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Abstract: Massive MIMO systems can support a large number of Internet of Things (IoT) devices,
even if the number of IoT devices exceeds the number of service antennas in a single base station
(BS) located at the data center. In order to improve the performance of Massive MIMO with massive
IoT connectivity in a BS, simple scheduling and power control schemes can be of great help, but
typically, they require high power consumption in the situation of serious shadow fading. In this
paper, we try to improve the performance of Massive MIMO with massive IoT connectivity by using
the dropping technique that drops the IoT devices that require high power consumption. Several
scheduling and power control schemes have been proposed to increase the spectral efficiency (SE)
and the energy efficiency (EE) of Massive MIMO systems. By the combination of these schemes with
the dropping technique, we show that the performance can be even further increased under some
circumstances. There is a dropping coefficient factor (DCF) to determine the IoT devices that should
be dropped. This technique gives more benefits to the power control schemes that require higher
power consumption. Simulation results and relevant analyses are provided to verify the effectiveness
of the proposed technique.
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1. Introduction

Recently, it has been shown that Massive multiple-input multiple-output (MIMO) is
a highly effective method to enable massive Internet of Things (IoT) networks [1–7]. In
order to efficiently accommodate a large number of IoT devices simultaneously based on
Massive MIMO systems, a reference signal (RS) can be heavily reused with maximum ratio
(MR) processing, and this scheme can provide a moderate data rate with very low power
consumption [3,6]. The RS reuse scheme for Massive MIMO with massive IoT connectivity
is quite effective for low latency because it does not use any scheduling schemes. However,
it has also been shown that some simple scheduling with a power control scheme can
increase the system’s performance, especially the fairness of spectral efficiency (SE) and
energy efficiency (EE) [6–13].

Several other power control and scheduling schemes for Massive MIMO have been
proposed. In [14], the authors developed a new model adapting the concept of compatible
sets to Massive MIMO, which allows for the efficient solution of a variety of types of
optimization problems. They applied their model to the case of joint device scheduling and
power control for maximum throughput. In [15], a reference signal (RS) reuse scheme was
applied to a device-to-device (D2D) underlaid Massive MIMO system. They made several
D2D pairs that were far from each other so they used the same RS, and showed that the
effect of RS contamination was greatly decreased by the proposed RS scheduling algorithm.
In [16], the authors showed that different fractional power control factors for different
processing at the receiver significantly increased the per-user rate. In [17], the authors

Mathematics 2023, 11, 3012. https://doi.org/10.3390/math11133012 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11133012
https://doi.org/10.3390/math11133012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3675-929X
https://doi.org/10.3390/math11133012
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11133012?type=check_update&version=1


Mathematics 2023, 11, 3012 2 of 18

determined the number of user equipment (UEs) to be scheduled to maximize SE for a
given number of service antennas, and showed various related analyses to improve the
performance. With respect to these, the dropping technique, which drops unfavorable
UEs, has been extensively applied in several works. Hong et al. proposed it under the
line-of-sight (LoS) channel to drop a small number of high-correlation users from the
service [18]. In [19], the authors proposed a dropping algorithm to reduce the correlation of
the channel with the Tomlinson–Harashima precoder using max–min and equally received
power control.

Generally, power control schemes increase SE fairness. However, it requires high
power consumption for the UEs that are in bad channel condition. Several important power
control and scheduling schemes have been proposed in [6], and it has been shown that by
adjusting two inherent parameters in adjustable power control (APC) and adjustable scaled
power control (ASPC) schemes, we can obtain any kind of intermediate performance. As
well as the high power consumption, the limitation of these schemes is that in the situation
of a power-limited case, which means the maximum allowable power consumption is
limited, all the IoT devices could fall into bad performance. This is an undesirable situation
but usually happens if a Massive-MIMO-based data center is serviced over massive IoT
connectivity with serious shadow fading. In this regard, we propose the combination
of power control and scheduling with the dropping technique to achieve satisfactory
performance even though the IoT devices are under a serious shadow fading situation.
Here, the dropping technique refers to the process of disconnecting UE that has undesirable
channel conditions. The dropping criterion is decided based on how much more power
is required compared to the pre-determined reference power. The power control and
scheduling schemes we use in this paper are generalized power control (GPC), scaled
power control (SPC), adjustable power control (APC), and adjustable scaled power control
(ASPC) [6]. The GPC and APC schemes are applied without considering power consumption,
while SPC and ASPC are applied based on the pre-defined power consumption threshold.
For this reason, generally, GPC and APC require more power than SPC and ASPC.

The main contributions of this paper are summarized as follows.

• We show that in the case of serious shadow fading, even though there are many
good power control and scheduling schemes with adjustable parameters, it is very
difficult to achieve the desirable performance. In many algorithms, the adjustable
parameters are effective under a given power consumption criterion, and even though
we adjust the parameters, the performance can be below the threshold. This is the
main limitation of many good schemes with inherent adjustable parameters that can
manipulate the performance, and it is necessary to combine other techniques with
the schemes.

• Next, based on the motivation and analysis, we combine the dropping technique
with several scheduling and power control schemes to improve the performance
of Massive MIMO over massive IoT connectivity with the serious shadow fading
situation. Under the serious shadow fading situation, a lot of power consumption is
required for power control, and it can reduce the performance of the whole system.

• We provide a comprehensive numerical analysis of many good power control and
scheduling schemes with the dropping technique under a serious shadow fading
environment. We show that the dropping scheme is more effective in the cases of GPC
and APC. The performance improvement under SPC and ASPC is marginal, but it can
also improve the performance significantly in some situations even though we use
scaling schemes such as SPC and ASPC. These analyses can greatly help the system’s
design and operation.

In what follows, the system model is described in Section 2. In Section 3, we propose
the scheduling and power control schemes of RS-reused Massive MIMO with the dropping
technique. The dropping technique is extensively applied to the GPC, SPC, APC, and ASPC
schemes. Numerical results for the verification of the proposed technique are provided in
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Section 4, and concluding remarks are given in Section 5. In addition, we provide the list of
abbreviations in Abbreviations.

Notation: Throughout this paper, boldface letters represent vectors and matrices. Bold-
face lowercase letters represent vectors, and boldface uppercase letters represent ma-
trices. The operators (·)†, (·)∗, (·)T , E[·], and V(·) signify matrix conjugate transpose,
matrix (untransposed) conjugate, matrix transpose, expectation, and variance, respectively.
The M×M identity matrix is denoted by IM, and log2(·) represents the logarithm function
with base 2. Additionally, x ∼ CN (0N , VN) denotes the complex Gaussian distributed
vector with zero mean and covariance VN . Furthermore, R+ denotes the set of all positive
real numbers, and R0+ = {0} ∪R+. The notation Rn

+, Rn
0+, Rm×n

+ , and Rm×n
0+ refer to the

corresponding n-dimensional and (m× n)-dimensional product spaces. If R is replaced
with C, then the corresponding complex spaces are denoted. ‖ · ‖∞ and ‖ · ‖2 denote
l∞-norm and l2-norm of vector, respectively.

2. System Model

Considering the uplink Massive MIMO system located at a data center, we assume the
number of service antennas at BS is M and the number of IoT devices or UEs is K. Since we
assume the situation of massive connectivity of IoT devices, K is much larger than M.

Let
G = [g1 · · · gK] ∈ CM×K, (1)

be the M× K channel matrix between the M-antenna array at the BS based on Massive
MIMO and the K active IoT devices or UEs. The channel vector between the k-th UE and
the M-antenna array is modeled as,

gk =
√

βkhk, k = 1, · · · , K (2)

where βk is the large-scale fading coefficient, and hk is the small-scale fading coefficient,
respectively.

Alternatively, the matrix G can be represented in a different form, denoted as follows,

G = H · diag
(

β1/2
1 , · · · , β1/2

K

)
, (3)

where H = [h1, · · · , hK] ∈ CM×K represents the small-scale fading matrix, and diag[·]
denotes the creation of a diagonal matrix. We assume that the IoT devices are uniformly
distributed. In addition, we assume that the channel is rich scattering and that the elements
of the channel vector hk are independent and identically distributed (i.i.d.) and Rayleigh
distributed.

The uplink received signal vector can be modeled as

yu =
√

puGxu + nu, (4)

where yu ∈ CM is the received signal vector at the M-antenna ports in BS, pu is the uplink
transmission power of each device, xu ∈ CK is the message signal with the power control
coefficient from the UE, and nu is the uplink additive white Gaussian noise (AWGN) vector
with zero mean and variance σ2

UL (i.e, nu ∈ CN (0M, σ2
ULIM)). The uplink power constraint

of the message signal is specified as

‖E[x∗u � xu]‖∞ ≤ 1, (5)

where � denotes the element-wise multiplication.
If we assume qu is the uplink signal with the message before the power control,

the relationship between qu and xu can be represented as

xu = D1/2
η qu, (6)
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Here we assume D1/2
η , diag

(
η1/2

1 , · · · , η1/2
K

)
is the diagonal matrix, which is used

for the power control by the multiplication of qu. η = [η1 · · · ηK]
T is the uplink power

control vector, and it satisfies a constraint given to power as follows,

η ∈ RK
+ and ‖η‖∞ ≤ 1. (7)

We should apply uplink processing schemes to reduce inter-user interference (IUI),
and maximum ratio (MR) processing and zero-forcing (ZF) processing schemes are two
well-known and effective schemes for the purpose [20]. It has already been shown that
in the situation of a huge amount of IoT devices, which have much greater K than M,
ZF processing gives a very low quality of performance, while MR processing gives much
better performance [3]. For this reason, for the detection of the uplink signal, we choose
MR processing.

The processing matrix Ĝ† is used for MR processing where Ĝ is the estimate of G.
From Equation (4), Ĝ† is multiplied to the uplink signal.

Ĝ†yu =
√

puĜ†Gxu + Ĝ†nu, (8)

This paper employs the linear minimum mean square error (LMMSE) channel estimation
technique. LMMSE channel estimation aims to minimize the discrepancy between the estimated
channel and the actual measured channel. Considering that hk follows a Rayleigh distribution,
the standard approach is utilized for conducting LMMSE channel estimation.

Time division duplexing (TDD) mode is an effective mode to reduce the RS overhead
because uplink channel information can be used for downlink transmission. For this reason,
TDD mode is generally applied for Massive MIMO to reduce RS overhead. If we assume
each coherence interval lasts τc resource elements, we can consider τp resource elements
are used for the uplink RSs and the remaining τc − τp resource elements are used for uplink
data transfer within each coherence interval. Thus, the overhead for transferring uplink RS
can be τp/τc. Based on this fact, the uplink SE can be represented as

SEUL =
κu

∑
i=1

ζu
(

1−
τp

τc

)
log2

(
1 + SINRUL

i
)
. (9)

where SINRUL
i is the uplink signal-to-interference and noise ratio (SINR) for ith IoT devices.

Let κu denote the number of coincidentally supported UEs for uplink transmission, while
K represents an upper limit on the number of UEs that can be simultaneously supported. It
is important to note that κu is always smaller than K. Since TDD includes both uplink and
downlink data, we need to choose a parameter to reflect the amount of uplink and downlink
data. If we assume ζu is the parameter to represent the amount of data transmission
resource elements for uplink, and ζd is the parameter to represent the amount of data
transmission resource elements for downlink, we can say that the summation of ζu and ζd

is one, i.e., ζu + ζd = 1.
Assuming ςu = ςd = 0.5, the uplink throughput (TP) per each UE for ith UE can be,

TPi = 0.5BW
(

1−
τp

τc

)
log2(1 + SINRUL

i ). (10)

where BW is the system bandwidth. The total TP can be the summation of TPi for all
corresponding i.

In order to accommodate a large number of UEs concurrently, the RS is extensively
reused. To represent the RS reuse situation, it is convenient to use the double script notation
(j, l) to identify the distributed UEs. We assume β j,l is the large-scale fading coefficient
between the jth IoT device in the lth group and the BS service antenna array. Then we
can arrange all the UEs and corresponding large-scale fading coefficients in a J × L matrix.
In this situation, each column of UEs uses the mutually orthogonal RSs, and we assume
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they are in the same group. Each row of UEs uses the same RSs and they are in different
group. Therefore, we can represent the large-scale fading matrix as follows.

B =


β1,1 β1,2 · · · β1,L
β2,1 β2,2 · · · β2,L

...
...

...
...

β J,1 β J,2 · · · β J,L

, (11)

Based on this, with RS reuse and MR processing, we can represent the uplink SINR as
follows [3,21].

SINRMR,UL
j,l =

Mpuγj,l β j,lηj,l

σ2
UL + pu

J
∑

j′=1

L
∑

l′=1
β j′ ,l′ηj′ ,l′ + Mpu

L
∑

l′=1
l′ 6=l

γj,l′β j,l′ηj,l′

, (12)

Next, let us consider the EE metric based on Equation (9). EE is generally defined as
rate over the consumption of power. If we assume PUL

PA is the uplink power amplifier (PA)
power consumption and PUL

C is the rest of power consumption [22], the consumption of
sum power can be represented as: K

(
PUL
PA + PUL

C
)
= PSUM. The relation between PPA and

pu is pu = µPPA where µ is the uplink power efficiency of PA.
Then, uplink EE can be shown as

EEUL =

κu

∑
i=1

ζu
(

1− τp
τc

)
BW log2

(
1 + SINRUL

i
)

K
(

PUL
PA + PUL

C
) , (13)

where BW represents the system bandwidth.
Fairness is another important metric for supporting numerous IoT devices. SE fairness

can be significantly improved using power control [3]. However, it is also known that the
EE fairness could be seriously reduced due to the power control. As a fairness metric, Jain’s
fairness index is generally used [23].

F(SE) =

(
K
∑

i=1
SEi

)2

K
K
∑

i=1
SE2

i

, (14)

F(EE) =

(
K
∑

i=1
EEi

)2

K
K
∑

i=1
EE2

i

, (15)

where SEi and EEi are SE and EE of ith IoT devices.

3. RS-Reused Massive MIMO with Dropping Technique

In this section, we show the dropping technique that can be applied to scheduling
and power control schemes of Massive MIMO with RS reuse. Several elegant schemes are
proposed to improve the performance of Massive MIMO with RS reuse [6,24]. The first
scheme is ordering (O), which simply orders the UEs according to the large-scale fading
coefficient of each UE. In this case, UE in good channel condition can be paired with UE
in bad channel condition for RS reuse, and it increases the SE and EE with the sacrifice of
their fairness, F(SE) and F(EE). It has also been shown that ascending and descending
orders give almost the same performance [6]. The next scheme is GPC. This scheme is
widely used, and it uses the ratio of the average large-scale fading coefficient, βave, and the
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corresponding large-scale fading coefficient of ith UE, βi, to determine the power control
coefficient for ith UE, ηi. GPC can maintain very high SE fairness, but the disadvantage of
GPC is that it also requires a very high consumption of power, especially under serious
shadow fading. To cope with this problem, the SPC scheme is proposed, and this scheme
uses the same procedure with GPC maintaining a pre-defined power consumption. Thus,
based on the pre-defined power consumption, SPC uses the same power consumption with
O and/or Random, which use the pre-defined fixed power consumption. Here, Random is
the case of randomly distributed UE, and it is the condition of not applying any scheduling
and power control schemes for the improvement of the performance. Both GPC and SPC
show very high SE fairness, but SE and EE are relatively low. It is necessary to find the
scheme that can achieve the performances between SPC/GPC and O. For this purpose
and to increase the flexibility that can determine any kind of intermediate performances
of F (EE)/F (SE) and EE/SE, the APC and ASPC schemes have been proposed. There
are two adjustable parameters in APC and ASPC. By adjusting the two parameters, we
can obtain numerous intermediate performances of EE/SE and F (EE)/F (SE). There is a
power constraint in ASPC so that it does not exceed the pre-defined threshold, while APC
consumes a lot of power for some of the UEs that are under serious channel conditions.
APC and ASPC use the sigmoid function to adjust output level. We use the following
sigmoid function,

Ω(χi; a, b) =
1

1 + e−a(χi−b)
, (16)

where χi is the input, and a, b indicate the parameters to adjust the output of the sigmoid
function. a and b can be chosen arbitrarily, and based on these, we can obtain any value
for the trade-off between EE and SE, with fairnesses. Figure 1 presents the relationship
between input and output based on the variations of a and b in sigmoid function, when χi
is 0.2, 0.5, and 0.8. The output tends to be high when a is large and b is small.

Figure 1. Input and output relations with a and b variations in sigmoid function, when χi = 0.2,
χi = 0.5, and χi = 0.8 (from left to right).

The dropping technique is effective, especially if there is serious shadow fading.
We provide the simulation results of ASPC under shadow fading in Figure 2. For the
simulations, we use coherence time Tc = 50 ms, the number of service antennas M = 400,
and the number of UEs K = 840. The detailed simulation parameters are given in the next
section. As observed, SE performance is reduced from the location of high a if the standard
deviation of shadowing, σshadow, is increased. There is pre-defined power consumption in
ASPC, thus accommodating many IoT devices with high σshadow results in performance loss.
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Figure 2. SE performances based on a and b variations in sigmoid function. SE (bps/Hz) versus a
and b when σshadow = 0 dB, σshadow = 3 dB, and σshadow = 8 dB (from left to right).

In this situation, disconnecting some of the IoT devices that are in poor channel condi-
tion can improve the performance of the network. Determining the dropping threshold
is an important issue in this technique. For this, we use the dropping coefficient factor
(DCF), εdrop, for the dropping criterion. If some UEs require more than εdrop times power
consumption compared to initial power consumption pu, then we disconnect the corre-
sponding UEs. That is, we drop the UEs that require more power than εdrop × pu. All UEs
except the dropped UEs are gathered in G1.

Now, we can represent the algorithms GPC, SPC, APC, and ASPC with the dropping
technique. Algorithm 1 shows GPC with the dropping technique. To determine the power
coefficient factor for ith UE, ηi, βave is divided by βi (Line 8). If the determined power for
ith UE pu,i (Line 10) is smaller than pu × εdrop, it is included in the service group (Line 13).
If not, the UE is disconnected. εdrop can be determined based on the system requirements.
If εdrop is too high, no UE would be disconnected, and if εdrop is too low, most of the UEs
could be disconnected. After that, Ks, the number of UEs after dropping is determined (Line
14), and the processing matrix V is generated based on Ks (Line 15). The received signal is
multiplied by V to reduce IUI (Line 16). Then G1 is emptied, and the same procedure is
repeated in the pre-defined number ΓLen.

Algorithm 1: Generalized Power Control (GPC) with Dropping (GPC(D))

1 Initialization;
2 G1 ⇐ ; l = 0 ;
3 while l ≤ ΓLen do
4 Select UEs ;

5 βave ← ∑K
i=1 βi
K ;

6 Form B ∈ CJ×L ;
7 for i = 1 : K do
8 ηi ← βave/βi ;
9 Send ηi to UEi ;

10 pu,i ← pu · ηi ;
11 if pu,i < puεdrop ;
12 then
13 G1 ⇐ {G1, UEi} ;

14 Ks ⇐ length(G1) ;
15 Generate V ∈ CKs×M;
16 yu ← V · √puGxu + nu ;
17 G1 ⇐ ; l = l + 1 ;

Algorithm 2 shows SPC with the dropping technique. In SPC, ηi is determined
based on the pre-determined threshold, ηREF (Line 11). In this paper, we assume total
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power allocation is the same as the initially determined total power consumption (Line
13). The same dropping logic as GPC is applied (Line 15 ∼ 17). After disconnecting the
undesirable UEs, the procedure for the determination of ηi proceeds based on the newly
determined number of UEs, Ks (Line 19 ∼ 29).

Algorithm 2: Scaled Power Control (SPC) with Dropping (SPC(D))

1 Initialization;
2 G1 ⇐ ; l = 0 ;
3 while l ≤ ΓLen do
4 Select UEs ;

5 βave ← ∑K
i=1 βi
K ;

6 Form B ∈ CJ×L ;
7 Υ← pu · βave ;
8 for i = 1 : K do
9 ηi ← βave/βi ;

10 ηSUM ← ∑K
i=1 ηi ;

11 ηREF ← pu · K ;
12 for i = 1 : K do
13 ηi ←

(
βave

βi

)
·
(

ηREF

ηSUM

)
;

14 pu,i ← pu · ηi ;
15 if pu,i < puεdrop ;
16 then
17 G1 ⇐ {G1, UEi} ;

18 Ks ⇐ length(G1) ;

19 βave ← ∑Ks
i=1 βi
Ks

;
20 Form B ∈ CJs×L ;
21 Υ← pu · βave ;
22 for i = 1 : Ks do
23 ηi ← βave/βi ;

24 ηSUM ← ∑Ks
i=1 ηi ;

25 ηREF ← pu · Ks ;
26 for i = 1 : Ks do
27 ηi ←

(
βave

βi

)
·
(

ηREF

ηSUM

)
;

28 Send ηi to UEi ;
29 pu,i ← pu · ηi ;

30 Generate V ∈ CKs×M;
31 yu ← V · √puGxu + nu ;
32 G1 ⇐ ; l = l + 1 ;

Algorithms 3 and 4 present APC and ASPC with the dropping technique, respectively.
They also use the same dropping logic that drops the UEs that require higher power than
the threshold. There are two inherent parameters a and b, and based on the parameters, Ks
can be significantly different.
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Algorithm 3: Adjusted Power Control (APC) with Dropping (APC(D))

1 Initialization;
2 G1 ⇐ ; l = 0 ;
3 while l ≤ ΓLen do
4 Select UEs ;
5 Determine a and b ;

6 βave ← ∑K
i=1 βi
K ;

7 Form B(:) ∈ CK×1 ;
8 Bsort(:)← sort(B(:), Ξi);
9 for i = 1 : K do

10 PLi ← 10 log10

(
1
βi

)
;

11 for i = 1 : K do
12 if Ξi == Ξ1 then
13 χi ← PLi−PL1

PLK
;

14 else if Ξi == Ξ2 then
15 χi ← PLi−PLK

PL1
;

16 Ωi(χi; a, b)← 1
1+e−a(χi−b) ;

17 ηi ←
(

βave
βi

)
Ωi(χi; a, b) ;

18 Send ηi to UEi ;
19 pu,i ← pu · ηi ;
20 if pu,i < puεs ;
21 then
22 G1 ⇐ {G1, UEi} ;

23 Ks ⇐ length(G1) ;
24 B← reshape(Bsort(:), Js, L) ;
25 Generate V ∈ CKs×M;
26 yu ← V · √puGxu + nu ;
27 G1 ⇐ ; l = l + 1 ;
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Algorithm 4: Adjusted Scaled Power Control (ASPC) with Dropping (ASPC(D))

1 Initialization;
2 G1 ⇐ ; l = 0 ;
3 while l ≤ ΓLen do
4 Select UEs ;
5 Determine a and b ;

6 βave ← ∑K
i=1 βi
K ;

7 Form B(:) ∈ CK×1 ;
8 Bsort(:)← sort(B(:), Ξi);
9 for i = 1 : K do

10 PLi ← 10 log10

(
1
βi

)
;

11 for i = 1 : K do
12 if Ξi == Ξ1 then
13 χi ← PLi−PL1

PLK
;

14 else if Ξi == Ξ2 then
15 χi ← PLi−PLK

PL1
;

16 Ωi(χi; a, b)← 1
1+e−a(χi−b) ;

17 ηi ←
(

βave
βi

)
Ωi(χi; a, b) ;

18 B← reshape(Bsort(:), J, L) ;
19 ηSUM ← ∑K

i=1 ηi ;
20 ηREF ← ρu · K ;
21 for i = 1 : K do
22 ηi ←

(
βave

βi

)
Ωi(χi; a, c) ·

(
ηREF

ηSUM

)
;

23 pu,i ← pu · ηi ;
24 if pu,i < puεdrop ;
25 then
26 G1 ⇐ {G1, UEi} ;

27 Ks ⇐ length(G1) ;
28 Repeat Line 6 ∼ 20 with Ks ;
29 for i = 1 : Ks do
30 ηi ←

(
βave

βi

)
Ωi(χi; a, c) ·

(
ηREF

ηSUM

)
;

31 Send ηi to UEi ;
32 pu,i ← pu · ηi ;

33 B← reshape(Bsort(:), Js, L) ;
34 Generate V ∈ CKs×M;
35 yu ← V · √puGxu + nu ;
36 G1 ⇐ ; l = l + 1 ;

4. Numerical Results and Discussion

In this section, we present the numerical analysis and relevant discussion of the
dropping technique with various power control and scheduling schemes. We employ
Monte Carlo simulations to validate the proposed algorithms.

In our simulation, we assume that the BS is able to measure the strength of the received
signal from each UE terminal and estimate the large-scale fading coefficient. We also assume
that the BS is able to calculate the power control coefficients and send the information to
the corresponding UE terminals. We provide the detailed simulation scenario as follows:

• The simulation is conducted in a 2D environment with a single BS and multiple UEs.
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• The BS is located at the origin of the coordinate system, and the UE terminals are
randomly distributed within a circular area with radius R = 750 m.

• The channel between the BS and each UE terminal is assumed to be a Rayleigh
fading channel.

• The UE terminals are assumed to use a power control algorithm to adjust their transmit
power in order to improve performance.

The power control procedures are assumed and implemented as follows:

1. BS measurement: In our simulation, the BS measures the strength of the RS transmitted
by the UEs. Based on these measurements, the BS estimates the large-scale fading
coefficient associated with each UE’s channel.

2. Power control coefficient calculation: Using the estimated fading coefficients, the BS
calculates the power control coefficients that determine the desired power level for
each UE. The power control coefficients are determined based on the specific power
control algorithm employed in the simulation.

3. Signaling transmission: The BS then communicates the power control coefficients and
related information to the corresponding UEs. This signaling is achieved through
dedicated signaling channels or control channels, depending on the specific wireless
standard or protocol considered in our simulation.

4. UE power adjustment: Upon receiving the signaling information from the BS, each
UE adjusts its transmit power level accordingly. The UEs increase or decrease their
power based on the power control coefficients provided by the BS, aiming to achieve
the desired power levels for optimal performance.

It is postulated that both process (1) and process (3) are executed with optimal preci-
sion, devoid of any inherent operational errors.

The simulation parameters that are used in this paper are provided in Table 1. We
assume a high-density urban outdoor scenario. The choice of the 180 kHz coherence
bandwidth, denoted as Bc, aligns with one resource block of 3GPP systems and is relevant
to the specific context of our investigation. By choosing Bc = 180 kHz, we can generate a
serious RS reuse situation in a massive IoT scenario. The uplink initial power is the uplink
average radiation power.

Table 1. Simulation Parameters.

Parameter Value

Coherence Time, Tc 5, 50 ms

Coherence Bandwidth, Bc 180 kHz

Portion of data trans. resource elements, ζu,ζd 0.5

Signal Bandwidth, BW 20 MHz

Uplink initial power, pu 10 mW

Path Loss Model ETSI

Antenna Gains of BS and UE, GBS, GUE 0 dB

BS noise figure, NFBS 9 dB

Default Dropping Coefficient Factor (DCF), εs 10

Standard deviation of shadow fading, σShadow 8 dB

RX Processing MR

We use the Massive MIMO system with M = 400 and maximum number of UEs,
Kmax = 12, 000 using Tc = 5 ms and 50 ms. Considering the 3GPP system model that
has 14 resource elements in a 15 kHz bandwidth and 1 ms interval, if we assume the
coherence bandwidth Bc = 180 kHz, there are 840 available resource elements when
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Tc = 5 ms, and 8400 resource elements when Tc = 50 ms. Since we allocate half of the
available resource elements to RS, 420 resource elements are available for data transmission
when Tc = 5 msec, and 4200 resource elements are available for data transmission when
Tc = 50 ms. The uplink initial power pu = 10mW and the input-back off is 8 dB for the
compensation of the PA nonlinearity. We assume the maximum PA efficiency without
input-backoff is 50%. The ETSI urban macro path loss model is used [25].

PL = 128.1 + 37.6 log10(R). (17)

Figure 3 shows the performances of the dropping technique based on the cumulative
distribution function (CDF). Figure 3a is the probability versus throughput (TP) (Mbps/Hz)
when K = 840 and Tc = 5 ms. In this case, the RS reuse factor is L = 2. Here, the scheme
“(D)” indicates the scheme with the dropping technique. As observed, the GPC and APC
schemes with the dropping technique give a very high TP improvement. There is also
some TP improvement when we use SPC and ASPC with the dropping technique, but the
performance improvement is marginal compared to the cases of GPS and APC. In this
paper, we use a = 5 and b = 0.5 for the parameters of APC and ASPC. If we used different
parameters, the performance improvement would be different. Figure 3b,c show the
probability versus TP (Mbps) when K = 8400 with Tc = 5 ms and 50 ms, respectively. When
Tc = 5 ms, L becomes 20. Due to the serious interference, the performance improvement
is reduced. When Tc = 50 ms, L is still 2, and thus it shows a very similar characteristic
with the case of K = 840 and Tc = 5 msec. Figure 3d–f present the cases of probability
versus EE (Mbps/Hz). GPC and APC with the dropping technique still give very high EE
performance improvements.
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Figure 3. Performances of dropping technique based on cumulative distribution function (CDF).
(a) Probability versus TP (throughput) (Mbps) when K = 840 and Tc = 5 ms. (b) Probability versus
TP (Mbps) when K = 8400 and Tc = 5 ms. (c) Probability versus TP (Mbps) when K = 8400 and
Tc = 50 ms. (d) Probability versus EE (Mbps/W) when K = 840 and Tc = 5 ms. (e) Probability versus
EE (Mbps/W) when K = 8400 and Tc = 5 ms. (f) Probability versus EE (Mbps/W) when K = 8400
and Tc = 50 ms (from left to right).

Remark 1. Using the dropping technique, both GPC and APC demonstrate remarkable enhance-
ments in terms of SE and EE performance. On the other hand, although SPC and ASPC with the
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dropping technique also exhibit improved SE and EE performance, the magnitude of the improve-
ments is marginal compared to GPC and APC with the dropping technique. Additionally, as L
increases, the degree of improvement decreases.

Figure 4 presents the performances based on various metrics, such as EE, SE, F (EE),
F (SE), and PSUM. In these figures, we show how the performance metrics change as K
increases. Red ‘O’s indicate simulation results, and we can observe that the simulation
results and theoretical analysis match well. Figure 4a,b show the SE versus K when
Tc = 5 ms and 50 ms, respectively. As observed, the dropping technique moves the SE
performance curve to the right, and we can consider using it in the large K to achieve
higher performance. Noticeably, we still see that we can obtain a higher performance
improvement when we apply the dropping technique to GPC and APC. This is because we
use GPC and APC without the constraint of power consumption, while SPC and ASPC have
the constraint of power consumption.
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Figure 4. SE, EE, and fairness performances: (a) SE versus K when Tc = 5 ms, (b) SE versus K
when Tc = 50 ms, (c) EE versus K when Tc = 5 ms, (d) EE versus K when Tc = 50 ms, (e) fairness
(SE) versus K when Tc = 5 ms, (f) fairness (SE) versus K when Tc = 50 ms, (g) EE versus K when
Tc = 5 ms, (h) fairness (EE) versus K when Tc = 50 ms, (i) PSUM versus K when Tc = 50 ms (from
left to right).

Remark 2. The dropping technique shifts the SE performance curve to the right, and gives higher
performance when K is large.

Figure 4c,d show the EE versus K when Tc = 5 ms and 50 ms, respectively. Without the
dropping technique, both GPC and APC give very low EE performances. In particular, GPC
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presents the lowest EE performances. On the other hand, GPC with the dropping technique
gives the highest EE for both cases, and APC with the dropping technique also gives a very
high EE performance. This is a very desirable result in that we can improve EE significantly
with a simple dropping technique. SPC and ASPC with the dropping technique also show
good EE performance improvement, but the performance improvement from the dropping
technique is marginal compared to the cases of GPC and APC.

Remark 3. The utilization of the dropping technique yields the most substantial EE performance
improvements in GPC and APC, while the absence of the dropping technique results in the lowest
EE performances. The enhancement in EE is particularly noteworthy for GPC and APC.

Figure 4e,f show the F (SE) versus K when Tc = 5 ms and 50 ms, respectively. In the
case of GPC, the dropping technique has little effect on F (SE). In the case of APC, again
the dropping technique does not give any meaningful change in F (SE).

Remark 4. GPC and APC with the dropping technique have little effect on F (SE).

Figure 4g,h present the F (EE) versus K when Tc = 5 ms and 50 ms, respectively.
GPC and APC with the dropping technique significantly improve the F (EE), and SPC and
ASPC with the dropping technique give similar F (EE) performances to those without the
dropping technique.

Remark 5. Applying the dropping technique to GPC and APC results in a significant enhancement
of F (EE), while having no reduction in F (SE).

Figure 4i presents PSUM versus K when Tc = 5 ms. As expected, GPC and APC require
too much power as K increases, and the dropping technique can significantly reduce the
PSUM. When Tc = 50 ms, the situation is very similar to the case of Tc = 5 ms.

Figure 5 presents the 3D performances based on various parameters when K = 8400
and Tc = 50 ms. Figure 5a,b show the SE versus DCF, εdrop and σshadow (dB). The per-
formance difference between GPC/APC and SPC/ASPC is high when σshadow is high.
Figures 5c,d show the EE versus DCF and σshadow (dB). Again, we can observe that the
performance difference between GPC/APC and SPC/ASPC is high when σshadow is high.
Figure 5e,f show the F (SE). For the careful choice of GPC and APC with the dropping
technique, they can present better F (SE) than SPC/ASPC. The case of F (EE) also presents
similar characteristics as shown in Figure 5g,h.

(a) (b) (c)

Figure 5. Cont.
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Three-dimensional performances based on various parameters when K = 8400 and
Tc = 50 ms: (a) SE(bps/Hz) of GPC and SPC versus DCF and σshadow (dB), (b) SE(bps/Hz) of APC
and ASPC versus DCF and σshadow (dB), (c) EE(bps/W) of GPC and SPC versus DCF and σshadow

(dB), (d) EE(bps/W) of APC and ASPC versus DCF and σshadow (dB), (e) fairness (SE) of GPC and
SPC versus DCF and σshadow (dB), (f) fairness (SE) of APC and ASPC versus DCF and σshadow (dB),
(g) fairness (EE) of GPC and SPC versus DCF and σshadow (dB), (h) fairness (EE) of APC and ASPC
versus DCF and σshadow (dB), (i) PSUM of GPC and SPC versus DCF and σshadow (dB), (j) PSUM of
APC and ASPC versus DCF and σshadow (dB), (k) Ksupport of GPC and SPC versus DCF and σshadow

(dB), (l) Ksupport of APC and ASPC versus DCF and σshadow (dB) (from left to right).

Remark 6. By selecting the suitable DCF, GPC/APC can achieve superior F (SE) and F (EE)
performances compared to SPC/ASPC.

Generally, if DCF is large, GPC and APC consume more power (Figure 5i,j). This is
because when DCF is large, GPC and APC support more UEs (Figure 5k,l). Compared with
GPC/APC, for the cases of SPC/ASPC, the number of supported UEs does not change so
much for the various values of σshadow and DCF.

Remark 7. Ks in SPC/ASPC remains relatively unchanged for different values of σshadow and
DCF. Conversely, Ks in GPC/APC experiences significant variation based on the choice of σshadow
and DCF.

We present the summary for the gains of the dropping technique in Table 2. When
we use GPC (D) and APC (D), we can achieve high SE and EE gains. In particular, we
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can achieve quite a large amount of EE gain. F (SE) is maintained even though we apply
the dropping technique. We can also increase F (EE) significantly when we use GPC (D)
and APC (D). The amount of power saving is also quite large so that when Tc = 50 ms,
K = 3000, with GPC (D), a gain in PSUM of around 6898% is reached. We can also improve
the EE and SE performances of SPC/ASPC using the dropping technique even though the
improvements are not so significant when compared to the cases of GPC/APC using the
dropping technique.

Table 2. Summary for the gains of dropping technique in numerical values.

Classification Schemes SE Gain EE Gain F (SE) Gain F (EE) Gain PSUM Gain

Tc = 5 ms

K = 840

GPC (D) 104.06% 13,309.09% 0.16% 77.66% 3641.41%

SPC (D) 26.42% 20.12% 0.99% 4.13% 4.91%

APC (D) 28.02% 1103.34% 1.63% 18.63% 845.13%

ASPC (D) 18.91% 21.0% 0.56% 0.1 % 2.2 %

K = 3000

GPC (D) 32.40% 41,877.12% 0.46% 79.19% 3429.03%

SPC (D) 10.24% 3.31% 0.14% 4.94% 6.31%

APC (D) 27.37% 2776.8% 6.67% 19.75% 1226.66%

ASPC (D) 2.17% 0.12% 1.13% 0.1% 1.2%

Tc = 50 ms

K = 3000

GPC (D) 22.77% 8326.84% 0% 110.81% 6898.45%

SPC (D) 9.93% 3.8% 0% 4.98% 5.93%

APC (D) 10.48% 1263.83% 1.55% 28.97% 1186.07%

ASPC (D) 17.14% 8.99% 2.21% 1.72% 0.47%

K = 8000

GPC (D) 100.33% 7441.41% 4.54% 63.76% 3713.89%

SPC (D) 5.37% 1.11% 1.4% 0.58% 6.49%

APC (D) 33.82% 1295.70% 0.43% 12.22% 974.22%

ASPC (D) 7.99% 1.55% 1.85% 2.71% 0.27%

The summary of the performances is given in Table 3. In this table, } indicates
very good performance, ◦ indicates relatively good performance, M indicates acceptable
performance, and × indicates poor performance. We can choose the appropriate scheme
based on the possible applications.

Table 3. Summary of performances.

Schemes SE EE F (SE) F (EE) PSUM Ks

GPC ◦ × } M × }

GPC (D) } } } ◦ ◦ ×
SPC × M } } ◦ }

SPC (D) × M } } ◦ ◦
APC ◦ × ◦ ◦ × }

APC (D) ◦ ◦ ◦ ◦ ◦ ×
ASPC × ◦ ◦ } ◦ }

ASPC (D) × ◦ ◦ } ◦ ◦
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5. Conclusions

In this paper, we have proposed the dropping technique that can be combined with
several scheduling and power control schemes in Massive MIMO enabling massive IoT
devices. With the appropriate dropping technique, we showed that the performances of
Massive MIMO can be significantly improved. The performance metrics we used in this
paper were SE, EE, F (SE), F (EE), and PSUM. We analyzed both cases of Tc = 5 ms and
50 ms. When we combine the dropping technique with the GPC and APC schemes, we can
obtain very high SE and EE performance improvements. F (EE) can also be improved with
little performance loss of F (SE). When we combine the dropping technique with SPC and
ASPC, we can still obtain some performance improvement, but the improvement is marginal
compared to the cases of GPC and APC. This is because SPC and ASPC have a pre-defined
power consumption threshold that must be maintained, and they are already designed
to reduce their power consumption and improve the EE. There are many scheduling and
power control schemes and many parameters that can be used to adjust the performance.
The appropriate choices and combinations of these schemes with the dropping technique
can significantly improve many performance metrics. The results in this paper can be a
useful design tool for the realization of high-performance Massive MIMO with massive IoT
connectivity systems.
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Abbreviations

APC Adjustable Power Control
ASPC Adjustable Scaled Power Control
AWGN Additive White Gaussian Noise
BW Bandwidth
BS Base Station
DCF Dropping Coefficient Factor
D2D Device-to-Device
EE Energy Efficiency
GPC Generalized Power Control
IoT Internet of Things
IUI Inter-User Interference
LEN Length
LMMSE Linear Minimum Mean Square Error
MR Maximum Ratio
MIMO Multiple-Input Multiple-Output
PA Power Amplifier
REF Reference
RS Reference Signal
RX Receiver
SE Spectral Efficiency
SINR Signal-to-Interference plus Noise Ratio
SNR Signal-to-Noise Ratio
SPC Scaled Power Control
TP Throughput
TDD Time Division Duplex
TX Transmitter
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UE User Equipment
UL Uplink
ZF Zero Forcing
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