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Abstract: Multiple traveling salesperson problems (mTSP) are a collection of problems that generalize
the classical traveling salesperson problem (TSP). In a nutshell, an mTSP variant seeks a minimum cost
collection of m paths that visit all vertices of a given weighted complete graph. This paper introduces
novel compact integer programs for the depot-free mTSP (DFmTSP). This fundamental variant
models real scenarios where depots are unknown or unnecessary. The proposed integer programs are
adapted to the main variants of the DFmTSP, such as closed paths, open paths, bounding constraints
(also known as load balance), and the minsum and minmax objective functions. Some of these
integer programs have O(n2m) binary variables and O(n2) constraints, where m is the number of
salespersons and n = |V(G)|. Furthermore, we introduce more compact integer programs withO(n2)

binary variables and O(n2) constraints for the same problem and most of its main variants. Without
losing their compactness, all the proposed programs are adapted to fixed-destination multiple-depots
mTSP (FD-MmTSP) and a combination of FD-MmTSP and DFmTSP, where fewer than m depots are
part of the input, but the solution still consists of m paths. We used off-the-shelf optimization software
to empirically test the proposed integer programs over a classical benchmark dataset; these tests show
that the proposed programs meet desirable theoretical properties and have practical advantages over
the state of the art.

Keywords: integer programming; multiple traveling salesperson problem; depot-free mTSP

MSC: 90C10; 90-10; 90B06

1. Introduction

The multiple traveling salesperson problem has received different labels over time,
mainly because it is not a single problem but a collection of them. Thus, this paper refers
to this collection as the multiple traveling salesperson problems (mTSP). These problems
are relevant in several social situations, including cooperative missions, transportation,
delivery, disaster management, precision agriculture, and many others [1].

Each variant of mTSP is a generalization of theNP-hard traveling salesperson problem
(TSP). The goal of TSP is to find a minimum-cost closed path a salesperson must follow to
visit a set of given cities. In more detail, given a weighted complete graph G = (V, E), the
TSP seeks a closed path that visits all vertices once, minimizing the path’s cost [2–4]. In the
mTSP, the input is a weighted complete graph G = (V, E) and a positive integer m; its goal
is to find a set of m paths such that all vertices are visited once by some salesperson [4,5]. If
the input graph is undirected (resp., directed), the problem is symmetric (resp., asymmetric).
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An mTSP variant receives particular adjectives depending on its characteristics: depot free
(DF), single depot (S), multiple depots (M), closed paths (CP), open paths (OP), bounding
constraints, etc. In most cases, the objective function to minimize is the sum of the paths’
costs (minsum) or the largest path (minmax or makespan); other objective functions might
be considered, such as the cost of the largest edge (bottleneck).

The most widely studied members of the mTSP collection are single-depot mTSP
(SmTSP) and multiple-depots mTSP (MmTSP). However, the depot-free mTSP (DFmTSP)
variant has received less attention. In SmTSP, all salespersons must start and finish their
path at a specific vertex (the depot), which is part of the input. In the fixed-destination
multiple-depots mTSP (FD-MmTSP), m depots are part of the input, and each salesperson
must start and finish their path at their respective depot. In the non-fixed-destination
multiple-depots mTSP (NFD-MmTSP), each salesperson can finish their path at a different
depot. In DFmTSP, the variant studied in this paper, the depot concept is not involved.
Therefore, it seeks a disjoint collection of closed paths that visit all vertices. In all these vari-
ants, every solution consists of exactly m paths, and the path followed by each salesperson
is closed. Nevertheless, if the salespersons are constrained to follow open paths (i.e., they
do not need to return to their depot), we refer to the problem as an open-paths (OP) variant.
To clarify the difference between these variants, Figure 1 shows a set of optimal solutions
for DFmTSP, SmTSP, and FD-MmTSP. In all these examples, each path must have between
three and five vertices; we refer to these as bounding constraints.
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Figure 1. Optimal solutions for (a) closed-paths depot-free mTSP (CP-DFmTSP), (b) closed-paths
single-depot mTSP (CP-SmTSP), and (c) closed-paths fixed-destination multiple-depots mTSP (CP-
FD-MmTSP). The objective function is minsum, the number of salespersons is two (m = 2), each
path must have between three and five vertices (bounding constraints), the cost of each edge equals
the euclidean distance between its vertices, and the depots are marked in green. Subfigures (d–f)
correspond to the respective open-paths (OP) variants.

Many variants of mTSP have been studied over the last decades. However, most of the
attention has been paid to SmTSP and MmTSP. As we argue in the next section, DFmTSP
variants should receive more attention, and mathematical modeling is an important first
step. Therefore, this paper introduces novel compact integer programs (IPs) for DFmTSP
and its main variants: CP, OP, bounding constraints, and minsum and minmax objective
functions. To our knowledge, these mathematical models are the first reported with such a
wide scope. One of the main features of the proposed mathematical formulations is the
presence of dummy depots, special vertices that allow us to relate DFmTSP to FD-MmTSP.

The remaining sections of the document are organized as follows. Section 2 presents a
literature review of the mTSP collection. Section 3.1 introduces a set of IPs for DFmTSP and
its main variants: CP, OP, bounding constraints, minsum and minmax objective functions.
All IPs from Section 3.1 extend a state-of-the-art IP for FD-MmTSP. Section 3.2 introduces
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more compact IPs for DFmTSP and most of its main variants: CP, OP, bounding constraints,
and minsum objective function. At the end of Sections 3.1 and 3.2, we show that a slight
modification of the proposed IPs leads to valid models for FD-MmTSP, and a combination
between this problem and DFmTSP. Section 4 shows empirical tests and comparisons
among the proposed IPs and a state-of-the-art formulation. Finally, Sections 5 and 6 present
a discussion and concluding remarks.

2. Related Work

Although there are some surveys on mTSP [1,6,7], they are not structured in chrono-
logical order; order that might shed some light on how DFmTSP has received less attention
than other variants. Therefore, this section shows a general overview of how the study of
mTSP has evolved. To maintain simplicity, we stuck to the broad categories: SmTSP, MmTSP,
and DFmTSP. Namely, we omitted sophisticated requirements studied in some examined
papers (objective functions, paths’ properties, time windows, etc.). Although mTSP is a
generalization of TSP [2,3,5] and a particular case of vehicle routing problem (VRP) [8,9], in
this paper, we mainly considered papers directly related to mTSP. Additionally, we only
included the most common single-objective variants of the problem. Nevertheless, to talk
about mTSP, we must begin by talking about TSP.

2.1. TSP and SmTSP

TSP is among the most popular NP-hard combinatorial optimization problems. Its
first explicit appearance in the scientific literature dates from 1954 [2], and its first math-
ematical formulations from 1959 and 1960 [3,4]. Interestingly, the authors of these early
papers stated the problem using the depot concept, a special vertex where the salesperson
starts and finishes their path. Nevertheless, it is easy to observe that the depot plays only
a symbolic and didactic role, i.e., it is equivalent to stating that the path must be closed.
However, the first member of the mTSP collection to be studied was SmTSP; in this version
of the problem, all salespersons start and finish their path at the same vertex (the depot),
which is part of the input. The most usual objective function to minimize in both TSP and
mTSP is minsum, i.e., the total length of the paths. Naturally, mTSP with one salesperson
(m = 1) is equivalent to TSP; therefore, mTSP is NP-hard too.

2.2. mTSP from 1960 to 1975

Although the first IP for SmTSP dates from 1960 [4], the problem started gaining
more attention between 1973 and 1975, when more efficient mathematical formulations
were introduced [5,10]; the authors did not refer to the problem as SmTSP but as mTSP.
For that reason, many use both names interchangeably. However, to avoid confusion, we
refer to this variant only as SmTSP. Something remarkable about SmTSP is that it can be
transformed into TSP by adding some extra vertices to the original graph [10].

2.3. mTSP from 1976 to 1995

SmTSP and many of its variants continued being modeled using integer programming.
Most of these formulations were based on transformations to TSP [11–19], and only a few
were direct [20,21]. Some variants included the case where at most m salespersons are in
the solution; some refer to such variant as the SmTSP with fixed charges [13], and others as
variable SmTSP [22]. In this variant, each salesperson incurs some cost that is considered
in the objective function. Notice that the variant identified as SmTSP is where exactly m
salespersons are in the solution. The exact algorithms designed for this problem within
this period were based mainly on Benders decomposition [14], cutting planes [20], and
branch and bound [23]. In this same period, some heuristics for SmTSP were introduced
too [19,24–27]. By 1995, SmTSP with a minsum objective function was the most studied
member of the mTSP collection; only the MmTSP with two salespersons (m = 2) was
mentioned and reduced to TSP in 1980 [15]. It was until 1995 that MmTSP was reduced
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to TSP [18]. In this period, only a tabu search metaheuristic approach was developed for
SmTSP [28].

2.4. mTSP from 1996 to 2005

MmTSP started gaining more attention. More heuristics and metaheuristics consid-
ering minsum and minmax objective functions for SmTSP, MmTSP, and DFmTSP were
introduced too, for instance, neural networks [29–31], genetic algorithms [32–34], particle
swarm optimization [33], evolutionary strategies [33], and simulated annealing [35]. It
is crucial to emphasize that during this period, DFmTSP started being spotted by some
authors [32,33,36]. Although some of them referred to the problem as mTSP or SmTSP, a
closer inspection reveals that the problem they worked with was actually DFmTSP.

2.5. mTSP from 2006 to Date

The interest in SmTSP, MmTSP, DFmTSP, and their variants continued growing. The inter-
est in the minmax objective function grew too. However, most of the efforts were still hoarded
by SmTSP and the minsum objective function. In this period, many heuristics [37–41], exact
algorithms [42–47], and IPs [6,42,44,48–54] were proposed. Metaheuristics dominated the
scene with neural networks [31,55,56], genetic algorithms [57–82], clustering strategies [83],
ant colony optimization [76,84–89], firefly algorithm [89], ant colony system [90,91], market-
based algorithms [92,93], imperialist competitive algorithm [94], tabu search [56], gravitational
emulation local search algorithm [95], variable neighborhood search [96–99], bee colony opti-
mization [100], invasive weed optimization [100], wolf pack search algorithm [101], discrete
pigeon optimization [102], reinforcement learning [103], evolutionary strategies [104], hybrid
search [105], memetic search [105], simulated annealing [106], and bees algorithm [107]. As in
years before, only a few authors worked on DFmTSP. Remarkably, until 2017 and 2021, the
first reported IPs for DFmTSP were published [51,104]. From them, we could reproduce and
validate the IP of Karabulut et al. [104]. Nevertheless, in Sections 3.1 and 3.2, we use similar
ideas to those mentioned by Assaf [51].

2.6. Approximation Algorithms

Only a few approximation algorithms have been designed for some variants of mTSP.
For that reason, this paragraph presents an independent account of such algorithms; these
include a (4/3)- and a (3/2)-approximation algorithm for the SmTSP and MmTSP on a tree
with two salespersons (m = 2) and minmax objective function [108], a (2− 2/(m + 1))-
approximation algorithm for DFmTSP on trees with m traveling salespersons and minmax
objective function [109], a faster approximation algorithm with the same approximation
factor for the same problem [110], a 2-approximation algorithm for MmTSP with triangle
inequality [111], a (3/2)-approximation algorithm for MmTSP with triangle inequality and
a constant number of depots [112], a (2− 1/k)-approximation algorithm for MmTSP [113], a
(2− 1/(2k))-approximation algorithm for MmTSP [114], a (1+ ε)-approximation algorithm
for SmTSP on a tree with minmax objective function, with the depot located at the tree’s
root [115], and a (1 + ε)-approximation algorithm for the SmTSP on a spider, with the
depot located at its center [116].

2.7. When Depots Are Unknown or Unnecessary

Table 1 shows the main scope of the examined papers, and Figure 2 shows how they
distribute over time. To collect these papers, we manually tracked the connected citation
network of papers directly related to mTSP. From Table 1 and Figure 2, we can observe
that, on the one hand, SmTSP and MmTSP have been the most studied variants. On the
other hand, DFmTSP has not received as much attention; only two IPs have been published,
and they are relatively recent and have a limited scope [51,104]. Since the classical TSP
does not require the depot concept to be formulated, we believe that DFmTSP should be
considered an essential member of the mTSP collection and should receive more attention.
Additionally, this variant is more adequate for specific applications, such as submarine
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patrol routing [36], supervisor allocation [50,51], and some variations of the job scheduling
problem [32]. In a nutshell, DFmTSP is a better model for social problems where depots are
unknown or unnecessary. The following sections introduce novel IPs for DFmTSP and its
main variants:

• Closed paths (CP).
• Open paths (OP).
• Minsum objective function.
• Minmax objective function.
• Bounding constraints:

– Lower bound on the number of vertices per path.
– Upper bound on the number of vertices per path.
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Figure 2. Published papers directly related to mTSP over time.

Table 1. Main categories and scope of related work. S, M, and DF stand for single depot, multiple
depot, and depot free, respectively.

Main Scope mTSP Reference

Integer programming
S
M
DF

[4–6,10–22,49]
[6,15,18,42,44,47,48,50–54]

[36,51,104]

Exact algorithm
S
M
DF

[14,20,23,45,46]
[42–45,47,115]

-

Heuristic
S
M
DF

[19,24–27,40,41]
[38–40]
[37,40]

Metaheuristic
S

M
DF

[28–31,34,35,55–65,67–74,76,78,80,81]
[83–85,87,88,90,91,94–98,100–105,107,117]

[82,86,88,89,92,93,99,104,105,118]
[32,33,66,75,77,79,104,106]

Approximation algorithm
S
M
DF

[108,116]
[108,110–115]

[109]
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As a byproduct, the proposed IPs are adapted to a combination of FD-MmTSP and
DFmTSP, namely, a variant where fewer than m depots are part of the input, but the solution
consists of exactly m paths. This variant can be helpful in situations where only a few
depots have already been selected. Thus, deciding the location of the remaining depots is
part of the problem.

3. Integer Programs for DFmTSP

This section introduces novel integer programs (IPs) for DFmTSP and its main variants;
one of the main attributes of these IPs is the presence of dummy depots. This section
is divided into two parts. Section 3.1 introduces IPs for the CP and OP variants with
bounding constraints, and minsum and minmax objective functions. Such IPs haveO(n2m)
binary variables and are based on an IP from the literature for FD-MmTSP [7]. Section 3.2
introduces more compact integer programs for the CP and OP variants with bounding
constraints, and minsum objective function. Such IPs have O(n2) binary variables.

Sections 3.1 and 3.2 begin by introducing integer quadratic programs (IQPs) for the
CP-DFmTSP with a minsum objective function. Afterward, such IQPs are linearized and
extended to other variants of the problem, including bounding constraints, OP, and the
minmax objective function in the case of Section 3.1.

3.1. Based on FD-MmTSP

The main attribute of the proposed IPs is adding vertices to the input graph, which has
become a common practice [5,10–12]. The added vertices are usually of two types: exact
copies of an actual depot (part of the input) or dummy depots.

Definition 1. A dummy depot is a vertex vk 6∈ V(G), such that ∀vi ∈ V(G), ci,k = ck,i = 0,
where G is the input graph and ca,b is the cost of the edge (va, vb). As the name suggests, it plays
the role of a fake depot.

This section’s IPs extend a state-of-the-art IP for FD-MmTSP [7]. The connection
between this problem and DFmTSP comes from the following intuitive observation.

Observation 1. A solution to CP-DFmTSP defines a partition of vertices. If one vertex from each
partition’s element is known in advance, the problem can be directly modeled as CP-FD-MmTSP.

Expressions (1)–(13) show an IP for minsum CP-DFmTSP with bounding constraints.
We will use this IP as the basis for the rest of this section’s IPs. Namely, we will show how to
adapt this formulation to the minmax objective function and the OP variant. So, let us begin
by explaining this IP. V is the set of vertices of the weighted complete graph G = (V, E),
and D is a set of m dummy depots. To be more general, let us consider the input graph to
be directed. For clarity, let us assume that the vertices in V are labeled as {v1, v2, ..., vn} and
the dummy depots in D as {vn+1, vn+2, ..., vn+m} (V ∩ D = ∅). ci,j is the cost of traveling
from vi to vj. Notice that ci,j might be different from cj,i; namely, we are working with the
asymmetric version of the problem, which generalizes the symmetric one.
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min ∑
vi∈V

∑
vj∈V

ci,j ∑
vk∈D

(
xi,j,k + xi,k,kxk,j,k

)
(1)

s.t. ∑
vj∈V

xk,j,k = 1 ∀vk ∈ D (2)

∑
vk∈D

xk,j,k + ∑
vk∈D

∑
vi∈V

xi,j,k = 1 ∀vj ∈ V (3)

xk,j,k + ∑
vi∈V

xi,j,k − xj,k,k − ∑
vi∈V

xj,i,k = 0 ∀vk ∈ D, vj ∈ V (4)

∑
vj∈V

xk,j,k − ∑
vj∈V

xj,k,k = 0 ∀vk ∈ D (5)

ti + (U − 2) ∑
vk∈D

xk,i,k − ∑
vk∈D

xi,k,k ≤ U − 1 ∀vi ∈ V (6)

ti + ∑
vk∈D

xk,i,k + (2− L) ∑
vk∈D

xi,k,k ≥ 2 ∀vi ∈ V (7)

∑
vk∈D

xk,i,k + ∑
vk∈D

xi,k,k ≤ 1 ∀vi ∈ V (8)

ti − tj + U ∑
vk∈D

xi,j,k + (U − 2) ∑
vk∈D

xj,i,k ≤ U − 1 ∀vi, vj ∈ V (9)

xi,j,k ∈ {0, 1} ∀vi, vj ∈ V ∪ D, ∀vk ∈ D (10)

where

xi,j,k =

{
1, if the salesperson at the vk dummy depot goes from vi to vj

0, otherwise
(11)

ti = time at which vertex vi is visited in the path (12)

2 ≤ L ≤ d|V|/me ≤ U ≤ |V| (13)

In this formulation, constraints (2) ensure that precisely one salesperson departs
from each dummy depot vk ∈ D. Constraints (3) ensure that each vertex vj ∈ V is
visited once from some vertex vi ∈ V ∪ D. Constraints (4) and (5) guarantee the route
continuity for vertices and dummy depots. Constraints (6), (7), and (13) guarantee that
each salesperson visits between L (lower-bound) and U (upper-bound) vertices; we refer to
these as bounding constraints. Constraints (8) forbid a salesperson to visit only one vertex
(also known as a return trip). Constraints (9) are subtour elimination constraints (SECs)
that ensure tj = ti + 1 if and only if xi,j = 1. Constraints (10) define the decision variables.
Notice that we use the word time metaphorically; variables t represent the order in which a
salesperson visits vertices. Finally, the objective function (1) guarantees that the total paths’
cost is minimized (minsum). The number of binary variables and constraints is O(n2m)
and O(n2), respectively. Notice that the objective function has a quadratic term. Therefore,
this program is an integer quadratic program (IQP); however, as we will show later, this
can be linearized by adding some extra variables and constraints.

Before continuing with abstract statements, Figure 3 shows the optimal solution of this
IP over a small graph with m = 2, L = 3, and U = 5. In this figure, two salespersons depart
and return to the dummy depots v9 and v10, respectively. Since traveling through a dummy
depot does not incur any cost, we have to identify the edges (v2, v1) and (v6, v5) and add
their cost to the objective function. This is explained in Lemma 1. Regarding matrices x9
and x10, each corresponds to a different dummy depot and codifies a different closed path.
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Figure 3. Exact solution of the IP for minsum CP-DFmTSP with bounding constraints. In this graph
instance, V = {v1, v2, v3, v4, v5, v6, v7, v8}, m = 2, L = 3, U = 5, D = {v9, v10}, and the cost of each
edge equals the euclidean distance between its vertices (except edges with some dummy depot).
There is a 10× 10 matrix for each dummy depot, x9 = [xi,j]10×10 and x10 = [xi,j]10×10.

Lemma 1. Expression (1) is the minsum objective function for CP-DFmTSP.

Proof. Expression (1) comes from the following expanded form:

∑
vk∈D

∑
vi∈V

∑
vj∈V

ci,jxi,j,k︸ ︷︷ ︸
first term

+ ∑
vk∈D

∑
vi∈V

∑
vj∈V

ci,jxi,k,kxk,j,k︸ ︷︷ ︸
second term

(14)

The first term of Expression (14) adds up the cost of the traveled edges (solid red
and blue edges in Figure 3). The second term adds up the cost ci,j of the edge of each
pair of vertices vi, vj ∈ V adjacent to a dummy depot vk ∈ D (dotted red and blue edges
in Figure 3). Let vk be any dummy depot in D, and let vi and vj be any pair of different
vertices in V. If xi,k,k = xk,j,k = 1, then the salesperson associated with the vk dummy
depot goes from vertex vi to vk and then from vertex vk to vj. Thus, the path is closed
if we consider the edge (vi, vj). This way, the cost of edge (vi, vj) is considered in the
objective function because ci,jxi,k,kxk,j,k = ci,j. Finally, the Objective function (14) considers
the sum of the paths of all the salespersons. Therefore, it is the minsum objective function
for CP-DFmTSP.

Although the objective function (1) has a quadratic term, it can be linearized by noting
that, in the second term of Expression (14), ci,j is added up if and only if xi,k,kxk,j,k = 1.
So, this product can be replaced by the binary variable yi,j,k (see constraints (16)–(19)). By
doing so, the minsum objective function is Equation (15) and we obtain an integer linear
program (ILP) with O(n2m) binary variables and constraints.

∑
vi∈V

∑
vj∈V

ci,j ∑
vk∈D

(
xi,j,k + yi,j,k

)
(15)
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where

yi,j,k ≥ xi,k,k + xk,j,k − 1 ∀vi, vj ∈ V, ∀vk ∈ D (16)

yi,j,k ≤ xk,j,k ∀vi, vj ∈ V, ∀vk ∈ D (17)

yi,j,k ≤ xi,k,k ∀vi, vj ∈ V, ∀vk ∈ D (18)

yi,j,k ∈ {0, 1} ∀vi, vj ∈ V, ∀vk ∈ D (19)

The IP for minsum CP-DFmTSP can be adapted for the minmax objective function if
we replace Expression (1) with Expressions (20) and (21), where Pmax is the longest path
among the salespersons.

min Pmax (20)

Pmax ≥ ∑
vi∈V

∑
vj∈V

ci,j

(
xi,j,k + xi,k,kxk,j,k

)
∀vk ∈ D (21)

Lemma 2. Expressions (20) and (21) are the minmax objective function for CP-DFmTSP.

Proof. Expression (21) comes from the following expanded form:

Pmax ≥ ∑
vi∈V

∑
vj∈V

ci,jxi,j,k︸ ︷︷ ︸
first term

+ ∑
vi∈V

∑
vj∈V

ci,jxi,k,kxk,j,k︸ ︷︷ ︸
second term

∀vk ∈ D (22)

Let vk ∈ D be a specific dummy depot and let vi, vj ∈ V be a pair of vertices in its
respective path. Then, the first term of Expression (22) adds up the cost of the edges in the
path of the dummy depot vk, and the second term adds the cost ci,j of the edge (vi, vj) such
that the salesperson goes from vi to vk and then from vk to vj. Thus, by considering the
edge (vi, vj) the path is closed; the cost of this edge is considered in the objective function
because ci,jxi,k,kxk,j,k = ci,j. Note that Expression (22) computes the cost of the closed path
per each dummy depot vk ∈ D. Additionally, variable Pmax must be greater or equal to
each salesperson’s path’s cost and must be minimized. So, Expressions (20) and (21) are the
minmax objective function for CP-DFmTSP.

As with minsum, the minmax objective function defined by Expressions (20) and (21)
can be linearized by adding variables yi,j,k = xi,k,kxk,j,k and constraints (16)–(18).

In this paper, a singleton path (vi) of length 0 is invalid. However, a two-vertices path
(vi, vj) is a valid closed path of length ci,j + cj,i or an open path of length ci,j. Therefore,
a solution to any variant of DFmTSP must consist of m paths, each with at least two
vertices. Of course, the number of vertices in each path must also be between the bounding
constraints L and U. Lemmas 3 and 4 show that the proposed IPs are consistent with these
considerations.

Lemma 3. Constraints (9) guarantee that tb = ta + 1 if and only if xa,b,k = 1 for some dummy
depot vk [7].

Proof. First, let us consider the case of a pair of vertices, va and vb, such that xa,b,k =
xb,a,k = 0 for every dummy depot vk. In this scenario, constraints (9) are reduced to the
single constraint ta − tb ≤ U − 1, which is basically deactivated. Next, let us consider the
case of a pair of vertices va and vb such that xa,b,k = 1 and xb,a,k = 0 for some dummy depot
vk. In this scenario, constraints (9) become two constraints, tj ≥ ti + 1 (with i = a and j = b)
and ti ≤ tj + 1 (with i = b and j = a). Thus, ta + 1 ≤ tb ≤ ta + 1, i.e., tb = ta + 1.
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Lemma 4. A solution to the proposed IPs consists of m paths, each with between max{2, L} and
U vertices.

Proof. By constraints (8), ∀vi ∈ V, ∑vk∈D xk,i,k = ∑vk∈D xi,k,k = 1 is not allowed; this case
alone avoids singleton paths from occurring. Now, let us inspect the three remaining cases;
the consequent of each implication follows from constraints (6) and (7) combined:

1. If ∑vk∈D xk,i,k = ∑vk∈D xi,k,k = 0, then 2 ≤ ti ≤ U − 1.

• This case corresponds to the vertices non-adjacent to any dummy depot in any
path. In Figure 3, these are v3, v4, v7, and v8.

2. If ∑vk∈D xk,i,k = 1 and ∑vk∈D xi,k,k = 0, then ti = 1.

• This case corresponds to the first vertex visited by each salesperson after leaving
its dummy depot. In Figure 3, these are v1 and v3.

3. If ∑vk∈D xk,i,k = 0 and ∑vk∈D xi,k,k = 1, then L ≤ ti ≤ U.

• This case corresponds to the last vertex visited by each salesperson before return-
ing to its dummy depot. In Figure 3, these are v2 and v6.

By Lemma 3, tj = ti + 1 if and only if xi,j = 1. In other words, the variables ti and
tj of adjacent vertices vi and vj in a path must differ by exactly one unit. Thanks to this,
constraints (6) and (7) guarantee that each path has between max{2, L} and U vertices.
Finally, since there cannot be empty paths, a solution must have exactly m paths.

So far, we have introduced and explained the main elements of IPs for CP-DFmTSP
with bounding constraints and minsum and minmax objective functions. Next, we adapt
this formulation to the OP variant. To our knowledge, this is the first reported mathematical
formulation for this variant. Fortunately, all we have to modify is the objective function.
The minsum objective function for the OP variant is:

∑
vi∈V

∑
vj∈V

ci,j

(
∑

vk∈D
xi,j,k

)
(23)

Lemma 5. Expression (23) is the minsum objective function for OP-DFmTSP.

Proof. Expression (23) is the first term of expression (14). It considers only the cost of
the traveled edges (solid red and blue edges in Figure 3). The vertices vi and vj that
make xi,k,k = 1 and xk,j,k = 1 are in the extremes of the open path; thus, ci,j needs not be
considered. Finally, the objective function (23) considers the sum of the path’s length for all
salespersons. Therefore, it is the minsum objective function for OP-DFmTSP.

Next, we show the minmax objective function for the OP variant.

min Pmax (24)

Pmax ≥ ∑
vi∈V

∑
vj∈V

ci,jxi,j,k ∀vk ∈ D (25)

Lemma 6. Expressions (24) and (25) are the minmax objective function for OP-DFmTSP.

Proof. Expression (25) is the first term of Expression (22). It only considers the cost of the
traveled edges. So, the paths are open. Additionally, variable Pmax is greater or equal to
each salesperson’s open path length, and Pmax is minimized. Therefore, Expressions (24)
and (25) are the minmax objective function for OP-DFmTSP.

By Lemmas 2–4, the proposed IPs are valid formulations for DFmTSP and its main
variants: OP, CP, minsum, minmax, and bounding constraints. To finish this section, notice
that all these IPs can be adapted to FD-MmTSP by adding constraints (26); these force each
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dummy depot to directly visit a vertex v ∈ R, where R is the input set of depots, V ∩ R = R,
V ∩ D = ∅, and |R| = m. Of course, this adaptation is redundant because, in the first
place, the proposed IPs extend an IP for FD-MmTSP. However, this adaption becomes
useful when |R| < m; in this scenario, we deal with a combination between FD-MmTSP
and DFmTSP where fewer than m depots are known, but the solution still consists of m
paths. For further illustration, Figure 4 shows the optimal solution for Mexico’s cities’ town
halls graph (cdmx16). We implemented and executed all the proposed formulations to
compute the optimal solutions using off-the-shelf optimization software [119] (see the Data
Availability Statement.)

∑
vk∈D

∑
vi∈R

xk,i,k = |R| (26)
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Figure 4. Optimal solutions for (a) CP-DFmTSP, (b) a combination between CP-DFmTSP and CP-FD-
MmTSP (R = {v9, v13}), and (c) CP-FD-MmTSP (R = {v9, v13, v4}). The objective function is minsum,
the number of salespersons is three (m = 3), L = 4, U = 10, the cost of each edge equals the euclidean
distance between its vertices, and the depots are marked in green. Subfigures (d–f) correspond to the
open-paths (OP) variants.

The following section introduces more compact formulations for the same problems
and most of their variants.

3.2. More Compact Programs for DFmTSP

This section introduces more compact IPs for DFmTSP and some of its main variants.
The main IP of this section has O(n2) binary variables, O(n2) constraints, and requires
m dummy depots (see Definition 1). Expressions (27)–(37) define an IP for minsum CP-
DFmTSP; we will use this IP as the basis for the rest of this section’s IPs. For clarity, let
us assume that the vertices in V are labeled as {v1, v2, ..., vn}, the m dummy depots in D
are labeled as {vn+1, vn+2, ..., vn+m}, and V′ = V ∪ D, where G = (V, E) is the input graph.
Notice that V ∩ D = ∅.
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min ∑
vi∈V′

∑
vj∈V′

ci,j

(
xi,j + xn+m,jxi,n+1

+ ∑
vk∈D\{vn+m}

xk,jxi,k+1

)
(27)

s.t. ∑
vj∈V′\{vi}

xi,j = 1 ∀vi ∈ V′ (28)

∑
vi∈V′\{vj}

xi,j = 1 ∀vj ∈ V′ (29)

tn+1 = 0 (30)

tk+1 − tk ≥ 3 ∀vk ∈ D \ {vn+m} (31)

|V′| − tn+m ≥ 3 (32)

1 ≤ ti ≤ |V′| − 1 ∀vi ∈ V′ \ {vn+1} (33)

ti − tj + xi,j|V′| ≤ |V′| − 1 ∀vi, vj ∈ V′ \ {vn+1} (34)

xi,j ∈ {0, 1} ∀vi, vj ∈ V′ (35)

where

xi,j =

{
1, if a salesperson travels from vi to vj

0, otherwise
(36)

ti = time at which vertex vi is visited in the path (37)

The objective function (27) has a quadratic term. Therefore, this formulation is an IQP.
Later, we will show how to linearize the objective function; but before, let us explain this
formulation. The solution to this formulation is a closed path that visits all vertices once,
similar to TSP. From this single path, all m paths are inferred. Constraints (28) and (29) are
flow constraints; they guarantee that there is a single closed path that visits all vertices
once. Constraints (30)–(32) are depot ordering constraints; they have two goals, to avoid
singleton paths and to force the salespersons to visit the dummy depots in order, i.e.,
tn+1 < tn+2 < · · · < tn+m. Constraints (33) and (34) are the classical Miller–Tucker–Zemlin
SECs [4]. Expressions (35)–(37) define the decision variables. The objective function (27)
is minsum (see Lemma 7). Notice that this IP has only one bounding constraint, i.e., each
path must have more than two vertices. However, to extend this IP to the more general
case, we can add constraints (38)–(42) and remove constraints (31) and (32). In this manner,
each path must have between L and U vertices.

tk+1 − tk ≤ U + 1 ∀vk ∈ D \ {vn+m} (38)

tk+1 − tk ≥ L + 1 ∀vk ∈ D \ {vn+m} (39)

|V′| − tn+m ≤ U + 1 (40)

|V′| − tn+m ≥ L + 1 (41)

2 ≤ L ≤ d|V|/me ≤ U ≤ |V| (42)

Figure 5 shows the optimal solution of this IP over a small graph with m = 2, L = 3,
and U = 5. In this figure, two paths are codified into one path that departs from dummy
depot v9, travels through every other vertex, including dummy depot v10, and returns to
v9. Since traveling through a dummy depot does not incur any cost, we must identify the
edges (v1, v2) and (v8, v7) and add their cost to the objective function. This is explained in
Lemma 7. Notice that one matrix is enough to codify all m paths.
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Figure 5. Exact solution of the IP for minsum CP-DFmTSP with bounding constraints. In this graph
instance, V = {v1, v2, v3, v4, v5, v6, v7, v8}, m = 2, L = 3, U = 5, D = {v9, v10}, and the cost of each
edge equals the euclidean distance between its vertices (except edges with some dummy depot).
There is only one matrix, x = [xi,j]10×10.

Lemma 7. Expression (27) is the minsum objective function for CP-DFmTSP.

Proof. Expression (27) comes from the following expanded form:

∑
vi∈V′

∑
vj∈V′

ci,jxi,j︸ ︷︷ ︸
first term

+ ∑
vi∈V′

∑
vj∈V′

ci,j

xn+m,jxi,n+1 + ∑
vk∈D\{vn+m}

xk,jxi,k+1


︸ ︷︷ ︸

second term

(43)

The first term of Expression (43) adds up the cost of the traveled edges (solid red
and blue edges in Figure 5). The second term adds up the cost ci,j of the edge of each
pair of vertices vi, vj ∈ V adjacent to a pair of consecutive dummy depots (dotted red
and blue edges in Figure 5). Let vk and vk+1 be a pair of consecutive dummy depots
in D \ {vn+m} and let vi and vj be any pair of different vertices in V. If xk,j = 1 and
xi,k+1 = 1, then the salesperson associated with the vk dummy depot goes from vertex
vi to vj (notice that vn+1 is the consecutive dummy depot of vn+m.) Thus, the path is
closed if we consider the edge (vi, vj). Thanks to the flow constraints (28) and (29), and the
depot ordering constraints (30)–(32), the inner sum xn+m,jxi,n+1 + ∑vk∈D\{vn+m} xk,jxi,k+1
can only take values in {0, 1}. Therefore, Expression (27) is the minsum objective function
for CP-DFmTSP.

Although the objective function (27) has a quadratic term, it can be linearized by noting
that, in the second term of Expression (43), ci,j is added up if and only if there is a pair of
consecutive dummy depots, vk and vk+1, such that xk,jxi,k+1 = 1. So, this product can be
replaced by the binary variable yi,j (see constraints (45)–(49)). By doing so, the minsum
objective function is Equation (44) and we obtain an ILP with O(n2) binary variables and
O(n2m) constraints. Notice that vn+1 is the consecutive dummy depot of vn+m.

∑
vi∈V′

∑
vj∈V′

ci,j
(
xi,j + yi,j

)
(44)

where
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yi,j ≥ xk,j + xi,k+1 − 1 ∀vi, vj ∈ V, ∀vk ∈ D \ {vn+m} (45)

yi,j ≥ xn+m,j + xi,n+1 − 1 ∀vi, vj ∈ V (46)

yi,j ≤ ∑
vk∈D

xi,k ∀vi, vj ∈ V (47)

yi,j ≤ ∑
vk∈D

xk,j ∀vi, vj ∈ V (48)

yi,j ∈ {0, 1} ∀vi, vj ∈ V (49)

Adapting these IPs to the OP variant is straightforward. We only have to replace the
objective function (27) by (50), and omit variables yi,j with their respective constraints. This
way, the dotted lines from Figure 5 are not considered.

∑
vi∈V′

∑
vj∈V′

ci,jxi,j (50)

To finish this section, notice that this section’s IPs can be adapted to FD-MmTSP
with CP, OP, minsum, and bounding constraints. We must include constraints (51), which
force each dummy depot to go directly to one depot from the input set R of actual de-
pots. Figure 6 serves as an example for R = {v2, v4}. As the previous section’s IPs, this
adaptation is advantageous too when |R| < m (see Figure 4).

∑
vk∈D

xk,i = 1 ∀vi ∈ R (51)
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Figure 6. Exact solution of the IP for minsum CP-FD-MmTSP with bounding constraints (Section 3.2).
In this graph instance, V = {v1, v2, v3, v4, v5, v6, v7, v8}, m = 2, L = 3, U = 5, R = {v2, v4},
D = {v9, v10}, and the cost of each edge equals the euclidean distance between its vertices (except
edges with some dummy depot). There is only one matrix, x = [xi,j]10×10.

4. Empirical Tests

To test the empirical performance of the proposed IPs, we ran some experiments using
off-the-shelf optimization software and some of the classical TSPLIB graph instances [120].
From the literature, we could reproduce and validate the IP of Karabulut et al. [104]; we
used this IP for comparison purposes. In all the experiments, we set the lower bounding
constraint to two (L = 2) because the IP of Karabulut et al. is limited to such a value.

All the IPs were implemented using Gurobi 9.5.1 (Gurobi, Beaverton, OR, USA) [119]
through its Python interface. This off-the-shelf optimization software executes optimization
techniques such as simplex, branch and bound, branch and cut, cutting planes, paral-
lelism, and heuristics to find optimal solutions to mathematical formulations with linear or
quadratic constraints. In all the experiments, we set Gurobi’s Presolve parameter to 2. All
the experiments were executed on a desktop Windows 11 Pro computer with an Intel Core
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i7-9700 processor. All the executions were set to a maximum of 12 GB of RAM and a 2 h
time limit.

Tables 2 and 3 show the results obtained by all the proposed IPs and the IP of Karabulut
et al. [104] for the minsum CP-DFmTSP. We only experimented with this problem variant
because it is the only one modeled by all the presented IPs, including the IP of Karabulut et
al. In these tables, f stands for the reported value of the objective function, t(s) for the time
in seconds to find such objective function value, and g for the gap reported by the Gurobi
software. A dash “-” character means no feasible solution was found within two hours. For
convenience, we refer to the IPs from Section 3.1 with quadratic objective function as IQP1,
and to the IPs from the same section with linear objective function as ILP1. Similarly, we
refer to the IPs from Section 3.2 as IQP2 and ILP2.

Table 2 shows the results for the minsum CP-DFmTSP with tight bounding constraints,
namely, the upper bound U is set to dn/me. On the one hand, we can observe that only
IQP1 and ILP2 could find feasible solutions for all the cases, suggesting they may be better
suited for this specific variant of the problem. Additionally, IQP1 found the best solutions in
more cases than others. On the other hand, the IP of Karabulut et al. could not find feasible
solutions in three cases within the two-hour time limit. Figure 7 shows the convergence of
the IPs reported by the Gurobi software for one of the used instances. From this figure, we
can observe two facts. Firstly, from Figure 7a (m = 3), we can see that for some IPs it may
not make sense to let them run for a long time since most of the IPs reach their best-found
solution in much less time than the limit setup. Secondly, from Figure 7b (m = 5), we observe
cases where the IPs may require more time to find feasible solutions. For instance, IQP1, IQP2,
ILP1, and ILP2 needed 546 s, 1565 s, 2209 s, and 3070 s, respectively, to find the first feasible
solution (the IP of Karabulut et al. did not find any feasible solution.) These figures suggest
that, as expected, the problems with a bigger value of m may be considerably challenging.
Similar results were obtained for the other graph instances (see Appendix A).
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Figure 7. Convergence time reported by Gurobi for the instance gr48 for the minsum CP-DFmTSP
with L = 2. Subfigures (a,b) correspond to tight bounding constraints, i.e., U = dn/me. Subfigures
(c,d) correspond to loose bounding constraints, i.e., U = n.
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Table 2. IPs’ comparison for minsum CP-DFmTSP with L = 2 and tight bounding constraints. The best-found solutions are bold.

Instance n m U Karabulut et al. [104] IQP1 ILP1 IQP2 ILP2
f t(s) g f t(s) g f t(s) g f t(s) g f t(s) g

dantzig42 42 3 14 748 320 18% 772 2914 24% 739 3934 21% 772 1125 24% 739 6823 21%
5 9 754 5559 21% 787 1843 34% 786 2639 34% 879 4030 43% 1055 1763 52%

swiss42 42 3 14 1410 5682 17% 1407 1155 21% 1629 6377 33% 1430 1043 24% 1616 107 33%
5 9 1397 886 19% 1603 4673 38% 1394 1741 26% 1470 1493 37% 1787 246 48%

att48 48 3 16 12,557 7200 25% 10,941 859 17% 12,339 777 26% 12,683 6329 31% 12,432 668 28%
5 10 - - - 11,149 2272 27% 11,505 1884 28% 11,748 4602 33% 16,160 7129 52%

gr48 48 3 16 5337 4452 13% 5213 2881 15% 5478 528 21% 5423 1724 23% 6030 5921 30%
5 10 - - - 7009 6895 45% 5530 7184 30% 6696 2286 44% 7060 4639 47%

hk48 48 3 16 11,999 1656 9% 12,620 663 20% 12,568 6956 19% 13,576 643 26% 12,456 4357 20%
5 10 - - - 13,546 5583 33% - - - - - - 15,316 6864 42%

Table 3. IPs’ comparison for minsum CP-DFmTSP with L = 2 and loose bounding constraints. The best-found solutions are bold.

Instance n m U Karabulut et al. [104] IQP1 ILP1 IQP2 ILP2
f t(s) g f t(s) g f t(s) g f t(s) g f t(s) g

dantzig42 42 3 42 633 74 0% 633 206 5.69% 633 91 7.11% 633 100 3.95% 633 40 3.79%
5 42 604 84 0% 604 36 4.64% 604 38 14.07% 604 135 15.07% 605 83 13.22%

swiss42 42 3 42 1208 188 0% 1208 89 2.15% 1208 27 1.57% 1208 203 9.11% 1208 27 9.27%
5 42 1155 50 1.47% 1155 413 5.11% 1155 812 5.63% 1167 2200 19.37% 1155 60 17.49%

att48 48 3 48 9946 442 4.25% 9946 11 5.81% 9946 85 4.83% 9946 51 7.57% 9946 26 7.51%
5 48 9448 43 2.64% 9448 182 13.52% 9448 400 13.79% 9448 85 15.81% 9448 2000 14.73%

gr48 48 3 48 4761 201 1.70% 4761 96 3.91% 4761 27 6.87% 4761 1369 8.36% 4761 227 8.25%
5 48 4544 113 0% 4544 207 8.78% 4558 71 7.79% 4735 171 18.59% 4558 2829 14.26%

hk48 48 3 48 11,101 115 0% 11,101 335 2.08% 11,101 206 2.20% 11,332 3037 10.98% 11,134 1950 8.45%
5 48 10,834 164 0% 10,834 919 6.98% 10,834 786 7.30% 10,888 1524 17.20% 10,967 127 17.42%
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The experimentation reported in Table 3 is similar to that presented in Table 2. The
only difference is that in Table 3, the upper bound constraint U is set to n. From this
table, we observe that all of the IPs found feasible solutions for all of the cases, and the IP
of Karabulut et al., IQP1, and IQP2 found the best solutions among all the IPs; even the
optimality of some of them was proved because a value of g = 0 was reported. Furthermore,
we can see that the reported gaps are considerably lower than those reported in Table 2.
This suggests that the CP-DFmTSP variant with bounding constraints may be harder to
solve when the number of vertices per salesperson is tight.

Figure 7c,d show the convergence time reported by Gurobi for the presented IPs for
one of the used instances with loose bounding constraints. This figure shows that most
IPs quickly found good-quality solutions, considering the relatively small reported gaps.
This suggests that for this variant of the problem, setting long running times may not
be necessary since the first few seconds (<100 s) are enough to get the most significant
improvements in their found solutions. This supports the observation that tight bounding
constraints make the instances harder to solve. Similar results were obtained for the other
graph instances (see Appendix A).

5. Discussion

Sections 3.1 and 3.2 introduce novel compact integer programs for DFmTSP. These
include IQPs and ILPs for the main variants of the problem: CP, OP, with bounding
constraints, and minsum and minmax objective functions (see Tables 4 and 5 for more
details). Although some other IPs for DFmTSP have been published before [51,104], we
could only reproduce and validate the IP of Karabulut et al. [104]. Additionally, these
state-of-the-art IPs do not consider all the problem’s main variants and are not designed to
solve a combination of FD-MmTSP and DFmTSP. To our knowledge, the IPs introduced in
this paper are the first reported with such a wide scope.

Section 3.2 introduces more compact IPs for DFmTSP. Specifically, these have O(n2)
binary variables (see Table 4). These IPs depend on the dummy depot concept, on what we
call depot ordering constraints, and they consider most of the main variants of the problem:
CP, OP, bounding constraints, and minsum objective function (see Table 5). Additionally,
the IPs from both sections are particularly helpful for solving a combination between
FD-MmTSP and DFmTSP, where fewer than m depots are part of the input, but the solution
still consists of m paths (see Figure 4).

Table 4. IPs’ variables and constraints.

IP Section Objective Function Binary Variables Constraints

IQP1 Section 3.1 quadratic O(n2m) O(n2)
ILP1 linear O(n2m) O(n2m)

IQP2 Section 3.2 quadratic O(n2) O(n2)
ILP2 linear O(n2) O(n2m)

Table 5. IPs’ features and scope.

IP Dummy Depots CP OP Minsum Minmax L U FD-M+DF

IQP1 m X X X X X X
ILP1 m X X X X X X X

IQP2 m X X X X X
ILP2 m X X X X X X

In Section 4, we used off-the-shelf optimization software to perform a series of experi-
ments. From them, we observed that the proposed IPs tend to find near-optimal solutions
in reasonable amounts of time. Naturally, there is a limit to the practicality of our proposal.



Mathematics 2023, 11, 3014 18 of 25

For instance, tight bounding constraints and relatively large values of m make the problem
more challenging, and finding feasible solutions for larger graph instances would require
more time. Finally, although our work is limited to mTSP, it might be extended to more
challenging logistics or scheduling problems, particularly those related to VRP [121–125].

6. Conclusions

The DFmTSP better models real problems where depots are unknown or unnecessary.
To our knowledge, this problem and its main variants have not been sufficiently studied.
Consequently, this paper introduces different compact IPs for DFmTSP and its main variants.
The IPs from Section 3.1 extend an IP for FD-MmTSP and encompass all the main variants of
the problem. The IPs from Section 3.2 are more compact in terms of the number of variables
and consider most of the variants of the problem. According to a series of empirical tests,
the proposed IPs have desirable theoretical properties and practical performance.

There are some future work options to consider. We are especially interested in
continue exploiting the attributes of the IPs presented in Section 3.2 since they have only
O(n2) binary variables. We will try to adapt these IPs to the minmax objective function.
Additionally, we will seek more sophisticated formulations that use fewer than m dummy
depots or maybe no dummy depots at all. Lastly, we believe some of the ideas exposed in
this work may be useful to design exact algorithms for DFmTSP. Moreover, we would like
to explore other optimization techniques, like heuristics, metaheuristics, and approximation
algorithms, to find near-optimal solutions for larger instances.
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Abbreviations
The following abbreviations are used in this manuscript:

CP Closed paths
CP-DFmTSP Closed-paths depot-free multiple traveling salesperson problem

CP-FD-MmTSP
Closed-paths fixed-destination multiple-depots multiple traveling
salesperson problem

DF Depot free
DFmTSP Depot-free multiple traveling salesperson problem
FD-MmTSP Fixed-destination multiple-depots multiple traveling salesperson problem
ILP Integer linear program
IP Integer program
IQP Integer quadratic program
M Multiple depots
MmTSP Multiple-depots multiple traveling salesperson problem
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mTSP Multiple traveling salesperson problem
NFD-MmTSP Non-fixed-destination multiple-depots multiple traveling salesperson problem
OP Open paths
OP-DFmTSP Open-paths depot-free multiple traveling salesperson problem
S Single-depot
SECs Subtour elimination constraints
SmTSP Single-depot multiple traveling salesperson problem
TSP Traveling salesperson problem
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Figure A1. Convergence time reported by Gurobi for the minsum CP-DFmTSP with L = 2 and tight
bounding constraints.
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Figure A2. Convergence time reported by Gurobi for the minsum CP-DFmTSP with L = 2 and loose
bounding constraints.
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