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Abstract: The decomposition integrals of set-valued functions with regards to fuzzy measures are
introduced in a natural way. These integrals are an extension of the decomposition integral for
real-valued functions and include several types of set-valued integrals, such as the Aumann integral
based on the classical Lebesgue integral, the set-valued Choquet, pan-, concave and Shilkret integrals
of set-valued functions with regard to capacity, etc. Some basic properties are presented and the
monotonicity of the integrals in the sense of different types of the preorder relations are shown. By
means of the monotonicity, the Chebyshev inequalities of decomposition integrals for set-valued
functions are established. As a special case, we show the linearity of concave integrals of set-valued
functions in terms of the equivalence relation based on a kind of preorder. The coincidences among
the set-valued Choquet, the set-valued pan-integral and the set-valued concave integral are presented.

Keywords: set-valued function; fuzzy measure; decomposition integral; choquet integral;
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1. Introduction

In [1], Even and Lehrer introduced the decomposition integral based on a decom-
position system and a capacity. In general, the different decomposition systems induce
different decomposition integrals. The well-known nonlinear integrals, the Choquet in-
tegral, the concave integral, the pan-integral and the Shilkret integral, are based on the
chains of sets, arbitrary finite set systems, finite partitions and singletons, respectively. The
decomposition integral forms a general setting for these nonlinear integrals (see also [2,3]).
In recent years, decomposition integrals have attracted more and more attention from
researchers, and a lot of results have been obtained (see [2–12]).

The above-mentioned decomposition integrals, including the Choquet, pan-, concave
and Shilkret integrals, concern real-valued functions and number-valued capacities. As is
well known, set-valued integrals for set-valued functions, such as the Aumann integral,
the Debreu integral and others which are based on Lebesgue integrals, are extensions of
classical integrals for number-valued functions and number-valued measures (see [13–15]).
Analogously to the idea of defining classical set-valued integrals, several types of integrals
of set-valued functions based on nonlinear integrals have been introduced and discussed,
such as set-valued fuzzy integrals [16–18], set-valued Choquet integrals [19–21], Gould-type
integrals for multisubmeasures [22,23], Aumann–Pettis–Sugeno integrals [24], etc. More
studies on the topics of set-valued functions and integrals of set-valued functions have also
appeared in [23,25–30]. In particular, the Choquet integrals of set-valued functions have
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been deeply investigated (see [19–21,31,32]), and the pan-integrals of set-valued functions
have just been introduced and discussed in [33]. Noting that the decomposition integral
forms a unified framework for the Choquet integrals, pan-integrals, concave integrals,
etc., we naturally want to define a set-valued decomposition integral so that the previous
set-valued integrals, such as the set-valued Choquet, the set-valued pan- and the set-valued
concave integrals, become some special cases of set-valued decomposition integrals.

In this paper, we will define the decomposition integral of set-valued functions in a
natural way (i.e., in a way similar to the integral of Aumann). This integral is an extension of
a decomposition integral with respect to a capacity for real-valued functions. Analogously
to the previous discussion of the set-valued Choquet and the set-valued pan-integral,
we present some basic properties, positive homogeneity, monotonicity in the sense of
inclusion relation, etc. We respectively investigate the monotonicity of the set-valued
decomposition integral in the sense of two preorders: a kind of preorder on the class of all
nonempty sets of R1 and another kind of preorder on the set of all decomposition systems.
By using the monotonicity, we will establish the Chebyshev inequality of the set-valued
decomposition integral, and as special cases, Chebyshev’s inequality of the set-valued
Choquet, pan-, concave and Shilkret integrals is also presented. Under the conditions of
subadditivity, submodularity and the (M)-property of fuzzy measures, the coincidences
among the set-valued pan-integral, set-valued Choquet integral and set-valued concave
integral are shown, respectively.

2. Preliminaries

Let (Ω,A) denote a measurable space, i.e., Ω is a nonempty set and A is a σ-algebra
of subsets of Ω.

2.1. Fuzzy Measures

A set function κ : A → [0, ∞] is called a fuzzy measure ([34,35]) on (Ω,A) if (1)
κ(∅) = 0 and (2) κ(C1) ≤ κ(C2) whenever C1, C2 ∈ A, C1 ⊆ C2.

A fuzzy measure is also known as “capacity” (in the case of κ(Ω) = 1) [36,37], “mono-
tone measure” [6,38], “non-additive measure” [28,29], “non-additive probability”, etc.

Let M denote the set of all fuzzy measures defined on (Ω,A).
A fuzzy measure κ is called subadditive [38,39] if κ(S ∪W) ≤ κ(S) + κ(W) whenever

S, W ∈ A; superadditive [38,39], if µ(S ∪W) ≥ µ(S) + µ(W) whenever S, W ∈ A and
S ∩W = ∅.

2.2. Decomposition Integrals

A collection from A \ {∅} is a finite nonempty subset of A \ {∅}. A decomposition
system on (Ω,A) is a nonempty setH of collections from A \ {∅}. Let X denote the set of
all decomposition systems on (X,A).

In [1], Even and Lehrer introduced the decomposition integral (see also [3]).
Let F+ denote the set of all non-negative real-valued A-measurable functions on Ω

and χE be the characteristic function of E ∈ A.

Definition 1 (Even and Lehrer [1]). Given H ∈ X and κ ∈M. The mapping
∫
H ·dκ : F+ →

R+, defined by∫
H

hdκ = sup
{ m

∑
j=1

djκ(Dj) : (Dj)
m
j=1 ∈ H,

m

∑
j=1

djχDj ≤ h, dj ≥ 0
}

, (1)

is called a decomposition integral with respect toH and κ.

A decomposition integral depends on a decomposition system H ∈ X and a fuzzy
measure κ ∈ M. There are four common decomposition integrals: the Choquet integral,
the pan-integral (with respect to the pair of standard addition and multiplication (+, ·)),
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the concave integral and the Shilkret integral. They are based on the chains of sets, finite
partitions, arbitrary finite set systems and singletons, respectively.

We denote, respectively, byHCh,Hcav andHSh the sets of all finite chains, all families
of finite sets and singletons in A \ {∅}, and byHpan the set of all finite measurable partitions
of X.

Example 1. Given µ ∈M and let h ∈ F+.
(i) The decomposition integral

∫
HCh

hdµ is the Choquet integral ([1,36]) of h with respect to
µ, i.e., ∫

HCh

h dµ =
∫ ∞

0
µ
(
{ω ∈ Ω : h(ω) ≥ s}

)
ds.

(ii) The decomposition integral
∫
Hcav

hdµ is the concave integral of h with respect to µ
(Lehrer [1,37,40]).

(iii) The decomposition integral
∫
Hpan

hdµ is the pan-integral of h with respect to µ, see [38],
i.e., ∫

Hpan
h dµ = sup

P∈Hpan

{
∑

A∈P

[
( inf

ω∈A
h(ω)) · µ(A)

]}
.

(iv) The decomposition integral
∫
HSh

hdµ is the Shilkret integral of h with respect to µ, i.e.,∫
HSh

hdµ = sup
{

s · µ({ω ∈ Ω : h(ω) ≥ s}) : s ∈ [0, ∞]
}

([6,41]).

For the convenience of discussion, and to not confuse the symbols with set-valued
integrals, we still use common symbols, denoting, respectively, by

∫ Ch · dµ,
∫ cav · dµ,∫ pan · dµ and

∫ Sh · dµ the integrals
∫
HCh
·dµ,

∫
Hcav
·dµ,

∫
Hpan
·dµ and

∫
HSh
·dµ of the real-

valued integrals.
Let h ∈ F+. h be called H-integrable with respect to κ if

∫
H hdκ < ∞. We denote

I(H, κ) = {h ∈ F+ :
∫
H hdκ < ∞}.

For more details concerning non-additive measures and integrals,
see [1,3,6,34,35,37–40].

2.3. Set-Valued Maps

We recall some basic definitions dealing with set-valued maps [13,15].
We denote R1 = (−∞,+∞), R1

+ = [0, ∞), P(R1) = 2R
1 \ {∅}, P(R1

+) = 2R
1
+ \ {∅},

and denote by C(R1
+), K(R1

+) and KC(R1
+) the families of all nonempty closed, compact

and compact convex sets of R1
+, respectively.

Let C1, C2 ∈ P(R1
+), k ∈ R1

+. The sum of C1 and C2 is defined by

C1 + C2 = {c1 + c2 : c1 ∈ C1, c2 ∈ C2}

and the scalar multiplication of k and C1 is the set defined by

kC1 = {kc1 : c1 ∈ C1}.

The classes C(R1
+), K(R1

+) and KC(R1
+) are closed under the operations of addition

and scalar multiplication, respectively [42].
The preorder of A1 and A2, denoted by A1 � A2, means that for each s ∈ A1, there

is t ∈ A2 such that s ≤ t, and for each q ∈ A2, there is p ∈ A1 such that p ≤ q ([18], see
also [16,19,21]). Moreover, we define a relation “≈” on P(R1

+): A1 ≈ A2 iff A1 � A2 and
A2 � A1. The relation “≈” is an equivalence relation.

A set-valued function is a mapping F : Ω→ P(R1
+). We denote

F−1(A) , {ω ∈ Ω : F(ω) ∩ A 6= ∅},
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where A ∈ P(R1). The set-valued function F is called measurable with respect to A

(short for measurable) if, for all closed subsets C ∈ C(R1
+), F−1(C) ∈ A (see [13]). The

set-valued function F is said to be closed-valued if its values are closed subsets of R1
+,

i.e., F : Ω→ C(R1
+). We denote by R[Ω] the class of all closed-valued functions defined on

Ω. For more discussions of the measurability of closed-valued functions, refer to [13,15].
Let G be a set-valued function defined on Ω and g ∈ F+. If for all ω ∈ Ω, g(ω) ∈ G(ω)

holds, then g is called a measurable selection of G. If G ∈ R[Ω], then G has at least one
measurable selection ([15]).

In the following, we present the operations and orders of set-valued functions on R[Ω]
([15]). Let F, H ∈ R[Ω], k ∈ R1

+.
(1) (kH)(ω) , kH(ω) for any ω ∈ Ω;
(2) (F + H)(ω) , F(ω) + H(ω) for any ω ∈ Ω;
(3) F � H iff (F)(ω) � H(ω) for any ω ∈ Ω.
(4) F ⊆ H iff (F)(ω) ⊆ H(ω) for any ω ∈ Ω.
Let F ∈ R[Ω], A ∈ A. We define

(χAF)(ω) , χA(ω)F(ω) =

{
F(ω) if ω ∈ A,

{0} if ω ∈ Ω \ A,

then χAF ∈ R[Ω], and for any S, T ∈ A, S ⊆ T, it holds that χSF � χT F, i.e., χS(ω)F(ω) �
χT(ω)F(ω) for every ω ∈ Ω.

3. Set-Valued Decomposition Integrals of Set-Valued Functions

In this section, we define the decomposition integrals of set-valued functions with
respect to fuzzy measures and present some of their properties.

3.1. Definition of Set-Valued Decomposition Integrals

Definition 2. GivenH ∈ X and κ ∈M, let G ∈ R[Ω]. The set-valued decomposition integral of
G with respect to the fuzzy measure κ on Ω (short for decomposition integral of G) is defined by∫

H
Gdκ =

{ ∫
H

gdκ : g ∈ SH(G, κ)

}
, (2)

where SH(G, κ) =
{

g : g ∈ I(H, κ) and g(ω) ∈ G(ω) on Ω
}

.

When we take H = HCh and Hpan, respectively, then the set-valued decomposition
integral

∫
H ·dκ : R[Ω] → P(R1

+) goes back to the set-valued Choquet integral [19,21,32]
and the set-valued pan-integral [33], respectively. In the following section, we will discuss
the set-valued concave integral.

GivenH ∈ X and κ ∈M, the set-valued function G is calledH-integrable with respect to
κ if
∫
H Gdκ 6= ∅; it isH-integrably bounded with respect to κ if there is l ∈ I(H, κ), i.e., l ∈ F+

and
∫
H ldκ < ∞, such that

φG(ω) , sup{s : s ∈ G(ω)} ≤ l(ω)

holds for all ω ∈ Ω.
Note that φG is a measurable function on (Ω,A) [15], and for every ω ∈ Ω, φG(ω) ∈

G(ω), G(ω) is a nonempty closed set; therefore, φG is a measurable selection of G and
φG ∈ I(H, κ).

3.2. Basic Properties of Set-Valued Decomposition Integrals

The set-valued decomposition integral is positive-homogeneous for anyH ∈ X and
κ ∈M.
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Proposition 1. Let H ∈ X and κ ∈M, and G ∈ R[Ω] be H-integrable with respect to κ. Then,
for all k ≥ 0, ∫

H
kGdκ = k

∫
H

Gdκ. (3)

Proposition 2. Let H ∈ X and κ ∈M, and G ∈ R[Ω] be H-integrable with respect to κ. Then,
for any A ∈ A, ∫

H
χAGdκ =

{ ∫
H

gχAdκ : g ∈ SH(G, κ)

}
, (4)

where SH(G, κ) =
{

g : g ∈ I(H, κ) and g(ω) ∈ G(ω) on Ω
}

.

Proposition 3. GivenH ∈ X and κ ∈M, let G ∈ R[Ω] beH-integrably bounded with respect
to κ. Then,

(1) G isH-integrable with respect to κ;
(2) For every ω ∈ Ω, G(ω) is a bounded closed set of R1

+, i.e., G(ω) ∈ K(R1
+);

(3) For any measurable selection f of G, g isH-integrable with respect to κ, i.e., g ∈ I(H, κ).
In particular, φG ∈ I(H, κ);

(4)
∫
H Gdκ is a bounded set in R1

+;
(5) There exists a sequence, {gn : n ∈ N} ⊂ SH(G, κ), such that G(ω) = cl{gn(ω) : n ∈

N} for every ω ∈ Ω (i.e., a representation of F by measurable selections).

Proof. (1) G ∈ R[Ω] implies that there is a measurable selection g of G, i.e., g ∈ F+ and
g(ω) ∈ G(ω) for all ω ∈ Ω. G is H-integrably bounded with respect to κ, so there is a
l ∈ F+ and

∫
H ldκ < ∞, such that φG(ω) ≤ l(ω) holds for all ω ∈ Ω. This implies that

g(ω) ≤ l(ω), and hence
∫
H gdκ < ∞. Therefore,

∫
H Gdκ 6= ∅ from

∫
H gdκ ∈

∫
H Gdκ, i.e.,

G isH-integrable with respect to κ.
(2) For a given ω ∈ Ω, it follows from φG(ω) ≤ l(ω) < ∞ that G(ω) is a bounded

closed set of R1
+.

(3) From g(ω) ≤ φG(ω) ≤ l(ω) for all ω ∈ Ω, and l ∈ I(H, κ), then f ∈ I(H, κ).
(4) For any r ∈

∫
H Gdκ, there is h ∈ I(H, κ) and h(ω) ∈ G(ω) on Ω, such that

r =
∫
H hdκ ≤

∫
H ldκ , M < ∞. This shows that

∫
H Gdκ is a bounded set in R1

+.
(5) For G ∈ R[Ω], there is a sequence {gn : n ∈ N} of measurable selection of G

such that G(ω) = cl{gn(ω) : n ∈ N} holds for every ω ∈ Ω (see [15]). This implies
that for every n = 1, 2, . . ., gn(ω) ∈ G(ω) holds for every ω ∈ Ω. Since G ∈ R[Ω] is H-
integrably bounded with respect to κ, and based on the above (3), then for every n = 1, 2, . . .,
gn ∈ SH(G, κ).

3.3. Monotonicity of Set-Valued Decomposition Integrals

In this subsection, we present several versions of monotonicity of set-valued decom-
position integrals.

The following result is clarified by Definition 2.

Proposition 4. Let G, H ∈ R[Ω] beH-integrable with respect to κ. Then,

G ⊆ H implies
∫
H

Gdκ ⊆
∫
H

Hdκ. (5)

The following is a version of monotonicity of set-valued decomposition integrals with
respect to the preorder relation “�”.
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Proposition 5. Given H ∈ X and κ ∈ M, let G, H ∈ R[Ω] be H-integrably bounded with
respect to κ. Then

G � H implies
∫
H

Gdκ �
∫
H

Hdκ. (6)

Proof. Suppose G � H. For any s ∈
∫
H

Gdκ, we prove that there is t ∈
∫
H

Hdκ such that
s ≤ t. From the definition of set-valued decomposition integrals (Definition 2), there is
g ∈ I(H, κ) and g(ω) ∈ G(ω) on Ω such that s =

∫
H gdκ. Thus, by the condition G � H,

for every ω ∈ Ω, there is r0(ω) ∈ H(ω) such that g(ω) ≤ r0(ω). Since H is H-integrably
bounded with respect to κ, then the function

φH(ω) = sup{r : r ∈ H(ω)}

is a measurable selection H, i.e., for every ω ∈ Ω, φH(ω) ∈ H(ω) and φH ∈ I(H, κ). We
take t =

∫
H φHdκ, then t ∈

∫
H

Hdκ. Noting that for every ω ∈ Ω, g(ω) ≤ r0(ω) ≤ φH(ω),
then

s =
∫
H

gdκ ≤
∫
H

φHdκ = t.

Similarly, we can prove that for any q ∈
∫
H Hdκ, there is p ∈

∫
H Gdκ such that p ≤ q.

We obtain
∫
H Gdκ �

∫
H Hdκ.

The following is an immediate consequence of Proposition 5.

Corollary 1. GivenH ∈ X and κ ∈M, let G, H ∈ R[Ω] beH-integrably bounded with respect
to κ. Then

G ≈ H implies
∫
H

Gdκ ≈
∫
H

Hdκ. (7)

There are two kinds of relations for decomposition systems from X: “⊆”—the standard-
set inclusion relation; and “v”—the preorder relation (see [3]: for (G,H) ∈ X×X, “G v H”
means that for each (Ai)

n
i=1 ∈ G, there is (Bj)

m
j=1 ∈ H such that {A}n

i=1 ⊆ {B}m
j=1).

Moreover, we define a relation “≈v”: for (G,H) ∈ X×X, G ≈v H if G v H and H v G.
The relation “≈v” is an equivalence relation on the space X.

Obviously, for any (G,H) ∈ X× X, G ⊆ H implies G v H, but not vice-versa. If
G ⊆ H or G v H, then for any (κ, h) ∈ M× F+, it holds that

∫
G hdκ ≤

∫
H hdκ [3] (see

also [8]).
For the relations “v”, “⊆” and “�”, we present some results in the following.

Proposition 6. Let κ ∈ M be fixed, let (G,H) ∈ X× X and F ∈ R[Ω] be both G-integrably
bounded andH-integrably bounded with respect to κ. Then

G v H implies
∫
G

Fdκ �
∫
H

Fdκ. (8)

Proof. For any s ∈
∫
G Fdκ, there is f ∈ I(G, κ) and f (ω) ∈ F(ω) on Ω, such that

s =
∫
G f dκ. The condition G v H implies that

∫
G f dκ ≤

∫
H f dκ ([3]). Since F ∈ R[Ω] isH-

integrably bounded with respect to κ and f (ω) ∈ F(ω), it follows from Proposition 3(3) that
f ∈ I(H, κ). Denote b =

∫
H f dκ, then b ∈

∫
H Fdκ and a ≤ b.

It is similar to prove that for any q ∈
∫
H Fdκ, there is p ∈

∫
G Fdκ such that p ≤ q.

Corollary 2. Under the assumption of Proposition 6, the following statement is true:

G ≈v H implies
∫
G

Fdκ ≈
∫
H

Fdκ. (9)
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From Proposition 6 and noting that G ⊆ H implies G v H ([3]), we obtain the
following result.

Corollary 3. Under the assumption of Proposition 6, the following statement is true:

G ⊆ H implies
∫
G

Fdκ �
∫
H

Fdκ.

Note that since HSh ⊆ HCh ⊆ Hcav and HSh ⊆ Hpan ⊆ Hcav, we have the following
result.

Proposition 7. Let κ ∈M be fixed and let F ∈ R[Ω] beHSh-,HCh-,Hpan- andHcav-integrable
with respect to κ, respectively. Then∫

HSh

Fdκ �
∫
HCh

Fdκ �
∫
Hcav

Fdκ

and ∫
HSh

Fdκ �
∫
Hpan

Fdκ �
∫
Hcav

Fdκ.

Remark 1. Note that the above discussions only concern two kinds of relations for decomposition
systems from X: “⊆” and “v”. There are also other preorders on the class of decomposition systems,
see, e.g., [3,43,44]. Similarly, we can discuss the monotonicity of set-valued decomposition integrals
in the sense of these preorders.

3.4. Chebyshev’s Inequality of Set-Valued Decomposition Integrals

The Chebyshev inequality is an important inequality in classical measures and inte-
grals [45], which is stated as follows: for any ξ ∈ F+ and s > 0, it holds that

m
({

ω ∈ Ω | ξ(ω) ≥ s
})
≤ 1

s

∫
ξdm, (10)

where m is a σ-additive measure and the integral on the right side is the Lebesgue integral.
In [5], Kang and Li established Chebyshev’s inequality for decomposition integrals

as follows:

Proposition 8 (Kang and Li [5]). LetH ∈ X be complete. Then, for any (µ, h) ∈M× F+ and
c > 0, it holds that

µ
({

ω ∈ Ω| h(ω) ≥ c
})
≤ 1

c

∫
H

hdµ. (11)

Now, we extend the above result to the case of set-valued decomposition integrals. We
present a version of Chebyshev’s inequality for set-valued decomposition integrals.

We introduce some notations that will be used in establishing the Chebyshev inequality.
Let A, B ∈ P(R1

+) and k ∈ R1
+. When A = {a} is a single point set, we use the

notation “a � B” to denote the order relation {a} � B (i.e., a � b for any b ∈ B). We
denote as Ik(ω) = {k} all ω ∈ Ω (when k = 1, denote as I(ω) = I1(ω) = {1} for short).
We use the notation “k � H” to denote the order relation Ik � H (i.e., for any ω ∈ Ω,
Ik(ω) � H(ω)), and for given ω ∈ Ω, the notation “k � H(ω)” denotes {k} � H(ω) (i.e.,
k ≤ b holds for any b ∈ H(ω)).

The complete decomposition system [3] plays an important role in the discussion of
the decomposition integrals. LetH ∈ X. The decomposition systemH is called complete [3],
if for each A ∈ A \ {∅} there exists (Ai)

k
i=1 ∈ H such that
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Proposition 9. H ∈ X and κ ∈M are finite, and let l(ω) ≡ 1 beH-integrable with respect to κ.
IfH is complete, then for any A ∈ A with κ(A) < ∞, it holds that

κ(A) �
∫
H

χA Idκ, (12)

where I(ω) = {1} for all ω ∈ Ω.

Proof. In [5], it is shown thatH is complete if and only if∫
H

χAdκ ≥ κ(A)

holds for any (κ, A) ∈ M× A. From Proposition 2, we have
∫
H χA Idκ =

{ ∫
H χAdκ

}
,

and hence

{κ(A)} �
{ ∫
H

χAdκ

}
=
∫
H

χA Idκ,

which is the inequality (12).

Proposition 10 (Chebyshev’s inequality). LetH ∈ X be complete and κ ∈M. Then, for any
F ∈ R[Ω] which isH-integrably bounded with respect to κ, and t > 0, it holds that

κ
(
{ω ∈ Ω | t � F(ω)}

)
� 1

t

∫
H

Fdκ, (13)

where t � F(ω) means that for a given ω ∈ Ω, {t} � F(ω).

Proof. Denote Ct = {ω ∈ Ω | t � H(ω)}. We have

tχCt I = χCt It � F,

and hence χCt I � 1
t F. From Propositions 1, 5 and 9, we obtain

κ(Ct) �
∫
H

χCt I �
∫
H

1
t

F =
1
t

∫
H

F.

This is the inequality (13).

Note that the decomposition systemsHCh,Hcav,Hpan andHSh are all complete. As a
special result of Proposition 10, we obtain the following corollary.

Corollary 4. Let κ ∈M be finite and t > 0. If F ∈ R[Ω] isH∗-integrably bounded with respect
to κ, then

κ
(
{ω ∈ Ω | t � F(ω)}

)
� 1

t

∫
H∗

Fdκ, (14)

whereH∗ stands forHCh,Hpan,Hcav orHSh, respectively.

Remark 2. In [16] (see also [21]), Guo and Zhang proposed the set-valued fuzzy measure. A
set-valued function π : A→ P(R1

+) is called a set-valued fuzzy measure on A if it holds that
(1) π(∅) = {0};
(2) For any S, W ∈ A, S ⊆W implies π(S) � π(W).
Let κ ∈M and F ∈ R[Ω] beH-integrably bounded with respect to κ. Define

πHF (A) =
∫
H

χAFdκ, A ∈ A.
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Then, πHF : A→ P(R1
+) is a set-valued fuzzy measure on A. In fact, πHF (∅) = {0}. Note that for

any A, B ∈ A, A ⊆ B implies χAF � χBF. Therefore, A ⊆ B implies∫
H

χAFdκ �
∫
H

χBFdκ

from Proposition 5, i.e., πHF (A) � πHF (B).

4. Concave Integrals

In this section, we recall the concave integral ([37,40], see also [6]), and show some
special properties of set-valued concave integrals.

Let κ ∈M be fixed and let h ∈ F+.
The concave integral of h on Ω with respect to κ is defined by

∫ cav
hdκ = sup

{ n

∑
j=1

tjκ(Tj) :
n

∑
j=1

tjχTj ≤ h, (Tj)
n
j=1 ∈ Hcav, tj ≥ 0, n ∈ N

}
.

If
∫ cav hdκ < ∞, then h is called concave-integrable.

The concave integral
∫ cav ·dκ, as a functional from F+ to R1

+, is positive-homogeneous
and concave (Lehrer and Teper [37]).

Proposition 11. Let κ ∈M be fixed, For any g, h ∈ F+, t ∈ [0, 1], we have∫ cav [
tg + (1− t)h

]
dκ ≥ t

∫ cav
gdκ + (1− t)

∫ cav
hdκ.

When κ is subadditive, the concave integral
∫ cav ·dκ is positive linear on F+ (Ouyang

et al. [46]).

Proposition 12. Let κ ∈M be subadditive, g, h ∈ F+, t ∈ [0, 1]. Then∫ cav [
tg + (1− t)h

]
dκ = t

∫ cav
gdκ + (1− t)

∫ cav
hdκ.

For more basic properties of concave integrals, see [3,37,40,47–49].
From Propositions 11 and 12 and similar to the proof of Proposition 4.2 in [33], it is not

difficult to obtain the corresponding result for set-valued concave integrals as follows:

Proposition 13. Given κ ∈M, let G, H ∈ R[Ω] be Hcav-integrably bounded with respect to κ
and t ∈ [0, 1]. Then

t
∫
Hcav

Gdκ + (1− t)
∫
Hcav

Hdκ �
∫
Hcav

[
tG + (1− t)H

]
dκ. (15)

Furthermore, if κ is subadditive, then∫
Hcav

[
tG + (1− t)H

]
dκ ≈ t

∫
Hcav

Gdκ + (1− t)
∫
Hcav

Hdκ, (16)

in particular, ∫
Hcav

[
G + H

]
dκ ≈

∫
Hcav

Gdκ +
∫
Hcav

Hdκ. (17)

Proposition 14. Let κ ∈ M be subadditive and G be concave integrable. Then
∫
Hcav

Gdκ is
convex whenever G is convex-valued (i.e., for every ω ∈ Ω, G(ω) is a convex set of R1

+).



Mathematics 2023, 11, 3013 10 of 14

Proof. Suppose that a, b ∈
∫
Hcav

G dκ, t ∈ [0, 1]. Then there are g1, g2 ∈ SHcav(G, κ) such
that a =

∫
Hcav

g1dκ and b =
∫
Hcav

g2dκ. These imply that g1(ω), g2(ω) ∈ G(ω) for every
ω ∈ Ω and g1, g2 ∈ I(Hcav, κ). Since G is convex-valued,

(
tg1(ω) + (1 − t)g2(ω)

)
∈

G(ω), ω ∈ Ω. Thus, it follows from the subadditivity of κ and Proposition 12 that∫ cav [
tg1 + (1− t)g2

]
dκ = t

∫ cav
g1 + (1− t)

∫ cav
g2dκ < ∞.

Therefore, tg1 + (1− t)g2 ∈ SHcav(G, κ), and hence

ta + (1− t)b =
∫ cav [

tg1 + (1− t)g2
]
dκ ∈

∫ cav
Gdκ.

This shows that
∫
Hcav

Gdκ is convex.

5. Relationships of the Set-Valued Choquet, the Set-Valued Pan-Integral and the
Set-Valued Concave Integral

In this section we discuss the coincidences among three kinds of set-valued decom-
position integrals: the set-valued Choquet, the set-valued pan-integral and the set-valued
concave integral.

We recall two concepts which play important roles in the discussion of concidences
of the pan-, Choquet and concave integrals (see [37,49]). Let κ ∈M. κ is said to have (M)-
property, if for any V, W ∈ A and V ⊂W, there is T ∈ A such that T ⊂ V, and κ(T) = κ(V)
and κ(W) = κ(T) + κ(W \ T) (Mesiar et al. [49]). κ is called submodular (or concave)
if κ(S ∪W) + κ(S ∩W) ≤ κ(S) + κ(W) holds for any S, W ∈ A.

We recall the following results ([37,48,49], see also [47,49]).

Proposition 15. Let κ ∈M be fixed.
(1) κ is submodular if and only if

∫ Ch
gdκ =

∫ cav
gdκ (18)

for all g ∈ F+ ([37]).
(2) If κ is subadditive, then ∫ cav

gdκ =
∫ pan

gdκ (19)

holds for all g ∈ F+ ([48]).
(3) If κ has (M)-property, then

∫ pan
gdκ =

∫ Ch
gdκ (20)

holds for all g ∈ F+ ([49]).

In the following, we show, respectively, the equivalence among the set-valued pan-
integral, the set-valued Choquet integral and the set-valued concave integral.

Proposition 16. Let κ ∈M be fixed. If κ is submodular, then∫
HCh

Gdκ =
∫
Hcav

Gdκ (21)

holds for any G ∈ R[Ω] that isHCh-integrable andHcav-integrable with respect to κ.
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Proof. Suppose a ∈
∫
HCh

Gdκ. Then there is g ∈ SHCh(G, κ) such that a =
∫ Ch gdκ ∈∫

HCh
Gdκ. Note that

∫ Ch gdκ < ∞ and g(ω) ∈ G(ω) on Ω, from Proposition 15, then∫ cav gdκ =
∫ Ch gdκ < ∞ and hence g ∈ IHcav(κ), and g(ω) ∈ G(ω) on Ω, i.e., g ∈ SHcav(G).

Therefore a =
∫ Ch gdκ =

∫ cav gdκ ∈
∫
Hcav

Gdκ, which implies∫
HCh

Gdκ ⊆
∫
Hcav

Gdκ.

Similarly, we can obtain the converse relationship.

Similarly, we can obtain the coincidences of the set-valued concave integral and the set-
valued pan-integral, and of the set-valued pan-integral and the set-valued Choquet integral.

Proposition 17. Let κ ∈M be fixed. If κ is subadditive, then∫
Hcav

Gdκ =
∫
Hpan

Gdκ (22)

holds for any set-valued random variables G ∈ R[Ω] that areHcav-integrable andHpan-integrable
with respect to κ.

Proposition 18 ([33]). Let κ ∈M be fixed. If κ has (M)-property, then∫
Hpan

Gdκ =
∫
HCh

Gdκ (23)

holds for any set-valued random variables G ∈ R[Ω] that areHpan-integrable andHCh-integrable
with respect to κ.

In Section 3.3, we have shown that∫
HSh

Fdκ �
∫
HCh

Fdκ �
∫
Hcav

Fdκ

and ∫
HSh

Fdκ �
∫
Hpan

Fdκ �
∫
Hcav

Fdκ,

where κ ∈M is fixed and F ∈ R[Ω] isHSh-,HCh-,Hpan- andHcav-integrable with respect
to κ, respectively.

In general, for some µ ∈M,
∫
Hpan

Fdµ and
∫
HCh

Fdµ are incomparable.
We recall the relationships between the Choquet integral and the pan-integral (see [38]).

Proposition 19. Let κ ∈M be fixed.
(1) If κ is subadditive, then for all g ∈ F+,

∫ Ch gdκ ≤
∫ pan gdκ.

(2) If κ is superadditive, then for all g ∈ F+,
∫ pan gdκ ≤

∫ Ch gdκ.

The following result is an extension of Proposition 19 in the case of the set-valued
pan-integral and the set-valued Choquet integral.

Proposition 20. Let κ ∈M be fixed and G ∈ R[Ω].
(1) If κ is subadditive and G isHpan-integrably bounded with respect to κ, then∫

HCh

Gdκ �
∫
Hpan

Gdκ. (24)
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(2) If κ is superadditive and G isHCh-integrably bounded with respect to κ, then∫
Hpan

Gdκ �
∫
HCh

Gdκ. (25)

Proof. (1) was proved in [33]. We prove (2).
Suppose s ∈

∫
Hpan

Gdκ. Then there is g ∈ SHpan(G, κ) such that s =
∫ pan gdκ < ∞ and

g(ω) ∈ G(ω) on Ω. Since G isHCh-integrably bounded with respect to κ, from Proposition 3,
g(ω) ∈ G(ω) implies g is Choquet-integrable with respect to κ, i.e.,

∫ Ch gdκ < ∞. Take
t =

∫ Ch gdκ, then t ∈
∫
HCh

Gdκ and from Proposition 19 we have s =
∫ pan gdκ ≤

∫ Ch gdκ = t.

On the other hand, suppose q ∈
∫ HCh Gdκ. Then there exists h ∈ SHCh(G, κ) such

that q =
∫ Ch hdκ < ∞ and h(ω) ∈ G(ω) on Ω. Note that κ is superadditive, and hence∫ pan hdκ ≤
∫ Ch hdκ < ∞. We take p =

∫ pan hdκ, then p ∈
∫
Hpan

Gdκ and p ≤ q.
The inequality (25) is shown.

6. Remarks

(1) In [50], Stupňanová introduced a special type of decomposition integral, the PC-
integral, based on the so-called PC decomposition system in which the collection includes
pairwise disjoint sets and chains of sets. The PC-integral locates between the concave
integral and the Choquet integral, and also between the concave integral and the pan-
integral. We can consider the PC-integrals of set-valued functions in terms of Stupňanová’s
work and obtain some special properties.

(2) In [51], Mesiar et al. introduced a new type of decomposition integral by using
a family of decomposition integrals based on the collections relating to partitions and
maximal chains of sets. This new integral extends the Lebesgue integral, and it is different
from those well-known decomposition integrals, such as the Choquet, concave, pan- and
Shilkret integrals and the PC-integral. As a special case of Definition 2, we can obtain the
set-valued integrals in terms of Mesiar’s work.

(3) Note that Šeliga introduced the decomposition integrals for interval-valued func-
tions and dealt with some basic properties of special set-based functions, see [12,52].

7. Conclusions

We have introduced the decomposition integral of set-valued functions and shown
some basic properties. The interesting results are the monotonicity of the integrals in the
sense of the preorder relations “v” and “�” and the inclusion relation “⊆” (Propositions 4–6,
and Corollaries 2 and 3), and Chebyshev’s inequality for decomposition integrals of
set-valued functions (Proposition 10 and Corollary 4). The relationships among three
types of important set-valued decomposition integrals—set-valued Choquet integral,
the set-valued pan-integral and the set-valued concave integral—have been shown
(Propositions 16–18 and 20).

As we have seen, the set-valued decomposition integral is an extension of the decom-
position integral for real-valued functions, and it unifies the previous set-valued integral
schemes, including the Aumann integral [14], the set-valued Choquet integral ([19,21]),
the set-valued pan-integral ([33]) and the set-valued concave integral, etc.

In further research, we will focus on the study of the convergence of decomposition
integrals of set-valued functions.

As is well known, the set-valued integral is very applicable in several mathematical
fields, especially in control theory, mathematical economics, statistics, etc. We expect the
decomposition integrals of set-valued functions to be a useful tool in these fields.
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3. Mesiar, R.; Stupňanová, A. Decomposition integrals. Int. J. Approx. Reason. 2013, 54, 1252–1259. [CrossRef]
4. Agahi, H.; Mesiar, R. Probability inequalities for decomposition integrals. J. Comput. Appl. Math. 2017, 315, 240–248. [CrossRef]
5. Kang, T.; Li, J. On equivalence of decomposition integrals based on different monotone measures. Fuzzy Sets Syst. 2023, 457,

142–155. [CrossRef]
6. Klement, E.P.; Li, J.; Mesiar, R.; Pap, E. Integrals based on monotone set functions. Fuzzy Sets Syst. 2015, 281, 88–102. [CrossRef]
7. Lehrer, E.; Teper, R. Set-valued capacities: Multi-agenda decision making. Econ. Theory 2020, 69, 233–248. [CrossRef]
8. Li, J.; Mesiar, R.; Ouyang, Y. On the coincidences of measure-based decomposition and superdecomposition integrals. Fuzzy Sets

Syst. 2023, 457, 125–141. [CrossRef]
9. Mesiar, R. Integrals based on monotone measure: Mptimization tools and special functionals. In Computer Information Systems

and Industrial Management: 14th IFIP TC 8 International Conference, CISIM 2015, Warsaw, Poland, 24–26 September 2015; Saeed, K.,
Homenda, W., Eds.; Springer: Cham, Switzerland, 2015; Volume 9339, pp. 48–57.

10. Mesiar, R.; Li, J.; Pap, E. Superdecomposition integrals. Fuzzy Sets Syst. 2015, 259, 3–11. [CrossRef]
11. Ouyang, Y.; Li, J.; Mesiar, R. Relationship between two types of superdecomposition integrals on finite spaces. Fuzzy Sets Syst.

2020, 396, 1–16. [CrossRef]
12. Šeliga, A. Decomposition integrals for interval-valued functions. In Computational Intelligence and Mathematics for Tackling Complex

Problems 2. Studies in Computational Intelligence, Volume 955; Cornejo, M.E., Koczy, L.T., Medina-Moreno, J., Moreno-Garcia, J., Eds.;
Springer: Berlin/Heidelberg, Germany, 2022.

13. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990.
14. Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 121, 1–12. [CrossRef]
15. Klein, E.; Thompson, A. Theory of Correspondence; Wiley: New York, NY, USA, 1984.
16. Guo, C.; Zhang, D. On set-valued fuzzy measures. Inf. Sci. 2004, 106, 13–25. [CrossRef]
17. Zhang, D.; Wang, Z. Fuzzy integrals of fuzzy set-valued functions. Fuzzy Sets Syst. 1993, 54, 63–67. [CrossRef]
18. Zhang, D.; Wang, Z. On set-valued fuzzy integrals. Fuzzy Sets Syst. 1993, 56, 237–241. [CrossRef]
19. Jang, L.C.; Kim, B.M.; Kim, Y.K.; Kwon, J.S. Some properties of Choquet integrals of set-valued functions. Fuzzy Sets Syst. 1997,

91, 95–98. [CrossRef]
20. Jang, L.C.; Kwon, J.S. On the representation of Choquet integrals of set-valued functions, and null sets. Fuzzy Sets Syst. 2000, 112,

233–239. [CrossRef]
21. Zhang, D.; Guo, C.; Liu, D. Set-valued Choquet integrals revisited. Fuzzy Sets Syst. 2004, 147, 475–485. [CrossRef]
22. Gavrilut, A. On some properties of the Gould type integral with respect to a multisubmeasure. An. Stiint. Univ. ‘Al.I. Cuza’ Iasi

2006, 52, 177–194.
23. Gavrilut, A. The general Gould type integral with respect to a multisubmeasure. Math. Slovaca 2010, 60, 289–318. [CrossRef]
24. Stamate, C.; Croitoru, A. Aumann-Pettis-Sugeno integral of vector multifunctions relative to a fuzzy vector measure. Fuzzy Sets

Syst. 2021, 444, 172–181. [CrossRef]
25. Croitoru, A. Strong integral of multifunctions relative to a fuzzy measure. Fuzzy Sets Syst. 2014, 244, 20–33. [CrossRef]
26. Croitoru, A.; Gavrilut, A.; Iosif, A.; Sambucini, A.R. Convergence theorems in interval-valued Riemann-Lebesgue integrability.

Mathematics 2022, 10, 450. [CrossRef]
27. Gavrilut, A.; Agop, M. Approximation theorems for fuzzy set multifunctions in Vietoris topology. Phys. Implic. Regul. 2015, 12,

27–42.
28. Gavrilut, A.; Apreutesei, G. Regularity aspects of non-additive set multifunctions. Fuzzy Sets Syst. 2016, 304, 94–109. [CrossRef]
29. Gavrilut, A.; Pap, E. Regular Non-Additive Multimeasures: Fundaments and Applications. In Studies in Systems, Decision and

Control (SSDC, Volume 448); Springer: Berlin/Heidelberg, Germany, 2023.
30. Papageorgiou, S.N. Contributions to the theory of set valued functions and set valued measures. Trans. Am. Math. Soc. 1987, 304,

245–265. [CrossRef]

http://doi.org/10.1007/s00199-013-0780-0
http://dx.doi.org/10.1016/j.ijar.2013.02.001
http://dx.doi.org/10.1016/j.cam.2016.11.014
http://dx.doi.org/10.1016/j.fss.2022.09.010
http://dx.doi.org/10.1016/j.fss.2015.07.010
http://dx.doi.org/10.1007/s00199-018-1164-2
http://dx.doi.org/10.1016/j.fss.2022.09.001
http://dx.doi.org/10.1016/j.fss.2014.05.003
http://dx.doi.org/10.1016/j.fss.2019.08.015
http://dx.doi.org/10.1016/0022-247X(65)90049-1
http://dx.doi.org/10.1016/j.ins.2003.07.006
http://dx.doi.org/10.1016/0165-0114(93)90361-K
http://dx.doi.org/10.1016/0165-0114(93)90149-C
http://dx.doi.org/10.1016/S0165-0114(96)00124-8
http://dx.doi.org/10.1016/S0165-0114(98)00184-5
http://dx.doi.org/10.1016/j.fss.2004.04.005
http://dx.doi.org/10.2478/s12175-010-0013-y
http://dx.doi.org/10.1016/j.fss.2021.11.003
http://dx.doi.org/10.1016/j.fss.2013.10.004
http://dx.doi.org/10.3390/math10030450
http://dx.doi.org/10.1016/j.fss.2016.02.003
http://dx.doi.org/10.1090/S0002-9947-1987-0906815-3


Mathematics 2023, 11, 3013 14 of 14

31. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Choquet integral Jensen’s inequalities for set-valued and fuzzy set-valued functions. Soft
Comput. 2021, 25, 903–918. [CrossRef]

32. Zhang, D.; Guo, C. Choquet integral of set-valued functions with respect to set-valued fuzzy measures. Fuzzy Sets Syst. 2023, 457,
80–104. [CrossRef]

33. Kang, T.; Wu, D.; Li, J. Pan-integrals of set-valued function based on fuzzy measures. Fuzzy Sets Syst. 2023, 468, 108632. [CrossRef]
34. Murofushi, T.; Sugeno, M. A theory of fuzzy measures: Representations, the Choquet integral, and null sets. J. Math. Anal. Appl.

1991, 159, 532–549. [CrossRef]
35. Sugeno, M. Theory of Fuzzy Integrals and Its Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974.
36. Choquet, G. Theory of capacities. Ann. Inst. Fourier 1953, 5, 131–295. [CrossRef]
37. Lehrer, E.; Teper, R. The concave integral over large spaces. Fuzzy Sets Syst. 2008, 159, 2130–2144. [CrossRef]
38. Wang, Z.; Klir, G.J. Generalized Measure Theory; Springer: New York, NY, USA, 2009.
39. Pap, E. Null-Additive Set Functions; Kluwer: Dordrecht, The Netherlands, 1995.
40. Lehrer, E. A new integral for capacities. Econ. Theory 2009, 39, 157–176. [CrossRef]
41. Shilkret, N. Maxitive measure and integration. In Indagationes Mathematicae; North-Holland: Utrecht, The Netherlands, 1971;

Volume 33, pp. 109–116.
42. Diamond, P.; Kloeden, P. Metric Spaces of Fuzzy Sets; World Scientific: Singapore, 1994.
43. Li, J.; Mesiar, R.; Ouyang, Y.; Seliga, A. Characterization of decomposition integrals extending Lebesgue integral. Fuzzy Sets Syst.

2022, 430, 56–68. [CrossRef]
44. Šeliga, A.; Mesiar, R.; Ouyang, Y.; Li, J. Minimax decomposition integral. Fuzzy Sets Syst. 2023, 465, 108529. [CrossRef]
45. Royden, H.L.; Fitzpatrick, P.M. Real Analysis, 4th ed.; Pearson Education, Inc.: New York, NY, USA, 2010.
46. Ouyang, Y.; Li, J.; Mesiar, R. On linearity of pan-integral and pan-integrable functions space. Int. J. Approx. Reason. 2017, 90,

307–318. [CrossRef]
47. Ouyang, Y.; Li, J.; Mesiar, R. On the equivalence of the Choquet, pan- and concave integrals on finite spaces. J. Math. Anal. Appl.

2017, 456, 151–162. [CrossRef]
48. Ouyang, Y.; Li, J.; Mesiar, R. Coincidences of the concave integral and the pan-integral. Symmetry 2017, 9, 90. [CrossRef]
49. Ouyang, Y.; Li, J.; Mesiar, R. A sufficient condition of equivalence of the Choquet and the pan-integral. Fuzzy Sets Syst. 2019, 355,

100–105. [CrossRef]
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