral network (ANN), and many more, have been used for fault diagnosis (FD) and fault
prognosis (FP) [44]. FD and FP methodologies using these AI algorithms require suitable
features as input, which requires prior knowledge and expertise of the fault. This creates a
hindrance in developing PHM solutions with generalization capabilities. The availability of
cloud computing, huge data storage capabilities, sensors, communication technologies, and
a complex engineered setup have led to huge data generation and collection [20–22,45–50].
Important details regarding the condition of the system are provided by this data. The
development of multidimensional and heterogeneous data streams has a tremendous im-
pact on the operation of traditional AI methods, like SVM, kNN, RF, and DT [51–53]. More
refined analytical tools and improved approaches are required to efficiently and inherently
harvest the features concealed in actual-time measured systems.
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Over the last decade, deep learning (DL) has attracted researchers from different
domains like biomedical, image recognition, natural language processing, and voice recog-
nition systems worldwide, owing to its excellent properties [23–28]. A deep learning algo-
rithm has immense potential. Deep networks are used to spontaneously manage extremely
non-linear and sophisticated feature extraction from unprocessed information, eliminating
the necessity for manual feature development [54–60]. DL can spontaneously discover
hierarchical features from enormous and multidimensional industrial data, making it a
viable tool for the PHM solution [61–64]. Lee et al. [65] have proposed a fault detection
approach for the robotic servo-motor under varying working conditions. Rauf et al. [66]
have proposed a transfer learning-based DL approach for fault detection in the industrial
robotic system. Zhou et al. [67] have proposed a harmonic reducer fault diagnosis using the
deep learning-based model. Adam et al. [68] developed a multiple fault diagnosis approach
with the help of a convolutional neural network-based algorithm. Yin et al. [69] have
developed a dual-driven transfer network for fault diagnosis in industrial robots. Figure 3
shows the various ways in which PHM strategies can be developed. The task of feature
extraction and selection is primarily emphasized in traditional data-driven techniques. It is
heavily reliant on signal processing techniques and human knowledge. These approaches
require numerous adjustments when working with big volumes of data and do not operate
in real time. DL models are capable of automatically discovering and removing pertinent
features from unprocessed data. By doing so, manual feature engineering—which can be
time-consuming and prone to mistakes in fault detection tasks—is no longer necessary.
DL models have the capacity to immediately learn intricate patterns and representations
from the data, improving defect detection. DL models can effectively handle complicated
datasets. They have the capacity to learn from a variety of data sources and identify subtle
patterns that conventional approaches can find challenging. DL models can handle com-
plex fault patterns and nonlinear interactions. The nonlinear behaviors of many industrial
systems can be difficult to model using conventional techniques. End-to-end learning,
where the model learns directly from the input data to the output predictions, is made
possible by DL models. As a result, manual intervention at crucial points in the pipeline for
fault detection is no longer required. In a nutshell, DL provides an end-to-end framework
and facilitates a unified PHM system.
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Most current review articles are component- (or system-)specific, and do not reflect
the advancement in DL-based strategies. This is a burgeoning field, and several studies
are being conducted to develop more refined approaches and improved strategies. Many
advanced methods are emerging each month, and there is a need to review the latest trends
and PHM strategies. Few papers have reviewed the DL-based PHM strategies for rotating
components of the IRs. This paper examines the PHM strategies based on the DL-based
approaches for industrial robots and their rotating machinery. Section 2 discusses faults
and failures in industrial robots and their rotating components. Section 3 illustrates the
PHM methodologies, together with the conventional PHM cycle, and details the PHM
performance metrics and DL-based PHM. Section 4 presents a brief description of the
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various DL algorithms. Section 5 presents a detailed study of the existing DL framework-
based PHM for the rotating machinery of the IRs. Section 6 briefly discusses the PHM
strategies with DL applications and future possibilities. Finally, Section 7 concludes the
work.

2. Industrial Robot Configuration and Faults

Industrial robots are complex and require continuous monitoring for optimum per-
formance and minimum downtime. A robot is described by the International Standards
Organisation (ISO 8373) as a machine that has automatic control, reprogramming, and
manipulation capabilities [70]. This machine is flexible and has numerous configurable
axes. It is made to be used in a variety of industrial applications and can be either stationary
or mobile. An IR is a general-purpose programmable machine that possesses the character-
istics of the human arm. It can be programmed by its computer to move its arm through
sequences of motion to perform some useful tasks. It can perform a similar motion over
and over until it is reprogrammed to perform other functions. Many industrial operations
involve robots working together with other equipment. The main features of the robot
include:

• A robot can produce a job with consistent quality at a steady state with practically
zero rework and wastage.

• Robots can work continuously throughout the work cycle with proper maintenance
solutions.

• Robots’ upkeeping cost is increasing at a lower price in comparison to the labor
maintenance cost every year.

• The capital cost for the robot is paid once only.
• Robots can take up repeated tasks and challenging jobs even in an unsafe and un-

healthy environment.
• Robots can work precisely at higher speeds and can exert larger force than in humanly

possible.

IR comprises different components, like robotic arms, body, arm, actuators, rotate
vector reducers, sensors, end-effectors, switches, gears, and linkages. There can be nu-
merous faults in a robotics system due to its complex nature. Figure 4 shows a block
diagram of the robot system. Three essential parts make up a robotic system: the power
sources, the computer used to manage the robot, and the robot’s mechanical framework.
All necessary pneumatic, hydraulic, and electro-mechanical components are included in
the robot’s mechanical design. This includes electrical actuators, which are motors used for
rotational operations, as well as non-electric actuators that utilize hydraulic or pneumatic
systems, or both. These components collectively enable the robot to carry out its intended
functions. The robot has many internal sensors, which are mainly used for measuring the
rotary positions of the motor shafts, gears to reduce the speed between the motors and
the joints, switches, and relays for creating selected operations. These motions will have
to be performed when certain conditions are met. The robot has an end effector, such as
a tool or a gripper. The entire mechanical structure is interfaced with the robot control
computer. The robotic system’s computer comes equipped with a variety of software
applications required for the structure of the robot to function. These software packages
incorporate coordinated transformation software, which makes it easier for the robot’s
movements to be seamlessly coordinated. To control the actuators’ speed and location,
control software is also present. Additionally, the computer has interfaces for teaching
and learning particular tasks, enabling users to guide the robot successfully. Additionally,
it includes safety precautions to guard against any potential harm to the robot structure,
thus creating a safe working environment. Figure 5 shows a pictorial view of the IR, while
Figure 6 depicts the faults in the reducers of the IR. Figure 5 demonstrates the six degrees
of freedom (DOF) IR. The six DOF means that the 6-axis of the IR can move independently.
There are several types of IRs, which include the non-servo robot, servo robot, programable
robot, and computer programmable robot. A non-servo robot is typically used for moving
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objects, like picking up an object and transporting it to another place. The manipulators
and effectors—robotic appendages that serve as the robot’s arms and hands and provide it
enhanced flexibility and greater movement—enable the servo robots to perform a range of
tasks. A programmable IR can execute the repeating task a certain number of times based
on fed programs. A servo robot that can be programmed by a computer and controlled
remotely is known as a computer-programmable robot. Also, IRs have many structural
configurations that suit several applications in the industry.
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It is vital to detect faults in a timely manner, and research on the PHM of the robotic
system could be vital for efficient FDT. Faults, soft failures, and hard failures are the
three types of faults that can be found. A fault is a systemic issue, such as a defect, an
inaccurate signal value, or a poor decision. A fault may cause the degradation of the
system’s performance and can lead to failure [71]. Faults in the system can cause the system
to wear out faster. The system may nevertheless be able to achieve the desired productivity
and output product quality. A soft failure is characterized by deterioration, ‘wear and tear’,
and exterior variations, which result in system damage. A soft failure occurs when a system
continues to function, but its performance begins to deteriorate. In the case of a soft failure,
the system’s productivity decreases, and it is unable to meet the required objective. With
time, its productivity decreases and its performance worsens, and ultimately decreases to
a point below the required standards. A hard failure can be referred to as a breakdown
of the component/equipment of the system, which leads to a pause in the functioning
of the system [71]. Under such conditions, the manufacturing process is compromised,
and cannot meet the required demand. The whole process completely shuts down. The
system’s PHM should be capable of detecting both soft and hard failures. PHM should
be designed in such a way that it can detect failures early enough to prevent significant
breakdowns. The majority of PHM solutions are centered on component monitoring and
failure. There is a necessity for system-level monitoring, which will be applied to track
the source of the failure to the point of genesis, or wherever it may have originated, by
monitoring the health of the components, as well as the system.

The rotating components of the IR are crucial as well as being vulnerable to the faults.
The rotating components, such as the motors, gears, and reducers, are also vulnerable
to faults. The PHM of these rotating components could significantly reduce downtime
and help in scheduling maintenance. The faults in the rotating components include faults
in the gearboxes, centrifugal pumps, motors, alternators, and many more. The faults in
the rotating machinery can include bearing defects, rotor defects, eccentricity, gear wear,
cavitation, and misalignment [72–74]. Bearing defects can be segregated into outer race
defects, inner race defects, ball defects, and train defects. Eccentricity can be divided into
static, dynamic, and mixed eccentricity. Rotor defects are the major issue in the induction
motors, alternators, and generators. High starting torque and frequency switching are the
major causes of rotor damage in the motors [75]. The symptoms of the faults can include
high vibration, increased current demand, torque pulsation, and excessive heating [75].
Timely maintenance of the rotating machinery is essential to avoid a complete shutdown.
The PHM of rotating machines is critical in achieving the aim of uninterrupted operations
in industries.
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3. PHM Methodologies

PHM has previously existed in the medical and aerospace fields. PHM involves three
subfields; namely, fault detection, fault diagnosis, and fault prognosis [76]. FDT aims to
detect instances when the machine starts to behave differently from its normal behavior.
It can be treated as a dual categorization job, i.e., to categorize whether the machine is
running well or unwell [77]. Fault diagnosis involves fault identification, fault localization,
and recognition of the severity. The next phase, diagnostics, should be able to pinpoint
what went wrong and should build on the understanding that something went wrong.
The analysis and prediction of the fault diagnosis should be more thorough than that of
FDT. In the fault prognosis, the RUL is estimated. Prognostic models and physics-based
models are typically utilized. The RUL is estimated with the help of the degradation
trajectory [78]. From a practical perspective, the correct RUL estimation is crucial, as an
incorrect estimation will lead to over-maintenance or complete shutdown. An accurate RUL
assessment will help in adequate maintenance scheduling. The PHM solution combines
these three groups to provide an optimized solution to the machine’s maintenance. FDT
application through applying DL can be categorized into two groups: supervised and
unsupervised [79,80]. Supervised learning involves the availability of labelled data in the
training and test dataset. Any DL approach can be chosen depending on the nature and
availability of the data. Fault diagnosis can be viewed from the perspective of AI as a
multi-class classification problem. It entails categorizing the detected fault according to a
particular set of fault type, location, and severity. As the target value is in the actual world,
FP in AI applications may be viewed as a regression problem [81]. The prediction seeks to
create a learning function that could translate the state of the machine to its RUL [82–85].

The variety of the sensors data are used for the PHM of IRs. These sensors data
help in assessing the health of the IRs. Accelerometers, encoders, temperature sensors,
current and voltage sensors, vision systems, and force/torque sensors are a few of the
frequently utilized sensors. The vibration sensor data have been significantly used for the
PHM of IRs. The joints and actuators of the robot are measured in terms of their position,
velocity, and direction using encoders. The system can find differences between the actual
position and the expected position, which may point to faults with the robot’s mobility
or control system. Robotic joints, motors, electronics, and other parts are all monitored
for their temperature using temperature sensors. Overheating or other potential defects
can be indicated by sudden temperature fluctuations or by exceeding the predetermined
thresholds. The electrical parameters of the robot’s motors and actuators are monitored
using current and voltage sensors. Variations in the current or voltage levels may be a sign
of electrical problems, such as overloading, short circuits, or other issues. The forces and
torques applied by the robot during its interactions with the environment are measured by
force and torque sensors. These sensors can identify anomalies, such as sudden contact
forces or high torques, which could be signs of an impending collision or malfunction.
Robotic vision systems are used to keep an eye on its surroundings. These systems include
cameras and image processing software. The system can discover possible issues through
their ability to spot visual irregularities such as erroneous part arrangement, missing objects,
or variations from the typical visual patterns.

For a long time, vibration-based analysis has been widely utilized for prognos-
tics due to its superior capabilities, and many applications still employ this traditional
method [37–40]. The vibration data have been widely used for developing a PHM strategy
in rotating machines. It is one of the PHM topics that has been the subject of the most
research. Other techniques, like acoustic emission, temperature analysis, and ultrasonic,
are also widely used. Processing is conducted on the sensor data and is amalgamated using
the sensor fusion techniques, owing to their innate advantages [86–90]. Model-based, data-
driven, and hybrid prognostic techniques are the three types of prognostic technologies
currently available [91].

A model is created and simulated for the healthy and fault states in a typical model-
based process. The assessment of the developed model under the system’s many functional
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modes is used to approximate the system’s remaining useful life (RUL). This is created
by combining the time-averaged model probability and the weighted predictions from
each mode. The reliability of many models is under scrutiny, and if it is unavailable,
data-driven techniques are utilized to estimate the RUL. This is generally accomplished
by visualizing the developing fault’s trajectory and the time it takes to obtain to the preset
threshold value. The two famous fault prediction tools are the Kalman filter and the
Alpha–Beta–Gamma tracking filter, which are often used in aerospace PHM and many
other fields [43–47,92]. In hybrid approaches, both model-based techniques and data-
driven methods are amalgamated and used for fault prognosis and diagnosis [93–97]. The
traditional method of PHM is based on analytical models that draw on physical principles
and subject-matter expertise. Systems with well-understood physics and well-defined
failure mechanisms may respond well to this strategy. Analytical models for complex
systems can be difficult and time-consuming to create, and they may not be correct in
the presence of unexpected or unpredictable behavior. Machine learning algorithms that
learn to recognize patterns in the data provide the foundation of the DL approach to PHM.
This method can be used to analyze complicated systems with a wide range of failure
modes as it is not constrained by the requirement to comprehend the underlying physics of
the system. Deep learning algorithms are more resistant to unforeseen or unpredictable
behavior because they may learn to adapt to changes in the system.

An efficient PHM strategy should detect incipient faults, diagnose faults, and estimate
the RUL of the component or sub-elements. Both products and processes can benefit from
PHM. The focus of product PHM is on a physical object. Monitoring a robot arm is an
example of product PHM. In comparison to process PHM, product PHM is more readily
available in the automobile, aerospace, and power generation industries [49–56].

3.1. Conventional PHM Cycle

Prognostics and Health Management comprise multiple tasks to lower the overall
lifecycle cost of the component/system. The PHM strategies involve multiple steps (as
shown in Figure 7), like data collection, feature development, dimensionality reduction,
model development, decision making, and remaining useful life calculation. The data ac-
quisition step involves collecting the data, like the vibration and current temperature, from
multiple sensors, including the accelerometers, acoustic emission sensors, thermometers,
and hall sensors. These data contain information regarding the health of the machine. The
feature extraction step involves the application of signal processing tools, like fast Fourier
transform (FFT), Short-time Fourier transform (STFT), Wavelet packet transform (WPT),
and Hilbert Huang transformation (HHT). The statistical features based on time-domain
signals are kurtosis, root mean square (RMS), skewness, etc., and are used to develop PHM
strategies [98–108]. Also, some of the frequency-domain signatures, like spectral, envelope,
and wavelet packets, are widely employed for PHM strategies [20,57–60]. The feature
selection step involves removing redundant and irrelevant features and is accomplished
by selecting the essential features using filters, wrappers, or embedded methods. Also,
dimensionality-reduction tools, like principal component analysis (PCA), linear discrim-
inant analysis (LDA), and kernel PCA, are used for feature dimensionality reduction, as
well as for retaining rich information about the health of the intact machines [109,110].

The traditional method for anomaly detection includes SVM, Hidden Markov models,
the Bayesian network, and ensemble methods. These methods have been applied efficiently
for the health assessment of different machines [111,112]. PHM involves three tasks:
diagnostics, prognostics, and decision support. Diagnostics is the crucial task following
FDT to understand the system’s health by analyzing the severity level of faults. The
conventional machine learning approaches involve the SVM, kNN, DT, and RF trained
on a labeled dataset for fault identification and classification [111,113,114]. Prognostics
refer to the detection of incipient faults and related RUL for the predictive maintenance
of the system. The data-driven approaches, like ANN, HMM, the Kalman filter, and the
extended Kalman filter, have been utilized for the prognosis [43,67–69]. The PHM strategy’s
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health management system is referred to as decision support, which utilizes the outcome
of the diagnostics and prognostics for making timely, suitable, and logical judgments to
schedule the maintenance or replacement of components [115–121]. To determine the
best maintenance task and time to apply it, mathematical programming, Markov decision
processes, and Reinforcement learning (RL) methods are prominently used [71–73].
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3.2. PHM Performance Metrics

The performance analysis of the PHM approach determines the system’s reliability.
The complexity of the PHM system requires the appropriate performance metrics, which are
listed in Table 1. These metrics are employed to assess the RUL prediction for prognostics.
The performance metrics offer a thorough examination of how well the PHM techniques
function with DL applications.

Table 1. Performance metrics for PHM evaluation.

Diagnostics Prognostics

Accuracy [122] Mean absolute error [123]
Error rate [122] Root mean square error [124]
Precision [125] Mean absolute percentage error [124]
Sensitivity [126] (p. 202) Prediction horizon [127]
F1-score [126] Convergence [127]
Correlation coefficient [128] Relative accuracy [127]
Area under curve [129] Confidence interval [130]
Detection error trade off [129] Exponential transformed accuracy [131]

3.3. DL-Based PHM

The application of DL in PHM has gained momentum in the last few years. With the
inherent capabilities of DL-based models, the disadvantages of conventional ML-based
models have been seized. The DL algorithms like CNN, RNN, AE, etc., offer automatic
feature development, which significantly improves the model’s performance. The DL-
based model has been efficiently used for FDT, FDG, and FP. All of the major PHM fields
have a universal framework as a result of DL. This can be illustrated by the simple diagram
shown in Figure 8. The application of DL provides an end-to-end learning framework
for PHM. The type of data available and the application domain influence the choice of
the DL model. When there is a scarcity of labeled data, which often happens in practical
problems, FDT requires unsupervised learning. A multi-class classification challenge could
be said to exist in the fault diagnosis scenario. The objective of the DL created for fault
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diagnosis is to map the detected fault to a certain combination of fault type, location, and
severity. A typical DL model will involve the SoftMax layer to the final layer for achieving
the fault diagnosis task. A common choice for the loss function is categorical cross-entropy.
The model is trained based on this loss function. Also, after training a DL model, the
t-SNE method can be used for feature visualization. The prognosis task can be considered
as the regression task. The RUL prediction might be reduced to a normalized range by
the final layer of the DL model, which could be a single neuron with a linear activation
function or sigmoid function. The accurate estimation of the RUL is a grueling task as an
overestimation could lead to unnecessary maintenance and an underestimation could lead
to a complete shutdown of the machine. One of the most important tasks in the prognosis
is penalizing the delayed RUL estimations (i.e., the predicted RUL is higher than the actual
RUL). The input data for the PHM solution for robots and their rotating machinery can
include vibration data, current data, imagery data, temperature data, etc.
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Deep learning framework-based PHM systems often incorporate different deep learn-
ing architectures, including deep Boltzmann machines, autoencoders (AEs), convolutional
neural networks (CNNs), and recurrent neural networks (RNNs). An in-depth explanation
of how these designs are applied in PHM systems is provided below:

• Restricted Boltzmann Machines (RBMs): RBMs have a wide range of applications;
their direct use in PHM systems built on deep learning frameworks has been relatively
less common. RBMs, however, can contribute to PHM in many ways. In PHM, RBMs
can be utilized to find anomalies. An RBM can learn the underlying distribution of
the normal behavior by being trained on data from typical operational scenarios [132].
The RBM may assess the reconstruction error or energy of fresh data instances during
the inference stage. Higher reconstruction errors or energies signify abnormalities
or flaws because they deviate from the expected behavior. In PHM systems, RBMs
can be used as a step in the pre-processing pipeline. RBMs are capable of extracting
features from high-dimensional sensor input or learning a compressed representation.
The hidden units of an RBM can be trained on the input data to identify significant
latent characteristics or patterns that can be used as inputs to later models, such as
fault classifiers or prognostics models [133].

• Autoencoders (AEs): Autoencoders are able to pick up on a system or component
equipment’s typical working behavior and recognize abnormalities or departures
from it. Autoencoders identify probable errors or anomalies by highlighting variations
between the original and reconstructed input data [134]. In PHM, AEs can serve as
feature extractors. The encoder portion of an autoencoder can capture meaningful
representations of the sensor data by being trained on a sizable dataset. These rep-
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resentations can then be utilized as inputs for later supervised models, such as fault
classifiers or prognostics models [135]. High-dimensional sensor data can have its
dimensions reduced by AEs, allowing for more effective processing and storage. AEs
preserve important information while simplifying later modelling efforts by lowering
the dimensions of the input they compress into a lower-dimensional latent space [136].

• Convolutional Neural Networks (CNNs): The capacity of CNNs to efficiently extract
spatial patterns and features from the sensor data, such as images or time-series
data, makes them a common tool in PHM. CNNs can be used for fault detection or
classification tasks in applications where images or visual data are accessible (such as
thermal imaging or photos from visual inspection) [137]. CNNs develop hierarchical
representations of the images they process, identifying pertinent details and patterns
linked to errors or anomalies [138]. It can be used to analyze spectrogram data, which
displays the frequency content of time-series sensor measurements in signal-based
PHM. In order to perform tasks like fault detection, classification, or regression, CNNs
may extract spatial patterns from spectrograms [139].

• Recurrent Neural Networks (RNNs): RNNs are made to identify sequential patterns
and temporal dependencies in time-series data. Sequential sensor measurements are
frequently used in PHM applications, making RNNs an excellent choice for this type
of data analysis [140]. RNNs can simulate temporal dependencies in time-series sensor
data, especially those with Long Short-Term Memory (LSTM) or Gated Recurrent Unit
(GRU) variations. Using RNNs, it is possible to detect faults and perform diagnostics
and prognostics on sequential data by capturing patterns, long-term dependencies,
and dynamics [141]. In PHM, time-series forecasting tasks can be performed using
RNNs. RNNs can forecast future sensor readings, remaining usable life (RUL), or
failure probabilities by learning from the existing sensor data, which enables proactive
maintenance planning [142].

4. Overview of Deep Learning Models

Deep learning has gained popularity owing to the availability of high computational
resources. The idea of DL dates back to the 1940s [143], but appears to be a new concept, as
it was relatively unknown for several years before gaining traction, and it was known by
a variety of names prior to being termed “deep learning”. DL developed in three stages:
cybernetics in the 1940s–1960s, connectionism in the 1980s–1990s, and the present revival
under the name DL, which began in 2006 [143]. Deep networks are based on the human
brain’s hierarchical architecture and attempt to learn simple patterns; they transform them
into more abstract representations [144–146]. The generic structure of a feed-forward deep
neural network (DNN) contains an input layer, numerous hidden layers, and an output
layer. When multi-layer perceptron (MLP) obtains the input data, the output is generated
along with the successive layers of the model in a straightforward manner. The non-linear
activation functions of each hidden/middle layer neuron are given the biased weight sum
of the preceding layer outputs to generate the neuron’s output. The DL model’s hierarchical
design allows for efficient feature learning, which aids in comprehending the underlying
correlations and patterns in enormous amounts of data [147,148]. The following section
briefly describes the available DL algorithms that are applied in the PHM strategies.

4.1. Restricted Boltzmann Machine

The Restricted Boltzmann machine (RBM) is a generative stochastic neural network
framework. It can discover a probability distribution within a collection of inputs. The
RBMs are undirected bipartite graphical models with nx visible and nh hidden units that
allow no intralayer connections and are widely employed as generative models (GMs).
Due to their stochastic processing units, RBMs can learn the original data’s recreated form.
They are generally used as a pre-processor for various frameworks to complete the job in
supervised classification, but can also be utilized as a standalone classifier. Goodfellow
et al. [143] provides a step-by-step strategy for training RBMs. In the coming sections, we
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briefly discuss two generative deep neural network (DNN) models based on the RBM;
namely, the deep belief network (DBN), and deep Boltzmann machines (DBMs). Figure 9
shows the structures of the RBM, DBN, and DBM.
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4.1.1. Deep Belief Network

The DBN is a deep probabilistic GM constructed by stacking several RBMs, and
consists of several layers of stochastic, latent variables [149]. Hidden units or feature
detectors are terms used to describe latent variables that have binary values. The two layers
at the top are linked by undirected and symmetric connections, which form an associative
memory. The upper layer sends directed links down to the lower layers. The states of the
units produce the data vector in the lowest tier. Links in the lower layers are top-down
directed, whereas the top layers are undirected. An effective layer-by-layer process is
utilized to learn the generative weights. These weights specify the relationship between
the variables in different layers. After learning, a single bottom–up run is performed. It
begins with the help of a detected data vector in the end layer. To determine the values of
the latent variables in each layer, the weights generation process is reversed. The nets of
DBN perform one layer of learning at a time when inferring the data. This is conducted
by employing the latent variable values of one layer as the training data for the coming
layer. It can also be amalgamated with other learning methods. It can help in fine-tuning all
the weights that will boost the multiplicative or discriminatory operation of the complete
framework.

4.1.2. Deep Boltzmann Machine

The Deep Boltzmann machine is a deep GM with layers that are organized hierarchi-
cally. The DBM is formed by stacking layers of the RBM, such that odd-numbered layer
units and even-numbered layer units are independent. DBM is a totally undirected model,
unlike the deep belief network. The latent variable in a DBM contains numerous layers,
whereas RBMs only have one. Within each layer of a DBM, the variables are mutually
independent and conditioned on the variables of the neighboring levels. The DBM’s energy
function incorporates a weight matrices-based connection between hidden units (latent
variables). A DBM can also be arranged in a bipartite graph. In contrast to a DBN, which
may be taught layer-by-layer, a DBM is trained as a joint model. As a result, DBM training
is more computationally expensive than DBN training.

4.2. Auto-Encoder

An auto-encoder (AE) is an efficient neural network model that employs an unsuper-
vised learning method for learning efficient data coding in an unsupervised way. It is made
up of two parts: an encoder and a decoder. The encoder is utilized to encode the input, and
in some cases, to compress the data. Each layer of the encoder has a decreasing number of
hidden units. It allows only the most significant and representative attributes to be mined
from the data. The decoding part of the framework is the second component. Each layer of
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the decoder has an increasing number of hidden units, and the decoder tries reconstructing
the original input using the encoded data. Consider the encoder, which uses a non-linear
mapping to turn the input i into a hidden representation e, and given by [143,150]:

e = φ(W ∗ i + b) (1)

where, φ denotes a non-linear activation function (AF). SoftMax, relu, tanh, sigmoid, and
other activation functions are often employed. In the same way, the decoder maps the
hidden representation as follows [143]:

d = φ
(
W ′ ∗ i + b′

)
(2)

In addition to traditional auto-encoders and sparse auto-encoders, there are a few
altered variations available, such as denoising AE, contractive AE, and variational AE.
Vincent et al. have suggested that a denoising AE can be used as training criteria to
learn and extract the essential features, which can yield an efficient high-level feature
from the input [151]. An explicit regularizer is introduced to the objective function of a
contractive AE, forcing the model to grasp an encoding that is resilient to minor input value
fluctuations. The variational auto-encoder is a type of generative model that is classified as
an auto-encoder because of its architectural similarity to the basic auto-encoders [152]. The
deep auto-encoders offer many advantages, like [143]:

• Deep AE facilitates the reduction in the computational power required for the repre-
sentation of some functions.

• Deep AE facilitates the reduction in the computational training data required for
learning some functions.

AEs are trainable in an unsupervised way. The stacked denoising AE (SDA) can offer
an efficient pre-training solution. The model is trained by instantiating the weights of a
DNN. When the SDA has been trained layer-by-layer, the auto-encoders’ parameters can
be used to initialize all of the DNN’s layers. Then, on the labelled training data, supervised
fine-tuning is used to reduce the prediction error. To map the output of the final layers to
the targets, a SoftMax layer is typically placed on top of the AE-based structure; Figure 10
illustrates this step. The pretraining method using SDA improves the convergence speed
of the DNN models compared to the random weight initialization. Training of the DNN
includes issues like vanishing/exploding gradient problems. This is due to the commonly
used nonlinear activation functions (tanh or sigmoid). As a result, auto-encoder-provided
unsupervised training is valuable and effective.
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4.3. Convolutional Neural Network

The visual cortex of the human brain is the inspiration for the convolutional neural
network (CNN), which was first proposed by LeCun [153] for image processing. The
CNN has found its application in multiple domains, including image segregation, speech
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recognition, object recognition, and many more. The CNNs are analogous to traditional
ANNs as they also consist of neurons that self-optimize through learning. Like ANN, CNN
is also composed of multiple layers, including an input layer, hidden layer, and output
layer. In the CNN, the layers performing convolution operations are the hidden layers.
The CNN is mainly composed of the convolutional layers (CLs), pooling layers (PLs), and
fully-connected layers (FCLs) [126]. Figure 11 gives a simple architecture of CNN. The
details of these layers are given below:

• CL: This is the core component of a CNN. The majority of the computation occurs in
this block only. The input to this layer is the tensor with shape (number of images) ×
(image height) × (image width) × (input channels). The name convolution comes
from the mathematical operation, termed ‘convolution’, in this layer. Convolution is a
linear operation in a CNN that performs a weight multiplication with the input. The
CNNs have traditionally been designed for 2-D inputs, with multiplication occurring
between a 2-D array of input data and a 2-D array of weights, also known as a kernel or
filter. The size of the kernel is a fraction of the input data. Between the filter-sized input
matrix and the filter, the dot product is utilized, which is then summed to provide a
single value. The tiny-sized filter allows the input array to multiply the same filter
(set of weights) several times at various points on the input. The filter is convoluted
all over the input data’s portion/segment/patch. This is conducted left-to-right and
top-to-bottom. The multiplication of the filter and input yields a single value. The
input filtering is characterized as a 2-D array of output values obtained by repeatedly
applying the filter to the input array. Consequently, a 2-D array obtained through
this operation is referred to as a “feature map”. The values in the feature map are
passed through a non-linearity, such as a Rectified Linear Unit (ReLu), once it has been
developed [143]. It can be explained mathematically in the following way:

G[m, n] = (f ∗ h)[m, n] = ∑
j

∑
k

h[j, k]·f[m− j, n− k] (3)

where f denotes the input array, h denotes the kernel, j and k denote the input matrix
size, and m and n represent the row and column indices of the resultant matrix.

• PL: The PL performs the down-sampling operation, typically applied after a convo-
lution layer. This helps in achieving spatial invariance. It prevents overfitting by
aggressively lowering the spatial dimension of the network’s representation to de-
crease the quantum of the parameters and calculations. As it computes a constant
input function, it introduces no parameters. In general, max and average pooling are
often used in the analysis. Each pooling operation in the max pooling scheme selects
the current view’s maximum value. Similarly, each pooling action in average pooling
averages the current view’s value.

• FCL: Similar to conventional neural networks, the FCL neurons are fully connected to
the preceding layer. Consequently, a matrix multiplication followed by a bias offset
can be utilized to calculate their activations.
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4.4. Recurrent Neural Network

A recurrent neural network (RNN) is an AI algorithm that performs efficiently on the
time series or sequential data. A RNN is well-suited for a variety of problems, like language
transformation, natural language processing, voice recognition, and picture captioning.
It has found applications in famous applications, like Siri and Google translator. The
RNNs, like feedforward and CNNs, learn from training input. They are distinguished by
their “memory”, which enables them to alter the present action and output by employing
information from previous inputs. The RNN differs from other DL algorithms in that
its output is reliant on the preceding elements of the input sequence. RNNs use the
backpropagation through time (BPTT) technique, which is fundamentally different from
traditional backpropagation because it is tailored to sequence data in order to determine
the gradients. Traditional backpropagation employs the same concepts as BPTT, wherein
the model self-trains by computing the errors from its output to its input layer. These
computations allow for the precise modification and adjustment of the model’s parameters.
BPTT varies from conventional techniques in that errors are accumulated at each time step,
whereas feedforward networks do not need to accumulate total errors [143]. This is because
feedforward networks do not share parameters between layers. Figure 12 shows the basic
structure of a RNN.
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5. Deep Learning for the PHM of Rotating Machinery of Industrial Robots

This section discusses the existing deep learning framework-based PHM of the rotating
machinery of IRs. The existing deep learning frameworks for PHM are discussed in the
following sections.

5.1. Deep Belief Network for PHM

The DBN is among the most popular algorithms in the domain of PHM. It is among
the first models employed for the PHM strategy. Dash et al. [154] (p. 20) developed a
DBN-based probabilistic generative model to detect robotic manipulator failure. Failures
have been identified at every position and instance of robotic manipulators using the
DBN-based model. Elsewhere, Chen and Li proposed a DBN-based model that utilizes
the features extracted with the help of auto-encoders from the vibration data for bearing
FDT [155]. Ren et al. propounded a FDT methodology using DBN models [156]. The DBN
model was trained on historical datasets and applied to real-time measurement data to
generate outputs. These outputs and measurements were used to extract residuals, and
based on the adaptive threshold for the residuals, faults were detected in the complex
system. Xing et al. proposed an invariant DBN model for gear-FDG with the help of
raw vibration data [157]. The propounded fault diagnosis model learned the distributed-
invariant features directly, utilizing the raw vibration data, and performed the FDG. Jiao
and Zheng proposed a combination of the DBN-based model and wavelet transformation
of the vibration signals for the fault diagnosis of industrial robots [158]. The vibration
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signal was denoised, decomposed, and reconstructed using the wavelet transformation.
The normalized eigenvector was developed and used to input the DBN-based model.
Elsewhere, Ji et al. proposed a methodology for the FDG of the reducers of industrial
robots with the help of the deep-level probability-directed graph DBN model [159]. Shao
et al. proposed a FDG technique using a DBN-based model for the motors used in the
manufacturing process [160]. The DBN model comprises the stacked RBMs (as shown in
Figure 13) and is trained with the help of a layer-by-layer pre-training method. This model
assesses the motor’s health by automatically learning aspects from the sensor data. Most of
these methods still require hand-crafted features and efficient signal processing techniques.
These dependencies restrict the model’s performance. The training of DBN-based models
is cumbersome, and tracking the loss function is challenging. It also limits the provision of
end-to-end learning solutions for fault diagnosis and prognosis.
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process [160].

5.2. Deep Boltzmann Machine for PHM

The Deep Boltzmann machines are powerful DL models that conduct the interpre-
tation and training process in cooperation with the bottom–up and top–down directions.
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This helps improve the representation of the input features. Despite being a powerful
deep learning model, limited works are related to the DBM-based PHM strategies. Else-
where, Hu et al. proposed a FDG approach for industrial fault diagnosis that included the
DBM and multi-grained scanning forest ensemble [161]. Deng et al. proposed a bearing
FDG employing the DBM-based FDG paradigm [162]. The time and frequency domain
features were retrieved and fed into the DBM-based model as input. Li et al. used the
Gaussian–Bernoulli DBM for high-level feature development using the vibration data
in three modalities [163]. Figure 14 illustrates the design of the purported framework,
and three distinct modalities were fed to the Gaussian–Bernoulli DBM for gearbox FDG.
A SVM classifier was utilized to fuse the representative features and perform the fault
classification. This approach has been verified on both spur and helical gearboxes. Wang
et al. purported the Gaussian–Bernoulli DBM for compressor health management in smart
manufacturing [164]. The DBM Gaussian neurons were used to pre-process the vibration
signals for health management, and the created model was able to infer the complicated
features from the input sequence. Hyperparameter optimization was carried out using the
Particle Swarm Optimizer algorithm. Also, a tailored Liu–Storey conjugate gradient algo-
rithm was used to improve the convergence rate. The application of DBM-based models
requires intensive computation, and conducting a weight update is challenging. However,
DBM-based models also have advantages, like efficient learning of complex representations
and good uncertainty propagation. Mitrevski and Ploger [165] have proposed robot fault
detection and diagnosis using the DBM-based model.
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5.3. Auto-Encoder for PHM

Auto-encoders are very popular in the PHM field, and have been extensively used
by researchers for FDG and FP. Hong et al. presented a FDG approach for multi-joint
industrial robots using a deep sparse auto-encoder model using an attitude dataset [167].
A test rig was used to help create the dataset, and analysis was performed on the results.
Reference [166] proposed a fault diagnosis approach for the industrial robot using the
sliding-window convolutional variational auto-encoder-based model and multivariate time
series data. Figure 15 shows the framework of this approach, where the input data is x(t)

with a time-step of t, and the model output is the reconstruction probabilities of each point
in the sliding window. Xiao et al. propounded a denoising AE-based model using acoustic
signals for fault diagnosis [168]. Elsewhere, Yun et al. proposed a fault diagnosis approach
for the robot arm using the stacked auto-encoder (SAE)-based FDT framework [169]. Two
stethoscopes were used for sound data acquisition, and feature extraction was performed
using the STFT spectrogram. The auto-encoder model was trained and tested using these
features. Sun et al. developed a FDT approach for induction motors using a sparse AE for
the feature learning from the vibration signals [170]. Partial corruption was added using
the denoising coding and fed into the SAE-based model for feature learning. These features
have been fed to the neural network classifier for fault identification and classification.
In another work, Li et al. proposed an intelligent FDG using a fully connected AE for
bearing FDG [171]. The proposed model imposed a lifespan sparseness on the encoded
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features, and the soft polling method was applied to boost the accuracy and stability. Also,
a dataset was developed by adding Gaussian noise, and the performance was evaluated to
validate the performance in a noisy environment. Sohaib et al. developed an approach for
the FDG approach for rotary machine bearings with the SAE model [172]. The complex
envelope spectrum aided in making the frequency component more distinct in the signal
and facilitated efficient feature extraction from the given input signals. Also, automatic
feature extraction helped in tackling the problems associated with manual feature extraction
and selection. AE-based approaches require a dedicated classifier for fault diagnosis. These
approaches require a high computational cost, and selecting the specific features for the
fault diagnosis is challenging. However, AE-based techniques also offer advantages, like
flexible architecture, dimensionality reduction, and no requirement for labeled data.
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5.4. Convolutional Neural Network for PHM

The CNN is efficiently used in PHM due to its excellent automatic feature learning
capabilities and segregation capabilities. Chen et al. developed a CNN-based FDG model
for the heavy-duty industrial robot system [173]. A FDT model was designed with a se-
ries combination of spectrum calculation fault diagnosis networks. Elsewhere, Kim et al.
suggested a FDG methodology for industrial robot servo systems utilizing multiple sensor
signals as an input to the one-dimensional CNN model [174]. Figure 16 shows the frame-
work, and it is comprised of one plain convolutional block, three stacked residual blocks
with a skip connection, a global average pooling (GAP) layer, and two fully connected
layers. Also, the model was validated on the Case Western Reserve University (CWRU)
data and the IMS bearing database of the University of Cincinnati. Yang et al. developed
a FDT technique for the rotating vector reducer for industrial robots using a CNN-based
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model [175]. Meanwhile, Ma et al. [176] suggested a FDT methodology for the industrial
robot by employing the one-dimensional CNN and data improvisation through random
sampling and mix-up data augmentation. The dataset includes the torque, speed, position,
and current data of the robot. Li et al. proposed a multi-axis IR FDG approach using the
multi-label one-dimensional CNN [177]. Elsewhere, Liu at al. proposed a dilated CNN
model for the cross-axial industrial robotics FDG [178]. The sliding window and key feature
extraction method pre-processed the input data. These data are fed to the dilated CNN
model for feature mining, and the self-attention network is used for its feature attention
capability. Lu et al. propounded a dual-module attentive CNN for industrial robot fault
diagnosis [179]. Two parallel CNN models with different attentions were capitalized for
feature learning, and the features were fused for efficient fault diagnosis. In another work,
Janssens et al. proposed a CNN-based technique for different types of bearing faults and
rotor imbalances [180]. The CNN-based FDT approach helped eradicate the need for manu-
ally engineered features like the ball pass frequencies of the raceway, kurtosis, RMS, and
variance. It demonstrated that a CNN-based feature learning system outperforms classic
feature-engineered techniques. Plakias et al. developed an attentive dense CNN fault diag-
nosis technique for bearings [181]. The attentive deep CNN model considers the temporal
coherence of the data, which helps to improve the feature learning. Cheng et al. developed
a FDT technique for rotating machinery using the CNN model and continuous wavelet
transformation [182]. The proposed model used a local binary convolutional layer for faster
training and to avoid overfitting issue. The model was tested on the bearing faults and
gearbox compound FDG. Guo et al. developed a CNN-based FDT approach for rotating
machinery employing the continuous wavelet transformation of vibration signals [183].
Also, the model was tested on different pieces of rotor equipment for validation of the
proposed methodology. Liang et al. purported an intelligent FDT approach for rotating
machinery using the combination of the wavelet transformation, generative adversarial
nets, and CNN [184]. The wavelet transformation was used to obtain the time–frequency
image characteristics from the one-dimensional raw signals. Generative adversarial nets
were employed to develop the training images, and the CNN model was used for FDT.
Li et al. propounded a FDG approach for rotating machinery with the amalgamation
of the DBN and one-dimensional CNN [185]. The DBN was created by combining the
three RBMs for high-dimensional data feature abstraction and dimensionality reduction.
For FDG, these low-dimensional features are loaded into a one-dimensional CNN model.
To evaluate the effectiveness of the model, the proposed approach was applied to two
experimental datasets. These CNN-based methods facilitate efficient feature extraction and
safeguard spatial information. Also, the performance of these models relies on parameter
initialization and lacks global feature extraction capabilities.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 37 
 

 

signals as an input to the one-dimensional CNN model [174]. Figure 16 shows the frame-

work, and it is comprised of one plain convolutional block, three stacked residual blocks 

with a skip connection, a global average pooling (GAP) layer, and two fully connected 

layers. Also, the model was validated on the Case Western Reserve University (CWRU) 

data and the IMS bearing database of the University of Cincinnati. Yang et al. developed 

a FDT technique for the rotating vector reducer for industrial robots using a CNN-based 

model [175]. Meanwhile, Ma et al. [176] suggested a FDT methodology for the industrial 

robot by employing the one-dimensional CNN and data improvisation through random 

sampling and mix-up data augmentation. The dataset includes the torque, speed, position, 

and current data of the robot. Li et al. proposed a multi-axis IR FDG approach using the 

multi-label one-dimensional CNN [177]. Elsewhere, Liu at al. proposed a dilated CNN 

model for the cross-axial industrial robotics FDG [178]. The sliding window and key fea-

ture extraction method pre-processed the input data. These data are fed to the dilated 

CNN model for feature mining, and the self-attention network is used for its feature at-

tention capability. Lu et al. propounded a dual-module attentive CNN for industrial robot 

fault diagnosis [179]. Two parallel CNN models with different attentions were capitalized 

for feature learning, and the features were fused for efficient fault diagnosis. In another 

work, Janssens et al. proposed a CNN-based technique for different types of bearing faults 

and rotor imbalances [180]. The CNN-based FDT approach helped eradicate the need for 

manually engineered features like the ball pass frequencies of the raceway, kurtosis, RMS, 

and variance. It demonstrated that a CNN-based feature learning system outperforms 

classic feature-engineered techniques. Plakias et al. developed an attentive dense CNN 

fault diagnosis technique for bearings [181]. The attentive deep CNN model considers the 

temporal coherence of the data, which helps to improve the feature learning. Cheng et al. 

developed a FDT technique for rotating machinery using the CNN model and continuous 

wavelet transformation [182]. The proposed model used a local binary convolutional layer 

for faster training and to avoid overfitting issue. The model was tested on the bearing 

faults and gearbox compound FDG. Guo et al. developed a CNN-based FDT approach for 

rotating machinery employing the continuous wavelet transformation of vibration signals 

[183]. Also, the model was tested on different pieces of rotor equipment for validation of 

the proposed methodology. Liang et al. purported an intelligent FDT approach for rotat-

ing machinery using the combination of the wavelet transformation, generative adversar-

ial nets, and CNN [184]. The wavelet transformation was used to obtain the time–fre-

quency image characteristics from the one-dimensional raw signals. Generative adversar-

ial nets were employed to develop the training images, and the CNN model was used for 

FDT. Li et al. propounded a FDG approach for rotating machinery with the amalgamation 

of the DBN and one-dimensional CNN [185]. The DBN was created by combining the 

three RBMs for high-dimensional data feature abstraction and dimensionality reduction. 

For FDG, these low-dimensional features are loaded into a one-dimensional CNN model. 

To evaluate the effectiveness of the model, the proposed approach was applied to two 

experimental datasets. These CNN-based methods facilitate efficient feature extraction 

and safeguard spatial information. Also, the performance of these models relies on pa-

rameter initialization and lacks global feature extraction capabilities. 

 

Figure 16. Residual CNN framework for fault diagnosis in industrial robots [174].



Mathematics 2023, 11, 3008 21 of 37

5.5. Recurrent Neural Network for PHM

The RNN provides the inherent advantage of retaining the temporal information of
the time–series data. This property of the RNN is advantageous for PHM as it retains
the information throughout the training. The RNN can recall temporal dependencies and
understand the failure’s dynamic comportment. Vanilla RNNs (basic RNNs), on the other
hand, are unable to learn long-term temporal dependencies due to the vanishing/exploding
gradient problem. Gradient clipping is a technique that uses a threshold value to restrict
the magnitude of a gradient. Various gating strategies have been proposed to deal with the
vanishing gradient. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are
the two most well-known RNN versions for dealing with these problems. For example, An
et al. developed a bearing FDT method with the help of an RNN-based FDT model [186].
Figure 17 shows a framework of the propounded model and training strategy. The input
network extends the dimensions of the input, LSTM cells have been used for the recurrent
framework, and hidden inputs are used as an input to the two-layer network. Also, the
physical interpretation of the network learning was given with the help of the maximum
mean discrepancy and t-SNE [187]. Zhang et al. developed an RNN-based FDT model for
rotating machinery [188]. GRU is used to extract temporal information from the time–series
data and to learn the relevant attributes from the produced images. Finally, MLP is used to
implement FDT. Liu et al. propounded a FDT method for the rolling element bearing using
the recurrent neural network [189]. The reconstruction error between the output data and
the following period data was utilized to detect and categorize different fault kinds after the
vibration signals were employed as an input to the GRU-based denoising AE-based model.
Elsewhere, Jaing et al. developed a bearing FDT method using the deep RNN model [190].
The frequency signals are used to construct the input data without the manual feature
development, and the adopted DL strategy was applied for the training process. Qiao et al.
suggested a FDT model through the combination of the CNN and LSTM for bearing fault
diagnosis [191]. The spatial sequence characteristics were extracted from the input signal
by the model’s convolution and LSTM layers, and the final classification was performed by
the dense layers. Also, the model was substantiated on the public domain data sets of the
CWRU. Meanwhile, Oh et al. proposed a bearing fault diagnosis of the rotating machinery
using the combination of a denoising AE and a multi-scale convolution RNN [192]. The
denoising AE is used to pre-process the data, and the multi-scale convolution RNN is
applied to categorize the bearing defects. Li et al. [193] proposed a mobile robot bearing
FD using the DWT and LSTM models. The vibration signals were decomposed into six
frequency bands for the bearing FD task. Zhi et al. [194] developed a FD model for harmonic
reducers, which is a key component of IRs. A combination of the CNN and LSTM has been
employed for the FD using the wavelet regional correlation threshold denoising algorithm.
Wang et al. [195] proposed a FD method for the motor drive system of IRs, where the
CNN has been used for the feature extraction and LSTM for the prediction of the system’s
health. RNN-based approaches are among the most efficient methods for RUL estimation.
The RNN is well suited to time–series data and sequential data. The conventional RNN
structure often suffers from the vanishing gradient problem. However, a modified version
of the RNN, like LSTM, helps solve the vanishing gradient problem. The training time of
these models requires a long duration, and the structures are often complex. Generally,
these models do not support parallel computing. Overall, a few DL-based PHM strategies
have been encapsulated in Table 2.
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Table 2. PHM Methods with DL-based strategies.

PHM Methods Based on Deep Learning Methods

Reference Dataset Datatype Model Accuracy

Fault
diagnosis

Sohaib et al. [196] CWRU bearing data Vibration SAE-DNN 99.5%

Xu et al. [197]
CWRU and Xi’an Jiaotong
University (XJTU-SY)
bearing data

Vibration Wavelet
Transform-CNN 99.4%

Hoang and Kang et al. [198]
KAT bearing dataset by
Paderborn University,
Germany

Current CNN 99.47%

Li et al. [199] CWRU Vibration CNN-LSTM 99.74%

Chen et al. [200]
Gear Box Vibration DBM 99.94%
Gear Box Vibration SAE 99.55%
Gear Box Vibration DBN 98.73%

Chen et al. [201] CWRU Vibration Cyclic Spectral
Coherence-CNN 98.93%

Verstraete et al. [202] CWRU Vibration 2D-CNN 99.9%

Liu et al. [203] Test setup with motor and
faulty bearings Vibration STFT-SAE 97.84%

Shi et al. [204] UNSW planetary test rig Vibration
Bidirectional-
convolutional
LSTM

95.83%

Ravikumar et al. [205] Test setup with IC engine
gearbox Vibration Stacked LSTM 94.33%

Chen et al. [173] IR system Current Improved CNN 99.59%
Long et al. [206] IR system Attitude data SAE-SVM 96.74%

Fault
prognosis

Kamat et al. [207] PRONOSTIA bearings
dataset Vibration AE-LSTM 90%

Wang et al. [208] PRONOSTIA bearings
dataset Vibration Spatiotemporal-

3DCNN 98.25%

Ding et al. [209] NASA IMS dataset Vibration Deep CNN 0.0052 (RMSE)

Li et al. [210] Test setup with milling
machine Current LSTM 0.0950 (RMSE)

Qin et al. [211] Test setup with gear Vibration
Macroscopic-
microscopic
attention LSTM

0.142 (NRMSE)
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6. Discussion, Challenges and Future Aspects of PHM

Prognostics and Health Management using DL has proved to be a fast-growing field,
with a lot of studies being conducted on it worldwide. It has brought significant im-
provement and has proven to be a key technology to improve system reliability. A good
PHM strategy provides strong economic benefits, minimum downtime, and maximum
productivity. The main objective that the PHM system must accomplish, depending on
the applications, poses challenges for their requirements. The most obvious ones are ac-
curacy and precision. It needs to be quantified with the set of performance indicators
and evaluated against their decision-making. In certain instances, incredibly superior
accuracy and precision are essential to making a confident decision. Such a decision may
include stopping a system in case of a warning of FDT, replacement of the component
upon FDG, and delaying or predicting planned maintenance based on the RUL estimations.
High levels of precision and accuracy might not be necessary in some circumstances, and
they might conflict with other goals. In some circumstances, the decision-making in the
crucial applications of the IR systems depends on the transparency, explicability, and inter-
pretability of the PHM models. PHM solutions offer a practical and intelligent approach
to condition-based maintenance and preventive maintenance, but they also have some
security flaws. The PHM’s technological foundation is made up of numerous devices and
different communication protocols. There is always an issue of data integrity, data privacy,
and substantiation. These issues are required to be properly addressed to ensure the ro-
bustness and efficiency of the PHM solution. Inaccurate PHM models, data availability
issues, limited knowledge of the machine’s current state, randomness in the machine’s
future usage profile, and unreliable sensor data values are some issues that arise when
using PHM in real-world applications. Also, it is crucial to understand the feasibility of
the different sensor signals and signal analysis used for the PHM of IRs. This has been
included in Table 3 to demonstrate the signals used, along with the signal processing tools
and their pertinency.

Moreover, the characteristics of the rotating machinery in IRs and traditional rotating
machinery can differ in a number of ways. Some of the differences are given below:

• Dimension and scale: Compared to conventional rotating machinery, IRs often possess
smaller, more compact rotating machinery. Traditional rotating machinery can be
substantially larger in size and have higher power ratings, such as large-scale industrial
machinery or power generation turbines. Industrial robots, on the other hand, need
smaller motors and systems to carry out their specialized tasks quickly and accurately.

• Operating Speed and Precision: Due to the high-speed, precise tasks that IRs are
built for, their rotating machinery must operate with outstanding speed and control
precision. These robots frequently carry out actions that require the quick acceleration
and deceleration of the rotating components.

• Duty Cycle and Constant Operation: IRs frequently work in cycles or sequences,
carrying out particular tasks intermittently with brief spikes in activity. Their rotating
equipment must be able to resist repeated start-stop cycles and adjust to different load
scenarios. Turbines used in power generation or other types of conventional rotating
machinery frequently run continuously for long periods of time without undergoing
repeated start-stop cycles.

• Maintenance and Serviceability: The frequent and demanding actions of industrial
robots necessitate frequent maintenance and service. These robots’ rotating machin-
ery needs to be built with access points for inspections, lubrication, and component
replacement in mind. Depending on their individual applications, traditional rotat-
ing machinery may have distinct maintenance needs that necessitate more involved
maintenance processes and extended downtime intervals.
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Table 3. Signals and signals processing applicable to the PHM of IRs with their applicability.

Article Signal Signal Processing Feasibility

[212] Encoder

Singular spectrum analysis (SSA)
Hilbert transform (HT)
Empirical mode decomposition
HT (EMDHT)

Easy availability of signal
Simple to apply

[213] Vibration Wavelet transform (WT) Signal easily accessible with sensors
Highly feasible

[214] Vibration WT Signal easily accessible with sensors
Easy to apply

[215]
Acoustic
Emission
(AE)

WT

Easily accessible
Signal interpretation is cumbersome
High background noise
Generalization is difficult

[216] Current WT
Non-intrusive approach
Highly feasible
Multi-resolution analysis

[217] Vibration Discrete WT
Multi-resolution analysis
Localization of Fault Signatures
Noise Suppression

[218] Vibration Continuous WT

Time-Frequency Localization
Continuous Frequency Coverage
Adaptability to Signal Variability
Improved Accuracy in Transient
Detection

[48] Current Statistical analysis
Simple applicability
Efficient feature development
Feature selection needs expertise

[56] Current Discrete WT
Non-invasive approach
Early fault detection
Real-time monitoring

[219] Vibration Discrete WT
Multi-resolution analysis
Localization of Fault Signatures
Efficient feature extraction

[69] Vibration
Short-time Fourier Transform
(STFT)
Wavelet decomposition

Time-Frequency localization
Simplicity and Computational
Efficiency

[220] Current
STFT
Wavelet packet decomposition
(WPD)

Non-invasive approach
Early fault detection
Wide applicability
Cost effective

[221] Vibration Discrete WT
Multi-resolution analysis
Localization of Fault Signatures
Interpretability

[222] Vibration STFT
Efficient Frequency Resolution
Interpretability
Fast computation

[169] Vibration STFT
Efficient Frequency Resolution
Noise suppression
Easy to implement

Deep learning has brought significant improvements to the PHM approaches by learn-
ing complex representations of the data. The capability of DL frameworks to automatically
extract and learn features provides an edge over the conventional machine learning models.
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Despite multiple advantages, DL-based PHM still has a long way to go. The DL algorithms,
like RBM, DBN, DBM, AE, CNN, and RNN, have brought significant improvements to the
PHM strategies. Table 4 compares the different DL algorithms. The algorithms are chosen
based on the type and availability of the data. Only a small amount of research work is
available for the PHM strategies with DL applications for industrial robots. However, many
PHM strategies with DL applications for rotating machinery are available. In recent years,
researchers worldwide have used DL algorithms for FDT, FDG, and FP. The DL algorithms
have challenges associated with them too. Many improvements are needed for industrial
acceptance of the PHM strategies with DL algorithms, and questions need to be answered.
Here are some of the important aspects of the DL-based PHM strategies:

• Data insufficiency: In the real-time environment, the unavailability of a large amount
of data is the major hurdle that restricts the application of PHM strategies with DL
algorithms. It is well-known that DL algorithms require a substantial volume of
data, and that the availability of large volumes of data is not feasible. Some of the
established DL frameworks, like VGG16, VGG19, ResNe-50, and InceptionResNet-v2,
have used millions of images for training [223–225]. However, in a real-time context,
such a massive amount of data is not feasible. Researchers have used techniques
like data augmentation to increase the training samples in the training datasets by
developing synthetic data. Basic data augmentation methods like window cropping,
wrapping, and flipping can be applied to time-series data to create a variety of data
structures [226]. Generic algorithms are also frequently used to create new data that is
similar to the original data. In some cases, new GMs are used to construct the linked
time-series data, keeping the temporal dependency of the original data. Researchers
have also looked into the concept of transfer learning to address the data insufficiency
problem for FDG and FP [227,228]. Many new innovations are coming, and they will
aid in improving the PHM strategies with DL applications.

• Data quality: The performance of any artificial intelligence-based model relies heavily
on the data quality. The success and efficiency of DL-based PHM strategies depend
heavily on data quality. The availability of cloud computing, the industrial internet of
things, and intelligent sensors have aided in collecting an enormous amount of data.
However, the growing volume of data brings included noises and disturbances. Also,
the ambient and operating conditions affect the quality of the data. In industrial data,
there are the problems of data duplicity, unlabeled data, imbalanced data, and many
more. These concerns have not been addressed thoroughly in most of the available
research works. Also, the majority of solutions focus on a minimally imbalanced
scenario, ignoring the problems associated with the substantially under-represented
instances, which are common in real-world industrial workplaces. Furthermore, real-
world data is generally unstructured, multi-modal, and diverse, making the model far
more challenging. More attention is required in the future for developing a generic
deep model that can work on diverse data without sacrificing the training efficiency.

• Data pre-processing: This is among the most crucial components of an AI-based
model’s effective performance. It is crucial for both machine learning and DL models.
The model’s success is mainly reliant on the condition of the input data. Pre-processing
includes data normalization, the removal of data duplicity, and standardization. It also
includes tackling incomplete data problems, outliers and missing values, and labeling
data. In certain cases, signal processing tools, like FFT, STFT, wavelet transformation,
and Hilbert–Huang transformation, are also used to process the input signals. In the
future, research will be required to build a standardized approach for pre-processing
data prior to their input to the AI-based model.

• Model selection and explainability: The appropriate DL framework selection is one
of the vital steps for the development of an efficient PHM strategy. There are many
DL algorithms, and choosing the appropriate model based on the available data is
critical. Most of the available PHM strategies have been based on the models that
require handcrafted features. These models are prone to errors and lack generalization
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capabilities. The application of DL algorithms has helped to resolve the problems
associated with the handcrafted features. However, setting up the hyper-parameters of
the DL-based model is itself a big challenge. There are only a few papers that deal with
setting up the DL models and their hyper-parameters’ optimization. There is a need to
develop a strategy that would allow the autonomous optimization of models and their
hyper-parameters as per the given input data. This can be investigated in the future.
Despite the good performance of DL models for PHM strategies, the acceptance of
such an approach has a lot of roadblocks. The DL models are like black box models
and lack interpretability. The decision-making part of PHM is heavily dependent on
the DL models. However, only a few papers have dealt with the interpretability and
explainability of DL models for PHM [126]. There is a need to develop a PHM strategy
with DL applications, but with transparency, interpretability, and explainability.

Table 4. Pros and cons of DL-based PHM.

Algorithms Pros Cons

DBN
[78–80]

Global feature extraction possible Training is cumbersome

Supports dimensionality reduction Tracking loss function is difficult

Can work on less data Parameters optimization is difficult

DBM
[161,163]

Can learn internal representation Weight update is difficult

Robust to ambiguous inputs Slow training

CNN
[36,96,98,115]

Excellent feature extraction properties Cannot obtain global features

Supports multiple dimension data Cannot interpret time dimension
information

Auto-encoder
[166,168]

Unsupervised learning Requirement of dedicated classifier
for fault diagnosis

No label data requirement High data requirement

Supports dimensionality reduction Difficult to determine the importance
of data

Supports flexible framework Selecting specific features not possible

Availability of multiple forms No interpretability

RNN
[109,111–113]

Performs well on sequence problem Slow training speed

Capitalizes the time dimension of
input data No parallel computing

Supports unlimited input length data Problem of vanishing gradient

The application of PHM to IRs offers several challenges. It can be more difficult
compared to applying it to the other rotating machines or components. Some of the
challenges pertaining to the PHM of IRs are listed below:

• Industrial Robots’ Complexity: IRs are sophisticated systems with numerous vulnera-
ble parts. This makes it challenging to gather and examine the data that might be used
to anticipate problems.

• Dynamic Operating Conditions: IRs are frequently utilized in a range of settings
with various operating circumstances. Because of this, creating PHM models that can
correctly forecast failures under all operating circumstances can be challenging.

• Lack of Sufficient Training Data: For the development of reliable FDT and prediction
models, it can be difficult to obtain enough labelled training data. In IR systems,
labelled data collection can be time-consuming and expensive for different fault sce-
narios. Furthermore, gathering data for uncommon or catastrophic failure situations
might be very difficult.
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• Adaptability and Generalization: Systems for IRs might differ greatly in terms of their
models, configurations, and working environments. PHM systems must be flexible
and able to be generalized to various robot kinds and settings. To achieve dependable
and scalable PHM, it is challenging to create models and algorithms that can adjust to
differences in robot systems, including changes in the load, operational conditions, or
task requirements.

Deep learning algorithms in PHM systems built on the DL framework have a number
of possibilities for development. The following are some ideas for potential enhancements:

• Model Architectures: The performance can be enhanced by investigating and creating
new model architectures designed specifically for PHM workloads. This entails
creating deep neural networks with specialized layers, such as recurrent or attention
processes that can efficiently capture temporal dependencies and persistent patterns
in the sensor input. In order to capture complicated interactions in multi-modal or
graph-structured data, architectural innovations like transformer models or graph
neural networks can also be researched.

• Uncertainty Quantification: DL models often lack the ability to provide reliable un-
certainty estimates, which is crucial for decision-making in PHM systems. Model
uncertainty can be better understood and characterized by including uncertainty quan-
tification approaches, like Bayesian deep learning or Monte Carlo dropout. As a result,
it will be easier to spot circumstances when the model’s predictions may not be as
accurate and make the appropriate decisions.

• Robustness to Adversarial Attacks: Small changes in the input data can cause inaccu-
rate predictions or misclassification in deep learning models, making them vulnerable
to adversarial attacks. To increase the resilience of deep learning models in PHM
systems, adversarial robustness strategies might be investigated, such as adversarial
training or input regularization. With the help of these methods, models should be
more resistant to adversarial examples and perform consistently, even when there are
subtle attacks or data abnormalities present.

PHM is a promising technology that has the potential to increase the dependability
and uptime of industrial robots despite these difficulties. The technology is anticipated
to become more accessible and less expensive as it advances. As a result, PHM will be
a more appealing option for more producers. IR prognostics and health management
is a developing field with a number of promising future developments. Future PHM
capabilities for industrial robots include the following:

• Real-time Monitoring and Adaptive Control: Future PHM systems for IRs will place a
strong emphasis on real-time monitoring and adaptive control techniques. Continuous
assessment of the robot’s health is made possible via real-time monitoring, allowing
for the quick identification and remediation of any potential problems. In response to
recognized flaws or degradation, adaptive control approaches can modify the robot’s
operational settings or control algorithms, improving the performance and lowering
the likelihood of failure.

• Human–Robot Collaboration and Safety: Collaboration between people and robots in
shared workspaces will rise in the future of industrial robotics, as will safety concerns.
The safety and wellbeing of human operators will be greatly enhanced by PHM
systems. PHM systems can initiate safety routines, such as reducing the robot speed,
changing the motion trajectories, or shutting down the robot in critical conditions, by
monitoring the robot’s health and identifying probable defects. For the creation of
secure and effective human–robot collaborative environments, this PHM feature will
be crucial.

• Predictive Maintenance and Spare Parts Management: Predictive maintenance and
improved spare parts management are the future directions for PHM systems for
IRs. These systems can calculate the remaining useful life of crucial components and
schedule maintenance procedures appropriately by utilizing predictive models and
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real-time monitoring. This method ensures that IR systems operate well by minimizing
unplanned downtime, lowering the maintenance costs, and optimizing the spare parts
inventory.

• Cloud Computing and Remote Monitoring: The use of cloud computing and remote
monitoring tools will make it possible to centrally monitor and analyze a number
of IRs spread out across several places. Distributed robot data can be gathered and
analyzed via cloud-based PHM platforms, enabling benchmarking, trend-tracking,
and comparison analysis. Experts can remotely monitor and help with IR system
troubleshooting thanks to remote access and diagnostics, which promote proactive
maintenance and support.

• Big Data Analytics and Deep Learning: IR sensor data is becoming more widely avail-
able, creating new opportunities for using big data analytics and DL methods. Large
amounts of sensor data can be analyzed to find patterns and anomalies that improve
issue identification and diagnosis. On the basis of the previous data, DL algorithms
can be trained to create predictive models that can foretell errors or performance
declines in the future. PHM systems for IRs may be more accurate and reliable when
using this data-driven approach.

7. Conclusions

This paper has presented a review of the PHM strategies with different deep learning
algorithms. The application of different DL algorithms, like RBM, DBN, DBM, AE, CNN,
and RNN, in PHM for the rotating machines of industrial robots has been discussed,
along with the brief theoretical aspects of the algorithms. DL algorithms have significantly
improved the performance of the PHM strategies. However, the industrial application of
such approaches requires further improvement in terms of the high data requirements,
required computational power, and model optimization. The optimization of deep models
is a difficult task and involves significant improvements to be made. With the availability
of an enormous volume of data with intelligent sensors, cloud computing, and IIoT, PHM
with DL algorithms for industrial robots and its rotating machinery is undergoing a huge
boost. PHM for industrial robots has a very bright future. The following possibilities could
arise as technology advances:

• More Accurate and Reliable Predictions: DL algorithms will grow more potent and
sophisticated, enabling us to make forecasts regarding the health of industrial robots
that are more dependable and accurate. Less unplanned outages and downtime will
result from this, which will increase productivity and save organizations money.

• Improved Decision-making: PHM systems will provide industries with better data
concerning the condition of their robots, enabling them to choose more wisely between
maintenance and repairs; operations will become more effective and efficient as a
result.

• Earlier Detection of Failures: Early failure detection using PHM systems will provide
companies more time to take corrective action. Catastrophic failures, which can be
expensive and harmful, will be less likely as a result.

Moreover, there is also a need to develop an effective, transparent, interpretable, and
explainable PHM approach with DL applications for the rotating machinery of industrial
robots.
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40. Pech, M.; Vrchota, J.; Bednář, J. Predictive maintenance and intelligent sensors in smart factory. Sensors 2021, 21, 1470. [CrossRef]
[PubMed]

41. Khalid, S.; Hwang, H.; Kim, H.S. Real-world data-driven machine-learning-based optimal sensor selection approach for
equipment fault detection in a thermal power plant. Mathematics 2021, 9, 2814. [CrossRef]

42. Khalid, S.; Song, J.; Raouf, I.; Kim, H.S. Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of
Intelligent Techniques. Mathematics 2023, 11, 1767. [CrossRef]

43. Moore, R. Making Common Sense Common Practice; Butterworth–Heinemann: Oxford, UK, 2004.
44. Lin, Y.; Li, X.; Hu, Y. Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications.

Appl. Soft Comput. 2018, 72, 555–564. [CrossRef]
45. Booyse, W.; Wilke, D.N.; Heyns, S. Deep digital twins for detection, diagnostics and prognostics. Mech. Syst. Signal Process. 2020,

140, 106612. [CrossRef]
46. Qiao, G.; Weiss, B.A. Advancing measurement science to assess monitoring, diagnostics, and prognostics for manufacturing

robotics. Int. J. Progn. Health Manag. 2016, 7, 013. [CrossRef]
47. Xu, J.; Wang, Y.; Xu, L. PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data. IEEE Sens. J. 2013,

14, 1124–1132. [CrossRef]
48. Raouf, I.; Lee, H.; Kim, H.S. Mechanical fault detection based on machine learning for robotic RV reducer using electrical current

signature analysis: A data-driven approach. J. Comput. Des. Eng. 2022, 9, 417–433. [CrossRef]
49. Siddiqa, A.; Karim, A.; Gani, A. Big data storage technologies: A survey. Front. Inf. Technol. Electron. Eng. 2017, 18, 1040–1070.

[CrossRef]
50. Yang, C.; Huang, Q.; Li, Z.; Liu, K.; Hu, F. Big Data and cloud computing: Innovation opportunities and challenges. Int. J. Digit.

Earth 2017, 10, 13–53. [CrossRef]
51. Nath, A.G.; Udmale, S.S.; Singh, S.K. Role of artificial intelligence in rotor fault diagnosis: A comprehensive review. Artif Intell

Rev 2021, 54, 2609–2668. [CrossRef]
52. Arinez, J.F.; Chang, Q.; Gao, R.X.; Xu, C.; Zhang, J. Artificial Intelligence in Advanced Manufacturing: Current Status and Future

Outlook. J. Manuf. Sci. Eng. 2020, 142, 110804. [CrossRef]
53. Dalzochio, J.; Kunst, R.; Pignaton, E.; Binotto, A.; Sanyal, S.; Favilla, J.; Barbosa, J. Machine learning and reasoning for predictive

maintenance in Industry 4.0: Current status and challenges. Comput. Ind. 2020, 123, 103298. [CrossRef]

https://doi.org/10.3390/math10183233
https://doi.org/10.1016/j.compind.2016.12.008
https://doi.org/10.1109/ACCESS.2016.2587754
https://doi.org/10.1109/ACCESS.2018.2818114
https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/10.1007/s00170-020-05303-z
https://doi.org/10.1007/s00170-021-08047-6
https://doi.org/10.1016/j.paerosci.2021.100758
https://doi.org/10.1016/j.aei.2004.07.005
https://doi.org/10.1016/j.aei.2018.10.006
https://doi.org/10.1016/j.cirp.2015.05.011
https://doi.org/10.3390/s21041470
https://www.ncbi.nlm.nih.gov/pubmed/33672479
https://doi.org/10.3390/math9212814
https://doi.org/10.3390/math11081767
https://doi.org/10.1016/j.asoc.2018.01.036
https://doi.org/10.1016/j.ymssp.2019.106612
https://doi.org/10.36001/ijphm.2016.v7i3.2410
https://doi.org/10.1109/JSEN.2013.2293517
https://doi.org/10.1093/jcde/qwac015
https://doi.org/10.1631/FITEE.1500441
https://doi.org/10.1080/17538947.2016.1239771
https://doi.org/10.1007/s10462-020-09910-w
https://doi.org/10.1115/1.4047855
https://doi.org/10.1016/j.compind.2020.103298


Mathematics 2023, 11, 3008 31 of 37

54. Alam, M.; Samad, M.D.; Vidyaratne, L.; Glandon, A.; Iftekharuddin, K.M. Survey on deep neural networks in speech and vision
systems. Neurocomputing 2020, 417, 302–321. [CrossRef]

55. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Für Med. Phys. 2019, 29,
102–127. [CrossRef]

56. Rohan, A.; Raouf, I.; Kim, H.S. Rotate vector (Rv) reducer fault detection and diagnosis system: Towards component level
prognostics and health management (phm). Sensors 2020, 20, 6845. [CrossRef]

57. Shamshirband, S.; Fathi, M.; Dehzangi, A.; Chronopoulos, A.T.; Alinejad-Rokny, H. A review on deep learning approaches in
healthcare systems: Taxonomies, challenges, and open issues. J. Biomed. Inform. 2021, 113, 103627. [CrossRef]

58. Tobore, I.; Li, J.; Yuhang, L.; Al-Handarish, Y.; Kandwal, A.; Nie, Z.; Wang, L. Deep learning intervention for health care challenges:
Some biomedical domain considerations. JMIR Mhealth Uhealth 2019, 7, e11966. [CrossRef]

59. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef]

60. Kanjo, E.; Younis, E.M.; Ang, C.S. Deep learning analysis of mobile physiological, environmental and location sensor data for
emotion detection. Inf. Fusion 2019, 49, 46–56. [CrossRef]

61. Li, X.; Zhang, W.; Ding, Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction.
Reliab. Eng. Syst. Saf. 2019, 182, 208–218. [CrossRef]

62. Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst.
2018, 48, 144–156. [CrossRef]

63. Duan, L.; Xie, M.; Wang, J.; Bai, T. Deep learning enabled intelligent fault diagnosis: Overview and applications. J. Intell. Fuzzy
Syst. 2018, 35, 5771–5784. [CrossRef]

64. Li, G.; Deng, C.; Wu, J.; Chen, Z.; Xu, X. Rolling Bearing Fault Diagnosis Based on Wavelet Packet Transform and Convolutional
Neural Network. Appl. Sci. 2020, 10, 770. [CrossRef]

65. Lee, H.; Raouf, I.; Song, J.; Kim, H.S.; Lee, S. Prognostics and Health Management of the Robotic Servo-Motor under Variable
Operating Conditions. Mathematics 2023, 11, 398. [CrossRef]

66. Raouf, I.; Kumar, P.; Lee, H.; Kim, H.S. Transfer Learning-Based Intelligent Fault Detection Approach for the Industrial Robotic
System. Mathematics 2023, 11, 945. [CrossRef]

67. Zhou, X.; Zhou, H.; He, Y.; Huang, S.; Zhu, Z.; Chen, J. Harmonic reducer in-situ fault diagnosis for industrial robots based on
deep learning. Sci. China Technol. Sci. 2022, 65, 2116–2126. [CrossRef]

68. Adam, H.E.A.; Kimotho, J.K.; Njiri, J.G. Multiple faults diagnosis for an industrial robot fuse quality test bench using deep-
learning. Results Eng. 2023, 17, 101007. [CrossRef]

69. Yin, T.; Lu, N.; Guo, G.; Lei, Y.; Wang, S.; Guan, X. Knowledge and data dual-driven transfer network for industrial robot fault
diagnosis. Mech. Syst. Signal Process. 2023, 182, 109597. [CrossRef]

70. Nagarajan, R. Introduction to Industrial Robotics; Pearson Education India: Delhi, India, 2016.
71. Parhami, B. Defect, fault, error, . . . , or failure? IEEE Trans. Reliab. 1997, 46, 450–451. [CrossRef]
72. Lee, J.; Wu, F.; Zhao, W.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design for rotary machinery

systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 2014, 42, 314–334. [CrossRef]
73. Heng, A.; Zhang, S.; Tan, A.C.; Mathew, J. Rotating machinery prognostics: State of the art, challenges and opportunities. Mech.

Syst. Signal Process. 2009, 23, 724–739. [CrossRef]
74. Kumar, P.; Hati, A.S. Review on machine learning algorithm based fault detection in induction motors. Arch. Comput. Methods

Eng. 2021, 28, 1929–1940. [CrossRef]
75. Tavner, P.J. Review of condition monitoring of rotating electrical machines. IET Electr. Power Appl. 2008, 2, 215–247. [CrossRef]
76. Zhang, L.; Lin, J.; Liu, B.; Zhang, Z.; Yan, X.; Wei, M. A Review on Deep Learning Applications in Prognostics and Health

Management. IEEE Access 2019, 7, 162415–162438. [CrossRef]
77. Gálvez, A.; Diez-Olivan, A.; Seneviratne, D.; Galar, D. Fault Detection and RUL Estimation for Railway HVAC Systems Using a

Hybrid Model-Based Approach. Sustainability 2021, 13, 6828. [CrossRef]
78. Yan, B.; Ma, X.; Huang, G.; Zhao, Y. Two-stage physics-based Wiener process models for online RUL prediction in field vibration

data. Mech. Syst. Signal Process. 2021, 152, 107378. [CrossRef]
79. Liu, H.; Zhou, J.; Xu, Y.; Zheng, Y.; Peng, X.; Jiang, W. Unsupervised fault diagnosis of rolling bearings using a deep neural

network based on generative adversarial networks. Neurocomputing 2018, 315, 412–424. [CrossRef]
80. Cheng, C.; Zhou, B.; Ma, G.; Wu, D.; Yuan, Y. Wasserstein distance based deep adversarial transfer learning for intelligent fault

diagnosis with unlabeled or insufficient labeled data. Neurocomputing 2020, 409, 35–45. [CrossRef]
81. Lu, W.; Liang, B.; Cheng, Y.; Meng, D.; Yang, J.; Zhang, T. Deep Model Based Domain Adaptation for Fault Diagnosis. IEEE Trans.

Ind. Electron. 2017, 64, 2296–2305. [CrossRef]
82. Calabrese, F.; Regattieri, A.; Bortolini, M.; Gamberi, M.; Pilati, F. Predictive Maintenance: A Novel Framework for a Data-Driven,

Semi-Supervised, and Partially Online Prognostic Health Management Application in Industries. Appl. Sci. 2021, 11, 3380.
[CrossRef]

83. Rezamand, M.; Kordestani, M.; Carriveau, R.; Ting, D.S.-K.; Orchard, M.E.; Saif, M. Critical Wind Turbine Components Prognostics:
A Comprehensive Review. IEEE Trans. Instrum. Meas. 2020, 69, 9306–9328. [CrossRef]

https://doi.org/10.1016/j.neucom.2020.07.053
https://doi.org/10.1016/j.zemedi.2018.11.002
https://doi.org/10.3390/s20236845
https://doi.org/10.1016/j.jbi.2020.103627
https://doi.org/10.2196/11966
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1016/j.inffus.2018.09.001
https://doi.org/10.1016/j.ress.2018.11.011
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.3233/JIFS-17938
https://doi.org/10.3390/app10030770
https://doi.org/10.3390/math11020398
https://doi.org/10.3390/math11040945
https://doi.org/10.1007/s11431-022-2129-9
https://doi.org/10.1016/j.rineng.2023.101007
https://doi.org/10.1016/j.ymssp.2022.109597
https://doi.org/10.1109/TR.1997.693776
https://doi.org/10.1016/j.ymssp.2013.06.004
https://doi.org/10.1016/j.ymssp.2008.06.009
https://doi.org/10.1007/s11831-020-09446-w
https://doi.org/10.1049/iet-epa:20070280
https://doi.org/10.1109/ACCESS.2019.2950985
https://doi.org/10.3390/su13126828
https://doi.org/10.1016/j.ymssp.2020.107378
https://doi.org/10.1016/j.neucom.2018.07.034
https://doi.org/10.1016/j.neucom.2020.05.040
https://doi.org/10.1109/TIE.2016.2627020
https://doi.org/10.3390/app11083380
https://doi.org/10.1109/TIM.2020.3030165


Mathematics 2023, 11, 3008 32 of 37

84. Jin, X.; Sun, Y.; Que, Z.; Wang, Y.; Chow, T.W.S. Anomaly Detection and Fault Prognosis for Bearings. IEEE Trans. Instrum. Meas.
2016, 65, 2046–2054. [CrossRef]

85. Sikorska, J.Z.; Hodkiewicz, M.; Ma, L. Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst.
Signal Process. 2011, 25, 1803–1836. [CrossRef]

86. Byington, C.; Watson, M.; Sheldon, J.; Swerdon, G. Shaft coupling model-based prognostics enhanced by vibration diagnostics.
Insight-Non-Destr. Test. Cond. Monit. 2009, 51, 420–425. [CrossRef]

87. Fisher, C.; Baines, N. Multi-sensor condition monitoring systems for gas turbines. J. Cond. Monit. 1988, 1, 57–68.
88. Kemerait, R. New cepstral approach for prognostic maintenance of cyclic machinery. In Proceedings of the IEEE SOUTHEAST-

CON, Tampa, FL, USA, 5–8 April 1987; Volume 1987, pp. 256–262.
89. Muir, D.; Taylor, B. Oil debris monitoring for aeroderivative gas turbine. ASME Power Div. (Publ.) PWR 1997, 32, 547–553.
90. Crow, E.C.; Reichard, K.; Rogan, C.; Callen, J.; Seifert, E. Integrated multi-sensor package (IMSP) for unmanned vehicle operations.

In Proceedings of the Unmanned/Unattended Sensors and Sensor Networks IV, International Society for Optics and Photonics.
Florence, Italy, 18–20 September 2007; Volume 6736, p. 673604.

91. Liao, L.; Köttig, F. A hybrid framework combining data-driven and model-based methods for system remaining useful life
prediction. Appl. Soft Comput. 2016, 44, 191–199. [CrossRef]

92. Lee, M.-S.; Shifat, T.A.; Hur, J.W. Kalman Filter Assisted Deep Feature Learning for RUL Prediction of Hydraulic Gear Pump.
IEEE Sens. J. 2022, 22, 11088–11097. [CrossRef]

93. Liu, Z.-X.; Wang, Z.-Y.; Wang, Y.; Ji, Z.-C. Optimal Zonotopic Kalman Filter-based State Estimation and Fault-diagnosis Algorithm
for Linear Discrete-time System with Time Delay. Int. J. Control Autom. Syst. 2022, 20, 1757–1771. [CrossRef]

94. Maynard, K.P. Interstitial processing: The application of noise processing to gear fault detection. In Proceedings of the international
conference on Condition monitoring, University of Wales, Swansea, UK, 12–16 April 1999; Volume 12, pp. 77–86.

95. Patton, R.J. Fault detection and diagnosis in aerospace systems using analytical redundancy. In Proceedings of the IEE Colloquium
on Condition Monitoring and Fault Tolerance, London, UK, 6 November 1990; IET: London, UK, 1990.

96. Tudoroiu, N.; Khorasani, K. Satellite fault diagnosis using a bank of interacting Kalman filters. IEEE Trans. Aerosp. Electron. Syst.
2007, 43, 1334–1350. [CrossRef]

97. Hansen, R.J.; Hall, D.L.; Kurtz, S.K. A new approach to the challenge of machinery prognostics. In Proceedings of the Turbo Expo:
Power for Land, Sea, and Air, The Hague, The Netherlands, 13–16 June 1994; American Society of Mechanical Engineers: New
York, NY, USA, 1994; Volume 78873, p. V005T15A001.

98. Denkena, B.; Litwinski, K.; Brouwer, D.; Boujnah, H. Design and analysis of a prototypical sensory Z-slide for machine tools. Prod.
Eng. 2013, 7, 9–14. [CrossRef]

99. Holland, S.W.; Barajas, L.G.; Salman, M.; Zhang, Y. PHM for automotive manufacturing & vehicle applications. In Proceedings of
the Prognostics & Health Management Conference, Portland, OR, USA, 10–14 October 2010.

100. Hu, S.J.; Koren, Y. Stream-of-variation theory for automotive body assembly. CIRP Ann. 1997, 46, 1–6. [CrossRef]
101. Sahir Arıkan, M.; Balkan, T. Process modeling, simulation, and paint thickness measurement for robotic spray painting. J. Robot.

Syst. 2000, 17, 479–494. [CrossRef]
102. Shen, T.; Wan, F.; Cui, W.; Song, B. Application of prognostic and health management technology on aircraft fuel system. In

Proceedings of the 2010 Prognostics and System Health Management Conference, Macau, China, 12–14 January 2010; IEEE: New
York, NY, USA, 2010; pp. 1–7.

103. Siegel, D.; Zhao, W.; Lapira, E.; AbuAli, M.; Lee, J. A comparative study on vibration-based condition monitoring algorithms for
wind turbine drive trains. Wind Energy 2014, 17, 695–714. [CrossRef]

104. Siegel, D.; Lee, J.; Dempsey, P. Investigation and Evaluation of Condition Indicators, Variable Selection, and Health Indication
Methods and Algorithms For Rotorcraft Gear Components. In Proceedings of the MFPT 2014 Conference, Virginia Beach, VA,
USA, 10–12 June 2014.

105. Bin, G.; Gao, J.; Li, X.; Dhillon, B. Early fault diagnosis of rotating machinery based on wavelet packets—Empirical mode
decomposition feature extraction and neural network. Mech. Syst. Signal Process. 2012, 27, 696–711. [CrossRef]

106. Li, W.; Zhu, Z.; Jiang, F.; Zhou, G.; Chen, G. Fault diagnosis of rotating machinery with a novel statistical feature extraction and
evaluation method. Mech. Syst. Signal Process. 2015, 50, 414–426. [CrossRef]

107. Zhu, H.; He, Z.; Wei, J.; Wang, J.; Zhou, H. Bearing fault feature extraction and fault diagnosis method based on feature fusion.
Sensors 2021, 21, 2524. [CrossRef]

108. Widodo, A.; Yang, B.-S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction
motors. Expert Syst. Appl. 2007, 33, 241–250. [CrossRef]

109. Cheng, G.; Chen, X.; Li, H.; Li, P.; Liu, H. Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble
empirical mode decomposition. Measurement 2016, 91, 140–154. [CrossRef]

110. Zimroz, R.; Bartkowiak, A. Two simple multivariate procedures for monitoring planetary gearboxes in non-stationary operating
conditions. Mech. Syst. Signal Process. 2013, 38, 237–247. [CrossRef]

111. Kumar, P.; Hati, A.S. Support Vector Classifier-Based Broken Rotor Bar Detection in Squirrel Cage Induction Motor. In Machines,
Mechanism and Robotics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 429–438.

112. Moghaddass, R.; Sheng, S. An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework. Appl.
Energy 2019, 240, 561–582. [CrossRef]

https://doi.org/10.1109/TIM.2016.2570398
https://doi.org/10.1016/j.ymssp.2010.11.018
https://doi.org/10.1784/insi.2009.51.8.420
https://doi.org/10.1016/j.asoc.2016.03.013
https://doi.org/10.1109/JSEN.2022.3167926
https://doi.org/10.1007/s12555-021-0267-x
https://doi.org/10.1109/TAES.2007.4441743
https://doi.org/10.1007/s11740-012-0419-1
https://doi.org/10.1016/S0007-8506(07)60763-X
https://doi.org/10.1002/1097-4563(200009)17:9&lt;479::AID-ROB3&gt;3.0.CO;2-L
https://doi.org/10.1002/we.1585
https://doi.org/10.1016/j.ymssp.2011.08.002
https://doi.org/10.1016/j.ymssp.2014.05.034
https://doi.org/10.3390/s21072524
https://doi.org/10.1016/j.eswa.2006.04.020
https://doi.org/10.1016/j.measurement.2016.05.059
https://doi.org/10.1016/j.ymssp.2012.03.022
https://doi.org/10.1016/j.apenergy.2019.02.025


Mathematics 2023, 11, 3008 33 of 37

113. Cabrera, D.; Sancho, F.; Sánchez, R.-V.; Zurita, G.; Cerrada, M.; Li, C.; Vásquez, R.E. Fault diagnosis of spur gearbox based on
random forest and wavelet packet decomposition. Front. Mech. Eng. 2015, 10, 277–286. [CrossRef]

114. Tian, J.; Morillo, C.; Azarian, M.H.; Pecht, M. Motor bearing fault detection using spectral kurtosis-based feature extraction
coupled with K-nearest neighbor distance analysis. IEEE Trans. Ind. Electron. 2015, 63, 1793–1803. [CrossRef]

115. Chen, J.; Ma, C.; Song, D.; Xu, B. Failure prognosis of multiple uncertainty system based on Kalman filter and its application to
aircraft fuel system. Adv. Mech. Eng. 2016, 8, 1–13. [CrossRef]

116. Singleton, R.K.; Strangas, E.G.; Aviyente, S. Extended Kalman filtering for remaining-useful-life estimation of bearings. IEEE
Trans. Ind. Electron. 2014, 62, 1781–1790. [CrossRef]

117. Soualhi, A.; Clerc, G.; Razik, H.; Guillet, F. Hidden Markov models for the prediction of impending faults. IEEE Trans. Ind.
Electron. 2016, 63, 3271–3281. [CrossRef]

118. Niu, G. Data-Driven Technology for Engineering Systems Health Management; Springer: Berlin/Heidelberg, Germany, 2017.
119. Aissani, N.; Beldjilali, B.; Trentesaux, D. Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement

approach. Eng. Appl. Artif. Intell. 2009, 22, 1089–1103. [CrossRef]
120. Chan, G.; Asgarpoor, S. Optimum maintenance policy with Markov processes. Electr. Power Syst. Res. 2006, 76, 452–456.

[CrossRef]
121. Wu, S.; Gebraeel, N.; Lawley, M.A.; Yih, Y. A neural network integrated decision support system for condition-based optimal

predictive maintenance policy. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2007, 37, 226–236. [CrossRef]
122. Ali, J.B.; Fnaiech, N.; Saidi, L.; Chebel-Morello, B.; Fnaiech, F. Application of empirical mode decomposition and artificial neural

network for automatic bearing fault diagnosis based on vibration signals. Appl. Acoust. 2015, 89, 16–27.
123. Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE

Trans. Ind. Electron. 2018, 66, 3208–3216. [CrossRef]
124. Deutsch, J.; He, D. Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst.

Man Cybern. Syst. 2017, 48, 11–20. [CrossRef]
125. Shao, H.; Jiang, H.; Lin, Y.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep

auto-encoders. Mech. Syst. Signal Process. 2018, 102, 278–297. [CrossRef]
126. Kumar, P.; Hati, A.S. Deep convolutional neural network based on adaptive gradient optimizer for fault detection in SCIM. ISA

Trans. 2021, 111, 350–359. [CrossRef]
127. Saxena, A.; Celaya, J.; Saha, B.; Saha, S.; Goebel, K. Metrics for offline evaluation of prognostic performance. Int. J. Progn. Health

Manag. 2010, 1, 4–23. [CrossRef]
128. Lou, X.; Loparo, K.A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 2004, 18,

1077–1095. [CrossRef]
129. Batista, L.; Badri, B.; Sabourin, R.; Thomas, M. A classifier fusion system for bearing fault diagnosis. Expert Syst. Appl. 2013, 40,

6788–6797. [CrossRef]
130. Chen, N.; Tsui, K.L. Condition monitoring and remaining useful life prediction using degradation signals: Revisited. IIE Trans.

2013, 45, 939–952. [CrossRef]
131. Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An experimental

platform for bearings accelerated degradation tests. In Proceedings of the IEEE International Conference on Prognostics and
Health Management, PHM’12, Paris, France, 31 May–2 June 2012; IEEE Catalog Number: CPF12PHM-CDR. 2012; pp. 1–8.

132. Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection using a linear
one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [CrossRef]

133. Chen, S.; Yu, J.; Wang, S. One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate
processes. J. Process Control 2020, 87, 54–67. [CrossRef]

134. Givnan, S.; Chalmers, C.; Fergus, P.; Ortega-Martorell, S.; Whalley, T. Anomaly Detection Using Autoencoder Reconstruction
upon Industrial Motors. Sensors 2022, 22, 3166. [CrossRef]

135. Yang, Z.; Xu, B.; Luo, W.; Chen, F. Autoencoder-based representation learning and its application in intelligent fault diagnosis: A
review. Measurement 2022, 189, 110460. [CrossRef]

136. Peyron, M.; Fillion, A.; Gürol, S.; Marchais, V.; Gratton, S.; Boudier, P.; Goret, G. Latent space data assimilation by using deep
learning. Q. J. R. Meteorol. Soc. 2021, 147, 3759–3777. [CrossRef]

137. d’Acremont, A.; Fablet, R.; Baussard, A.; Quin, G. CNN-Based Target Recognition and Identification for Infrared Imaging in
Defense Systems. Sensors 2019, 19, 2040. [CrossRef]

138. Shi, Y.; Yang, J.; Qi, Z. Unsupervised anomaly segmentation via deep feature reconstruction. Neurocomputing 2021, 424, 9–22.
[CrossRef]

139. Karabacak, Y.E.; Gürsel Özmen, N. Common spatial pattern-based feature extraction and worm gear fault detection through
vibration and acoustic measurements. Measurement 2022, 187, 110366. [CrossRef]

140. Wen, Y.; Fashiar Rahman, M.; Xu, H.; Tseng, T.-L.B. Recent advances and trends of predictive maintenance from data-driven
machine prognostics perspective. Measurement 2022, 187, 110276. [CrossRef]

141. Zhang, J.; Zeng, Y.; Starly, B. Recurrent neural networks with long term temporal dependencies in machine tool wear diagnosis
and prognosis. SN Appl. Sci. 2021, 3, 442. [CrossRef]

https://doi.org/10.1007/s11465-015-0348-8
https://doi.org/10.1109/TIE.2015.2509913
https://doi.org/10.1177/1687814016671445
https://doi.org/10.1109/TIE.2014.2336616
https://doi.org/10.1109/TIE.2016.2535111
https://doi.org/10.1016/j.engappai.2009.01.014
https://doi.org/10.1016/j.epsr.2005.09.010
https://doi.org/10.1109/TSMCA.2006.886368
https://doi.org/10.1109/TIE.2018.2844856
https://doi.org/10.1109/TSMC.2017.2697842
https://doi.org/10.1016/j.ymssp.2017.09.026
https://doi.org/10.1016/j.isatra.2020.10.052
https://doi.org/10.36001/ijphm.2010.v1i1.1336
https://doi.org/10.1016/S0888-3270(03)00077-3
https://doi.org/10.1016/j.eswa.2013.06.033
https://doi.org/10.1080/0740817X.2012.706376
https://doi.org/10.1016/j.patcog.2016.03.028
https://doi.org/10.1016/j.jprocont.2020.01.004
https://doi.org/10.3390/s22093166
https://doi.org/10.1016/j.measurement.2021.110460
https://doi.org/10.1002/qj.4153
https://doi.org/10.3390/s19092040
https://doi.org/10.1016/j.neucom.2020.11.018
https://doi.org/10.1016/j.measurement.2021.110366
https://doi.org/10.1016/j.measurement.2021.110276
https://doi.org/10.1007/s42452-021-04427-5


Mathematics 2023, 11, 3008 34 of 37

142. Chen, C.; Zhu, Z.H.; Shi, J.; Lu, N.; Jiang, B. Dynamic Predictive Maintenance Scheduling Using Deep Learning Ensemble for
System Health Prognostics. IEEE Sens. J. 2021, 21, 26878–26891. [CrossRef]

143. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
144. Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A Survey of Deep Learning and Its Applications: A New Paradigm to Machine

Learning. Arch. Comput. Methods Eng 2020, 27, 1071–1092. [CrossRef]
145. Arel, I.; Rose, D.C.; Karnowski, T.P. Deep Machine Learning—A New Frontier in Artificial Intelligence Research [Research

Frontier]. IEEE Comput. Intell. Mag. 2010, 5, 13–18. [CrossRef]
146. Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-

94463-0.
147. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
53. [CrossRef] [PubMed]

148. Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, 7, 53040–53065. [CrossRef]
149. Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947. [CrossRef]
150. Ng, A. Sparse autoencoder. CS294A Lect. Notes 2011, 72, 1–19.
151. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A.; Bottou, L. Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
152. An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18.
153. Le Cun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Handwritten digit recognition with

a back-propagation network. In Proceedings of the 2nd International Conference on Neural Information Processing Systems,
Denver, CO, USA, 27–30 November 1989; pp. 396–404.

154. Dash, P.B.; Naik, B.; Nayak, J.; Vimal, S. Deep belief network-based probabilistic generative model for detection of robotic
manipulator failure execution. Soft Comput. 2021, 27, 363–375. [CrossRef]

155. Chen, Z.; Li, W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network. IEEE
Trans. Instrum. Meas. 2017, 66, 1693–1702. [CrossRef]

156. Ren, H.; Chai, Y.; Qu, J.; Ye, X.; Tang, Q. A novel adaptive fault detection methodology for complex system using deep belief
networks and multiple models: A case study on cryogenic propellant loading system. Neurocomputing 2018, 275, 2111–2125.
[CrossRef]

157. Xing, S.; Lei, Y.; Wang, S.; Jia, F. Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new
working conditions. IEEE Trans. Ind. Electron. 2020, 68, 2617–2625. [CrossRef]

158. Jiao, J.; Zheng, X. Fault Diagnosis Method for Industrial Robots Based on DBN Joint Information Fusion Technology. Comput.
Intell. Neurosci. 2022, 2022, 4340817. [CrossRef] [PubMed]

159. Ji, C.; Wang, K.; Yuan, D. Health assessment method of industrial robot reducer based on deep belief network. In Proceedings of
the 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems
(CYBER), Jiaxing, China, 27–31 July 2021; IEEE: New York, NY, USA, 2021; pp. 442–446.

160. Shao, S.-Y.; Sun, W.-J.; Yan, R.-Q.; Wang, P.; Gao, R.X. A deep learning approach for fault diagnosis of induction motors in
manufacturing. Chin. J. Mech. Eng. 2017, 30, 1347–1356. [CrossRef]

161. Hu, G.; Li, H.; Xia, Y.; Luo, L. A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and
its application to industrial fault diagnosis. Comput. Ind. 2018, 100, 287–296. [CrossRef]

162. Deng, S.; Cheng, Z.; Li, C.; Yao, X.; Chen, Z.; Sanchez, R.-V. Rolling bearing fault diagnosis based on Deep Boltzmann machines.
In Proceedings of the 2016 Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China, 19–21
October 2016; IEEE: New York, NY, USA, 2016; pp. 1–6.

163. Li, C.; Sanchez, R.-V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vásquez, R.E. Multimodal deep support vector classification with
homologous features and its application to gearbox fault diagnosis. Neurocomputing 2015, 168, 119–127. [CrossRef]

164. Wang, J.; Wang, K.; Wang, Y.; Huang, Z.; Xue, R. Deep Boltzmann machine based condition prediction for smart manufacturing. J.
Ambient Intell. Humaniz. Comput. 2019, 10, 851–861. [CrossRef]

165. Mitrevski, A.; Plöger, P.G. Data-Driven Robot Fault Detection and Diagnosis Using Generative Models: A Modified SFDD
Algorithm. In Proceedings of the 30th International Workshop on Principles of Diagnosis DX’19, Kla-genfurt, Austria, 11–13
November 2019.

166. Chen, T.; Liu, X.; Xia, B.; Wang, W.; Lai, Y. Unsupervised anomaly detection of industrial robots using sliding-window convolu-
tional variational autoencoder. IEEE Access 2020, 8, 47072–47081. [CrossRef]

167. Hong, Y.; Sun, Z.; Zou, X.; Long, J. Multi-joint Industrial Robot Fault Identification using Deep Sparse Auto-Encoder Network
with Attitude Data. In Proceedings of the 2020 Prognostics and Health Management Conference (PHM-Besançon), Besancon,
France, 4–7 May 2020; IEEE: New York, NY, USA, 2020; pp. 176–179.

168. Xiao, D.; Qin, C.; Yu, H.; Huang, Y.; Liu, C.; Zhang, J. Unsupervised machine fault diagnosis for noisy domain adaptation using
marginal denoising autoencoder based on acoustic signals. Measurement 2021, 176, 109186. [CrossRef]

169. Yun, H.; Kim, H.; Jeong, Y.H.; Jun, M.B. Autoencoder-based anomaly detection of industrial robot arm using stethoscope based
internal sound sensor. J. Intell. Manuf. 2021, 34, 1427–1444. [CrossRef]

https://doi.org/10.1109/JSEN.2021.3119553
https://doi.org/10.1007/s11831-019-09344-w
https://doi.org/10.1109/MCI.2010.938364
https://doi.org/10.1186/s40537-021-00444-8
https://www.ncbi.nlm.nih.gov/pubmed/33816053
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.4249/scholarpedia.5947
https://doi.org/10.1007/s00500-021-05572-0
https://doi.org/10.1109/TIM.2017.2669947
https://doi.org/10.1016/j.neucom.2017.10.063
https://doi.org/10.1109/TIE.2020.2972461
https://doi.org/10.1155/2022/4340817
https://www.ncbi.nlm.nih.gov/pubmed/35378815
https://doi.org/10.1007/s10033-017-0189-y
https://doi.org/10.1016/j.compind.2018.04.002
https://doi.org/10.1016/j.neucom.2015.06.008
https://doi.org/10.1007/s12652-018-0794-3
https://doi.org/10.1109/ACCESS.2020.2977892
https://doi.org/10.1016/j.measurement.2021.109186
https://doi.org/10.1007/s10845-021-01862-4


Mathematics 2023, 11, 3008 35 of 37

170. Sun, W.; Shao, S.; Zhao, R.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network approach for induction
motor faults classification. Measurement 2016, 89, 171–178. [CrossRef]

171. Li, C.; Zhang, W.; Peng, G.; Liu, S. Bearing fault diagnosis using fully-connected winner-take-all autoencoder. IEEE Access 2017, 6,
6103–6115. [CrossRef]

172. Sohaib, M.; Kim, J.-M. Reliable fault diagnosis of rotary machine bearings using a stacked sparse autoencoder-based deep neural
network. Shock Vib. 2018, 2018, 2919637. [CrossRef]

173. Chen, L.; Cao, J.; Wu, K.; Zhang, Z. Application of Generalized Frequency Response Functions and Improved Convolutional
Neural Network to Fault Diagnosis of Heavy-duty Industrial Robot. Robot. Comput.-Integr. Manuf. 2022, 73, 102228. [CrossRef]

174. Oh, Y.; Kim, Y.; Na, K.; Youn, B.D. A deep transferable motion-adaptive fault detection method for industrial robots using a
residual–convolutional neural network. ISA Trans. 2021, 128, 521–534. [CrossRef]

175. Yang, S.; Luo, X.; Li, C. Fault Diagnosis of Rotation Vector Reducer for Industrial Robot Based on a Convolutional Neural Network.
Stroj. Vestn. /J. Mech. Eng. 2021, 67, 489–500. [CrossRef]

176. Ma, Z.; Xiao, H.; Pan, Y.; Jiang, W.; Xiong, M.; He, Z. Multi-axis Industrial Robot Fault Diagnosis Model Based on Improved
One-Dimensional Convolutional Neural Network. In Proceedings of the International Conference on Data Mining and Big Data,
Guangzhou, China, 20–22 October 2021; pp. 397–410.

177. Li, P.; Xiao, H.; Jiang, W.; Ning, D. Compound Fault Diagnosis of Industrial Robot Based on Improved Multi-label One-
Dimensional Convolutional Neural Network. In Proceedings of the International Conference on Data Mining and Big Data,
Guangzhou, China, 20–22 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 205–216.

178. Liu, Y.; Chen, C.; Wang, T.; Cheng, L. An attention enhanced dilated CNN approach for cross-axis industrial robotics fault
diagnosis. Auton. Intell. Syst. 2022, 2, 11. [CrossRef]

179. Lu, K.; Chen, C.; Wang, T.; Cheng, L.; Qin, J. Fault diagnosis of industrial robot based on dual-module attention convolutional
neural network. Auton. Intell. Syst. 2022, 2, 12. [CrossRef]

180. Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional
neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef]

181. Plakias, S.; Boutalis, Y.S. Fault detection and identification of rolling element bearings with Attentive Dense CNN. Neurocomputing
2020, 405, 208–217. [CrossRef]

182. Cheng, Y.; Lin, M.; Wu, J.; Zhu, H.; Shao, X. Intelligent fault diagnosis of rotating machinery based on continuous wavelet
transform-local binary convolutional neural network. Knowl.-Based Syst. 2021, 216, 106796. [CrossRef]

183. Guo, S.; Yang, T.; Gao, W.; Zhang, C. A novel fault diagnosis method for rotating machinery based on a convolutional neural
network. Sensors 2018, 18, 1429. [CrossRef] [PubMed]

184. Liang, P.; Deng, C.; Wu, J.; Yang, Z. Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial
nets and convolutional neural network. Measurement 2020, 159, 107768. [CrossRef]

185. Li, Y.; Zou, L.; Jiang, L.; Zhou, X. Fault diagnosis of rotating machinery based on combination of deep belief network and
one-dimensional convolutional neural network. IEEE Access 2019, 7, 165710–165723. [CrossRef]

186. An, Z.; Li, S.; Wang, J.; Jiang, X. A novel bearing intelligent fault diagnosis framework under time-varying working conditions
using recurrent neural network. ISA Trans. 2020, 100, 155–170. [CrossRef]

187. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
188. Zhang, Y.; Zhou, T.; Huang, X.; Cao, L.; Zhou, Q. Fault diagnosis of rotating machinery based on recurrent neural networks.

Measurement 2021, 171, 108774. [CrossRef]
189. Liu, H.; Zhou, J.; Zheng, Y.; Jiang, W.; Zhang, Y. Fault diagnosis of rolling bearings with recurrent neural network-based

autoencoders. ISA Trans. 2018, 77, 167–178. [CrossRef]
190. Jiang, H.; Li, X.; Shao, H.; Zhao, K. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural

network. Meas. Sci. Technol. 2018, 29, 065107. [CrossRef]
191. Qiao, M.; Yan, S.; Tang, X.; Xu, C. Deep convolutional and LSTM recurrent neural networks for rolling bearing fault diagnosis

under strong noises and variable loads. IEEE Access 2020, 8, 66257–66269. [CrossRef]
192. Oh, S.; Han, S.; Jeong, J. Multi-scale convolutional recurrent neural network for bearing fault detection in noisy manufacturing

environments. Appl. Sci. 2021, 11, 3963. [CrossRef]
193. Li, S.; Zhao, Y.; Ding, M. Mobile robot motor bearing fault detection and classification on discrete wavelet transform and lstm

network. J. Mech. Med. Biol. 2018, 18, 1840034. [CrossRef]
194. Zhi, Z.; Liu, L.; Liu, D.; Hu, C. Fault Detection of the Harmonic Reducer Based on CNN-LSTM With a Novel Denoising Algorithm.

IEEE Sens. J. 2022, 22, 2572–2581. [CrossRef]
195. Wang, T.; Zhang, L.; Wang, X. Fault detection for motor drive control system of industrial robots using CNN-LSTM-based

observers. CES Trans. Electr. Mach. Syst. 2023, 1–9. [CrossRef]
196. Sohaib, M.; Kim, C.-H.; Kim, J.-M. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis. Sensors 2017, 17,

2876. [CrossRef]
197. Xu, Y.; Li, Z.; Wang, S.; Li, W.; Sarkodie-Gyan, T.; Feng, S. A hybrid deep-learning model for fault diagnosis of rolling bearings.

Measurement 2021, 169, 108502. [CrossRef]
198. Hoang, D.T.; Kang, H.J. A Motor Current Signal-Based Bearing Fault Diagnosis Using Deep Learning and Information Fusion.

IEEE Trans. Instrum. Meas. 2020, 69, 3325–3333. [CrossRef]

https://doi.org/10.1016/j.measurement.2016.04.007
https://doi.org/10.1109/ACCESS.2017.2717492
https://doi.org/10.1155/2018/2919637
https://doi.org/10.1016/j.rcim.2021.102228
https://doi.org/10.1016/j.isatra.2021.11.019
https://doi.org/10.5545/sv-jme.2021.7284
https://doi.org/10.1007/s43684-022-00030-6
https://doi.org/10.1007/s43684-022-00031-5
https://doi.org/10.1016/j.jsv.2016.05.027
https://doi.org/10.1016/j.neucom.2020.04.143
https://doi.org/10.1016/j.knosys.2021.106796
https://doi.org/10.3390/s18051429
https://www.ncbi.nlm.nih.gov/pubmed/29734704
https://doi.org/10.1016/j.measurement.2020.107768
https://doi.org/10.1109/ACCESS.2019.2953490
https://doi.org/10.1016/j.isatra.2019.11.010
https://doi.org/10.1016/j.measurement.2020.108774
https://doi.org/10.1016/j.isatra.2018.04.005
https://doi.org/10.1088/1361-6501/aab945
https://doi.org/10.1109/ACCESS.2020.2985617
https://doi.org/10.3390/app11093963
https://doi.org/10.1142/S0219519418400341
https://doi.org/10.1109/JSEN.2021.3137992
https://doi.org/10.30941/CESTEMS.2023.00014
https://doi.org/10.3390/s17122876
https://doi.org/10.1016/j.measurement.2020.108502
https://doi.org/10.1109/TIM.2019.2933119


Mathematics 2023, 11, 3008 36 of 37

199. Li, X.; Zhang, W.; Ding, Q. Understanding and improving deep learning-based rolling bearing fault diagnosis with attention
mechanism. Signal Process. 2019, 161, 136–154. [CrossRef]

200. Chen, Z.; Chen, X.; Li, C.; Sanchez, R.-V.; Qin, H. Vibration-based gearbox fault diagnosis using deep neural networks. J.
Vibroengineering 2017, 19, 2475–2496. [CrossRef]

201. Chen, Z.; Mauricio, A.; Li, W.; Gryllias, K. A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence
and Convolutional Neural Networks. Mech. Syst. Signal Process. 2020, 140, 106683. [CrossRef]

202. Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep Learning Enabled Fault Diagnosis Using Time-
Frequency Image Analysis of Rolling Element Bearings. Shock Vib. 2017, 2017, e5067651. [CrossRef]

203. Liu, H.; Li, L.; Ma, J. Rolling Bearing Fault Diagnosis Based on STFT-Deep Learning and Sound Signals. Shock Vib. 2016, 2016,
e6127479. [CrossRef]

204. Shi, J.; Peng, D.; Peng, Z.; Zhang, Z.; Goebel, K.; Wu, D. Planetary gearbox fault diagnosis using bidirectional-convolutional
LSTM networks. Mech. Syst. Signal Process. 2022, 162, 107996. [CrossRef]

205. Ravikumar, K.N.; Yadav, A.; Kumar, H.; Gangadharan, K.V.; Narasimhadhan, A.V. Gearbox fault diagnosis based on Multi-Scale
deep residual learning and stacked LSTM model. Measurement 2021, 186, 110099. [CrossRef]

206. Long, J.; Mou, J.; Zhang, L.; Zhang, S.; Li, C. Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis
of multi-joint industrial robots. J. Manuf. Syst. 2021, 61, 736–745. [CrossRef]

207. Kamat, P.V.; Sugandhi, R.; Kumar, S. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings.
PeerJ Comput. Sci. 2021, 7, e795. [CrossRef]

208. Wang, X.; Wang, T.; Ming, A.; Han, Q.; Chu, F.; Zhang, W.; Li, A. Deep Spatiotemporal Convolutional-Neural-Network-Based
Remaining Useful Life Estimation of Bearings. Chin. J. Mech. Eng. 2021, 34, 62. [CrossRef]

209. Ding, H.; Yang, L.; Cheng, Z.; Yang, Z. A remaining useful life prediction method for bearing based on deep neural networks.
Measurement 2021, 172, 108878. [CrossRef]

210. Li, H.; Wang, W.; Li, Z.; Dong, L.; Li, Q. A novel approach for predicting tool remaining useful life using limited data. Mech. Syst.
Signal Process. 2020, 143, 106832. [CrossRef]

211. Qin, Y.; Xiang, S.; Chai, Y.; Chen, H. Macroscopic–Microscopic Attention in LSTM Networks Based on Fusion Features for Gear
Remaining Life Prediction. IEEE Trans. Ind. Electron. 2020, 67, 10865–10875. [CrossRef]

212. Algburi, R.N.A.; Gao, H. Health Assessment and Fault Detection System for an Industrial Robot Using the Rotary Encoder Signal.
Energies 2019, 12, 2816. [CrossRef]

213. Jaber, A.; Bicker, R. Industrial Robot Fault Detection Based on Wavelet Transform and LabVIEW. In Proceedings of the 2014 First
International Conference on Systems Informatics, Modelling and Simulation, Sheffield, UK, 29 April–1 May 2014.

214. Jaber, A.A.; Bicker, R. The optimum selection of wavelet transform parameters for the purpose of fault detection in an industrial
robot. In Proceedings of the 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014),
Penang, Malaysia, 28–30 November 2014; pp. 304–309.

215. Zhang, Y.; An, H.; Ding, X.; Liang, W.; Yuan, M.; Ji, C.; Tan, J. Industrial Robot Rotate Vector Reducer Fault Detection Based on
Hidden Markov Models. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali,
China, 6–8 December 2019; pp. 3013–3018.

216. Bonci, A.; Longhi, S.; Nabissi, G.; Verdini, F. Predictive Maintenance System using motor current signal analysis for Industrial
Robot. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Zaragoza, Spain, 10–13 September 2019; pp. 1453–1456.

217. Jaber, A.A.; Bicker, R. Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network.
Insight-Non-Destr. Test. Cond. Monit. 2016, 58, 179–186. [CrossRef]

218. Chen, Z.; Wu, K.; Wu, J.; Deng, C.; Wang, Y. Residual shrinkage transformer relation network for intelligent fault detection of
industrial robot with zero-fault samples. Knowl.-Based Syst. 2023, 268, 110452. [CrossRef]

219. Jaber, A.A.; Bicker, R. Industrial Robot Backlash Fault Diagnosis Based on Discrete Wavelet Transform and Artificial Neural
Network. Am. J. Mech. Eng. 2016, 4, 21–31. [CrossRef]

220. Yang, Q.; Li, X.; Wang, Y.; Ainapure, A.; Lee, J. Fault Diagnosis of Ball Screw in Industrial Robots Using Non-Stationary Motor
Current Signals. Procedia Manuf. 2020, 48, 1102–1108. [CrossRef]

221. Jaber, A.A.; Bicker, R. Development of a Condition Monitoring Algorithm for Industrial Robots based on Artificial Intelligence
and Signal Processing Techniques. Int. J. Electr. Comput. Eng. (IJECE) 2018, 8, 996–1009. [CrossRef]

222. Nentwich, C.; Reinhart, G. A Method for Health Indicator Evaluation for Condition Monitoring of Industrial Robot Gears. Robotics
2021, 10, 80. [CrossRef]

223. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

224. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
225. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on

learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017.

226. Li, X.; Zhang, W.; Ding, Q.; Sun, J.-Q. Intelligent rotating machinery fault diagnosis based on deep learning using data
augmentation. J. Intell. Manuf. 2020, 31, 433–452. [CrossRef]

https://doi.org/10.1016/j.sigpro.2019.03.019
https://doi.org/10.21595/jve.2016.17267
https://doi.org/10.1016/j.ymssp.2020.106683
https://doi.org/10.1155/2017/5067651
https://doi.org/10.1155/2016/6127479
https://doi.org/10.1016/j.ymssp.2021.107996
https://doi.org/10.1016/j.measurement.2021.110099
https://doi.org/10.1016/j.jmsy.2020.08.010
https://doi.org/10.7717/peerj-cs.795
https://doi.org/10.1186/s10033-021-00576-1
https://doi.org/10.1016/j.measurement.2020.108878
https://doi.org/10.1016/j.ymssp.2020.106832
https://doi.org/10.1109/TIE.2019.2959492
https://doi.org/10.3390/en12142816
https://doi.org/10.1784/insi.2016.58.4.179
https://doi.org/10.1016/j.knosys.2023.110452
https://doi.org/10.12691/ajme-4-1-4
https://doi.org/10.1016/j.promfg.2020.05.151
https://doi.org/10.11591/ijece.v8i2.pp996-1009
https://doi.org/10.3390/robotics10020080
https://doi.org/10.1007/s10845-018-1456-1


Mathematics 2023, 11, 3008 37 of 37

227. Kumar, P.; Hati, A.S. Transfer learning-based deep CNN model for multiple faults detection in SCIM. Neural Comput. Appl. 2021,
33, 15851–15862. [CrossRef]

228. Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind.
Inform. 2018, 15, 2446–2455. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00521-021-06205-1
https://doi.org/10.1109/TII.2018.2864759

	Introduction 
	Industrial Robot Configuration and Faults 
	PHM Methodologies 
	Conventional PHM Cycle 
	PHM Performance Metrics 
	DL-Based PHM 

	Overview of Deep Learning Models 
	Restricted Boltzmann Machine 
	Deep Belief Network 
	Deep Boltzmann Machine 

	Auto-Encoder 
	Convolutional Neural Network 
	Recurrent Neural Network 

	Deep Learning for the PHM of Rotating Machinery of Industrial Robots 
	Deep Belief Network for PHM 
	Deep Boltzmann Machine for PHM 
	Auto-Encoder for PHM 
	Convolutional Neural Network for PHM 
	Recurrent Neural Network for PHM 

	Discussion, Challenges and Future Aspects of PHM 
	Conclusions 
	References

