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Abstract: In many engineering applications, it is often the case that the observations are only available
in interval form. In this note, by using the expectation-maximization (EM) algorithm, the parameter es-
timation of the Weibull distribution with interval-censored data is considered. The estimates obtained
using the EM algorithm are compared with those obtained using the conventional Newton-type
methods, including the Davidon–Fletcher–Powell (DFP) and Berndt–Hall–Hall–Hausman (BHHH)
methods. The results indicate that the estimates obtained using the proposed EM method demon-
strate superior convergence properties compared to the conventional DFP and BHHH methods.
Finally, a numerical study that illustrates the advantages of the proposed method is provided.
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1. Introduction

In various data-driven studies, it is often the case that observations are only available
in interval form. For example, in a go or no-go inspection scheme, it may be the case that the
incoming observations are recorded as pass or no pass according to whether they meet an
interval requirement [a, b]. For a go or no-go inspection, plug gauges are widely used and
are usually made in pairs. One side is for the go gauge (lower hole gauge) and the other
side is for the no-go gauge (upper hole gauge). For example, if the go gauge can enter the
hole, then it is an indication that the hole diameter is above the lower limit. If the no-go
gauge cannot enter the hole, then it is an indication that the hole diameter is below the
upper limit. The part is then accepted because its hole diameter is inside the tolerance band.

Notice that in the go or no-go inspection system, if an observation passes the interval
inspection scheme, then it is said to be interval-censored at [a, b]. This indicates that the
value of the observation lies somewhere between the values of a and b. As an illustration
of interval-censored observations, a sorting machine example is provided in Figure 1. In
addition, if an observation is discarded because it exceeds the allowable limit, then the
allowable limit (denoted as d) is lower than the actual but unknown measurement (denoted
as X). This type of observation is referred to as right-censored at d (that is, d ≤ X or
[d, ∞]). Similarly, if an observation is discarded because it falls below the allowable limit,
it indicates that the allowable limit (denoted as c) is greater than the actual measurement.
This type of observation is called left-censored at c (that is, c ≥ X or [0, c]).

It should be noted that right-censoring is quite common in reliability studies. For ex-
ample, one may be conducting lifetime tests on light bulbs where most of the lifetimes end
up being less than 5000 h, but some of them are still operating after 5000 h. Rather than
waiting for the lifetimes of the still-operating light bulbs to end, it will often be the case that
these observations are measured as being right-censored with the value of 5000. Therefore,
the final sample will consist of both fully observed and right-censored observations.

In the standard case where some observations are fully observed and others are left-,
right- or interval-censored, the resulting data set is said to be incomplete. One obvious
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methodology for dealing with an incomplete data set is to include the fully-observed
observations in the subsequent analysis and discard all observations that are in any way
censored so that a conventional method that deals only with full observations can be
utilized. The obvious disadvantage of the discarding approach is that, if the number of
censored observations is large relative to the total number of observations in the sample,
then a large amount of information is being discarded. In order to avoid this problem,
one can instead use all of the observations and build the likelihood function that needs
to be maximized. Clearly, in order to obtain the maximum of the resulting likelihood
function, a numerical optimization scheme is required. However, an ordinary numerical
method such as Newton-type iterative methods, including the Davidon–Fletcher–Powell
(DFP) method [1] and the Berndt–Hall–Hall–Hausman (BHHH) method [2], will often
be ineffective when applied to complicated likelihood functions. Furthermore, such a
numerical method will often be quite sensitive to the choice of starting values. Recently,
the IcenReg R package [3] was developed. This package allows for the analysis of interval
censored data using parametric, nonparametric, and semiparametric models, including the
Weibull distribution. However, we have observed that the numerical results based on this
package often become unstable when the shape parameter of the Weibull distribution is
very small or very large.

Sorting machine

interval−censoredtoo small too large

a ≤ y ≤ b

a

b

Figure 1. Schematic illustration of a sorting machine.

It is important to emphasize that, when estimating parameters using all of the ob-
servations, including those that are censored, the resulting likelihood can be complicated.
Therefore, rather than obtaining the maximum-likelihood estimate (MLE) by direct maxi-
mization of the likelihood, approximations of the MLE and the best linear unbiased estimate
(BLUE) have been provided in the literature. For example, Gupta [4] has provided the BLUE
for Type-I and Type-II right-censored samples from a normal distribution. For more details
on Type-I and Type-II censoring, one is referred to [5] and Section 7.5 of [6]. Govindara-
julu [7] has derived the BLUE for a symmetrically Type-II censored sample from a Laplace
distribution, but it can be used only for sample size up to n = 20. Balakrishnan [8] and
Hassanein et al. [9] also considered the estimation of the scale parameter of the Rayleigh
distribution with censored observations. However, the BLUE derived by [9] is limited to
the case where the sample sizes are n = 5, 6, . . . , 24, 25, 30, 35, . . . , 45, and the number of
censored observations is limited to r = 0, 1, . . . , n− 2. For more details, see Appendix F
of [10]. Sultan [11] has given an approximation of the MLE for a Type-II right-censored
sample from a normal distribution. Balakrishnan [12] has derived the BLUE for a Type-II
right-censored sample for the Laplace distribution. Note that the BLUE requires the coef-
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ficients which are tabulated in [12] but the table is provided only for sample sizes up to
n = 20. In addition, the approximate MLE and the BLUE are not guaranteed to converge
to the actual MLE. Another more serious problem is that the methods cited above cannot
handle general cases where there are interval-censored observations. The methods cited
are restricted to Type-I/Type-II right-censoring or symmetric censoring for sample sizes up
to n = 20 or n = 45.

In order to overcome the issues that come with the analysis of interval-censored data,
the use of the EM algorithm [13] for parameter estimation is proposed. However, it is
often the case that the implementation of the EM algorithm is quite difficult because the
expectation of the log-likelihood in the E-step is generally complex or unavailable in closed
form. This problem has been studied by several authors, including Panahi and Asadi [14],
Guure et al. [15], Pradhan and Kundu [16], Ferreira and Silva [17], Park [18], Saeed and
Elfaki [19], Kurniawan et al. [20], Ameen and Akkash [21], and Almetwally et al. [22].

Panahi and Asadi [14] consider the estimation for Type-II censored samples. This
method is limited to the case of right censoring and its estimation is based on the Newton–
Raphson iterative procedure. Guure et al. [15] considered the MLE with interval-censored
data but obtained it using a simple numerical approximation. Pradhan and Kundu [16]
suggested the use of a pseudo-likelihood function in the E-step, Park [18] used the quantile
implementation of the E-step, and Saeed and Elfaki [19] used imputation techniques. Kur-
niawan et al. [20] considered the EM algorithm approach, but they estimated only the shape
parameter with Type-II censored observations. Ameen and Akkash [21] obtained the MLE
of the three-parameter Weibull with interval-censored data, but they estimated the parame-
ters based on the Newton–Raphson method. Almetwally et al. [22] analyzed progressive
Type-II censoring data but the MLE was obtained by utilizing the Newton–Raphson method.
Unfortunately, these approaches are not guaranteed to find the maximum of the likelihood
function with interval-censored observations. Recently, Ferreira and Silva [17] obtained the
MLE of the Weibull using the EM algorithm, but they considered only right-censored data.
In this paper, the expectation of the log-likelihood in the E-step is explicitly obtained so that
the standard EM algorithm can be used. The use of the standard EM algorithm guarantees
that the maximum of the likelihood function with interval-censored observations will
be attained.

In this paper, it is assumed that a random sample is generated from the Weibull distri-
bution [23] with the probability density and cumulative distribution functions given below:

f (x) =
κxκ−1

θκ
exp

[
−
( x

θ

)κ]
and F(x) = 1− exp

[
−
( x

θ

)κ]
, (1)

where x > 0, κ > 0 and θ > 0.
This paper is organized as follows. In Section 2, the general likelihood function with

full and censored observations is provided. In Section 3, the EM algorithm is briefly
reviewed. The implementation of the EM algorithm and the parameter estimation method
are provided in Section 4. A real-data example illustrating the complexity associated with
parameter estimation is provided in Section 5. The paper ends with concluding remarks in
Section 6.

2. Likelihood Function for Parameter Estimation in the Interval-Censored Case

As explained in the introduction, a measurement, yi, is of the interval-censored form
if the measurement is only known to fall in an interval:

ai ≤ yi ≤ bi. (2)

The advantage of the interval-censoring formulation in Equation (2) is that it general-
izes according to specific censoring conditions. By letting ai and bi take on the values ±∞
in Equation (2), the interval-censoring formulation includes the left-censored and right-
censored measurement conditions as special cases. For example, by letting bi = ∞ and ai
equal the censored value, one obtains the right-censored condition. Similarly, by letting
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ai = −∞ and bi equal to the censored value, one obtains the left-censored condition. Finally,
by setting yi = ai = bi one obtains the fully-observed condition. It should be noted that, if
the support of the distribution is a positive number and the observation is left-censored,
then one can set ai = 0 instead of ai = −∞. This generality of the interval-censoring
formulation is extremely useful in a reliability setting because it is often the case that one
sample can contain measurements that arrive under varying censoring conditions. In what
follows, the likelihood function in the interval-censored case is provided, but it should be
emphasized that the formulation is completely general in that any censoring condition can
be handled transparently.

Suppose that the interval-censored data [aj, bj] for j = 1, . . . , m is obtained. Then,
by ignoring the normalizing constant, the likelihood function is obtained as

L(Θ) ∝
m

∏
j=1

[F(bj)− F(aj)], (3)

where F(·) is a cumulative distribution function. For more details regarding the above
likelihood function in Equation (3), one is referred to [24].

Similarly, in the more common case when fully-observed and censored data are both
present in the same sample, the likelihood function becomes:

L(Θ) ∝
n

∏
i=1

f (yi) ·
m

∏
j=1

[F(bj)− F(aj)]. (4)

Note that the likelihood in Equation (4) can often be quite complex and difficult to
maximize numerically.

3. The EM Algorithm

In this section, we describe the EM algorithm briefly and show that one can use the
EM algorithm to estimate the unknown parameters when the likelihood has an interval-
censored component. The EM methodology is often a convenient alternative to the more
standard estimation approach in which the likelihood of the sample is constructed and
then maximized through the use of a numerical optimization such as the Newton–Raphson
method. The EM algorithm was proposed by [13] in order to overcome the frequent
difficulties associated with more conventional numerical optimization techniques. Good
references for the EM algorithm are [25–29].

Suppose that w = (w1, . . . , wn) are independent and identically distributed (iid) and
have a continuous distribution with pdf f (w). Note that it is assumed that the sample
w = (w1, . . . , wn) contains at least one data point that is of interval-censored form. For ex-
ample, if w1 is interval-censored at a1 and b1, then this implies that all we know is that
a1 ≤ w1 ≤ b1. Under the assumption that at least one measurement is of interval-censored
form, then the sample is usually referred to as incomplete data in the EM literature.

In what follows, we reformulate the difficult likelihood problem as a missing-data
problem, which then allows us to employ the EM algorithm in order to construct the EM
sequences. In this manner, we avoid constructing the often complicated likelihood along
with the pitfalls associated with the use of conventional numerical optimization.

Let us denote the fully observed (uncensored) part of w1, . . . , wn by y = (y1, . . . , ym)
and the missing (censored) part by z = (zm+1, . . . , zn) with ai ≤ zi ≤ bi. Also, let us denote
the vector of unknown parameters as Θ = (κ, θ). Then, ignoring the normalizing constant,
the complete-data likelihood is shown below:

Lc(Θ|y, z) ∝
n

∏
i=1

f (wi). (5)

Now, it will often be the case that the complete-data likelihood above is quite difficult
to maximize directly because of its inherent complexity. The key idea underlying the EM
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algorithm is that it solves a difficult incomplete-data problem by constructing two simpler
steps, referred to as the E-step and M-step, respectively. These two steps are repeated over
and over until the optimal parameter estimates are obtained. The E-step constructs the
conditional expectation of the complete-data log-likelihood function, ln Lc(Θ|y, z), where
the expectation is taken with respect to the missing part z of the complete data.

Then, in the M-step, one maximizes the expected log-likelihood function that was
constructed during the E-step. It is often the case that the EM algorithm will result in an
EM sequence that is straightforward to compute. To summarize, the EM algorithm consists
of two distinct steps:

• E-step: compute Q(Θ|Θ(s)) =
∫

ln Lc(Θ|y, z) f (z|y, Θ(s)) dz,
where f (·|·) is the conditional pdf given the fully-observed y with the estimated
parameter Θ(s) at the sth step.

• M-step: find the Θ(s+1) that maximizes Q(Θ|Θ(s)) in Θ.

The E-step and M-step are repeated successively until the change in the estimates,
namely, Θ(s+1) −Θ(s), is relatively small. For example, one can stop the EM algorithm
if |Θ(s+1) − Θ(s)| < ε|Θ(s+1)|, where ε is a pre-determined precision of the estimates.
The example provided in the following section should elucidate the steps behind the
EM algorithm.

4. The Implementation of the EM Algorithm and Parameter Estimation Method

In this section, the explicit Q(Θ|Θ(s)) function is provided along with the one-dimen-
sional objective function, both of which allow for the estimation of the Weibull parameters
using the EM algorithm. First, the explicit form of Q function is derived in the E-step.
Deriving this expression requires the use of some complicated calculus and algebra. Next,
using the explicit form obtained in the E-step, we obtain the one-dimensional objective
function, which allows for a straightforward estimation of the Weibull parameters.

4.1. E-Step

It is immediate upon using Equations (1) and (5) that the complete-data log-likelihood
function is given by

ln Lc(Θ|y, z) =
n

∑
i=1

ln f (wi)

= n ln κ − nκ ln θ + κ
m

∑
i=1

ln yi −
(1

θ

)κ m

∑
i=1

yκ
i

+ κ
n

∑
i=m+1

ln zi −
(1

θ

)κ n

∑
i=m+1

zκ
i + C, (6)

where C is a term that does not include the parameters κ and θ.
Because of the iid structure, the conditional pdf of the missing data z, given the fully-

observed data y with the parameter, does not depend on the observed data. Considering
ai ≤ zi ≤ bi, we have

f (z|y, Θs) = f (z|Θs) =
n

∏
i=m+1

f (zi|Θs)

where Θs = (κs, θs) and

f (zi|Θs) =

κszκs−1
i

θs
κs

exp
[
−
( zi

θs

)κs]
exp

[
−
( ai

θs

)κs]
− exp

[
−
( bi

θs

)κs] , (7)
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for ai < bi and ai ≤ zi ≤ bi. Then, using Equations (6) and (7), we can compute

Q(Θ|Θ(s)) =
∫

ln Lc(Θ|y, z) f (z|y, Θ(s)) dz.

In order to obtain the explicit integral result, the following lemmas, theorems, and corol-
lary are needed.

Lemma 1. For a > 0, we have∫ ∞

a
ln z · zp−1 exp

(
− zp

r

)
dz =

r ln a
p

exp
(
− ap

r

)
+

r
p2 Γ

(
0,

ap

r

)
.

where Γ is the upper incomplete gamma function defined as

Γ(κ, β) =
∫ ∞

β
tκ−1 exp(−t)dt. (8)

Proof. We let t = zp/r. Then, we have

z = (rt)1/p and dz =
1
p

r1/p t1/p−1dt.

The following is obtained using the relation above:∫ ∞

a
ln z · zp−1 exp

(
− zp

r

)
dz

=
∫ ∞

ap/r

r
p2 (ln r + ln t) exp(−t)dt

=
r ln r

p2

∫ ∞

ap/r
exp(−t)dt +

r
p2

∫ ∞

ap/r
ln t · exp(−t)dt

=
r ln r

p2 exp
(
− ap

r

)
+

r
p2

∫ ∞

ap/r
ln t · exp(−t)dt. (9)

Using integration by parts, the last term in Equation (9) becomes∫ ∞

ap/r
ln t · exp(−t)dt =

[
− ln t · exp(−t)

]∞

ap/r
+
∫ ∞

ap/r
t−1 exp(−t)dt

= (p ln a− ln r) exp
(
− ap

r

)
+ Γ

(
0,

ap

r

)
. (10)

Substituting Equation (10) into the last term in Equation (9), we obtain∫ ∞

a
ln z · zp−1 exp

(
− zp

r

)
dz =

r ln a
p

exp
(
− ap

r

)
+

r
p2 Γ

(
0,

ap

r

)
,

which completes the proof.

Lemma 2. We have

lim
a↓0

∫ ∞

a
ln z · zp−1 exp

(
− zp

r

)
dz =

r
p2 (ln r− γ),

where γ is the Euler–Mascheroni constant given by

γ = lim
n→∞

(
− ln n +

n

∑
k=1

1
k

)
≈ 0.57721566490153.
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Proof. The exponential integral is defined as

Ei(x) = −
∫ ∞

−x
t−1 exp(−t)dt,

for x 6= 0. Then, it is easily seen that the upper incomplete gamma function in Equation (8)
satisfies the relation

Γ(0, β) = −Ei(−β).

Now, it is well known that the Taylor series expansion of the exponential integral [30] is
given by

Ei(x) = γ + ln |x|+
∞

∑
k=1

xk

k · k!
.

Thus, the Taylor series expansion of Γ(0, x) is given by

Γ(0, x) = −Ei(−x) = −γ− ln |x| −
∞

∑
k=1

(−x)k

k · k!
.

Using this, we have

Γ
(

0,
ap

r

)
= −γ− p ln a + ln r−

∞

∑
k=1

(−ap/r)k

k · k!
. (11)

Substituting Equation (11) into the result of Lemma 1, we have∫ ∞

a
ln z · zp−1 exp

(
− zp

r

)
dz =

r ln a
p

{
exp

(
− ap

r

)
− 1
}
+

r
p2 (ln r− γ)

− r
p2

∞

∑
k=1

(−ap/r)k

k · k!
. (12)

Next, using the standard Taylor series expansion below

exp(−x) = 1− x +
1
2!

x2 − 1
3!

x3 + · · · ,

we have

exp
(
− ap

r

)
− 1 = −1

r
ap +

1
2!r2 a2p − 1

3!r3 a3p + · · · .

and

ln a ·
{

exp
(
− ap

r

)
− 1
}
= −1

r
ap ln a +

1
2!r2 a2p ln a− 1

3!r3 a3p ln a + · · · . (13)

Using L’Hôpital’s rule, we have

lim
a↓0

[
akp ln a

]
= lim

a↓0

[ ln a
a−kp

]
= lim

a↓0

[
− akp

kp

]
= 0, (14)

for p > 0 and k = 1, 2, . . .
Using Equations (13) and (14), it is straightforward to show that

lim
a↓0

[
ln a ·

{
exp

(
− ap

r

)
− 1
}]

= 0. (15)

Since (−ap/r)k → 0 as a ↓ 0 for p > 0 and k = 1, 2, . . ., we have



Mathematics 2023, 11, 3156 8 of 16

lim
a↓0

∞

∑
k=1

(−ap/r)k

k · k!
= 0. (16)

Applying Equations (15) and (16) to (12), we have

lim
a↓0

∫ ∞

a
ln z · zp−1 exp

(
− zp

r

)
dz =

r
p2 (ln r− γ),

which completes the proof.

It is noteworthy that the Euler–Mascheroni constant is easily calculated in the R
language [31] using the built-in digamma function, that is, γ = −digamma(1).

Theorem 1. For 0 < ai < bi < ∞, we have∫ bi

ai

ln zi · f (zi|Θs)dzi =
1

Di,s

[
ln ai · exp

[
−
( ai

θs

)κs]
+

1
κs

Γ
(

0,
( ai

θs

)κs
)]

− 1
Di,s

[
ln bi · exp

[
−
( bi

θs

)κs]
+

1
κs

Γ
(

0,
( bi

θs

)κs
)]

,

where Di,s = exp
[
− (ai/θs)κs

]
− exp

[
− (bi/θs)κs

]
.

Proof. It is immediate upon using Equation (7) that we have

∫ bi

ai

ln zi · f (zi|Θs)dzi =

∫ bi

ai

ln zi ·
κszκs−1

i
θs

κs
exp

[
−
( zi

θs

)κs]
dzi

exp
[
−
( ai

θs

)κs]
− exp

[
−
( bi

θs

)κs]
=

κs

θs
κs Di,s

∫ bi

ai

ln zi · zκs−1
i exp

(
−

zκs
i

θs
κs

)
dzi. (17)

Using Lemma 1, we obtain

∫ ∞

ai

ln zi · zκs−1
i exp

(
−

zκs
i

θs
κs

)
dzi =

θκs
s ln ai

κs
· exp

[
−
( ai

θs

)κs]
+

θκs
s

κ2
s

Γ
(

0,
( ai

θs

)κs)
(18)

and

∫ ∞

bi

ln zi · zκs−1
i exp

(
−

zκs
i

θs
κs

)
dzi =

θκs
s ln bi

κs
· exp

[
−
( bi

θs

)κs]
+

θκs
s

κ2
s

Γ
(

0,
( bi

θs

)κs)
. (19)

Substituting Equations (18) and (19) into (17), we have

∫ bi

ai

ln zi · f (zi|Θs)dzi =
1

Di,s

[
ln ai · exp

[
−
( ai

θs

)κs]
+

1
κs

Γ
(

0,
( ai

θs

)κs
)]

− 1
Di,s

[
ln bi · exp

[
−
( bi

θs

)κs]
+

1
κs

Γ
(

0,
( bi

θs

)κs
)]

,

which completes the proof.

Corollary 1. For ai > 0 and bi → ∞, we have
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∫ ∞

ai

ln zi · f (zi|Θs)dzi = lim
bi→∞

∫ bi

ai

ln zi · f (zi|Θs)dzi

=
1

Ds(ai)

[
ln ai · exp

(
−
( ai

θs

)κs)
+

1
κs

Γ
(

0,
( ai

θs

)κs
)]

,

where Ds(ai) = exp
[
− (ai/θs)κs

]
. In addition, for ai ↓ 0 and bi > 0, we have

∫ bi

0
ln zi · f (zi|Θs)dzi = lim

ai↓0

∫ bi

ai

ln zi · f (zi|Θs)dzi

=
1

D∗i,s(bi)

[
ln θs −

γ

κs
− ln bi · exp

(
−
( bi

θs

)κs)
− 1

κs
Γ
(

0,
( bi

θs

)κs
)]

,

where D∗s (bi) = 1− exp
[
− (bi/θs)κs

]
.

Proof. The first result will be derived as follows. It is easily seen from L’Hôpital’s rule that

lim
bi→∞

ln bi · exp
[
−
( bi

θs

)κs]
= lim

bi→∞

ln bi

exp
[( bi

θs

)κs] = 0.

Also, for κs > 0 and θs > 0, we have limbi→∞ Γ
(
0, (bi/θs)κs

)
= 0 from Equation (8). Thus,

using the result of Theorem 1, we have

∫ ∞

ai

ln zi · f (zi|Θs)dzi = lim
bi→∞

∫ bi

ai

ln zi · f (zi|Θs)dzi

=
1

Ds(ai)

[
ln ai · exp

[
−
( ai

θs

)κs]
+

1
κs

Γ
(

0,
( ai

θs

)κs
)]

. (20)

Next, the second result is derived as follows.∫ bi

0
ln zi · f (zi|Θs)dzi = lim

ai↓0

∫ bi

ai

ln zi · f (zi|Θs)dzi

=
1

D∗s (bi)
lim
ai↓0

∫ bi

ai

ln zi ·
κszκs−1

i
θκs

s
exp

[
−
( zi

θs

)κs]
dzi

=
1

D∗s (bi)
lim
ai↓0

∫ ∞

ai

ln zi ·
κszκs−1

i
θκs

s
exp

[
−
( zi

θs

)κs]
dzi

− 1
D∗s (bi)

∫ ∞

bi

ln zi ·
κszκs−1

i
θκs

s
exp

[
−
( zi

θs

)κs]
dzi (21)

It is immediate upon using Equation (7) that we have

lim
ai↓0

∫ ∞

ai

ln zi ·
κszκs−1

i
θκs

s
exp

[
−
( zi

θs

)κs]
dzi =

κs

θs
κs

lim
ai↓0

∫ ∞

ai

ln zi · zκs−1
i exp

(
−

zκs
i

θs
κs

)
dzi. (22)

Using Lemma 2, we have

lim
ai↓0

∫ ∞

ai

ln zi · zκs−1
i exp

(
−

zκs
i

θs
κs

)
dzi =

θκs
s

κ2
s
(ln θκs

s − γ)

=
θκs

s
κs

(
ln θs −

γ

κs

)
. (23)

Substituting Equation (23) into (22), we have
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lim
ai↓0

∫ ∞

ai

ln zi ·
κszκs−1

i
θκs

s
exp

[
−
( zi

θs

)κs]
dzi = ln θs −

γ

κs
. (24)

Using Lemma 1, we have

∫ ∞

bi

ln zi ·
κszκs−1

i
θκs

s
exp

[
−
( zi

θs

)κs]
dzi =

κs

θκs
s

∫ ∞

bi

ln zi · zκs−1
i exp

[
−
( zi

θs

)κs]
dzi

= ln bi · exp
(
−
( bi

θs

)κs)
+

1
κs

Γ
(

0,
( bi

θs

)κs
)

(25)

Thus, substituting Equations (24) and (25) into (21), we have the second result stated
in this Theorem. This completes the proof.

Lemma 3. We have ∫ ∞

a
zp−1 exp

(
− zq

r

)
dz =

rp/q

q
· Γ
( p

q
,

aq

r

)
.

Proof. Let t = zq/r. Then, we have z = (rt)1/q and dz = 1
q r1/q t1/q−1dt. Using this

substitution, we derive the relation below:∫ ∞

a
zp−1 exp

(
− zq

r

)
dz =

∫ ∞

aq/r
(rt)(p−1)/q exp(−t) · 1

q
r1/q t1/q−1dt

=
rp/q

q

∫ ∞

aq/r
tp/q−1 exp(−t)dt

=
rp/q

q
· Γ
( p

q
,

aq

r

)
,

where Γ is the upper incomplete gamma function again. This completes the proof.

Theorem 2. We have∫ bi

ai

zκ
i f (zi|Θs)dzi =

θs
κ

Di,s

[
Γ
(κ + κs

κs
,
( ai

θs

)κs
)
− Γ

(κ + κs

κs
,
( bi

θs

)κs
)]

,

where Di,s = exp
[
− (ai/θs)κs

]
− exp

[
− (bi/θs)κs

]
.

Proof. It is immediate upon using Equation (7) that we have

∫ bi

ai

zκ
i f (zi|Θs)dzi =

∫ bi

ai

zκ
i ·

κszκs−1
i

θs
κs

exp
[
−
( zi

θs

)κs]
dzi

exp
[
−
( ai

θs

)κs]
− exp

[
−
( bi

θs

)κs]
=

κsθs
−κs

Di,s

∫ bi

ai

zκ+κs−1
i exp

(
−

zκs
i

θs
κs

)
dzi, (26)

where Di,s = exp
[
− (ai/θs)κs

]
− exp

[
− (bi/θs)κs

]
again.

Using Lemma 3, we have

∫ ∞

ai

zκ+κs−1
i exp

(
−

zκs
i

θs
κs

)
dzi =

θs
κ+κs

κs
Γ
(κ + κs

κs
,

aκs
i

θs
κs

)
(27)

and

∫ ∞

bi

zκ+κs−1
i exp

(
−

zκs
i

θs
κs

)
dzi =

θs
κ+κs

κs
Γ
(κ + κs

κs
,

bκs
i

θs
κs

)
. (28)
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It is immediate upon substituting Equations (27) and (28) into (26) that we have

∫ bi

ai

zκ
i f (zi|Θs)dzi =

∫ ∞

ai

zκ
i f (zi|Θs)dzi −

∫ ∞

bi

zκ
i f (zi|Θs)dzi

=
θs

κ

Di,s

[
Γ
(

κ + κs

κs
,
( ai

θs

)κs
)
− Γ

(
κ + κs

κs
,
( bi

θs

)κs
)]

,

which completes the proof.

For notational convenience going forward, we let

Ui,s =


∫ bi

ai

ln zi · f (zi|Θs)dzi if bi > ai

ln ai if bi = ai

and

Vi,s(κ) =


∫ bi

ai

zκ
i f (zi|Θs)dzi if bi > ai

aκ
i if bi = ai

.

Note that the value of Vi,s(κ) depends only on the parameter κ. Thus, we need to
solve for κ in the M-step, the details of which will be described later. However, as shown in
Theorem 1, Ui,s does not include either κ or θ Thus, using Theorem 1 and Corollary 1, we
can easily calculate the value of Ui,s at each E-step. The value of Vi,s(κ) can be calculated
by using Theorem 2. This allows for the evaluation of the expected log likelihood at the sth
step of the EM sequence. Thus we obtain the expected log-likelihood at the sth step in the
EM sequence:

Q(Θ|Θs) =
∫

ln Lc(Θ|y, z) f (z|Θs)dz

= n ln κ − nκ ln θ + κ
m

∑
i=1

ln yi + κ
n

∑
i=m+1

Ui,s

−
(1

θ

)κ m

∑
i=1

yκ
i −

(1
θ

)κ n

∑
i=m+1

Vi,s(κ) + C

= n ln κ − nκ ln θ + κ
n

∑
i=1

Ui,s −
(1

θ

)κ n

∑
i=1

Vi,s(κ) + C. (29)

4.2. M-Step

Differentiating the expected log-likelihood function in Equation (29) with respect to θ
and setting it equal to zero, we obtain

∂Q(Θ|Θ(s))

∂θ
= −nκ

θ
+ κ

(
1
θ

)κ+1 n

∑
i=1

Vi,s(κ) = 0.

Solving the above for θ, we have

θ =

[
1
n

n

∑
i=1

Vi,s(κ)

]1/κ

. (30)

Clearly, given Equation (30), θ is only a function of κ. Substituting Equation (30)
into (29), we obtain the expected log-likelihood as a function of κ only at each step. This
expression reduces to
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Q(Θ|Θs) = n ln κ + κ
n

∑
i=1

Ui,s − n ln

(
n

∑
i=1

Vi,s(κ)

)
+ n ln n− n + C.

Notice that the problem of maximizing the expected log-likelihood has been trans-
formed into a one-dimensional optimization problem with respect to κ. Thus, it suffices to
maximize the following:

n ln κ + κ
n

∑
i=1

Ui,s − n ln

(
n

∑
i=1

Vi,s(κ)

)
. (31)

5. A Real-Data Example

In this section, we investigate the performance of the proposed EM-based method
using a real-data set from the literature. The data was taken from a study of patients with
breast cancer [32,33]. This data set can also be found in Table 3.10 of [34]. The observed
value of interest was the time it took until there was a cosmetic deterioration of the breast.
For convenience, the interval-censored observations are also provided in Table 1.

Table 1. Interval-censored observations.

[8, 12] [0, 22] [24, 31] [17, 27] [17, 23] [24, 30] [16, 24] [13, ∞] [11, 13] [16, 20]
[18, 25] [17, 26] [32, ∞] [23, ∞] [44, 48] [10, 35] [0, 5] [5, 8] [12, 20] [11, ∞]
[33, 40] [31, ∞] [13, 39] [19, 32] [34, ∞] [13, ∞] [16, 24] [35, ∞] [15, 22] [11, 17]
[22, 32] [48, ∞] [30, 34] [13, ∞] [10, 17] [8, 21] [4, 9] [11, ∞] [14, 19] [4, 8]
[34, ∞] [30, 36] [18, 24] [16, 60] [35, 39] [21, ∞] [11, 20]

Assuming that time to cosmetic deterioration has a Weibull distribution, one can
estimate the Weibull parameters of the breast cancer data set. This in turn allows for the
comparison of the proposed EM-based estimation method with the estimation method
based on direct maximization of the likelihood using the DFP and BHHH methods. Some
specific details behind the two methods are provided below.

In order to optimize the log-likelihood function in Equation (4) using the DFP and
BHHH methods, we use the R packages pracma [35] and maxLik [36,37] respectively. As
a precursor to maximizing the likelihood, we sketch the likelihood function using the
perspective and contour plots in Figure 2. Both of the plots suggest that the reasonable
parameter estimates (κ̂, θ̂) are in the general vicinity of κ̂ = 2 and θ̂ = 30. In fact, it turns
out that the exact MLE, which is a component of the object returned by the call to the
contour plot function in R is κ̂ = 2.026 and θ̂ = 28.34. In the case of the EM-based method,
it will be shown that the optimization during the M-step is quite straightforward because
the derived EM sequence is a one-dimensional function of κ.

Finally, when comparing the algorithms, the sole criterion investigated in this note is
the sensitivity of the respective algorithms to the respective starting values used. In order to
investigate the sensitivity efficiently, we generated a symmetric and circular set of starting
value (κ0, θ0) pairs whose center is equal to (2, 30). An illustration of the circular set of
starting values is provided in Figure 3a. Notice that the circular set of two-dimensional
starting values is generated by letting

κ0 = 2 + 1.5 · cos(k× 10◦) and θ0 = 30 + 25 · sin(k× 10◦)

where k = 1, 2, · · · , 36. Essentially, the equations above generate (κ0, θ0) pairs that span the
circumference of a circle with spaces of 10 degrees with the center at (2, 30). Obviously, any
center point that is relatively close to the true MLE could have been chosen as the center,
but we felt that using whole integer values of 2 and 30 was convenient for illustration.

Next, for each of the two-dimensional starting values along the circumference of
the circle, we obtained the parameter estimates using (i) the DFP method, (ii) the BHHH
method, and (iii) the EM method. Additionally, the values of the likelihood function
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associated with the respective estimates were calculated using Equation (4). These results
are summarized in Table 2.

Table 2. The parameter estimates with their corresponding likelihood values using the DFP and
BHHH methods and the proposed EM algorithm.

Angle Starting Values DFP BHHH EM

Degree ( ◦) κ0 θ0 κ̂ θ̂ L × 1032 κ̂ θ̂ L × 1032 κ̂ θ̂ L × 1032

10 3.477 34.34 2.026 28.34 1.515 2.026 28.33 1.515 2.026 28.34 1.515
20 3.410 38.55 2.026 28.34 1.515 2.026 28.33 1.515 2.026 28.34 1.515
30 3.299 42.50 2.026 28.34 1.515 2.027 28.33 1.515 2.026 28.34 1.515
40 3.149 46.07 2.026 28.34 1.515 2.026 28.33 1.515 2.026 28.34 1.515
50 2.964 49.15 1.298 46.78 1.140× 10−4 2.026 28.34 1.515 2.026 28.34 1.515
60 2.750 51.65 2.114 39.26 2.858× 10−3 2.027 28.33 1.515 2.026 28.34 1.515
70 2.513 53.49 2.026 28.34 1.515 2.027 28.34 1.515 2.026 28.34 1.515
80 2.260 54.62 1.142 44.07 1.178× 10−4 2.026 28.33 1.515 2.026 28.34 1.515
90 2.000 55.00 2.069 41.71 4.192× 10−4 2.026 28.34 1.515 2.026 28.34 1.515
100 1.740 54.62 2.312 34.39 6.794× 10−2 2.026 28.34 1.515 2.026 28.34 1.515
110 1.487 53.49 1.298 52.47 8.944× 10−6 2.026 28.33 1.515 2.026 28.34 1.515
120 1.250 51.65 1.334 50.64 2.082× 10−5 2.026 28.34 1.515 2.026 28.34 1.515
130 1.036 49.15 1.382 48.14 7.009× 10−5 2.026 28.34 1.515 2.026 28.34 1.515
140 0.851 46.07 2.026 28.34 1.515 2.026 28.34 1.515 2.026 28.34 1.515
150 0.701 42.50 1.572 41.50 2.651× 10−3 2.026 28.34 1.515 2.026 28.34 1.515
160 0.591 38.55 2.026 28.34 1.515 2.026 28.33 1.515 2.026 28.34 1.515
170 0.523 34.34 2.026 28.34 1.515 2.027 28.34 1.515 2.026 28.34 1.515
180 0.500 30.00 2.026 28.34 1.515 2.026 28.33 1.515 2.026 28.34 1.515
190 0.523 25.66 2.026 28.34 1.515 2.027 28.34 1.515 2.026 28.34 1.515
200 0.591 21.45 2.026 28.34 1.515 2.026 28.33 1.515 2.026 28.34 1.515
210 0.701 17.50 2.026 28.34 1.515 2.027 28.34 1.515 2.026 28.34 1.515
220 0.851 13.93 2.026 28.34 1.515 2.026 28.33 1.515 2.026 28.34 1.515
230 1.036 10.85 2.026 28.34 1.515 2.026 28.34 1.515 2.026 28.34 1.515
240 1.250 8.35 2.026 28.34 1.515 2.027 28.34 1.515 2.026 28.34 1.515
250 1.487 6.51 0.885 9.43 6.281× 10−17 2.026 28.33 1.515 2.026 28.34 1.515
260 1.740 5.38 NA NA NA NA NA NA 2.026 28.34 1.515
270 2.000 5.00 NA NA NA NA NA NA 2.026 28.34 1.515
280 2.260 5.38 NA NA NA NA NA NA 2.026 28.34 1.515
290 2.513 6.51 NA NA NA NA NA NA 2.026 28.34 1.515
300 2.750 8.35 NA NA NA NA NA NA 2.026 28.34 1.515
310 2.964 10.85 NA NA NA NA NA NA 2.026 28.34 1.515
320 3.149 13.93 NA NA NA NA NA NA 2.026 28.34 1.515
330 3.299 17.50 2.026 28.34 1.515 2.027 28.34 1.515 2.026 28.34 1.515
340 3.410 21.45 NA NA NA 2.026 28.34 1.515 2.026 28.34 1.515
350 3.477 25.66 2.026 28.34 1.515 2.026 28.34 1.515 2.026 28.34 1.515
360 3.500 30.00 2.026 28.34 1.515 2.026 28.33 1.515 2.026 28.34 1.515

Refer back to Figure 3. Notice that, by connecting the starting value to its resulting
estimate, we have constructed what is referred to as the diagram of paths, as shown in
Figure 3b–d. Unfortunately, in the cases of the DFP and BHHH methods, the diagram
paths indicate a number of starting values where convergence was not obtained. For the
DFP method, most of these occurred when the angle of the starting value was between
50◦ and 150◦ and between 250◦ and 340◦. For the BHHH method, they occurred when the
angle of the starting value was between 260◦ and 320◦. Conversely, in the case of the EM
algorithm method, all of the starting values converged to the unique estimate which is
essentially the true MLE. It is noteworthy that if the likelihood function is unimodal, then
all EM sequences converge to the unique MLE [38]. Given the EM convergence results and
the two-dimensional nature of the objective function, the frequency of nonconvergence
when using the DFP and BHHH methods is concerning.
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Figure 2. Perspective and contour plots of the likelihood function.
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Figure 3. Diagram of paths connecting the starting values to their resulting estimates. (a) Starting val-
ues given by (κ0, θ0) = (2 + 1.5 · cos(k× 10◦), 30 + 25 · sin(k× 10◦)) for k = 1, 2, . . . , 36. (b) Diagram
path using the DFP method. (c) Diagram path using the BHHH method. (d) Diagram path using the
EM method.
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The R code for the Weibull parameter estimation based on the EM algorithm and the
other Newton-type method using the nlm R function are available at https://github.com/
AppliedStat/R-code/tree/master/2023b, accessed on 15 July 2023. In this URL, additional
illustrative examples are also provided.

6. Concluding Remarks

An EM-based parameter estimation method was developed using the EM algorithm
in the case of the Weibull distribution with interval-censored data. The sensitivity of the
results to various starting values was also investigated. The findings indicate that the
suggested technique is not affected by the choice of starting values, unlike the conventional
DFP and BHHH methods, which occasionally struggle to reach the maximum-likelihood
estimation. By employing the EM-based approach instead of conventional numerical
optimization, analysts have a much larger choice of starting values for estimation problems
of a similar nature. The R code for the EM algorithm is provided with practical examples,
allowing field engineers and practitioners to utilize them according to their needs.
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Nomenclature

ai Lower end of an interval-censored observation
bi Upper end of an interval-censored observation
f (·) Probability density function of Weibull distribution
F(·) Cumulative distribution function of Weibull distribution
Ei(·) Exponential integral function
L(·) Likelihood function
Lc(·) Complete-data likelihood function
Q(·|·) Q function in the E-step
γ Euler–Mascheroni constant
Γ(·, ·) Upper incomplete gamma function
κ Shape parameter of Weibull distribution
θ Scale parameter of Weibull distribution
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