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Abstract: Light pollution is one of the environmental pollution problems facing the world. The
research on the measurement standard of light pollution is not perfect at present. In this paper, we
proposed a Markov random field model to determine the light pollution risk level of a site. Firstly, the
specific data of 12 indicators of 5 typical cities were collected, and 10-factor indicators were screened
using the R-type clustering algorithm. Then, the entropy weight method was used to determine the
weight, and the light pollution measurement method of the Markov random field was established.
The model was tested by five different data sets, and the test results show that the model is very
effective. Three kinds of potential effects were proposed, and the relationship between the factor
index and potential effects was established by using the partial least square method. Three possible
intervention strategies for solving the problem of light pollution are pointed out: road lighting
system planning, increasing vegetation coverage, and building system planning. Finally, a simulated
annealing algorithm was used to determine the best intervention strategy, concluding that using
strategy 1 in urban neighborhood 2 was the most effective measure, reducing the risk level of light
pollution by 17.2%.

Keywords: light pollution; entropy weight method; Markov random fields; simulated annealing algorithm

MSC: 60G60

1. Introduction

Recently, with the increasing improvement in material life and cultural demands,
people pay increasing attention to the pursuit of a favorable light environment. Light
pollution has generated huge costs, reaching nearly USD 7 billion annually in the United
States [1]. According to Gaston et al. [2], over one-tenth of the land area on Earth is
illuminated by artificial light at night. Furthermore, if skylight is included, this proportion
will increase to 23%. To assess the risk level of light pollution in the economic system, it is
necessary to establish a widely applicable measurement standard. However, nowadays,
the overall causal system of light pollution remains incomplete. There are gaps in the
evaluation system and pollution mechanisms of light pollution.

Light pollution refers to unnecessary, inappropriate, or excessive artificial lighting [1].
Regarding the composition of light pollution, light pollution is generally divided into
white light pollution, daytime pollution, and color pollution. With the attention paid to the
problem of light pollution, an increasing number of scholars have conducted research on the
causes of light pollution. The cause of light pollution is not only attributed to one factor but
is the result of a complex interaction of many factors, including transportation [3], mineral
resources [3], topography [3], and income [4,5]. All of these contribute to varying degrees
of light pollution. Sung et al. [6] believed that light pollution is affected by residential
density at the same height. The above are all studies on the causes of light pollution. At the
same time, many scholars have studied the effects of light pollution. When the concept of
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light pollution was first introduced, governments and scholars focused on its impact on
astronomical phenomena [7]. According to the study by National Geographic, the main
effect of light pollution can be divided into three aspects, thus determining the risk level of
light pollution in the economic system, social system, and ecosystem, respectively.

Despite some robust strategies adopted by community officials and local groups to
try to slow down or eliminate light pollution, the fact remains that light pollution levels
are gradually increasing. Its influence is growing. It is supposed that the effects of light
pollution are mainly divided into negative effects and positive effects. The negative effects
are mainly on animals [8–10] and human health [11–13]. Owens et al. [8] explored that
artificial light at night would affect the movement, foraging, reproduction, and predation
of insects, leading to a decline in the number and total number of local insect species.
McLaren et al. [9] discovered that light significantly impacted the choice of stopover sites
for migratory birds. Poor-quality stopovers can be detrimental to the conservation of
migratory bird species. Thiel et al. [10] calculated and analyzed that a certain degree of
light pollution would interrupt the photosynthesis of plants. The effects of light pollution
on human health are also multifaceted, such as sleep quality [13] and the incidence of
breast cancer [11]. Cao et al. [13] obtained that light pollution would directly interfere with
the natural light–dark cycle and destroy the inherent circadian rhythm of organisms, thus
seriously affecting the quality of sleep. Walker et al. [11] found a significant association
between ALAN and cancer. The positive effects were mainly concentrated on the decrease
in crime rate [14]. However, there is considerable controversy in the academic circle on this
point [15]. Steinbach et al. [15] thought that light pollution has no positive effect on road
accidents or crime in England and Wales.

Chalkias et al. [16] introduced a light pollution modeling method using geographic
information systems (GIS) and remote sensing (RS) techniques in an attempt to address
environmental assessment problems in sensitive suburbs. When establishing light pollution
indicators, Rabaza et al. [17] established a light pollution measurement model based on
astronomical methods.

Garstang [18] created a map model to observe the changes in skylight at different
heights and azimuths from different observation points, effectively quantifying the bright-
ness of artificial light. Gaston et al. [19] proposed species link schemes such as limiting the
duration of lighting, changing the intensity of lighting, and changing the spectral compo-
sition of lighting to reduce the harm of sunlight and light pollution. Much literature has
carried out relevant studies on light pollution, but has not been able to develop a broadly
applicable metric to identify the light pollution risk level of a location. This problem is very
important for the study of light pollution in practice. Driven by these factors, this paper
designed a light pollution measurement method to solve these problems. This paper is
motivated by these factors to design a consensus algorithm to solve the problems.

The main contributions of this work can be summarized as follows:

1. During the establishment of the Markov random field model, the weights obtained
by the entropy weight method were multiplied by variables in the activation func-
tion, and the importance of different variables was reflected in the model so that
the established model can more scientifically and accurately assess the severity of
light pollution.

2. The established optimization model provides a scientific theory basis for selecting the
best intervention strategy for the determined location.

3. After building the model, we conducted a comprehensive experiment on five data
sets to check the validity of our model, and the test results show that the model is
very effective.

The work consists of three parts. In Section 2, a Markov random field model is
established to determine the light pollution risk level of a site, and a comprehensive
experiment is conducted on five data sets to verify the validity of the model. Section 3
proposes the potential impact and intervention strategies, and the relationship between
the potential impact and indicators is established. In Section 4, an optimization model for
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selecting the best intervention strategy is established, and the optimal intervention strategy
results are obtained by testing the selected sites.

2. Development of a Broadly Applicable Metric

A broadly applicable metric was developed to determine the level of light pollution
risk at a specific site. First, the main influencing factors of light pollution, namely indicators,
were selected. Then, the data of corresponding indicators in different locations were
collected and used to determine the evaluation system of light pollution.

2.1. Index Determination and Data Collection

Xiang et al. [3] used calibrated night-time light images to study spatial–temporal
changes in light pollution in China’s PAs from 1992 to 2012 and found that the impact of
light pollution can be influenced by various factors, such as the local level of development,
population, biodiversity, and geography. To better understand the complex relationship
between these factors and the extent of light pollution, it is crucial to establish a com-
prehensive set of indicators. These factors have been identified, analyzed, and distilled
into 12 indicators, which have been used to develop a location-based light pollution risk
assessment index (LBLPRAI). The index is designed to provide a standardized way to
assess the level of light pollution risk across different locations.

The LBLPRAI is a valuable tool for policymakers and stakeholders to evaluate the
severity of light pollution in specific locations and to prioritize appropriate mitigation
measures. As shown in Figure 1, the 12 indicators include disposable income per capita,
floor area of the building, number of cars per capita, the proportion of urban population,
electricity consumption per capita, night light intensity, density of population, amount of
precipitation, medial humidity, average temperature, vegetation coverage, and number
of species. These indicators have been carefully selected to represent the different aspects
of light pollution and capture each location’s unique characteristic to demonstrate the
effectiveness of LBLPRAI, and specific data have been collected for 12 indicators 5 five
typical Chinese cities, as reported in the 2022 China Statistical Yearbook and the 2022 China
Sleep Research Report. By examining the data for each indicator, a better understanding of
the relationship between the extent of light pollution and the various factors that contribute
to it in different locations can be gained.

2.2. The Establishment of LBLPRAI

In the process of system analysis or evaluation, to avoid missing some important
factors, as many indicators as possible are considered when selecting indicators at the
beginning. However, the number of variables is too large, and the degree of correlation
between variables is too high, which brings great inconvenience to analysis and modeling.
Indicator data were collected from 5 representative cities, and, in order to determine the
distance between clusters, Euclidean distance was used and an R-type clustering algorithm
was chosen to perform clustering analysis on 12 variables [20,21]. The results are shown
in Figure 2.

It can be seen from Figure 2 that per capita disposable income is grouped with the
number of cars per capita, and the average humidity is grouped with moderate temperature.
The factor index after clustering is ten items. Through correlation analysis [22] between
different indicators, these two categories have a high degree of correlation, as shown
in Figure 3.
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The correlation coefficient between per capita disposable income and the number of
cars per capita was 0.92, and the correlation coefficient between the average humidity and
average temperature was 0.94. The correlation coefficients of these two categories are high,
so the above four indicators were clustered into two.

According to the variation degree of each index, information entropy was used to
calculate the entropy weight of each index to obtain a relatively objective index weight.
Before this, partial negative data need to be processed to make all indicators positively
correlated with light pollution. Ti indicates raw data, and ti indicates processed data.

ti = 2max
i

(Ti)− Ti, (1)

After standardizing the data, the entropy weight method was established [23,24] to
analyze the weight. There are n = 5 evaluation objects and m = 10 indicator variables,
and the value of the ith evaluation object regarding the jth indicator variable is aij for
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i = 1, 2, . . . , n, j = 1, 2, . . . , m. The data matrix A =
(
aij
)

n×m was constructed. The
proportion of the ith evaluation object with respect to the jth index variable was calculated:

pij =
aij

∑n
i=1 aij

, i = 1, 2, . . . , n, j = 1, 2, . . . , m. (2)

The entropy value and coefficient of variation of the jth index variable was calculated:

ej = −
1

lnn

n

∑
i=1

pijlnpij, gj = 1− ej, j = 1, 2, . . . , m. (3)

Thus, the weight of the jth index variable was obtained:

k j =
gj

∑m
j=1 gj

, j = 1, 2, . . . , m. (4)

According to the data collected above, the weight of each indicator obtained is shown
in Figure 4. It is found that the weight of the building area and highway lighting brightness
is the largest, reaching 0.24 and 0.35, respectively, indicating that these two indexes have a
more significant impact on the dedication level of light pollution.
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To develop a broadly applicable metric for measuring the level of light pollution risk,
the clustering results and the indicator classes were first used, to which different indicators
belong. The ten indicators were classified into three impact indicators: demographic and
economic factors, environmental and climatic factors, and ecological factors, denoted as
E, F, and T, respectively. It is believed that average light intensity can represent the risk
level of light pollution, and all three indexes can affect the risk level of light pollution. The
relationship between these indicators can be represented by the undirected probability
graph, as shown in Figure 5. The boxes indicate indicators, and the lines indicate that they
are correlated but not wholly causal. The posterior probability of risk index was modeled
as an exponential family distribution, which can better deal with the complex relationship
between different indicators. By modeling these indicators as Markov random fields [25,26],
their interactions can be better understood and provide more scientific methods and tools
for risk assessment and control.



Mathematics 2023, 11, 3030 7 of 18

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

Markov random fields [25,26], their interactions can be better understood and provide 
more scientific methods and tools for risk assessment and control. 

 
Figure 5. Undirected probability graph. 

Conditional probability can be decomposed into the product of multiple exponential 
distributions as follows: 𝑃(𝑊|𝐸, 𝐹, 𝑇) = 1𝐾 𝜑 (𝐸, 𝑊) ∗ 𝜑 (𝐹, 𝑊) ∗ 𝜑 (𝑇, 𝑊), (5) 

where 𝑊 represents the random variable average light intensity, 𝜑 represents the ex-
ponential distribution, and 𝐾 is a constant so that the value range of the right formula is 0,1 . 𝜑 (𝐸, 𝑊) = 𝑒 . (6) 

Considering the different weights of different indicators in the index class 𝐸, the 
indicators were multiplied with the corresponding weights and the activation function 
[27] 𝜎 was increased. 𝜑 (𝐸, 𝑊) = 𝑒 ( ), 𝐸𝑘 = 𝐸 × 𝑘 × , (7) 

Thus, (5) is equal to 𝑃(𝑊|𝐸, 𝐹, 𝑇) = 1𝐾 𝑒 ( ) ∗ 𝑒 ( ) ∗ 𝑒 ( ), (8) 

where the activation function is 𝜎 = 11 + 𝑒 . (9) 

Next, the 𝛬 in the above formula was determined by using the maximum likelihood 
method. 

𝐿(𝜆) = log 𝑃(𝑊 𝐸 , 𝐹 , 𝑇 )  

= 𝜎(𝛬 𝐸 𝑘𝑊 ) + 𝜎(𝛬 𝐹 𝑘𝑊 ) + 𝜎(𝛬 𝑇 𝑘𝑊 ) . (10) 

Figure 5. Undirected probability graph.

Conditional probability can be decomposed into the product of multiple exponential
distributions as follows:

P(W|E, F, T) =
1
K

ϕE(E, W) ∗ ϕF(F, W) ∗ ϕT(T, W), (5)

where W represents the random variable average light intensity, ϕ represents the exponen-
tial distribution, and K is a constant so that the value range of the right formula is [0, 1].

ϕE(E, W) = e
Λ1(

E
W

)

. (6)

Considering the different weights of different indicators in the index class E, the
indicators were multiplied with the corresponding weights and the activation function [27]
σ was increased.

ϕE(E, W) = e
σ(Λ1(

Ek
W

))

, Ek =
(
Ej × k j

)
m1×1, (7)

Thus, (5) is equal to

P(W|E, F, T) =
1
K

e
σ(Λ1(

Ek
W

))

∗ e
σ(Λ2(

Fk
W

))

∗ e
σ(Λ3(

Tk
W

))

, (8)

where the activation function is
σ =

1
1 + e−x . (9)

Next, the Λ in the above formula was determined by using the maximum likelihood method.

L(λ) = log
(

n
∏
i=1

P
(
Wi
∣∣Ei, Fi, Ti))

=
n
∑

i=1

[
σ(Λ 1

(
Eik
Wi

)
) + σ(Λ 2

(
Fik
Wi

)
) + σ(Λ 3

(
Tik
Wi

)
)

]
.

(10)

Using the collected data and taking the minimum loss function as the objective, the
parameter Λ can be obtained:

Λ̂ = argmin L(λ), (11)
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The parameters were determined for Λ = (0.462, 8.079, 3.608, 0.971, 5.517, 0.770, 6.801,
2.052, 83.462, 0.655, 0.042, 6.142, 0.273) and the P

(
Wi
∣∣Ei, Fi, Ti) was believed to be the ith

LBLPRAI region.
After building the model, we needed to conduct a comprehensive experiment on

five data sets to verify the validity of our model. Different locations were categorized into
four types:

• Protected land: Areas that are protected by government or private entities from
development for their ecological, cultural, and natural importance;

• Rural community: A community located in one of the sparsely populated areas of a
country or region and is not easily accessible from urban communities;

• Suburban communities: Located in areas with moderate population density in a
country or region or easily accessible from urban communities;

• Urban community: A community located in one of a country or region’s most densely
populated areas.

The light pollution risk levels of four different types of sites were obtained by collecting
the data from four different types of locations and bringing the model established before
into the accurate data calculation. The reasons for the results are analyzed below.

2.3. LBLPRAI of Four Diverse Types of Locations

The data were collected from five different areas, including one protected land, one
rural, one suburban, and two urban communities. In this paper, LBLPRAI analysis was
conducted on them, respectively, and the results were obtained as shown in Table 1.

Table 1. Light pollution risk level.

Region LBLPRAI Rank

Protected Land 0.02757 5
Rural Community 0.10872 4

Suburban Community 0.15159 3
Urban Community 1 0.29164 2
Urban Community 2 0.42049 1

LBLPRAI was used to measure the degree of light pollution. Namely, an increase in
LBLPRAI corresponds to a greater severity of light pollution. According to the results in
Table 1, light pollution in protected land is the least, followed by that in rural, suburban,
and urban communities.

In order to visually see the influence and relationship of four different types of areas
on the risk level of light pollution under the indicators selected, it was assumed that the
data of an indicator are usually distributed in the same type of region. A total of 100 values
were taken that fit the normal distribution, so 100 sets of 10-dimensional data were obtained
in the same type of location. Equation (2) was used to calculate the LBLPRAI of each data
collection and calculate its cumulative distribution probability:

F(x) = P(X < x). (12)

The cumulative distribution function for different regions was plotted as shown
in Figure 6.

It can be seen from Figure 6 that LBLPRAI values in urban communities are more
extensive and distributed in a broader range, and LBLPRAI values in protected land are
primarily distributed in the range [0, 0.1]. This result indicates that the selected index can
distinguish the region type of the data by its influence on the LBLPRAI value.

The test results are in agreement with the practice, which shows that the model is very
effective. Therefore, LBLPRAI provides a valuable analysis and evaluation that helps us
to better understand the problem of light pollution and provides insights for developing
more effective measures to control light pollution.
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3. Three Possible Intervention Strategies to Address Light Pollution

As shown in Figure 7, three possible intervention strategies are proposed to address
light pollution. Some specific actions for each strategy are also provided, as well as the
potential impact of these actions on the overall light pollution level. Furthermore, the
relationship between potential impacts and indicators is established. According to the
possible effects of light pollution [13–15], we chose the possibility of trouble, crime rate,
and sleep time per capita as potential impacts.
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3.1. Three Possible Intervention Strategies

Based on previous results and models, this paper proposes three broadly appropriate
intervention strategies to address light pollution.

(1) Roadway lighting systems planning

This measure directly leads to the indicator “Night Light Intensity” changes. x5 means
the “Night Light Intensity” before the implementation of the intervention strategy,

∼
x5

represents the “Night Light Intensity” after the implementation of the intervention strategy,
and µ1 represents the implementation intensity of the intervention strategy:

∼
x5 = µ1x5, µ1 ∈ [0.5, 1]. (13)

(2) Increasing vegetation coverage

This measure directly leads to changes in the indicator “Vegetation Coverage”. x9

means the “Vegetation Coverage” before the implementation of the intervention strategy,
∼
x9

represents the “Vegetation Coverage” after the implementation of the intervention strategy,
and µ2 represents the implementation intensity of the intervention strategy:

∼
x9 = µ2x9,µ2 ∈ [0.5, 1]. (14)

(3) Building system planning

This measure directly leads to changes in the indicator “Floor Area of Building”. x2

means the “Vegetation Coverage” before the implementation of the intervention strategy,
∼
x2

represents the “Vegetation Coverage” after the implementation of the intervention strategy,
and µ3 represents the implementation intensity of the intervention strategy:

∼
x2 = µ3x2, µ3 ∈ [0.5, 1]. (15)

3.2. Potential Impacts

Firstly, potential impact indicators were selected to examine the effectiveness of the
three proposed measures and explore their potential impacts. Since some communities
that choose to implement low-light policies may experience an increase in crime rates,
we selected the possible impact indicator of crime rate and denoted it as z1. Similarly,
reducing the use of lighting may lead to an increase in traffic accident frequency [14,15],
so we selected the potential impact indicator of accident rate and denoted it as z2. Light
pollution also has an impact on wildlife and plants [13], so we selected the potential impact
indicator of “Sleep Time Per Capita” and denoted it as z3.

Different strategies will not only lead to changes in the risk level of light pollution
but also affect potential indicators. The focus of partial least squares regression (RLS)
research [28,29] developed in recent years is that multiple dependent variables can model
multiple dependent variables regression, which can be modeled under the condition that
multicollinearity exists between independent variables and has a solid ability to explain
dependent variables. Partial least squares regression analysis was used to establish the
relationship between different indicator variables and three potential impact indicators.

Let x1, x2, . . . , x10 represent the indicator variables and z1, z2, z3 represent the po-
tential impact indicators. We have n = 5 evaluation objects, m = 10 indicator vari-
ables, and p = 3 potential impact indicators. After data standardization, the data matrices
A =

(
aij
)

n×m and B =
(
aij
)

n×m were constructed.
The first pair of components from two variable sets were extracted while maximizing

their correlation.
maxθ = ρAT Bγ,{
‖ρ‖2 = 1,
‖γ‖2 = 1.

(16)
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Suppose that the regression model is{
A = uσT + A1,
B = uτT + B1,

(17)

where A1 and B1 state in the residual error matrix that u = A, σ =
[
σ1, σ2, . . . , σp

]T ,

τ =
[
τ1, τ2, . . . , τp

]T for the parameter vector in the regression model, using the least
squares estimate parameter vector: σ = ATu

‖u‖2 ,

τ = BTu
‖u‖2 .

(18)

Let the rank of A =
(
aij
)

n×m be r < min(n− 1, m), with r component u1, u2, . . . , ur,
so that {

A = u1σ(1)T + · · ·+ urσ(r)T + Ar,
B = u1τ(1)T + · · ·+ urτ(r)T + Br.

(19)

ui = Aρ(i) was used to obtain the partial least squares regression equation of p
potential influence indexes:

z = Cx + b, (20)

where z =
[
z1, z2, . . . , zp

]T , x = [x1, x2, . . . , xm]
T .

The collected data were used in the model to observe each independent variable in the
interpretation of zi(i = 1, 2, . . . , p), and the regression coefficients of each coefficient were
plotted in Figure 8:
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It can be seen from Figure 9 that disposable income per capita has a significant impact
on the three potential variables, and the increase in night light intensity can reduce the
crime rate to a certain extent.
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Figure 9. Sample points to draw a prediction map.

The accuracy of three regression equation models with (ẑi, zi)(i = 1, 2, . . . , p) as the
coordinate value was examined, and the prediction graph was drawn for all sample points:

In this prediction chart, data points are uniformly distributed near the diagonal line,
indicating that the fitting effect of the Equation is satisfactory.

3.3. Analysis and Evaluation

In order to reflect the impact of intervention strategies on the level of light pollution
risk and the three potential impact indicators, the difference between the output value after
adopting the intervention strategy and the true value without intervention was calculated.
The change in light pollution risk level was calculated as follows:

The change in light pollution risk levels is

∆P = P
(

Wi
∣∣∣Ei, Fi, Ti

)
−
∼
P
(

Wi
∣∣∣Ei, Fi, Ti; µ1, µ2, µ3

)
. (21)

The change in crime rate is

∆z1 = z1 −
∼
z1(µ1, µ2, µ3). (22)

The change in accident rate change is

∆z2 = z2 −
∼
z2(µ1, µ2, µ3). (23)

The change in sleep time is

∆z3 =
∼
z3(µ1, µ2, µ3)− z3. (24)
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Taking urban community 1 as an example, if strategy (1) is taken to plan the lighting
intensity road lighting system and if parameter values are set as the initial value 0.5, end
value 1, and step size 0.005, the light pollution risk level and the change amount of three
potential influence indicators are obtained along with the curve of parameter µ1. The
results of intervention strategy (1) are shown in Figure 10.
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Figure 10. (a) Intervention strategy (1) impact on light pollution level and crime rate; (b) intervention
strategy (1) impact on accident rate and sleep time.

If intervention strategy (2) is taken to increase vegetation coverage, with the initial
parameter value set to 0.5, the end value to 1, and the step size to 0.005, we can obtain
the curves of the changes in light pollution risk level and the three potential impact
indicators with respect to the parameter µ2. The results of intervention strategy (2) are
shown in Figure 11.
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Figure 11. (a) Intervention strategy (2) impact on light pollution level and crime rate; (b) intervention
strategy (2) impact on accident rate and sleep time.

Taking intervention strategy (2) can lead to a significant reduction in the light pollution
risk level, but its impact on the three potential impact indicators is minimal.

If intervention strategy (3) is taken, with an initial parameter value of 0.5, ending value
of 1, and step size of 0.005, the change in light pollution risk level and the three potential
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impact indicator variables are plotted against the parameter µ3. The results of intervention
strategy (3) are shown in Figure 12.
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Adopting intervention strategy (3) can lead to less mitigation of light pollution risk
levels while also significantly reducing the crime rate and decreasing the accident rate.
The impact on sleep time is not significant. Therefore, it can be seen that the reduction in
building density has an important impact on the light pollution risk level and crime rate.

4. Effect of Intervention Strategies on LBLPRAI at Two Locations

In order to make the results more comparable, a site with a higher level of urbanization
and a site with a lower level of urbanization should be selected for analysis. Therefore,
urban community 2 and the rural community were selected as the active sites of intervention
strategies, and the optimal intervention strategies were selected.

4.1. Establishment of Influence Model

In order to determine that the three intervention strategies proposed in this paper
are effective in each locality, not only the impact of different intervention strategies on
light pollution risk levels but also their impact on potential impact indicators need to be
considered. Therefore, the optimization target was set to

H = ω1∆P + ω2∆z1 + ω3∆z2 + ω4∆z3, (25)

where ωi for i = 1, 2, 3, 4 are weight coefficients of different influences, which are satisfied by:

4

∑
i=1

ωi = 1. (26)

The analytic hierarchy process [30] was constructed to determine its weight coefficient,
and the given judgment matrix is shown in Table 2.
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Table 2. Judgment matrix.

Validity Index ∆P ∆z1 ∆z2 ∆z3

∆P 1 2 2 3
∆z1 1/2 1 1 2
∆z2 1/2 1 1 2
∆z3 1/3 1/2 1/2 1

The analytic hierarchy process was used to determine the weight coefficient of ω1 = 0.4236,
ω2 = 0.2270, ω3 = 0.2270, ω4 = 0.1223.

Different intervention strategies will have other effects on the above indicators. To
make the impact as evident as possible, an optimization model was built:

maxH = ω1∆P + ω2∆z1 + ω3∆z2 + ω4∆z3,

∆P = P(W|E, F, T)−
∼
P(W|E, F, T; µ1, µ2, µ3),

∆z1 = z1 −
∼
z1(µ1, µ2, µ3),

∆z2 = z2 −
∼
z2(µ1, µ2, µ3),

∆z3 =
∼
z3(µ1, µ2, µ3)− z3,

∼
x5 = µ1x5,

∼
x10 = µ2x10,

∼
x2 = µ3x2, µi ∈ [0.5, 1], i = 1, 2, 3,

z = Cx + b,
∼
z(µ1, µ2, µ3) = C

∼
x + b,

ω1 = 0.4236, ω2 = ω3 = 0.2270, ω4 = 0.1223.

(27)

where z = [z1, z2, z3]
T , x = [x1, x2, . . . , x10]

T ,
∼
z(µ1, µ2, µ3) =

[∼
z1,
∼
z2,
∼
z3

]T
,

∼
x =

[
x1,
∼
x2, . . . ,

∼
x5, . . . ,

∼
x10

]T
.

To isolate the impact of a single index, it is sufficient to set µ = 1 for the remaining
two terms.

4.2. Influence Model Solving

The rural community and urban community 2 were selected as the active sites of
intervention strategies. Three intervention strategies were used separately for these two
sites, and a simulated annealing algorithm [31,32] was used to solve Equation (27). The
initial temperature T0 = 100 and temperature attenuation coefficient ρ = 0.95 were set. The
number of iterations was 3000 times, with a total of 6 times of solving. Solution result is
shown in Table 3.

Table 3. Solution result.

Rural Community µ H Urban Community 2 µ H

Intervention Strategy (1) 0.53 0.02 Intervention Strategy (1) 0.82 0.25
Intervention Strategy (2) 0.66 0.03 Intervention Strategy (2) 0.54 0.04
Intervention Strategy (3) 0.89 0.01 Intervention Strategy (3) 0.74 0.11

It can be seen from the results that intervention strategy (2) is used in the rural commu-
nity. Namely, increasing the vegetation coverage rate is the most effective measure. In urban
community 2, intervention strategy (1) is used; that is, the planning of the illumination
intensity road lighting system is the most effective measure.

Among them, the use of intervention strategy (2) in the rural community can reduce
the light pollution risk level by 1.8%, crime rate by 9%, accident rate by 1.1%, and sleep
time by 0.52%. In urban community 2, the intervention strategy (1) can reduce the light
pollution risk by 17.2%, reduce the crime rate by 4%, increase the accident rate by 1.7%,
and reduce the sleep time by 0.37%, which has little impact on sleep.
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4.3. Influence Model Improvement

In the actual situation, community officials or local groups will take a variety of
measures at the same time. By solving Equation (27), the difference is that, here, µi for
i = 1, 2, 3 are variables solved by simulated annealing.

It can be seen from Table 4 that the results obtained by the improved model are better
than those obtained by using a single intervention strategy, indicating that the use of three
intervention strategies at the same time is the most effective method.

Table 4. The improved results.

Rural Community µ H Urban Community 2 µ H

Intervention Strategy (1) 0.56
0.044

Intervention Strategy (1) 0.84
0.261Intervention Strategy (2) 0.92 Intervention Strategy (2) 0.71

Intervention Strategy (3) 0.69 Intervention Strategy (3) 0.52

5. Conclusions and Future Work

In this study, the authors proposed a Markov random field model as a measurement
standard to determine the light pollution risk level of the site. The research results can
compare and rank the light pollution levels in different regions and provide a scientific
basis for the formulation of relevant policies. The work achievements are as follows:

1. When selecting indicators to assess the severity of light pollution in a specific location,
12 indicators were carefully selected. The combination of an R-type clustering algo-
rithm and correlation analysis was used to screen the indicators, and the ten indicators
finally selected can more accurately reflect the characteristics of different regions, cov-
ering all aspects of our living environment, more comprehensively assess the light
pollution level in different regions, and better understand the relationship between
light pollution degree and various factors causing light pollution in different regions.

2. Different sites were divided into four types for light pollution assessment. The
cumulative distribution probability was used to analyze the degree of light pollution
of different types of sites and interpret the results, which can intuitively see the impact
and relationship of four different types of regions on the risk level of light pollution
under the selected indicators.

3. The authors considered that different strategies will not only lead to changes in the
risk level of light pollution but also affect potential indicators. Partial least squares
regression was used to study the multicollinearity relationship between the indicator
variables and the three potential impact indicators, determining that it has a strong
ability to explain the dependent variables. After putting forward three possible
intervention strategies for light pollution, the potential impact of each strategy on
the overall impact of light pollution was evaluated using a partial least squares
regression model.

In the future, we will add consideration to other factors that may affect light pollution
levels and consider the scalability prospects from the algorithmic-leveled study toward
real-word lighting conditions of society. In addition, Markov random field parameters can
be optimized.
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Nomenclature

x1 Disposable income per capita and number of cars per capita
x2 Floor area of the building
x3 Proportion of urban population
x4 Electricity consumption per capita
x5 Night light intensity
x6 Density of population
x7 Amount of precipitation
x8 Medial humidity and average temperature
x9 Vegetation coverage
x10 Number of species
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