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Abstract: Economic forecasting is crucial in determining a country’s economic growth or decline.
Productivity and the labor force must be increased to achieve economic growth, which leads to the
growth of gross domestic product (GDP) and income. Machine learning has been used to provide
accurate economic forecasts, which are essential to sound economic policy. This study formulated
a gated recurrent unit (GRU) neural network model to predict government expenditure, an essential
component of gross domestic product. The GRU model was evaluated against autoregressive
integrated moving average, support vector regression, exponential smoothing, extreme gradient
boosting, convolutional neural network, and long short-term memory models using World Bank
data regarding government expenditure from 1990 to 2020. The mean absolute error, root mean
square error, and mean absolute percentage error were used as performance metrics. The GRU model
demonstrates superior performance compared to all other models in terms of MAE, RMSE, and
MAPE (with an average MAPE of 2.774%) when forecasting government spending using data from
the world’s 15 largest economies from 1990 to 2020. The results indicate that the GRU can be used to
provide accurate economic forecasts.

Keywords: machine learning; economic forecasting; gated recurrent unit; neural network

MSC: 46M15

1. Introduction

Government budgets for education, health care, defense, and welfare are large [1],
and they cannot be accurately predicted using traditional econometric models because
of the complex nonlinear relationships existing between variables [2]. Researchers have
recently applied artificial intelligence to help governments better allocate resources, deliver
services, and coordinate large-scale operations [3]. A country’s economic conditions and
priorities are reflected in various factors that affect government spending, such as popula-
tion size, which significantly impacts government spending [4]. A large population often
requires increased investment in public services, healthcare, education, and social security
programs. For example, in 2020 (World Development Indicators, 2021), countries with
larger populations allocated a substantial portion of their budgets to social welfare, with
spending on social welfare accounting for 30% to 45% of the total budget. The demand
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for social services varies across country, encompassing areas such as poverty alleviation,
healthcare, education, and unemployment benefits, thereby influencing government spend-
ing decisions. Gross domestic product (GDP) indicates a country’s economic performance
and total output. Government spending and GDP are closely related. During periods of
GDP growth, governments often allocate more resources to infrastructure development
and public services in order to support further economic growth. Conversely, during
economic downturns or recessions, governments may implement austerity measures and
reduce spending to manage budget deficits [5]. Government spending is also influenced by
other macroeconomic variables, such as inflation, unemployment rates, and interest rates.
Rising inflation rates can lead to increased spending on subsidies and welfare programs to
mitigate the impact of price increases on citizens’ purchasing power [6]. Through measures
such as job creation programs or unemployment benefits, unemployment rates can affect
government spending. In addition, interest rates play a crucial role in determining the
cost of government borrowing, which affects spending decisions. By taking into account
these factors related to government spending, policymakers can make informed decisions
about budget allocation, revenue generation, and overall economic management with the
economy to promote sustainable development and meet societal needs [7].

According to the Organisation for Economic Co-operation and Development (OECD),
government investments in education and health care contribute to long-term economic
growth; specifically, every 1% increase in education spending was reported to be correlated
with a 0.5% increase in GDP per capita over the long term (source: OECD. Education at
a Glance 2020: OECD Indicators). However, the relationship between government spend-
ing and GDP is complex; it depends on several factors, such as the state of the economy,
the type and composition of government spending, and the effectiveness of government
policies [8,9]. Therefore, accurate forecasts of government spending are crucial for improv-
ing resource allocation and economic planning. Accurate forecasts help governments
budget more effectively [1] and with less risk [2]. Jeong et al. demonstrated that neural
networks can be used to improve traditional time series models, such as seasonal autore-
gressive moving average (ARIMA) models, when applied to budget-related prediction [10].
Neural networks are a powerful means of capturing complex, nonlinear relationships
between variables [11]. However, neural networks can accurately predict government
spending only if a suitable set of factors that affect spending are selected; however, this
is difficult to achieve. For example, Palmer et al. found that neural networks accurately
predict economic tourism demand only if the appropriate input variables and network
architecture are selected [12]. Despite these challenges, neural networks are promising as
a means to predict government spending, even with complex time series data.

Machine learning models have produced accurate forecasts on the basis of time series
data. For example, Lago et al. demonstrated that a gated recurrent unit (GRU) model
(a deep learning model) outperformed its traditional counterparts in accurately predict-
ing spot electricity prices. The GRU model had the highest prediction accuracy with
a symmetric mean absolute percentage error (symmetric MAPE) of 13.04%, outperforming
a deep neural network (the second best model with a symmetric MAPE of 12.34%), a long
short-term memory (LSTM) model, a convolutional neural network (CNN) model, and
even several mixed models [13]. Another study formulated a hybrid recurrent neural
network (RNN) model based on GRU and LSTM that predicts daily and hourly multilevel
wind power in Germany from data on wind speed at different heights [14]. The proposed
model outperformed ARIMA and support vector regression (SVR) models in terms of
gradient stability, training speed, mean absolute error (MAE), root mean square error
(RMSE), and t-test results on long sequences. Li et al. proposed a novel ensemble decision
method based on deep reinforcement learning to predict GDP. In this method, predictions
from GRU, temporal convolutional network, and deep belief network models were taken
as input to train three GDP prediction models, and the deep Q network algorithm was
used to optimize the integration weight coefficients. This proposed method outperformed
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18 competing methods in evaluation experiments, achieving MAPE values below 4.2% in
all tests [15].

Government spending in the economy takes many forms. The composition of
GDP among different types of spending is often of interest to economists. Government
spending is one of four components of GDP, including consumption, investment, gov-
ernment purchases, and net exports. According to the International Monetary Fund
(https://www.imf.org/en/Home), a 1% increase in government spending as a share of
GDP is correlated with a 0.4 to 1.2 percentage point increase in GDP growth, depending on
how government spending is allocated. Conversely, decreased government spending can
exert contractionary effects and even lead to recession. Government spending is also related
to other macroeconomic variables. For example, infrastructure spending boosts investment
and productivity, and education and healthcare spending enhances the productivity and
health of the workforce in particular and the population in general; these factors promote
long-term economic growth.

In this study, we reviewed existing forecasting methods and developed a GRU model
that predicts government spending on the basis of financial GDP indicators. We used
a historical dataset to improve model generalizability. Our model outperformed six com-
peting methods in terms of accuracy and reliability in an extensive battery of experiments
involving time series datasets on the GDPs of 15 of the largest economies in the world. Our
contributions are as follows.

1. Our GRU model accurately predicts government spending on the basis of financial
GDP indicators.

2. Our GRU model outperformed ARIMA, exponential smoothing (ETS), extreme gradi-
ent boosting (XGBoost), SVR, CNN, and LSTM models in evaluation experiments.

3. The strengths and weaknesses of neural network models in predicting government
expenditure were explored.

4. The aforementioned methods can capture complex nonlinear relationships between
different economic factors to generate accurate predictions.

This paper is organized as follows. Section 2 reviews existing prediction approaches,
namely, ARIMA, ETS, support vector machine (SVM), XGBoost, CNN, LSTM, and GRU,
and presents our proposed approach. Section 3 describes the setup and results of our
evaluation experiments. Finally, Section 4 concludes the paper.

2. Methods

Statistical models, especially ARIMA and exponential smoothing, are widely used in
time series forecasting because they can capture patterns and dependencies in time series
data [16]. Machine learning models are an improvement on such statistical methods and
are becoming increasingly popular. These models are summarized as follows.

2.1. Autoregressive Integrated Moving Average

An ARIMA model describes the temporal evolution of the dependence between
observations using the time lag between observations. It can be used to model stationary
time series data wherein the mean and variance of the data remain constant over time.
An ARIMA model combines autoregressive, differenced, and moving average components
to model time series data [17] and has three main components: the number of lagged
observations (p), the difference in nonseasonal observations (d), and the size of the moving
average window (q). These three components must be applied in the order expressed in
the tuple (p, d, q). In our experiment, the Python library pmdarima was used to implement
ARIMA modeling. Subsequently, the auto.arima function in this package was used to create
a process to automatically select the best parameters for the ARIMA model on the basis of
the data. This helped the model quickly generate predictions.

https://www.imf.org/en/Home
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2.2. Exponential Smoothing

ETS is used to model patterns and dependencies over time, primarily in nonstationary
time series data. ETS models output predictions by assigning exponentially decaying
weights to past observations [18]. The Holt linear exponential smoothing method is com-
monly used, and predictions can be obtained using the following equations:

ŷt = αyt + (1− α)(ŷt−1 + bt−1) (1)

bt = γ(ŷt − ŷt−1) + (1− γ) bt−1 (2)

ŷt+m = ŷt − btm (3)

where α and γ are smoothing constants ranging from 0 to 1. These standard equations
are used to obtain the exponential trend detailed in [19]. In ETS, these techniques are
used to simulate fundamental trends and patterns, primarily for nonstationary time series
data. ETS models are popular because they are easy to implement and can rapidly provide
accurate predictions [20,21].

2.3. Support Vector Regression

Introduced by Vapnik et al., SVM is a machine learning algorithm that can be used
for classification and regression problems. SVR is a variant of SVM and is used to solve
regression problems to make predictions on continuous target variables. SVR can be used
when the relationship between the independent and dependent variables is nonlinear [22].
In regression, an SVR model identifies the best-fitting hyperplane with the maximum
number of points. For a hyperplane Y = wx + b, the decision boundaries are wx + b = +a
and wx + b = −a. Therefore, any hyperplane that satisfies SVR must lie in the bounds
−a < (Y − wx + b) < +a. Thus, the goal is to identify a function that satisfies the decision
boundary. SVR has been used to forecast, for example, the demand for wind and solar
energy [23], the exchange rate of the Euro [24], the state of the climate [25], and the
volume of airport freight [26]. In previous studies, SVR or hybrid methods with SVR have
performed the best in evaluation experiments.

2.4. Extreme Gradient Boosting

A versatile and increasingly popular method designed to balance between perfor-
mance and computational cost, XGBoost is an optimized version of the gradient boosting
algorithm, and uses ensemble learning with multiple decision trees for prediction [27].
XGBoost has been applied in various fields, such as health care [28], computer vision [29],
and missing data imputation [30].

2.5. Convolution Neural Network

CNNs consist of multiple layers and can be trained using a back-propagation algo-
rithm. CNNs contain three layers: convolution, pool, and fully connected. The convolu-
tional layer is responsible for learning the input’s feature representation. It utilizes multiple
convolutional kernels to compute different feature maps. In particular, the neurons in each
feature map are connected to a set of neighboring neurons in the previous layer, and this
set of neighboring neurons is called the receptive field of the neuron in the previous layer.
To obtain a new feature map, the input is convolved with the trained convolution kernel.
The resulting convolution is then subjected to an element-by-element nonlinear activation
function. The activation function introduces nonlinear properties, which are advantageous
for multilayer networks to detect nonlinear features. Commonly used activation functions
include Sigmoid, tanh [31], and ReLU [Ref] the pooling layer is typically described as being
located between two convolutional layers, and is responsible for achieving translation
invariance by reducing the resolution of the feature maps. Each feature map in the pooling
layer is connected to the corresponding feature map in the previous layer. In the initial layer,
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the convolution kernel is designed to detect low-level features, such as edges and curves.
Higher-level convolution kernels learn to encode more abstract features. By progressively
stacking multiple convolutional and pooling layers, we can gradually extract higher-level
feature representations. One or more fully connected layers designed for higher-level
inference [30] may follow the multiple convolutional and pooling layers. The fully con-
nected layer establishes connections between all neurons in the preceding layer and each
neuron in the current layer, allowing for the generation of global semantic information.

2.6. Long Short-Term Memory

LSTM is a type of RNN specifically designed to overcome the vanishing gradient
problem in traditional RNNs. It was introduced by Hochreiter and Schmidhuber in 1997
and has since been widely applied in various fields, including time series forecasting [32]. In
LSTM, time series data are formulated as a sequence, wherein each observation corresponds
to a time step. LSTM neural networks are then trained using previous observations to
predict the next value in the sequence. Long-term dependencies in the data can be captured
when the model is configured to use multiple previous time steps for each prediction. In
recent studies, LSTM has had promising results in time series prediction. For example,
LSTMs have produced more accurate forecasts of electricity load [33] and stock market
trends [34] relative to competing methods. LSTM has also been used to predict wind
power output [35], solar radiation [36], and agricultural production [37] from time series
data. The LSTM architecture consists of a collection of recurrently connected memory
blocks, which are subnetworks that maintain their state over time and regulate the flow
of information through nonlinear gates. The structure of a single LSTM cell is shown in
Figure 1A. These gates govern the interactions between different cells and regulate the flow
of information. The input gate controls the process of updating the memory state. The
output gate determines whether the output flow can influence the memory state of other
cells. The forgetting gate determines whether the prior states should be remembered or
forgotten. The LSTM is implemented using the following composite functions:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (4)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(5)

ct = ft−1 + ittanh(Wxcxt + Whcht−1 + bc) (6)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (7)

ht = ottanh(ct) (8)

where σ represents the logistic sigmoid function, i, f, o, and c represent the input gate, forget
gate, output gate, and cell input activation vectors, respectively. h represents the hidden
vector. The subscripts of the weight matrix have intuitive meanings. For example, Whi
represents the hidden input gate matrix, and so on.
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proposed government expenditure forecasting approach.

2.7. Gated Recurrent Unit

GRUs models are efficient, have fast training speed, and can address vanishing gradi-
ent problems in traditional RNNs, making them suited to applications involving large-scale
time series prediction [38]. GRU methods have performed well in various applications,
such as in the prediction of gas concentrations in mines [39] and the prediction of COVID-19
mortality rates [40].

Cho et al. (2014) proposed an architecture wherein GRU gate mechanisms, including
a reset gate rt and update gate Zt, are used to efficiently handle vanishing gradient problems
(Figure 1A) [33]. The reset gate is essential for the detection of short-term dependencies
within sequences, allowing a network to selectively forget information from the previous
time step and focus on the information that is most relevant to the current task. The
update gate is responsible for capturing long-term dependencies in sequential data and
determining how much information from the previous time step should be passed to the
current time step; these determinations allow the network to adapt to changes in the input
data and learn complex patterns over a long period.

During training, a GRU model learns the optimal values of the gates and other pa-
rameters by using the input data Xt and the expected output. A trained GRU model then
outputs predictions based on input sequences by using the learned parameters. The learn-
ing process is encapsulated in Equations (9)–(12), which describe the units that capture the
respective dependencies within the GRU network [41]:

Zt = σ(ht−1Wxzxt + Whzht−1) (9)

rt = σ(Wxrxt + Whrht−1) (10)

ht = zt ⊗ ht−1 + (1− zt )⊗
∼
ht (11)

∼
ht = tan h(Wxhxt + Whh(r t ⊗ ht−1)) (12)
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In these equations, two fully connected layers with a sigmoid activation function σ
produce the output of two gates. Wxz, Wxr, Whz, and Whr denote the weight parameters of
the reset gate and the update gate. The ⊗ operator refers to element-wise multiplication,
and ⊕ refers to addition. When rt is integrated and updated, the cell uses the hyperbolic
tangent activation function tanh at time step t to reach the candidate state defined in
Equation (7). Subsequently, for the final memory update to be determined, Equation (6)
is integrated with Zt, and the hidden state ht that matches the hidden state at time step
t − 1 is identified. Finally, if the new candidate state of the hidden layer conforms to the
description given in Equation (7), the final memory state ht is reached.

2.8. GDP Indicators Forecasting Framework

Figure 2 summarizes the flow of the experiment in which models were evaluated in
terms of their performance in predicting government expenditure. Our proposed GRU
model was designed to have a reset gate rt and update gate Zt (Figrues 1A,B and 3;
Algorithm 1) to capture dependencies between different periods. Specifically, the data
were obtained and subjected to preprocessing (e.g., missing value evaluation and feature
normalization). These data were then divided into training and testing data. Subsequently,
the performances of trained models using various methods were evaluated in terms of
MAE, RMSE, and mean absolute percentage error (MAPE). The results are visualized
graphically. The framework detail of GRU algorithm is represented in Figure 3.
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Algorithm 1 GRU for Government Expenditure Forecasting

Let X be the dataset.
Desired Output: Prediction of best model F(x)

1. Load time-series dataset, reconstruct, standardize, and preprocess the data
2. Split the data into training and testing sets, defined as Xtrain and Xtest, respectively
3. Define GRU model structure and parameters
4. Update gate Zt is obtained using (4)
5. Reset gate rt is obtained using (5)

6. Candidate memory state
∼
h t is obtained using (7)

7. Weighted variables, W are initialized
8. Final memory state ht is computed using (6)
9. Calculate the loss function according to argmin

W
L(W) = ∑N

i=1 loss (yi, ŷI), where

loss (yi, ŷi) =
1
N ∑N

i=1|yi − ŷi|
10. Use Xtrain to train the model
11. Evaluate model F(x) predictions using Xtest
12. Select the best model using performance metrics MAE, RMSE, and MAPE
13. Visualize and analyze the forecasting of the best model F(x)
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2.9. Evaluation Criteria

MAE, MAPE, and RMSE are widely used metrics of rolling forecasting performance.
They describe the deviation between actual and predicted values, and are defined as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (13)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (14)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (15)

where yi is the actual value, ŷi is the predicted value, and N is the sample size. The MAE is
defined as the mean of the absolute differences between the actual and predicted values,
and ranges from 0 to positive infinity. The MAPE is a relative indicator that is invariant to
the units or magnitude of the actual and predicted values. Finally, the RMSE is the square
root of the quotient that is the average deviation between actual and predicted values
divided by the number of observations. The RMSE is sensitive to minor errors in model
predictions, and is thus an effective metric of accuracy. For the three metrics, lower values
(i.e., values closer to 0) indicate a lower error and higher prediction accuracy. These metrics
are designed to comprehensively assess our forecasts’ accuracy, precision, and reliability.
Since MAE calculates the absolute difference between predicted and actual values, it
provides an unbiased average accuracy metric. This provides a visual interpretation of
the error and insight into the degree of deviation from the true value. On the other hand,
RMSE emphasizes the effect of larger errors by considering squared differences. It provides
a measure of the dispersion and magnitude of the error, and can assess the accuracy and
reliability of the prediction. Finally, MAPE reflects the relative error between the predicted
and actual values, providing insight into the proportional accuracy of the forecast. Each
metric captures a different aspect of prediction performance, enabling a comprehensive
understanding of the model’s strengths and weaknesses. These metrics form a robust
framework for assessing the forecasting power of the model and the applicability of
GDP-based government spending forecasts. Using these performance metrics allows for
a broad assessment of forecasting methods. The choice of these metrics depends on the
specific situation and the nature of the forecasting task. They provide information on
different aspects that help to understand the model’s accuracy, precision, and reliability. By
considering these metrics together, a comprehensive assessment of model performance can
be obtained, and the strengths and weaknesses of the model can be identified.

3. Results and Discussion
3.1. Data Source

To ensure a comprehensive analysis, we will focus on data from 1990 to 2020 sourced
from the World Bank (https://data.worldbank.org/). This time horizon captures a period
of significant economic fluctuations, including major events such as financial crises, reces-
sions, and economic growth. By considering a broad time horizon, we aim to understand
government spending behavior over time comprehensively. In selecting countries, we base
our selection on their respective GDP rankings. Specifically, we selected the 15 countries
with the largest GDP to ensure representation of the major global economies. These coun-
tries are the United States, China, Japan, Germany, the United Kingdom, India, France,
Italy, Canada, South Korea, Russia, Brazil, Australia, Spain, and Mexico. By including these
countries, we aim to capture the various economic systems, levels of development, and
geopolitical factors that may influence government spending patterns. The dataset was
downloaded as a .csv file from the World Bank website and then transformed into a data
frame in Python. The dataset obtained from the World Bank was of high quality, and did not

https://data.worldbank.org/
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contain any missing values. The descriptive statistics (specifically, mean, median, standard
deviation, sample size, first quartile [Q1], third quartile [Q3], and interquartile range [IQR])
for each of these 15 countries are presented in Table 1. We standardized the data using
the integrated Python function min_max_scaler; this function rescales a data point x to
between 0 and 1 using the following equation: (x − xmin)/(xmax − xmin), where x is the
value of the data point, xmin is the minimum value, and xmax is the maximum value.

Table 1. Descriptive statistics of government expenditure.

Country Count Min Max Mean Med SD Q1 Q3 IQR

Australia 31.0 −3.610 6.986 2.829 3.091 1.849 1.780 3.714 1.934
Brazil 31.0 0.253 5.034 2.660 3.042 1.398 1.744 3.711 1.968

Canada 31.0 0.141 9.171 2.785 2.261 1.992 1.531 3.736 2.205
China 31.0 0.966 6.187 3.311 3.487 1.388 2.376 4.418 2.043
France 31.0 0.203 3.875 1.897 1.569 0.960 1.277 2.549 1.271

Germany 31.0 −0.725 12.732 2.018 1.843 2.350 0.563 2.608 2.045
India 31.0 0.027 3.621 1.254 1.056 0.863 0.612 1.862 1.251
Italy 31.0 −1.167 2.981 0.854 0.724 0.878 0.284 1.312 1.028

Japan 31.0 −0.052 1.221 0.238 0.129 0.288 0.046 0.350 0.304
Korea 31.0 0.212 2.156 0.855 0.780 0.495 0.496 1.033 0.537

Mexico 31.0 0.877 3.988 2.491 2.564 0.751 2.181 2.892 0.710
Russia 31.0 0.175 4.503 1.649 1.201 1.243 0.583 2.577 1.994
Spain 31.0 0.640 6.770 2.789 2.405 1.343 1.869 3.442 1.572
UK 31.0 −0.864 11.929 3.812 2.280 3.238 1.735 5.837 4.102

USA 31.0 0.465 3.406 1.593 1.473 0.762 1.034 2.058 1.024

Min: minimum value; Max: maximum value; Mean: average value; Med: median.

3.2. GRU Architecture Results and Sensitivity Analysis

We employed three optimizer tools, namely Adam, RMSprop, and Adagrad, to detect
the optimal architecture for each neural network. The CNN model contains a 1D convolu-
tional layer (CONV1D) with 200 filters and kernel size 1, followed by a MaxPooling layer.
The LSTM model has two layers of 200 units each, followed by a one-cell dense layer. The
GRU model has two layers of 200 units each, followed by a separate dense layer of 1 unit.
The Adam optimizer and the mean absolute error loss function were used to create these
neural network models. To capture the historical dependencies, the training data were pre-
pared using a backward window with 1 and 1000 periods for each model. Table 2 presents
a comparison of the parameter settings and the individual MAPE (%) results as a measure
of precision. The adjusted period values, the number of neural network layers, and the
activation function are shown. For the RMSprop optimizer, we increased the number of
parameters while decreasing the number of periods. The overall MAPE value is slightly
higher than the value in Table 2. For the Adagrad optimizer, we reduced the parameter and
period values. It is important to note that the period values should not be excessively high,
as they can lead to overfitting. The LSTM shows slightly better values with the parameter
settings of the Adagrad optimizer. The CNN model shows a MAPE value of 86.798%,
indicating a much worse performance. After a training procedure based on the optimizer,
Adam optimizer produced an optimal GRU architecture, and the architectural detail is
shown in Table 2.

We performed a sensitivity analysis, including experiments with parameter settings
for different scenarios. The number of units in the GRU layer increased and decreased
slightly. In addition, we adjusted the values of epochs to different lower values to observe
the model’s performance over time, since too many epochs can lead to overfitting. Table 3
presents the results of our sensitivity analysis. From Table 3, we can observe that lower
epoch values, in combination with a higher number of GRU layers, tend to produce better
prediction results for all three evaluated metrics. Notably, the differences between the
accuracy results from the sensitivity analysis are not substantial. This indicates that our
GRU model compiles correctly and performs consistently under different assumptions and
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scenarios. The chosen optimizer is appropriate for our dataset, and can produce sufficiently
accurate results, as shown in Table 3. The sensitivity analysis strengthens the robustness of
our model and provides valuable insight into the effects of varying the parameters used. It
allows us to understand the optimal parameter settings for our particular task of forecasting
government spending. The consistent performance of our model across different parameter
configurations gives us confidence in its accuracy and reliability.

Table 2. Comparison of the number of parameters to optimize for each neural network model.

Optimizer Methods Parameters MAPE

Adam

GRU
Epochs Layer1 Layer2 Batch-size Learning rate

1000 200 200 256 0.004 2.774

LSTM
Epochs Layer1 Layer2 Batch-size Learning rate

1000 200 200 256 0.004 4.208

CNN
Epochs CONV1D CNN_DENSE Batch-size Learning rate

1000 200 50 256 0.004 3.389

RMSprop

GRU
Epochs Layer1 Layer2 Batch-size Learning rate

100 400 400 256 0.004 2.809

LSTM
Epochs Layer1 Layer2 Batch-size Learning rate

100 400 400 256 0.004 4.209

CNN
Epochs CONV1D CNN_DENSE Batch-size Learning rate

100 400 100 256 0.004 4.033

Adagrad

GRU
Epochs Layer1 Layer2 Batch-size Learning rate

32 100 100 256 0.004 2.852

LSTM
Epochs Layer1 Layer2 Batch-size Learning rate

32 100 100 256 0.004 4.207

CNN
Epochs CONV1D CNN_DENSE Batch-size Learning rate

32 100 10 256 0.004 86.798

Table 3. Sensitivity analysis of GRU model.

L250, ep100 L150, ep100 L250, ep32 L150, ep32 L200, p1000

MAE 0.518 0.518 0.510 0.521 0.528

RMSE 0.741 0.738 0.720 0.743 0.747

MAPE (%) 2.794 2.784 2.775 2.804 2.774
L: number of units in the layer, ep: Epochs.

3.3. Experimental System

Python was used for data mining. Our GRU model was evaluated against ARIMA, ETS,
SVR, XGBOOST, CNN, and LSTM models. The LSTM and GRU models were optimized
using Adam [42]. Different learning rates α ranging from 0.1 to 0.0001 were tested, and the
corresponding validation loss was observed. Finally, a learning rate of 0.01 was chosen,
and β1 and β2 were set to their default values of 0.9 and 0.999, respectively. The training
and testing sets comprised data from 1990–2014 and 2015–2020, respectively. Figure 4 and
Table 4 present the MAE, RMSE, and MAPE results of the seven models for all and each of
the 15 countries, respectively.
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Table 4. The experimental results of the traffic volume forecast model: MAPE, MAE, and
MAPE values.

Country Metric ARIMA ETS SVR XGB CNN LSTM BiRNN ASRNN GRU

MAE 24.854 0.513 1.267 0.747 0.788 1.345 1.341 0.977 0.618
Australia RMSE 27.672 0.782 1.492 0.970 1.082 1.548 1.544 0.959 0.852

MAPE(%) 135.732 2.585 6.414 3.794 3.976 6.818 5.633 2.967 3.089
MAE 4.637 0.186 1.136 0.750 0.5134 0.977 0.975 0.982 0.322

Brazil RMSE 4.954 0.286 1.164 0.821 0.6463 1.008 1.007 0.884 0.379
MAPE(%) 24.177 1.196 5.628 3.727 2.538 4.837 3.551 2.781 1.594

MAE 30.841 0.543 0.585 0.585 0.587 0.867 0.865 1.053 0.526
Canada RMSE 35.102 0.773 0.926 0.836 0.920 1.108 1.106 1.155 0.825

MAPE(%) 150.088 1.844 2.665 2.684 2.679 4.007 3.098 2.998 2.402
MAE 1.332 0.973 0.786 0.721 0.310 0.669 0.670 0.628 0.166

China RMSE 1.592 0.209 0.850 0.772 0.395 0.699 0.700 0.328 0.197
MAPE(%) 9.100 1.128 4.741 4.363 1.874 4.043 3.668 2.885 1.005

MAE 35.299 0.712 0.578 0.569 0.570 0.769 0.767 1.007 0.586
France RMSE 39.687 0.798 0.728 0.993 0.775 1.010 1.008 0.864 0.796

MAPE(%) 150.914 2.333 2.403 2.319 2.363 3.167 2.553 3.225 2.422
MAE 36.711 0.575 0.788 0.854 0.625 0.753 0.752 1.235 0.591

Germany RMSE 41.099 0.990 1.262 1.150 1.089 1.206 1.205 1.255 0.790
MAPE(%) 188.378 2.666 3.675 4.049 2.894 3.509 3.029 2.884 2.810

MAE 3.752 0.543 0.570 0.479 0.636 0.694 0.694 1.439 0.419
India RMSE 3.902 0.735 0.841 0.521 0.909 1.007 1.006 1.160 0.617

MAPE(%) 34.850 4.746 4.861 4.286 5.468 5.922 4.771 3.274 3.584
MAE 37.742 0.460 0.692 0.662 0.530 0.588 0.587 0.776 0.598

Italy RMSE 42.589 0.852 0.817 0.959 0.849 0.957 0.957 0.923 0.936
MAPE(%) 196.691 2.260 3.527 3.318 2.641 2.916 1.072 2.884 2.979

MAE 18.049 0.335 1.133 0.401 0.398 0.451 0.451 0.617 0.366
Japan RMSE 19.050 0.588 1.556 0.581 0.588 0.719 0.718 0.626 0.532

MAPE(%) 100.373 1.627 5.577 1.964 1.952 2.195 0.225 3.164 1.796
MAE 13.022 0.973 1.892 0.520 1.029 1.074 1.070 0.884 0.540

Korea RMSE 13.252 1.086 2.381 0.646 1.313 1.526 1.520 2.861 0.644
MAPE(%) 99.823 5.972 11.182 3.090 6.224 6.245 6.400 2.776 3.235

MAE 1.774 0.436 0.441 0.432 0.477 0.555 0.554 2.045 0.441
Mexico RMSE 2.182 0.617 0.762 0.631 0.589 0.746 0.745 1.055 0.616

MAPE(%) 18.7325 3.513 3.519 3.506 3.953 4.478 3.527 2.818 3.596
MAE 40.023 0.661 0.644 0.652 0.724 0.828 0.828 0.791 0.832

Russia RMSE 45.101 1.079 1.060 0.980 1.165 1.306 1.305 1.163 1.005
MAPE(%) 222.661 4.420 3.277 3.337 3.684 4.204 3.057 3.116 3.362

MAE 52.074 0.712 0.765 0.731 0.798 0.802 0.800 1.487 0.675



Mathematics 2023, 11, 3085 13 of 17

Table 4. Cont.

Country Metric ARIMA ETS SVR XGB CNN LSTM BiRNN ASRNN GRU

Spain RMSE 58.233 1.258 1.437 1.039 1.253 1.384 1.383 1.483 1.242
MAPE(%) 279.389 3.399 3.637 3.604 3.877 3.831 2.982 1.975 3.214

MAE 60.055 0.850 0.928 0.916 0.963 1.047 1.046 0.055 1.021
UK RMSE 67.578 1.499 1.506 1.515 1.495 1.715 1.715 1.781 1.456

MAPE(%) 311.637 4.010 4.450 4.362 4.651 4.973 2.478 2.578 4.957
MAE 12.714 0.239 0.737 0.208 0.2950 0.286 0.286 0.013 0.227

USA RMSE 14.765 0.352 0.783 0.243 0.380 0.401 0.402 0.343 0.318
MAPE(%) 85.847 1.660 5.243 1.459 2.068 1.979 1.372 1.875 1.570

MAE 24.858 0.581 0.863 0.615 0.616 0.780 0.779 0.933 0.528
Total

Average RMSE 27.784 0.793 1.171 0.844 0.897 1.089 1.088 1.123 0.747

MAPE(%) 133.893 2.891 4.720 3.324 3.389 4.208 3.161 2.813 2.774

Bold means the lowest value.

3.4. Comparison and Discussion

Artificial intelligence encompasses a range of techniques that aim to mimic living
things’ behavior to improve decision-making and mitigate potential risks to economic sta-
bility and growth. One such technique is GRU, which focuses on automatically identifying
meaningful patterns in data. GRU has become a valuable tool for extracting information
from large datasets [43]. Departure from traditional computing methods is a common fea-
ture of GRU applications. Due to the complexity of the patterns identified, it is impractical
for a human programmer to provide explicit and detailed instructions for performing these
tasks. In addition, the GRU techniques can learn from a wide variety of data types and
recognize patterns that may be impossible for a human to detect. This enables GRU to
operate in resource-constrained environments [44]. As a result, GRU could play a critical
role in public administration, and provide insights that can inform decision-makers.

The GRU model was evaluated against ARIMA, ETS, SVR, XGBOOST, CNN, LSTM,
BiRNN, and ASRNN models. The LSTM, BiRNN, ASRNN, and GRU models were opti-
mized using Adam [42]. ARIMA had much lower performance compared with the other
models. To improve ARIMA performance, the lag order (p), moving average order (q),
and differencing degree (d) can be manually rather than automatically configured [45],
and other diagnostic measures can be applied [46,47]. The remaining models produced
reasonably accurate predictions. We analyzed different RNN variants, including the bidi-
rectional RNN (BiRNN) [48] and attention-based [49] sequential RNN (ASRNN) models.
For the BiRNN model, we performed dataset preprocessing and used a BiRNN architecture
along with a dropout layer to prevent overfitting. Similarly, for the ASRNN model, the
dataset underwent the same preprocessing step, and the architecture employed an attention
mechanism to capture the relevant information from the sequential data. Different learning
rates α ranging from 0.1 to 0.0001 were tested, and the corresponding validation loss was
observed. Finally, a learning rate of 0.01 was chosen, and β1 and β2 were set to their default
values of 0.9 and 0.999, respectively. The training and testing sets comprised data from
1990–2014 and 2015–2020, respectively. Figure 4 and Table 4 present the MAE, RMSE, and
MAPE results of the seven models for all and each of the 15 countries, respectively.

Our GRU model performed the best when used to forecast government expenditure
(Table 4). The average MAE, RMSE, and MAPE values for country-level predictions were
0.5284, 0.7469, and 2.774%, respectively. ETS, XGBoost, CNN, BiRNN, and ASRNN also
produced satisfactory country-level predictions. The country-level predictions of the seven
models and the actual values are plotted in Figure 5. The actual and predicted trends
for all models except the ARIMA model had a close fit upon visual inspection. Accurate
predictions for China were difficult to achieve, although the predictions of ETS, CNN,
BiRNN, ASRNN, and GRU were reasonably close. In general, GRU captured outliers and
changes in trends well, unlike ARIMA. Some methods, such as LSTM and SVR, follow an
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average trend starting from a particular value. Data spanning a longer period are required
to more fully analyze the capabilities of these methods, especially GRU.
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Since GRU uses only two gates instead of three, and one memory cell, it is considered
an efficient implementation of LSTM. Despite the simplicity of GRU, it still achieves better
results than LSTM [43]. LSTM was introduced to address the problems of vanishing and
exploding gradients in RNNs. LSTM uses memory cells and gates to facilitate the flow
of information over time. Subsequently, GRU was introduced as a more efficient form of
LSTM, which combines two LSTM gates without a memory cell and reveals the full hidden
content without any control [41]. Compared to LSTM, GRU, therefore, exhibits higher
computational efficiency. For the advantage of input information, bidirectional RNNs were
introduced. BiRNN uses information from both directions to predict output sequences by
cascading and connecting backward and forward hidden states to each output node. The
GRU addresses the problems of gradient explosion and the long-term dependency of RNNs,
and requires fewer training parameters compared to the LSTM, which is also a variant
of the RNN. Both the GRU and the LSTM have their advantages and disadvantages in
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practical applications [41]. Determining effective hyperparameters, such as the number of
neuron units and the learning rate, remains a challenging problem, despite GRU’s good
performance in time series prediction and its wide applicability. Optimizers are powerful
tools for the optimization of hyperparameters. In this study, the hyperparameters of the
GRU were optimized using Adam, RMSprop, and RMSprop. Additionally, a sensitivity
analysis improved the robustness of our model and provided valuable insight into how
changing the parameters affected the model. As a result, we were able to understand
the optimal parameter settings for the prediction of government expenditure, the specific
task at hand. We are confident in the accuracy and reliability of our model because of its
consistent performance across different parameter configurations.

The choice of input variables is critical to the accuracy of expenditure forecasting.
Traditionally, a priori expert knowledge, trial and error, or linear cross-correlation analysis
are used to select these variables. However, expert knowledge is often challenging and
time-consuming to acquire, and relying solely on expert knowledge can introduce bias.
Trial and error input selection can be computationally intensive, especially for data-driven
models with many potential input candidates. In addition, the linear correlation coeffi-
cients commonly used only assess linear relationships and do not capture the non-linear
dynamics often present in data-driven models. Artificial intelligence encompasses a range
of techniques that aim to mimic living things’ behavior to improve decision-making and
mitigate potential risks to economic stability and growth. One such technique is GRU,
which focuses on automatically identifying meaningful patterns in data. GRU has become
a valuable tool for extracting information from large datasets [43]. Departure from tradi-
tional computing methods is a common feature of GRU applications. Due to the complexity
of the patterns identified, it is impractical for a human programmer to provide explicit
and detailed instructions for performing these tasks. In addition, GRU techniques can
learn from a wide variety of data types and recognize patterns that may be impossible for
a human to detect. This enables GRU to operate in resource-constrained environments [45].
As a result, GRU could play a critical role in public administration and provide insights
that can inform decision-makers.

In general, GRU outperformed ARIMA, SVR, ETS, XGBoost, CNN, LSTM, BiRNN, and
ASRNN in predicting government expenditure on the basis of data on prior government
spending, household consumption, investment, imports, and exports, which are corre-
lated with GDP. Furthermore, unlike ARIMA, GRU does not require refitting to produce
accurate predictions. ETS, CNN, LSTM, BiRNN, and ASRNN also provided reasonably
accurate predictions.

4. Conclusions

Algorithms such as GRU are becoming increasingly capable of economic prediction as
machine learning becomes more sophisticated and datasets become larger. In our study,
our proposed GRU method outperformed ARIMA, ETS, SVR, XGBOOST, CNN, and LSTM
in terms of MAE, RMSE, and MAPE (average MAPE = 2.774%) when used to predict
government spending on the basis of 1990–2020 data from 15 of the largest economies in
the world, namely Australia, Brazil, Canada, China, France, Germany, India, Italy, Japan,
South Korea, Mexico, Russia, Spain, the United Kingdom, and the United States. Further
studies should incorporate predictors pertaining to political events, social changes, and the
environment, and apply the resultant models to emerging markets. In general, accurate
forecasts of economic trends are indispensable for ensuring sustainable economic growth.

Author Contributions: C.-H.Y.: conceptualization, supervision, project administration. T.M.: method-
ology, writing—review and editing. Y.-D.L.: conceptualization, project administration. All authors
have read and agreed to the published version of the manuscript.

Funding: The funding source is the Ministry of Science and Technology, Taiwan (under grant
no. 111-2221-001-MY3 and 111-2221-002-MY3).

Data Availability Statement: Data were obtained from World Bank (https://data.worldbank.org/).

https://data.worldbank.org/


Mathematics 2023, 11, 3085 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, R.; Lal, K. Forecasting government expenditure using machine learning algorithms: Evidence from India. Technol. Forecast.

Soc. Chang. 2017, 123, 251–260.
2. Harmsen, R.; Sterneberg, A. Forecasting government expenditure with macroeconomic aggregates in small open economies.

Econ. Model. 2017, 60, 302–312.
3. Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A. Artificial

Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and
policy. Int. J. Inf. Manag. 2021, 57, 101994. [CrossRef]

4. Lara-Rubio, J.; Navarro-Galera, A.; Buendía-Carrillo, D.; Gomez-Miranda, M.E.J.C. Analysing financial risks of local governments
to design sustainability policies for public services: An empirical study by the population size. Cities 2022, 128, 103795. [CrossRef]

5. Wei, X.; Mohsin, M.; Zhang, Q.J.R.E. Role of foreign direct investment and economic growth in renewable energy development.
Renew. Energy 2022, 192, 828–837. [CrossRef]

6. Ginn, W.; Pourroy, M.J.E.M. The contribution of food subsidy policy to monetary policy in India. Econ. Model. 2022,
113, 105904. [CrossRef]

7. Guerrero, O.A.; Castañeda, G.; Trujillo, G.; Hackett, L.; Chávez-Juárez, F.J.S.-E.P.S. Subnational sustainable development: The role
of vertical intergovernmental transfers in reaching multidimensional goals. Socio-Econ. Plan. Sci. 2022, 83, 101155. [CrossRef]

8. Barro, R.J. Government spending in a simple model of endogeneous growth. J. Political Econ. 1990, 98, S103–S125. [CrossRef]
9. Scotti, F.; Flori, A.; Pammolli, F. The economic impact of structural and Cohesion Funds across sectors: Immediate, medium-to-long

term effects and spillovers. Econ. Model. 2022, 111, 105833. [CrossRef]
10. Jeong, K.; Koo, C.; Hong, T. An estimation model for determining the annual energy cost budget in educational facilities

using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network). Energy 2014,
71, 71–79. [CrossRef]

11. Robinson, H.; Pawar, S.; Rasheed, A.; San, O. Physics guided neural networks for modelling of non-linear dynamics. Neural Netw.
2022, 154, 333–345. [CrossRef] [PubMed]

12. Palmer, A.; Montano, J.J.; Sesé, A. Designing an artificial neural network for forecasting tourism time series. Tour. Manag. 2006, 27,
781–790. [CrossRef]

13. Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of
traditional algorithms. Appl. Energy 2018, 221, 386–405. [CrossRef]

14. Farah, S.; Humaira, N.; Aneela, Z.; Steffen, E. Short-term multi-hour ahead country-wide wind power prediction for Germany
using gated recurrent unit deep learning. Renew. Sustain. Energy Rev. 2022, 167, 112700. [CrossRef]

15. Li, Q.; Yu, C.; Yan, G. A New Multipredictor Ensemble Decision Framework Based on Deep Reinforcement Learning for Regional
GDP Prediction. IEEE Access 2022, 10, 45266–45279. [CrossRef]

16. Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]
17. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken,

NJ, USA, 2015.
18. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018.
19. Gardner, E.S., Jr. Exponential smoothing: The state of the art—Part II. Int. J. Forecast 2006, 22, 637–666. [CrossRef]
20. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;

Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.
21. Shumway, R.H.; Stoffer, D.S.; Stoffer, D.S. Time Series Analysis and Its Applications; Springer: Berlin/Heidelberg, Germany,

2000; Volume 3.
22. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999.
23. Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning methods for integrated renewable power generation:

A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sustain.
Energy Rev. 2019, 108, 513–538. [CrossRef]

24. Sermpinis, G.; Stasinakis, C.; Theofilatos, K.; Karathanasopoulos, A. Modeling, forecasting and trading the EUR exchange
rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations. Eur. J. Oper. Res. 2015, 247,
831–846. [CrossRef]

25. Murillo-Escobar, J.; Sepulveda-Suescun, J.; Correa, M.; Orrego-Metaute, D. Forecasting concentrations of air pollutants using
support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia. Urban Clim. 2019,
29, 100473. [CrossRef]

26. Yang, C.-H.; Shao, J.-C.; Liu, Y.-H.; Jou, P.-H.; Lin, Y.-D. Application of Fuzzy-Based Support Vector Regression to Forecast of
International Airport Freight Volumes. Mathematics 2022, 10, 2399. [CrossRef]

27. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

28. Kumar, P.; Nestsiarovich, A.; Nelson, S.J.; Kerner, B.; Perkins, D.J.; Lambert, C.G. Imputation and characterization of uncoded
self-harm in major mental illness using machine learning. J. Am. Med. Inform. Assoc. 2020, 27, 136–146. [CrossRef]

https://doi.org/10.1016/j.ijinfomgt.2019.08.002
https://doi.org/10.1016/j.cities.2022.103795
https://doi.org/10.1016/j.renene.2022.04.062
https://doi.org/10.1016/j.econmod.2022.105904
https://doi.org/10.1016/j.seps.2021.101155
https://doi.org/10.1086/261726
https://doi.org/10.1016/j.econmod.2022.105833
https://doi.org/10.1016/j.energy.2014.04.027
https://doi.org/10.1016/j.neunet.2022.07.023
https://www.ncbi.nlm.nih.gov/pubmed/35932722
https://doi.org/10.1016/j.tourman.2005.05.006
https://doi.org/10.1016/j.apenergy.2018.02.069
https://doi.org/10.1016/j.rser.2022.112700
https://doi.org/10.1109/ACCESS.2022.3170905
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.005
https://doi.org/10.1016/j.rser.2019.03.040
https://doi.org/10.1016/j.ejor.2015.06.052
https://doi.org/10.1016/j.uclim.2019.100473
https://doi.org/10.3390/math10142399
https://doi.org/10.1093/jamia/ocz173


Mathematics 2023, 11, 3085 17 of 17

29. Memon, N.; Patel, S.B.; Patel, D.P. Comparative analysis of artificial neural network and XGBoost algorithm for PolSAR image
classification. In Proceedings of the Pattern Recognition and Machine Intelligence: 8th International Conference, PReMI 2019,
Tezpur, India, 17–20 December 2019; pp. 452–460.

30. Su, Y.-C.; Wu, C.-Y.; Yang, C.-H.; Li, B.-S.; Moi, S.-H.; Lin, Y.-D. Machine learning data imputation and prediction of foraging
group size in a Kleptoparasitic spider. Mathematics 2021, 9, 415. [CrossRef]

31. LeCun, Y.; Bottou, L.; Orr, G.B.; Müller, K.-R. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg,
Germany, 2002; pp. 9–50.

32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
33. Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural

network. IEEE Trans. Smart Grid 2017, 10, 841–851. [CrossRef]
34. Nelson, D.M.; Pereira, A.C.; De Oliveira, R.A. Stock market’s price movement prediction with LSTM neural networks. In

Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017;
pp. 1419–1426.

35. Duan, J.; Wang, P.; Ma, W.; Tian, X.; Fang, S.; Cheng, Y.; Chang, Y.; Liu, H. Short-term wind power forecasting using the hybrid
model of improved variational mode decomposition and Correntropy Long Short-term memory neural network. Energy 2021,
214, 118980. [CrossRef]

36. Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Zhang, J.; Shi, J.; Gao, B.; Liu, W. Hybrid deep neural model for hourly solar irradiance
forecasting. Renew. Energy 2021, 171, 1041–1060. [CrossRef]

37. Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.; Ciampitti, I.A. Satellite-based soybean yield forecast: Inte-
grating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020,
284, 107886. [CrossRef]

38. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv 2014, arXiv:1409.1259.

39. Jia, P.; Liu, H.; Wang, S.; Wang, P. Research on a mine gas concentration forecasting model based on a GRU network. IEEE Access
2020, 8, 38023–38031. [CrossRef]

40. Sankaranarayanan, S.; Balan, J.; Walsh, J.R.; Wu, Y.; Minnich, S.; Piazza, A.; Osborne, C.; Oliver, G.R.; Lesko, J.; Bates, K.L.
COVID-19 mortality prediction from deep learning in a large multistate electronic health record and laboratory information
system data set: Algorithm development and validation. J. Med. Internet Res. 2021, 23, e30157. [CrossRef]

41. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
2014, arXiv:1412.3555.

42. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
43. Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th

International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600.
44. Gutierrez-Torre, A.; Bahadori, K.; Baig, S.-U.; Iqbal, W.; Vardanega, T.; Berral, J.L.; Carrera, D. Automatic distributed deep learning

using resource-constrained edge devices. IEEE Internet Things J. 2021, 9, 15018–15029. [CrossRef]
45. Tsay, R.S. Analysis of Financial Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2005.
46. Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009.
47. Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley & Sons: Hoboken,

NJ, USA, 2015.
48. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
49. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; Volume 30.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/math9040415
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TSG.2017.2753802
https://doi.org/10.1016/j.energy.2020.118980
https://doi.org/10.1016/j.renene.2021.02.161
https://doi.org/10.1016/j.agrformet.2019.107886
https://doi.org/10.1109/ACCESS.2020.2975257
https://doi.org/10.2196/30157
https://doi.org/10.1109/JIOT.2021.3098973
https://doi.org/10.1109/78.650093

	Introduction 
	Methods 
	Autoregressive Integrated Moving Average 
	Exponential Smoothing 
	Support Vector Regression 
	Extreme Gradient Boosting 
	Convolution Neural Network 
	Long Short-Term Memory 
	Gated Recurrent Unit 
	GDP Indicators Forecasting Framework 
	Evaluation Criteria 

	Results and Discussion 
	Data Source 
	GRU Architecture Results and Sensitivity Analysis 
	Experimental System 
	Comparison and Discussion 

	Conclusions 
	References

