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Abstract: This work aims to analyze a new system of two fractional Hamiltonian equations. We
propose an effective method for transforming the established model into a system of two distinct
equations. Two functionals that are connected to the converted system of fractional Hamiltonian
systems are introduced together with a new space, and it is demonstrated that these functionals
are bounded below on this space. The hypotheses presented here differ from those provided in
the literature.
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1. Introduction

As a result of their numerous applications in the practice of mathematical modeling in
mechanics, physics, biochemistry, control theory, economics, and biomechanics, fractional
differential equation (FDE) theories have developed rapidly over the last two decades
(see [1–9]). According to [10–14], some methods for solving fractional systems are obtained
by extending procedures from differential equations theory. Important classes of these
systems are Hamiltonian fractional systems, which now form a rich field of research in
addition to their essential applications in a variety of domains. Several studies yielded
intriguing results with respect to the multiplicity and existence of solutions for different
fractional systems. Researchers have used various nonlinear analysis procedures in these
studies, including the comparison method, topological degree theory, and many others.
We discovered that critical point theory is an efficient tool for determining the presence of
solutions to differential equations (cf. [15,16]).

Encouraged by the aforementioned classic work, the authors of [17] demonstrated
that critical point theory is an efficient approach to determining the existence of solutions
for the fractional boundary value problem.{

σD
α
T(0D

α
σu(σ)) = ∇V(σ, u(σ)), a.e. σ ∈ [0, T],

u(0) = u(σ),
(1)

where α in ( 1
2 , 1), V ∈ C1([0, T]×RN ,R), u ∈ RN , and ∇V(σ, u) is the gradient of V at

u. They also obtained the existence of at least one nontrivial solution. The author of [18]
examined the following FHS:{

−σD
α
∞(−∞Dα

σu(σ))−A(σ)u(σ) +∇V(σ, u(σ)) = 0,
u ∈ Hα(R,RN),

(2)
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where the matrix A(σ) ∈ C(R,RN2
) is positive, definite symmetric for all σ ∈ R and σD

α
∞

and −∞Dα
σ denote the right and the left Liouville–Weyl fractional derivatives with the order α.

The existence of solutions for the Hamiltonian system (1) was examined in several
articles, including [19–30].

In [18], it is demonstrated using the Mountain Pass Theorem that Equation (2) has at
least one nontrivial solution under some conditions on V and A:

(Υ0) The matrix A(σ) is positive definite and symmetric ∀σ ∈ R; moreover, ∃ l ∈
C(R, (0, ∞)) : (A(σ)y, y) ≥ l(σ)|y|2, for all (σ, y) ∈ R × RN and l(σ) → ∞ as
|σ| → ∞;

(F1) |∇V(σ, y)| = o(|y|) as |y| → 0 uniformly in σ ∈ R;
(F2) ∃ V ∈ C(RN ,R) : |V(σ, y)|+ |∇V(σ, y)| ≤ |V(y)| for all (σ, y) ∈ R×RN ;
(F3) ∃ µ > 2 : 0 < µV(σ, y) ≤ (∇V(σ, y), y) for all; (σ, y) ∈ R×RN\{0}.

For α = 1, problem (2) reads as

ü(σ)−A(σ)u(σ) +∇V(σ, u(σ)) = 0,

which is a basic second-order Hamiltonian system.
More recently, the authors of [31] examined the existence of solutions for the fractional

Hamiltonian system (2) under some assumptions on A and V.
The present work aims to examine the system of fractional Hamiltonian equations of

the form: −Dη
∞

(
Dη
−∞a(σ)

)
− S(σ)a(σ)−K(σ)b(σ) +∇ϑ(σ, b(σ)) = 0,

−Dη
∞

(
Dη
−∞b(σ)

)
− S(σ)b(σ)−K(σ)a(σ) +∇ϑ(σ, a(σ)) = 0.

We introduce a powerful technique for splitting the present model into a system of two
different equations. We introduce a new space and two functionals that are related to the
converted system of fractional Hamiltonian systems, and we prove that they are bounded
below on this space. The theories presented here are distinct from those presented in
the literature.

The remaining sections of this work are described in the following: The next section
proceeds with a review of several fundamental concepts and terms used in fractional theory.
Section 3 discusses the system of two fractional Hamiltonian equations. A new fractional
space is introduced in Section 4. Proof of the primary findings is presented in Section 5. We
complete our paper with a conclusion.

2. Preliminaries

This section begins with a review of several fundamental concepts and terms employed
in fractional analyses.

Let Γ symbolize the basic Euler Gamma function in the fractional analysis.

Definition 1. Let ω : R→ R be an integrable function. The η-left-sided Liouville–Weyl fractional
integral of ω is designated as follows:

Jη
−∞ω(σ) :=

1
Γ(η)

∫ σ

−∞

ω(ς)

(σ− ς)1−η
dς, σ ∈ R η > 0.

Definition 2. Let ω : R → R be an integrable function. The η-right-sided Liouville–Weyl
fractional integral of ω is designated as follows:

Jη
∞ω(σ) :=

1
Γ(η)

∫ ∞

σ

ω(ς)

(σ− ς)1−η
dς, σ ∈ R η > 0.
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Remark 1. Letting
ψη(σ) := ση−1/Γ(η),

then,
Jη
0+ω(σ) = (ψη ? ω)(σ).

Definition 3. Let ω : R→ R be a continuous function. The η-left-sided Liouville–Weyl fractional
derivative of ω is given by

Dη
−∞ω(σ) :=

1
Γ(1− η)

d
dσ

∫ σ

−∞

ω(ς)

(σ− ς)η dς, η > 0.

Definition 4. Let ω : R → R be a continuous function. The η-right-sided Liouville–Weyl
fractional derivative of ω is given by

Dη
∞ω(σ) :=

1
Γ(1− η)

d
dσ

∫ ∞

σ

ω(ς)

(σ− ς)η dς η > 0.

Remark 2. We have
Dη
−∞ω(σ) =

d
dσ

J1−η
−∞ ω(σ), η > 0

and
Dη

∞ω(σ) = − d
dσ

J1−η
∞ ω(σ).

3. System of Two Fractional Hamiltonian Equations

The goal of the current research is to analyze a system of fractional Hamiltonian
equations of the following form:−Dη

∞

(
Dη
−∞a(σ)

)
− S(σ)a(σ)−K(σ)b(σ) +∇ϑ(σ, b(σ)) = 0,

−Dη
∞

(
Dη
−∞b(σ)

)
− S(σ)b(σ)−K(σ)a(σ) +∇ϑ(σ, a(σ)) = 0.

(3)

We assume that

∇ϑ(σ, αu(σ) + βv(σ)) = α∇ϑ(σ, u(σ)) + β∇ϑ(σ, v(σ)).

Using the procedure outlined in [32], consider the following transformation:

A := a− b,

B := a + b.

Lemma 1. System (3) can be presented in the following form:

−Dη
∞

(
Dη
−∞B(σ)

)
− S(σ)B(σ)−K(σ)A(σ) +∇ϑ(σ, B(σ)) = 0, (4)

−Dη
∞

(
Dη
−∞A(σ)

)
− S(σ)A(σ) +K(σ)A(σ)−∇ϑ(σ, A(σ)) = 0. (5)

Proof. We have,

a =
A + B

2
,

b =
A− B

2
.

By substituting them into (3), we get
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−Dη
∞

(
Dη
−∞(B + A)(σ)

)
− S(σ)(B + A)(σ)−K(σ)(B−A)(σ) +∇ϑ(σ, (B−A)(σ)) = 0, (6)

−Dη
∞

(
Dη
−∞(B−A)(σ)

)
− S(σ)(B−A)(σ)−K(σ)(B + A)(σ) +∇ϑ(σ, (B + A)(σ)) = 0. (7)

We obtain (4) by adding Equations (6) and (7) together and then subtracting (7) from (6).

4. Fractional Space

Let us define the following semi-norm:

|ω|Jη
−∞

:= ‖Dη
−∞ω‖L2 , η > 0.

Thus, the corresponding norm is given by

‖ω‖Jη
−∞

:=
(
‖ω‖2

L2 + |ω|2Jη
−∞

)1/2
.

The transform
ω̂(ξ) =

∫ ∞

−∞
e−iσ.ξ ω(σ) dσ

is the Fourier transform of ω(.). Furthermore, the norm ‖.‖η is given by

‖ω‖η := (‖ω‖2
L2 + |ω|2η)1/2,

where

|ω|η := ‖|ξ|ηω̂‖L2 , 0 < η < 1

is the semi-norm. Thus,

Jη
−∞(R) = C∞

0 (R)
‖·‖

Jη
−∞ ,

that is, Jη
−∞(R) is the completion of C∞

0 (R) with respect to the norm ‖ · ‖Jη
−∞

.
With regard of the Fourier transform, we consider the following fractional Sobolev space:

Hη(R) := C∞
0 (R)‖·‖η .

The space Jη
−∞(R) is defined below:

Jη
−∞(R) :=

{
ω ∈ L2(R) : |ξ|αω̂ ∈ L2(R)

}
.

Specifically,
|ω|Jη

−∞
= ‖|ξ|ηω̂‖L2(R).

5. Proof of the Primary Findings

To begin, we will establish the fractional space and construct the variational foundation
of the system of fractional Hamiltonian equations. To this purpose, we set

E := Xη
S ,K

=
{

ω ∈ Hη(R,Rn) :
∫
R
|Dη
−∞ω(σ)|2 + (S(σ)ω(σ), ω(σ)) dσ + (K(σ)ω(σ), ω(σ)) dσ < ∞

}
.
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Define the inner product

(ω, ψ)E :=
∫
R

[
Dη
−∞ω(σ).Dη

−∞ψ(σ) + (S(σ)ω(σ), ψ(σ)) + (K(σ)ω(σ), ψ(σ))
]
dσ.

The corresponding norm is
‖ω‖2

E := (ω, ω)E .

Thus, the Hilbert space E is reflexive and separable.

Lemma 2. Assume that the matrices S(σ), K(σ) are positive definite and symmetric for all σ ∈ R,
and there exist two functionals m1, m2 in C(R, (0, ∞)) such that

m1(σ), m2(σ)→ ∞ as |σ| → ∞

and

(S(σ)x, y) ≥ m1(σ)x.y, (K(σ)x, y) ≥ m2(σ)x.y for all σ ∈ R and x, y ∈ RN .

Then,
‖ω‖2

η ≤ M∗‖ω‖2
E , for some constant M∗. (8)

Proof. Since m1, m2 ∈ C(R, (0, ∞)) and since m1, m2 are coercive, then m∗1 := min
σ∈R

m1(σ)

and m∗2 := min
σ∈R

m2(σ) exist. So,

(S(σ)ω(σ), ω(σ)) ≥ m1(σ)|ω(σ)|2 ≥ m∗1 |ω(σ)|2, for all σ ∈ R,

and
(K(σ)ω(σ), ω(σ)) ≥ m2(σ)|ω(σ)|2 ≥ m∗2 |ω(σ)|2, for all σ ∈ R.

However,

‖ω‖2
η := ‖ω‖2

L2 + |ω|2η
≤ ‖ω‖2

L2 + c1|ω|2Jη
−∞

, for some constant c1

≤ ‖ω‖2
L2 + c1

∥∥∥Dη
−∞ω

∥∥∥2

2

=
∫
R

(
c1|D

η
−∞ω(σ)|2 + |ω(σ)|2

)
dσ

≤
∫
R

c1|D
η
−∞ω(σ)|2dσ +

1
m∗1

∫
R
(S(σ)ω(σ), ω(σ) +

1
m∗2

∫
R
(K(σ)ω(σ), ω(σ))dσ

≤ M∗
[∫

R
|Dη
−∞ω(σ)|2dσ +

∫
R
(S(σ)ω(σ), ω(σ))dσ +

∫
R
(K(σ)ω(σ), ω(σ))dσ

]
.

Thus,
‖ω‖2

η ≤ M∗1‖ω‖2
E , (9)

where M∗1 := max
(

c1,
1

m∗1
,

1
m∗2

)
.

Remark 3. From Lemma 2, we deduce that E is continuously embedded in Hα(R,Rn).

Lemma 3. Under the assumption of Lemma 2, the embedding of E in L2(R) is compact.
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Proof. Following [18] (Remark 2.2.) and from Lemma 2, we deduce the continuity of
E ↪→ L2(R). Now, let (ωk) ∈ E be a sequence such that ωk ⇀ ω ∈ E . Let ε > 0 and letting

γ := sup
k∈N
‖ωk −ω‖.

The Banach–Steinhauss Theorem establishes that γ < ∞. Since lim
|σ|→∞

m1(σ), m2(σ) = ∞,

there exist two reals T1, T2 > 0 such that

1
m1(σ)

≤ ε, for all |σ| ≥ T1,

and
1

m2(σ)
≤ ε, for all |σ| ≥ T2.

Letting

T∗ := max{T1, T2} and m(σ) := max{m1(σ), m2(σ)}, for all σ ∈ R,

we obtain ∫
|t|≥T∗

|ωk(σ)−ω(σ)|2dσ ≤ ε
∫
|t|≥T∗

m(σ)|ωk(σ)−ω(σ)|2dσ

≤ ε‖ωk −ω‖2 ≤ εγ2. (10)

As in [18], we conclude that ωk → ω uniformly on [−T∗, T∗]. So, there is a k0 ∈ N such that∫
|t|≤T∗

|ωk(σ)−ω(σ)|2dσ ≤ ε, for all k ≥ k0. (11)

This yields from (10) and (11) that

ωk → ω ∈ L2(R).

In order to prove our results using variational techniques, let us first define two
variational functionals F1 and F2 on E as follows:

F1(ω) :=
1
2

∫
R
|Dη
−∞ω(σ)|2dσ− 1

2

∫
R
〈S(σ)ω(σ), ω(σ)〉dσ− 1

2

∫
R
〈K(σ)ω(σ), ω(σ)〉dσ

+
∫
R

ϑ(σ, ω(σ))dσ,

:=
1
2
‖ω‖2

E −
∫
R
〈S(σ)ω(σ), ω(σ)〉dσ−

∫
R
〈K(σ)ω(σ), ω(σ)〉dσ +

∫
R

ϑ(σ, ω(σ))dσ,

and

F2(ω) :=
1
2

∫
R
|Dη
−∞ω(σ)|2dσ− 1

2

∫
R
〈S(σ)ω(σ), ω(σ)〉dσ +

1
2

∫
R
〈K(σ)ω(σ), ω(σ)〉dσ

−
∫
R

ϑ(σ, ω(σ))dσ,

:=
1
2
‖ω‖2

E −
∫
R
〈S(σ)ω(σ), ω(σ)〉dσ−

∫
R

ϑ(σ, ω(σ))dσ.

These functionals are related to the fractional Hamiltonian system (4) and (5).
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Theorem 1. Assume that M∗2(‖S‖+ ‖K‖) < 1
2 , with M∗2 := max

{
1, 1

m∗1
, 1

m∗2

}
. Then,

F1(ω)→ ∞ as ‖ω‖E → ∞.

Proof. We have ∫
R
|ω(σ)|2dσ ≤ 1

m∗1

∫
R
〈S(σ)ω(σ), ω(σ)〉dσ,∫

R
|ω(σ)|2dσ ≤ 1

m∗2

∫
R
〈K(σ)ω(σ), ω(σ)〉dσ,

that is to say

‖ω‖2
L2 ≤

1
m∗1

∫
R
〈S(σ)ω(σ), ω(σ)〉dσ,

‖ω‖2
L2 ≤

1
m∗2

∫
R
〈K(σ)ω(σ), ω(σ)〉dσ.

Hence,

‖ω‖2
L2 ≤

1
m∗1

∫
R
〈S(σ)ω(σ), ω(σ)〉dσ +

1
m∗2

∫
R
〈K(σ)ω(σ), ω(σ)〉dσ,

and hence

‖ω‖2
L2 ≤

1
m∗1

∫
R
〈S(σ)ω(σ), ω(σ)〉dσ +

1
m∗2

∫
R
〈K(σ)ω(σ), ω(σ)〉dσ +

∥∥∥Dη
−∞, ω

∥∥∥
L2

.

Thus,

‖ω‖2
L2 ≤ M∗2‖ω‖

2
E .

However, ∫
R
〈S(σ)ω(σ), ω(σ)〉dσ ≤ ‖S‖ · ‖ω‖2

L2 ,∫
R
〈K(σ)ω(σ), ω(σ)〉dσ ≤ ‖K‖ · ‖ω‖2

L2

and thus,∫
R
〈S(σ)ω(σ), ω(σ)〉dσ +

∫
R
〈K(σ)ω(σ), ω(σ)〉dσ ≤ (‖S‖+ ‖K‖)‖ω‖2

E

≤ M∗2(‖S‖+ ‖K‖)‖ω‖
2
E

Since
∫
R

ϑ(σ, ω(σ))dσ ≥ 0,

we obtain

F1(ω) ≥ 1
2
‖ω‖2

E −M∗2(‖S‖+ ‖K‖)‖ω‖
2
E ,

≥
[

1
2
−M∗2(‖S‖+ ‖K‖)

]
‖ω‖2

E .

Consequently,
F1(ω)→ ∞ as ‖ω‖E → ∞.
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Theorem 2. Assume that |ϑ(σ, ω(σ))| ≤ δ(σ)|x|2 for all (σ, x) ∈ (R,RN) and M∗2‖δ‖
2
L2 < 1

2 .
Then,

F2(ω)→ ∞ as ‖ω‖E → ∞.

Proof. We have

F2(ω) ≥ 1
2
‖ω‖2

E −
∫
R

ϑ(σ, ω(σ))dσ.

Since ∫
R

ϑ(σ, ω(σ))dσ ≤ ‖δ‖2
L2‖ω‖2

2,

we obtain ∫
R

ϑ(σ, ω(σ))dσ ≤ M∗2‖δ‖
2
L2‖ω‖2

E .

Thus,

F2(ω) ≥
(

1
2
−M∗2‖δ‖

2
L2

)
‖ω‖2

E .

Consequently,
F2(ω)→ ∞ as ‖ω‖E → ∞.

6. Conclusions

In physics, engineering, chemical science, economics, and bioengineering, fractional
differential equations, including the fractional Hamiltonian, are used in the mathematical
modeling of some processes. Numerous papers, including [20–24], have examined the
existence of solutions for the Hamiltonian equations. The current research analyzed a
system of two fractional Hamiltonian equations, which generalized the previous works.
We investigated the solutions to a system of fractional Hamiltonian equations in this study.
We have proposed an effective strategy for separating the current model into two distinct
equation systems. We have introduced a new space and two functionals related to the
converted system of fractional Hamiltonian systems, and demonstrate that they are below-
bounded on this space. We demonstrated our findings using new hypotheses that differ
from those presented in the literature.
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