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Abstract: The notion of a golden structure was introduced 15 years ago by the present authors and
has been a constant interest of several geometers. Now, we propose a new generalization apart from
that called the metallic structure, which is also considered by the authors. By adding a compatible
Riemannian metric, we focus on the study of the structure induced on submanifolds in this setting
and its properties. Also, to illustrate our results, some suitable examples of this type of manifold
are presented.
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1. Introduction

The real metallic number, denoted by σp,q := p+
√

p2+4q
2 , is the positive solution of the

equation x2 − px− q = 0, where p and q are positive integers and p2 + 4q > 0 [1]. These
σp,q numbers are members of the metallic means family, defined by V.W. de Spinadel in [2,3],

which appear as a natural generalization of the golden number φ = 1+
√

5
2 . Moreover, A.P.

Stakhov gave some new generalizations of the golden section and Fibonacci numbers and
developed a scientific principle called the Generalized Principle of the Golden Section
in [4,5].

The golden and metallic structures are particular cases of polynomial structures on
a manifold which were generally defined by S. I. Goldberg, K. Yano and N. C. Petridis
in [6,7].

If M is a smooth manifold, then an endomorphism J of the tangent bundle TM is
called a metallic structure on M if it satisfies J2 = pJ + qId, where Id stands for the identity
(or Kronecker) endomorphism and p and q are positive integers [1]. Moreover, the pair
(M, J) is called an almost metallic manifold. In particular, for p = q = 1, the metallic structure
J becomes a golden structure as defined in [8].

The complex version of the above numbers (namely the complex metallic numbers),

σc
p,q =

p+
√

p2−6q
2 , appears as a solution to the equation x2 − px + 3

2 q = 0, where p and q
are now real numbers satisfying the conditions q ≥ 0 and p2 < 6q. Moreover, an almost
complex metallic structure is defined as an endomorphism JM which satisfies the relation
J2
M − pJM + 3

2 qId = 0 [9]. For p = q = 1, the almost complex metallic structure becomes a
complex golden structure.

F. Etayo et al. defined in [10] the α-metallic numbers of the form p+
√

α(p2+4q)
2 , where

p and q are positive integers which satisfy p2 + 4q > 0 and α ∈ {1,−1}. Moreover,
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they introduced the α-metallic metric manifolds using the α-metallic structure, defined by
the identity

ϕ2 = pϕ +
p2(α− 1) + 4qα

4
Id. (1)

Some similar manifolds, such as holomorphic golden Norden–Hessian manifolds [11],
almost golden Riemannian manifolds [12,13] and α-golden metric manifolds [14], have
been studied.

The geometry of submanifolds in Riemannian manifolds was widely studied by many
geometers. The properties of the submanifolds in golden Riemannian manifolds were
studied in [15]. By generalizing the geometry of the golden Riemannian manifods, we
presented in [1,16] the properties of the submanifolds in metallic Riemannian manifolds.
The properties of the submanifolds in almost complex metallic manifolds were studied
in [17].

The aim of the present paper is to propose a new generalization of the golden structure
called the almost (α, p)-golden structure and to investigate the geometry of a Riemannian
manifold endowed by this structure. This manifold is a natural generalization of the golden
Riemannian manifold, presented in [8] and of almost Hermitian golden manifold, studied
in [18].

In Section 2, we consider several frameworks in which almost product and almost
complex structures are treated in our language of the (α, p)-golden structure. These two
structures can be unified under the notion of the α-structure, denoted by Jα, which was
defined and studied in [10,19].

In Section 3, we study the properties of a Riemannian manifold endowed by a Φα,p
structure and a compatible Riemannian metric g, called an almost (α, p)-golden Riemannian
manifold.

In Section 4, we obtain a characterization of the structure induced on a submanifold by
the almost (α, p)-golden structure. Finally, we find the necessary and sufficient conditions
of a submanifold in an almost (α, p)-golden Riemannian manifold to be an invariant
submanifold.

2. The Almost (α, p)-Golden Structure

In order to state the main results of this paper, we need some definitions and notations.
Let us consider the (α, p)-golden means family, which contains the (α, p)-golden numbers

obtained as the solutions of the equation

x2 − px− 5α− 1
4

p2 = 0, (2)

where α ∈ {−1, 1} and p is a real nonzero number. The (α, p)-golden numbers have the form

ϕα,p = p
1 +
√

5α

2
, ϕα,p = p

1−
√

5α

2
. (3)

Using these numbers, we define a new structure on a smooth manifold M (of even
dimensions) which generalizes both the almost golden structure and the almost complex
golden structure.

An endomorphism J1 of the tangent bundle TM, such as J2
1 = Id, is called an almost

product structure, where Id is the identity or Kronecker endomorphism. Moreover, the pair
(M, J1) is called an almost product manifold.

An endomorphism J−1 of the tangent bundle TM is called an almost complex structure
on M if it satisfies J2

−1 = −Id, and (M, J−1) is called an almost complex manifold. In this case,
the dimension of M is even (e.g., 2m).
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Definition 1. An endomorphism Jα of the tangent bundle TM is called an α-structure on M if it
satisfies the equality

J2
α = α · Id, (4)

on the even dimensional manifold M, where α ∈ {−1, 1} [19].

Using the Equation (1), for q = p2, we obtain the following definition:

Definition 2. An endomorphism Φα,p of the tangent bundle TM is called an almost (α, p)-golden
structure on M if it satisfies the equality

Φ2
α,p = pΦα,p +

5α− 1
4

p2 · Id, (5)

where p is a nonzero real number and α ∈ {−1, 1}. The pair (M, Φα,p) is called an almost (α,
p)-golden manifold.

In particular, the Φα,1 structure is named an α-golden structure, and it was studied
in [14].

Remark 1. The eigenvalues of the almost (α, p)-golden structure Φα,p are ϕα,p and ϕα,p =
p− ϕα,p, given in Equation (3).

In particular, for α = 1, we obtain ϕ1,p = p 1+
√

5
2 = pφ as a zero of the polynomial

X2 − pX− p2, and we remark that ϕ1,p is a member of the metallic numbers family, where
q = p2 and φ is the golden number.

For α = −1, we obtain ϕ−1,p = p 1+i
√

5
2 = pφc as a zero of the polynomial X2− pX+ 3

2 p2,
and ϕ−1,p is a member of the complex metallic numbers family, where q = p2 and φc is the
complex golden number.

Moreover, if (α, p) = (1, 1), then one obtains the golden structure determined by an
endomorphism Φ with Φ2 = Φ + Id, as studied in [8]. The same structure was studied
in [12], using the name of the almost golden structure. In this case, (M, Φ) is called the almost
golden manifold.

If (α, p) = (−1, 1), then one obtains the almost complex golden structure determined by
an endomorphism Φc, which verifies Φ2

c = Φc +
3
2 Id. In this case, (M, Φc) is called the

almost complex golden manifold, as studied in [11,18].
An important remark is that (α, p)-golden structures appear in pairs. In particular, if

Φα,p is an (α, p)-golden structure, then Φα,p = pId−Φα,p is also an (α, p)-golden structure.
Thus is the case for the almost product structures (J1 and −J1) and for the almost complex
structures (J−1 and −J−1).

We point out that the almost (α, p)-golden structure Φα,p and the α-structure Jα are
closely related. Thus, we obtain the correspondence Φα,p ←→ Jα, and we have

Φα,p = pId−Φα,p ←→ J̄α = −Jα,

where Φα,p =: Φ+
α,p, Φα,p =: Φ−α,p, Jα =: J+α and Jα =: J−α .

Proposition 1. Every α-structure Jα on M defines two almost (α, p)-golden structures, given by
the equality

Φ±α,p =
p
2
(Id±

√
5Jα); (6)

Conversely, two α-structures can be associated to a given almost (α, p)-golden structure
as follows:

J±α = ± 2
p
√

5

(
Φα,p −

p
2

Id
)

. (7)
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Proof. First of all, we seek the real numbers a and b such that Φα,p = aId+ bJα. Considering

Φ2
α,p, from the identities (4) and (5), we obtain a = p

2 and b = ±
√

5p
2 , which implies identity

(6). Moreover, Φ±α,p verifies the identity (5).
On the other hand, if Φ±α,p verifies identity (6), then we obtain that J±α verifies identities

(4) and (7). Conversely, if J±α verifies identity (7), then Φ±α,p verifies the identity (6).

Example 1. (i) An almost product structure J1 induces two almost (1, p)-golden structures:

Φ±1,p = p
Id±

√
5J1

2
; (8)

(ii) An almost complex structure J−1 induces two almost (−1, p)-golden structures:

Φ±−1,p = p
Id±

√
5J−1

2
. (9)

A straightforward computation using the Equations (5) and (6) gives us the following
property:

Proposition 2. An (α, p)-golden structure Φα,p is an isomorphism on the tangent space of the
manifold Tx M for every x ∈ M. It follows that Φα,p is invertible, and its inverse is a structure
given by the equality

Φ−1
α,p =

4
p2(5α− 1)

Φα,p −
4

p(5α− 1)
Id. (10)

Lemma 1. A fixed α-structure Jα yields two complementary projectors P and Q, given by

P =
1
2
(Id +

√
αJα), Q =

1
2
(Id−

√
αJα). (11)

Then, we can easily see that

P + Q = Id, P2 = P, Q2 = Q, PQ = QP = 0, (12)

and √
αJα = P−Q. (13)

Taking into account the identities (11) and (12), one has the following remark:

Remark 2. The operators P and Q are orthogonal complementary projection operators and define
the complementary distributions D1 and D2, where D1 contains the eigenvectors corresponding to
the eigenvalue

√
α and D2 contains the eigenvectors corresponding to the eigenvalue −

√
α.

If the multiplicity of the eigenvalue
√

α (or −
√

α) is a (or b), where a + b = dim(M) = 2m,
then the dimension of D1 is a, while the dimension of D2 is b.

Conversely, if there exist in M two complementary distributions D1 and D2 of dimensions
a ≥ 1 and b ≥ 1, respectively, where a + b = dim(M) = 2m, then we can define an α structure Jα

on M, which verifies identity (13).

A straightforward computation using the identities (7), (11) and (12) gives us the
following property:

Proposition 3. The projection operators Pα,p and Qα,p on the almost (α, p)-golden manifold
(M, Φα,p) have the form

Pα,p =

√
5α

5p
·Φα,p +

5−
√

5α

10
Id, Qα,p = −

√
5α

5p
·Φα,p +

5 +
√

5α

10
Id (14)
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which verifies

Pα,p + Qα,p = Id, P2
α,p = Pα,p; Q2

α,p = Qα,p, Pα,p ·Qα,p = Qα,p · Pα,p = 0 (15)

and

Φα,p =
pα
√

5α

2
(Pα,p −Qα,p)−

p
2

Id. (16)

Remark 3. The operators Pα,p and Qα,p given in the identities (14) are orthogonal complementary
projection operators and define the complementary distributions D1 and D2 on M, which contain
the eigenvectors of Φα,p, corresponding to the eigenvalues ϕα,p and ϕα,p = p− ϕα,p, respectively.

3. Almost (α, p)-Golden Riemannian Geometry

Let M be an even dimensional manifold endowed with an α-structure Jα. We fix a
Riemannian metric g such that

g(JαX, Y) = αg(X, JαY), (17)

which is equivalent to
g(JαX, JαY) = g(X, Y), (18)

for any vector fields X, Y ∈ Γ(TM), where Γ(TM) is the set of smooth sections of TM.

Definition 3. The Riemannian metric g, defined on an even dimensional manifold M and endowed
with an α-structure Jα which verifies the equivalent identities (17) and (18), is called a metric
(α, Jα)-compatible.

Thus, by using the identities (7) and (17), we obtain that the Riemannian metric g
verifies the identity

g(Φα,pX, Y)− αg(X, Φα,pY) =
p
2
(1− α)g(X, Y), (19)

for any X, Y ∈ Γ(TM).
Moreover, from identities (7) and (18), we remark that g and (Φα,p) are related by

g(Φα,pX, Φα,pY) =
p
2
(

g(Φα,pX, Y) + g(X, Φα,pY)
)
+ p2g(X, Y), (20)

for any X, Y ∈ Γ(TM).

Definition 4. An almost (α, p)-golden Riemannian manifold is a triple (M, Φα,p, g), where M is
an even dimensional manifold, Φα,p is an almost (α, p)-golden structure and g is a Riemannian
metric which verifies identities (19) and (20).

Remark 4. For α = 1 in the identities (19) and (20), we obtain

g(Φ1,pX, Y) = g(X, Φ1,pY)), (21)

which is equivalent to

g(Φ1,pX, Φ1,pY) = pg(Φ1,pX, Y) + p2g(X, Y), (22)

and the triple (M, Φ1,p, g) is a particular case of an almost metallic Riemannian manifold, which
was studied in [1,16].
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Remark 5. For α = −1 in the identities (19) and (20), we have

g(Φ−1,pX, Y) + g(X, Φ−1,pY) = pg(X, Y), (23)

which is equivalent to

g(Φ−1,pX, Φ−1,pY) =
3
2

p2g(X, Y), (24)

and the triple (M, Φ−1,p, g) is a particular case of an almost complex metallic Riemannian manifold,
which was studied in [9].

Proposition 4. If (M, Φα,p, g) is an almost (α, p)-golden Riemannian manifold of dimmension
2m, then the trace of the Φα,p structure satisfies

trace(Φ2
α,p) = p · trace(Φα,p) +

5α− 1
2

mp2. (25)

Proof. If we denote a local orthonormal basis of TM by {E1, E2, ..., E2m}, then from the
identity (5), we obtain

g(Φ2
α,pEi, Ei) = pg(Φα,pEi, Ei) +

5α− 1
4

p2g(Ei, Ei),

and by summing this equality for i ∈ {1, . . . 2m}, we obtain the claimed relation.

Example 2. Using ϕα,p and ϕα,p, defined in Equation (3), let us consider the endomorphism
Φα,p : R2m → R2m, given by

Φα,p(Xi, Yi) := (ϕα,pX1, . . . , ϕα,pXm, ϕα,pY1, . . . , ϕα,pYm), (26)

where (Xi, Yi) := (X1, . . . , Xm, Y1, . . . , Ym) and i ∈ {1, . . . , m}.
Using identities (2) and (26), a straightforward computation yields

Φ2
α,p(Xi, Yi) := (ϕ2

α,pXi, ϕ2
α,pYi) = (pϕα,pXi +

5α− 1
4

p2Xi, pϕα,pYi +
5α− 1

4
p2Yi).

Thus, we obtain

Φ2
α,p(Xi, Yi) = p(ϕα,pXi, ϕα,pYi) +

5α− 1
4

p2(Xi, Yi) = pΦα,p(Xi, Yi) +
5α− 1

4
p2(Xi, Yi)

and hence Φα,p verifies Equation (5).
Let us consider the structure Jα associated with Φα,p by identities (6) and (7):

Jα(Xi, Yi) := (X1, . . . , Xm, αY1, . . . , αYm).

Using the identity (17), we remark that the Euclidean metric g := 〈 , 〉 on R2m verifies

g(JαZ, Z′) = αΣm
i=1(XiX′i + YiY′i) = αg(Z, JαZ′),

for any Z := (X1, . . . , Xm, Y1, . . . , Ym), Z′ = (X′1, . . . , X′m, Y′1, . . . , Y′m) ∈ Γ(R2m). Thus, it
is (α, Jα)-compatible. Using the identity (7), we obtain

g(Φα,pZ, Φα,pZ′) =
p
2
(g(Φα,pZ, Z′) + g(Z, Φα,pZ′)) + p2g(Z, Z′).

Therefore, g verifies the identity (20), which implies that (R2m, Φα,p, g) is an almost (α, p)-golden
Riemannian manifold.
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Definition 5. If ∇ is the Levi-Civita connection on (M, g), then the covariant derivative ∇Jα is a
tensor field of the type (1, 2), defined by

(∇X Jα)Y := ∇X JαY− Jα∇XY, (27)

for any X, Y ∈ Γ(TM).

Hence, from the identity (6), we obtain

(∇XΦα,p)Y =
p
√

5
2

(∇X Jα)Y. (28)

Let us consider now the Nijenhuis tensor field of Jα. Using a similar approach to that
in [19] (Definition 2.8 and Proposition 2.9), we obtain

NJα(X, Y) = J2
α [X, Y] + [JαX, JαY]− Jα[JαX, Y]− Jα[X, JαY], (29)

for any X, Y ∈ Γ(TM), which is equivalent to

NJα(X, Y) = (∇JαX Jα)Y− (∇JαY Jα)X + (∇X Jα)JαY− (∇Y Jα)JαX. (30)

The Nijenhuis tensor field corresponding to the (α, p)-golden structure Φ := Φα,p is
given by the equality

NΦ(X, Y) := Φ2[X, Y] + [ΦX, ΦY]−Φ[ΦX, Y]−Φ[X, ΦY]. (31)

Thus, from the identity (31), we obtain

NΦ(X, Y) = (∇ΦXΦ)Y− (∇ΦYΦ)X−Φ(∇XΦ)Y + Φ(∇YΦ)X, (32)

for any X, Y ∈ Γ(TM). Moreover, from identities (28), (30) and (32), we obtain

NΦ(X, Y) =
5p2

4
NJα(X, Y). (33)

Recall that a structure J on a differentiable manifold is integrable if the Nijenhuis tensor
field NJ corresponding to the structure J vanishes identically (i.e., NJ = 0). We point out
that necessary and sufficient conditions for the integrability of a polynomial structure
whose characteristic polynomial has only simple roots were given in [20].

For an integrable almost (α, p)-golden structure (i.e., NΦα,p = 0), we drop the adjective
“almost” and then simply call it an (α, p)-golden structure. From Equation (6), it is found
that Φα,p is integrable if and only if the associated almost α structure Jα is integrable. The
distribution D1 is integrable if Qα,p

[
Pα,pX, Pα,pY

]
= 0 and also analogous, the distribution

D2 is integrable if Pα,p
[
Qα,pX, Qα,pY

]
= 0, for any X, Y ∈ Γ(TM).

Let us consider now the second fundamental form Ω, which is a 2-form on (M, Jα, g),
where Jα is an α structure defined in Equation (4) and the metric g is (α, Jα)-compatible.
The 2-form Ω is defined as follows:

Ω(X, Y) := g(JαX, Y), (34)

for any X, Y ∈ Γ(TM). From Equaitons (17) and (34), we obtain the following property:

Proposition 5. If M is a Riemannian manifold endowed by an α structure Jα and the metric g,
which is (α, Jα)-compatible, then for any X, Y ∈ Γ(TM), we have

Ω(X, Y) = αΩ(Y, X). (35)
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By using the correspondence between Φα,p and Jα given in the identities (6) and (7),
we obtain the following Lemma:

Lemma 2. If (M, Φα,p, g) is an almost (α, p)-golden Riemannian manifold, then

Ω(X, Y) = ± 2
p
√

5
[g(Φα,pX, Y)− p

2
g(X, Y)], (36)

Ω(Φα,pX, Y) =
p
2

Ω(X, Y) +
pα
√

5
2

g(X, Y), (37)

for any X, Y ∈ Γ(TM).

Hence, by inverting X ↔ Y in Equation (37), we obtain

Ω(Φα,pY, X) =
p
2

Ω(Y, X) +
pα
√

5
2

g(X, Y). (38)

Using the identity (35) in the equality (38) and multiplying by α = ±1, we obtain

Ω(X, Φα,pY) =
p
2

Ω(X, Y) +
p
√

5
2

g(X, Y). (39)

Proposition 6. Let (M, Φα,p, g) be an almost (α, p)-golden Riemannian manifold. Then, we have

Ω(Φα,pX, Y)−Ω(X, Φα,pY) =
p(α− 1)

√
5

2
g(X, Y), (40)

Ω(Φα,pX, Y) + Ω(X, Φα,pY) = pΩ(X, Y) +
p(α + 1)

√
5

2
g(X, Y), (41)

for any X, Y ∈ Γ(TM).

Remark 6. Let (M, Φα,p, g) be an almost (α, p)-golden Riemannian manifold. In particular, for
any X, Y ∈ Γ(TM), we have the following:
(1) For α = 1, we have

Ω(Φ1,pX, Y) = Ω(X, Φ1,pY) =
p
2

Ω(X, Y) +
p
√

5
2

g(X, Y) (42)

(2) For α = −1, we have

Ω(Φ−1,pX, Y) + Ω(X, Φ−1,pY) = pΩ(Y, X). (43)

Lemma 3. Let M be a Riemannian manifold endowed with an α structure Jα and the metric g,
which is (α, Jα)-compatible. Then, for any X, Y, Z ∈ Γ(TM), we obtain

g((∇X Jα)Y, Z) = αg(Y, (∇X Jα)Z). (44)

Also, from Equations (28) and (44), we obtain the following:

Proposition 7. If (M, Φα,p, g) is an almost (α, p)-golden Riemannian manifold, then for any
X, Y, Z ∈ Γ(TM), the structure Φα,p satisfies

g((∇XΦα,p)Y, Z) = αg(Y, (∇XΦα,p)Z). (45)
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4. Submanifolds in the Almost (α, p)-Golden Riemannian Manifold

In this section, we assume that M is a 2n-dimensional submanifold isometrically
immersed in a 2m-dimensional almost (α, p)-golden Riemannian manifold (M, Φα,p, g).
We study some properties of the submanifold M in the almost (α, p)-golden Riemannian
geometry regarding the structure induced by the given Φα,p structure.

We shall denote with Γ(TM) the set of smooth sections of TM. Let us denote with
Tx M (and with T⊥x M) the tangent space (and the normal space) of M in a given point
x ∈ M. For any x ∈ M, we have the direct sum decomposition:

Tx M = Tx M⊕ T⊥x M.

If g is the induced Riemannian metric on M, then it is given by g(X, Y) = g(i∗X, i∗Y)
for any X, Y ∈ Γ(TM), where i∗ is the differential of the immersion i : M → M. We shall
assume that all of the immersions are injective. In the rest of the paper, we shall denote
with X the vector field i∗X for any X ∈ Γ(TM) in order to simplify the notations.

From Equations (17) and (18), we remark that the induced metric on the submanifold
M verifies the following equalities:

(i) g(JαX, Y) = αg(X, JαY), (ii) g(JαX, JαY) = g(X, Y), (46)

for any X, Y ∈ Γ(TM).
The decomposition into the tangential and normal parts of Φα,pX and Φα,pV for any

X ∈ Γ(TM) and U ∈ Γ(T⊥M) is given by

(i) Φα,pX = T X +NX, (ii) Φα,pU = tU + nU, (47)

where T : Γ(TM) → Γ(TM), N : Γ(TM) → Γ(T⊥M), t : Γ(T⊥M) → Γ(TM) and
n : Γ(T⊥M)→ Γ(T⊥M).

In the next considerations, we denote with ∇ and ∇ the Levi-Civita connections on
(M, g) and on the submanifold (M, g), respectively.

The Gauss and Weingarten formulas are given by the respective equalities

(i)∇XY = ∇XY + h(X, Y), (ii)∇XU = −AUX +∇⊥X U, (48)

for any tangent vector fields X, Y ∈ Γ(TM) and any normal vector field U ∈ Γ(T⊥M),
where h is the second fundamental form and AU is the shape operator of M with respect
to U, while ∇⊥ is the normal connection to the normal bundle Γ(T⊥M). Furthermore, the
second fundamental form h and the shape operator AU are related as follows:

g(h(X, Y), U) = g(AUX, Y), (49)

for any X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M).
For the α structure Jα, the decompositions into tangential and normal parts of JαX and

JαU for any X ∈ Γ(TM) and U ∈ Γ(T⊥M) are given by the respective formulas

(i) JαX = f X + ωX, (ii) JαU = BU + CU, (50)

where f : Γ(TM) → Γ(TM), f X := (JαX)T , ω : Γ(TM) → Γ(T⊥M), ωX := (JαX)⊥,
B : Γ(T⊥M)→ Γ(TM), BU := (JαU)T and C : Γ(T⊥M)→ Γ(T⊥M), CU := (V)Jα⊥.

Direct calculus shows that the maps f , ω, B and C satisfy the following identity:

(i) g( f X, Y) = αg(X, f Y), (ii) g(CU, V) = αg(U, CV) (51)

g(ωX, V) = αg(X, BV), (52)
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for any X, Y ∈ Γ(TM) and U, V ∈ Γ(T⊥M). Using Equation (47), we obtain the following
lemma:

Lemma 4. Let (M, g) be a Riemannian manifold endowed with an α structure Jα, and let Φα,p be
the almost (α, p)-golden structure related by Jα through the relationships in Equation (6). Thus,
we obtain

(i) T X =
p
2

X±
√

5α

2
f X, (ii)NX = ±

√
5α

2
ωX (53)

(i) tV = ±
√

5α

2
BV, (ii) nV =

p
2

V ±
√

5α

2
CV, (54)

for any X ∈ Γ(TM) and V ∈ Γ(T⊥M).

Now, by using Equations (53) and (54) in the Equations (51) and (52), respectively, we
obtain the following property:

Proposition 8. Let (M, g) be a Riemannian manifold endowed with an almost (α, p)-golden
structure. Thus, for any X, Y ∈ Γ(TM), the maps T and n satisfy

g(T X, Y) = αg(X, T Y) +
p(1− α)

2
g(X, Y), (55)

g(nU, V) = αg(U, nV) +
p(1− α)

2
g(U, V). (56)

Moreover, for any U, V ∈ Γ(T⊥M), N and t satisfy

g(NX, U) = αg(X, tU). (57)

Definition 6. The covariant derivatives of the tangential and normal parts of Φα,pX (and Φα,pV)
are given by

(i) (∇XT )Y = ∇XT Y− T (∇XY), (ii) (∇XN )Y = ∇⊥XNY−N (∇XY), (58)

(i) (∇Xt)U = ∇XtU − t(∇⊥X U), (ii) (∇Xn)U = ∇⊥XnU − n(∇⊥X U), (59)

for any X, Y ∈ Γ(TM) and U ∈ Γ(T⊥M).

Remark 7. Let M be an isometrically immersed submanifold of a Riemannian manifold (M, g)
endowed by a Jα structure and a Φ(α,p)-golden structure. Then, for any X, Y, Z ∈ Γ(TM),
we obtain

(i) g((∇X f )Y, Z) = αg(Y, (∇X f )Z), (ii) g((∇XT )Y, Z) = αg(Y, (∇XT )Z). (60)

The identities (60) result from Equations (51)(i) and (53)(i).
Let M a submanifold of co-dimension 2r in M. We fix a local orthonormal basis

{N1, ..., N2r} of the normal space T⊥x M for any x ∈ M. Hereafter, we assume that the
indices i, j and k run over the range {1, ..., 2r}.

Let Φα,p := Φ be the almost (α, p)-golden structure. Then, we obtain the decomposi-
tion

(i) ΦX = T X +
2r

∑
i=1

ui(X)Ni, (ii) ΦNi = ξi +
2r

∑
j=1
AijNj, (61)

for any X ∈ Tx M, where ξi represents the vector fields on M, ui represents the 1-forms on
M and A := (Aij)2r is a 2r× 2r matrix of smooth real functions on M.
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Moreover, from Equations (47) and (61), we remark that

NX =
2r

∑
i=1

ui(X)Ni, (62)

for any X ∈ Tx M and

(i) tNi = ξi, (ii) nNi =
2r

∑
k=1
Aik Nk. (63)

Therefore, we find the structure Σ = (T , g, ui, ξi,A) on the submanifold M through
Φα,p, and we shall obtain a characterization of the structure induced on a submanifold M
by the almost (α, p)-golden structure in a similar manner to that in Theorem 3.1. from [15].

Theorem 1. The structure Σ = (T , g, ui, ξi,A) induced on the submanifold M by the almost
(α, p)-golden structure Φα,p on M satisfies the following equalities:

T 2X = pT X +
5α− 1

4
p2X−

2r

∑
i=1

ui(X)ξi, (64)

Aij = αAji +
p(1− α)

2
δij, (65)

ui(X) = αg(X, ξi), (66)

T ξi = pξi −
2r

∑
j=1
Aijξ j, (67)

uj(ξi) =
5α− 1

4
p2δij + pAij −

2r

∑
k=1
AikAkj, (68)

for any X ∈ Γ(TM), where T is a (1,1)-tensor field on M, ξi represents the tangent vector fields on
M, ui represents the 1-form M and the matrix A is determined by its entries Aij, which are real
functions on M (for any i, j ∈ {1, . . . , 2r}).

Proof. Using Φα,p := Φ in the identity (47)(i) and (5), we obtain pΦX + 5α−1
4 p2 · X =

ΦT X + ΦNX. Moreover, using identities (47)(i) and (61)(i), we obtain

pT X + p
2r

∑
i=1

ui(X)Ni +
5α− 1

4
p2 · X = T 2X +NT X +

2r

∑
i=1

ui(X)ΦNi (69)

By using the identity (62) and equalizing the tangential part of the identity (69), we
obtain equality (64).

Now, using the identity (56), we obtain

g(nNi, Nj) = αg(Ni, nNj) +
p(1− α)

2
g(Ni, Nj)

and from the equality (63)(ii), we obtain the identity (65).
From the identity (57), we obtain g(NX, Nj) = αg(X, tNj) and by using identities (62)

and (63)(i), we obtain the equality (66).
From the Equation (5), we obtain Φ2Ni = pΦNi +

5α−1
4 p2 · Ni and from the identity

(61)(ii), we obtain

Φ(ξi +
2r

∑
j=1
AijNj) = p(ξi +

2r

∑
j=1
AijNj) +

5α− 1
4

p2 · Ni,
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Moreover, using identities (61)(i) and (61)(ii), we obtain

T ξi +
2r

∑
j=1

uj(ξi)Nj +
2r

∑
j=1
Aij(ξ j +

2r

∑
k=1
Ajk Nk) = pξi + p

2r

∑
j=1
AijNj +

5α− 1
4

p2 · Ni.

When comparing the tangential and normal parts of both sides of this last equality,
respectively, we infer the identities (67) and (68).

By using identities (61)(i) and (61)(ii), we obtain the following remark:

Remark 8. If (M, Φ, g) is an almost (α, p)-golden Riemannian manifold and X, Y ∈ Γ(TM),
then for any i, j ∈ {1, . . . , 2r}, we obtain

g(ΦX, ΦY) = g(T X, T Y) +
2r

∑
i=1

ui(X)ui(Y), (70)

g(ΦNi, ΦNj) = g(ξi, ξ j) +
2r

∑
k=1
AikAkj, (71)

If M is an invariant submanifold of M (i.e., Φ(Tx M) ⊂ Tx M and Φ(T⊥x M) ⊂ T⊥x M for
all x ∈ M), then from identities (61), we obtain ΦX = T X, which implies ui(X) = 0 and
ξi = 0 for any i ∈ {1, 2, . . . , 2r}. Therefore, using the identities (64) and (68), we obtain the
following property:

Proposition 9. Let M be an invariant submanifold of co-dimension 2r of the almost (α, p)-golden
Riemannian manifold (M, Φ, g), and let Σ = (T , g, ui = 0, ξi = 0,A) be the structure induced
on the submanifold M. Then, T is an (α, p)-golden structure on M; in other words, we have

T 2X = pT X +
5α− 1

4
p2X, (72)

for any X ∈ Γ(TM), where p is a real nonzero number and α ∈ {−1, 1}. Moreover, the quadratic
matrix A satisfies the equality

A2 = pA+
5α− 1

4
p2 I2r, (73)

where its entries Aij are real functions on M (i, j ∈ {1, . . . , 2r}) and I2r is an identical matrix of
the order 2r.

Theorem 2. A necessary and sufficient condition for the invariance of a submanifold M of co-
dimension 2r in a 2m-dimensional Riemannian manifold (M, g) endowed with an almost (α, p)-
golden structure Φ is that the structure T on (M, g) is also an almost (α, p)-golden structure.

Proof. If T is an almost (α, p)-golden structure, then from Equation (64), we obtain

2r

∑
i=1

ui(X)ξi = 0, (74)

for any X ∈ Γ(TM). By taking the g product with X in Equation (74), we infer that

2r

∑
i=1

ui(X)g(X, ξi) = ∑
i
(ui(X))2 = 0,

which is equivalent to ui(X) = 0 for every i ∈ {1, . . . , 2r}, and this fact implies that M
is invariant.
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Conversely, if M is an invariant submanifold, then from Equation (72), we obtain that
the structure T on (M, g) is also an almost (α, p)-golden structure.

5. Conclusions

The world of quadratic endomorphisms of a given manifold is enriched now with a
new class. If a Riemmanian metric is added through a compatibility condition, then a new
geometry is developed. Its submanifolds also carry remarkable structures, and new studies
are expected to enrich this domain of differential geometry.

Author Contributions: C.E.H. and M.C. contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are greatly indebted to the anonymous referees for their valuable
remarks, which have substantially improved the initial submission.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hretcanu, C.E.; Crasmareanu, M. Metallic structures on Riemannian manifolds. Rev. Union Mat. Argent. 2013, 54, 15–27.
2. de Spinadel, V.W. The metallic means family and forbidden symmetries. Int. Math. J. 2002, 2, 279–288.
3. de Spinadel, V.W. The metallic means family and renormalization group techniques. Proc. Steklov Inst. Math. Control Dyn. Syst.

2000, 6 (Suppl. S1), 194–209.
4. Stakhov, A.P. The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic.

Chaos Solitons Fractals 2007, 33, 315–334. [CrossRef]
5. Stakhov, A.P. The generalized principle of the golden section and its applications in mathematics, science, and engineering. Chaos

Solitons Fractals 2005, 26, 263–289. [CrossRef]
6. Goldberg, S.I.; Yano, K. Polynomial structures on manifolds. Kodai Math. Sem. Rep. 1970, 22, 199–218. [CrossRef]
7. Goldberg, S.I.; Petridis, N.C. Differentiable solutions of algebraic equations on manifolds. Kodai Math. Sem. Rep. 1973, 25, 111–128.

[CrossRef]
8. Crasmareanu, M.; Hretcanu, C.E. Golden differential geometry. Chaos Solitons Fractals 2008, 38, 1229–1238. [CrossRef]
9. Turanli, S.; Gezer, A.; Cakicioglu, H. Metallic Kähler and nearly metallic Kähler manifolds. Int. J. Geom. Methods Mod. Phys. 2021,

18, 2150146. [CrossRef]
10. Etayo, F.; deFrancisco, A.; Santamaria, R. Classification of pure metallic metric geometries. Carpathian J. Math. 2022, 38, 417–429.

[CrossRef]
11. Gezer, A.; Karaman, C. Golden-Hessian structures. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2016, 86, 41–46. [CrossRef]
12. Etayo, F.; Santamaria, R. Classification of Almost Golden Riemannian Manifolds with Null Trace. Mediterr. J. Math. 2020, 17, 90.

[CrossRef]
13. Etayo, F.; Santamaria, R.; Upadhyay, A. On the geometry of almost Golden Riemannian manifolds. Mediterr. J. Math. 2017, 14, 187.

[CrossRef]
14. Etayo F.; deFrancisco A.; Santamaria, R. Unified classification of pure metric geometries. Hacet. J. Math. Stat. 2022, 51, 113–141.

[CrossRef]
15. Hretcanu, C.E.; Crasmareanu, M.C. Applications of the Golden ratio on Riemannian manifolds. Turk. J. Math. 2009, 33, 179–191.

[CrossRef]
16. Hretcanu, C.E.; Blaga, A.M. Submanifolds in metallic Riemannian manifolds. Differ. Geom. Dyn. Syst. 2018, 20, 83–97.
17. Torun, A.; Ozkan, M. Submanifolds of Almost-Complex Metallic Manifolds. Mathematics 2023, 11, 1172. [CrossRef]
18. Bouzir, H.; Beldjilali, G. Almost Hermitian Golden manifolds. Balk. J. Geom. Its Appl. 2021, 26, 23–32.
19. Etayo F.; Santamaria, R. Distinguished connections on (J2 = ±1)-metric manifolds. Arch. Math. 2016, 52, 159–203.
20. Vanzura, J. Integrability conditions for polynomial structures. Kodai Math. Sem. Rep. 1976, 27, 42–50.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.chaos.2006.01.028
http://dx.doi.org/10.1016/j.chaos.2005.01.038
http://dx.doi.org/10.2996/kmj/1138846118
http://dx.doi.org/10.2996/kmj/1138846727
http://dx.doi.org/10.1016/j.chaos.2008.04.007
http://dx.doi.org/10.1142/S0219887821501462
http://dx.doi.org/10.37193/CJM.2022.02.12
http://dx.doi.org/10.1007/s40010-015-0226-0
http://dx.doi.org/10.1007/s00009-020-01528-0
http://dx.doi.org/10.1007/s00009-017-0991-x
http://dx.doi.org/10.15672/hujms.899894
http://dx.doi.org/10.3906/mat-0711-29
http://dx.doi.org/10.3390/math11051172

	Introduction
	The Almost (, p)-Golden Structure
	Almost (, p)-Golden Riemannian Geometry
	Submanifolds in the Almost (, p)-Golden Riemannian Manifold
	Conclusions
	References

