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Abstract: Turbulent flows of practical relevance are often characterized by high Reynolds numbers
and solid boundaries. The need to account for flow separation seen in such flows requires the use
of (partially) resolving simulation methods on relatively coarse grids. The development of such
computational methods is characterized by stagnation. Basically, only a few methods are regularly
applied that are known to suffer from significant shortcomings: such methods are often characterized
by the significant uncertainty of the predictions due to a variety of adjustable simulation settings,
their computational cost can be essential because performance shortcomings need to be compensated
by a higher resolution, and there are questions about their reliability because the flow resolving ability
is unclear; hence, all such predictions require justification. A substantial reason for this dilemma
is of a conceptual nature: the lack of clarity about the essential questions. The paper contrasts the
usually applied simulation methods with the minimal error simulation methods presented recently.
The comparisons are used to address essential questions about the required characteristics of the
desired simulation methods. The advantages of novel simulation methods (including their simplicity,
significant computational cost reductions, and controlled resolution ability) are pointed out.

Keywords: computational fluid dynamics (CFD); large eddy simulation (LES); Reynolds-averaged
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1. Introduction

Computational fluid dynamics (CFD) focuses on the analysis and prediction of fluid
flow based on the numerical solution of fluid flow conservation equations. It has impacted
and transformed all aspects of human endeavor and industry. CFD essentially matters
to aerospace, defense, energy, power generation, transport, electronics, food processing,
environmental management, fire safety, computational chemistry, particle physics, genetics,
architecture and building design, and life, biomedical, and pharmaceutical sciences [1]. An
indication of how many people are involved in CFD is given by the about 25,000 Open-
FOAM users in 2022 [2] (OpenFOAM is open source CFD software used by a part of the
community). According to the CFD company ANSYS, ANSYS is used by 21,251 companies
with 50–200 employees and USD 1M-10M in revenue [3]. The global CFD (both commercial
and inhouse research and development by government and private industry) is today
approximately worth tens of billions USD and is growing at a fast pace [1].

There are significant challenges for CFD in regard to the solution to problems of
practical relevance. The latter are usually characterized by a very high Reynolds number
(Re) and complex geometries. A very important characteristic feature of such flows is
the appearance of a separated flow. A typical illustration of separated turbulent flows is
given in Figure 1. This figure shows the velocity streamlines in periodic hill flows (channel
flow with embedded hills at the lower wall on the left-hand side (LHS) and right-hand
side (RHS), and there is flow from the left to the right). This flow involves features such
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as separation, recirculation, and natural reattachment [4–8]. In particular, the bubble in
Figure 1 next to the hill on the LHS characterizes a reversed flow region (separated flow).
Such flow separation is highly relevant to a large variety of industrial applications, see e.g.,
ref. [9]. A specific illustration of aerospace grand challenge problems is given in Figure 2.

Figure 1. Periodic hill flow velocity streamlines obtained by continuous eddy simulation at Re = 37K
on G500 (G500 refers to 500K grid points). Reprinted with permission from ref. [10]. Copyright 2020
AIP Publishing.
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Grand Challenge Problems

Figure 2. An illustration of CFD grand challenge problems, see ref. [11].

Unfortunately, direct numerical simulation (DNS) is inapplicable to most problems of
practical relevance because of its extreme computational cost for high Re turbulent flow
simulations [11], and the usually applied methods like the Reynolds-averaged Navier–
Stokes (RANS), large eddy simulation (LES), and hybrid RANS-LES methods provide
an inappropriate basis to properly address the challenges described in Figure 2. These
methods suffer from the well-known problems characterized in Table 1 (WMLES and DES
refer to wall-modeled LES and detached eddy simulation, respectively). The resulting CFD
dilemma is a significant waste of resources. In particular, all such existing methods require
validation of their results, which is often hardly possible because experimental data are
hardly available for very high Re flows seen in reality. It is worth noting that corresponding
issues do not only apply to the problems indicated in Figure 2 but to a variety of other
problems, as, for example, mesoscale and microscale modeling in regard to atmospheric
simulations and many technical applications [12–15].

The motivation for this paper is to explain the need for the improvement of the usually
applied simulation methods for turbulent flows and ways to overcome such significant
issues. The problems and their relevance are specified in Section 2. Novel simulation
methods based on exact mathematics and their implications for the usually applied methods
are presented in Section 3. Conclusions are presented in Section 4.
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Table 1. The CFD dilemma: unsolved problems of the RANS, hybrid RANS-LES (the WMLES and
DES), and the LES. See also Section 3.3 regarding the mismatch of the imposed and actual resolution.
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Method Typical problems requiring validation of all such simulation results

LES artificial length scale ∆ in model viscosity νt = Cµk1/2∆ implies uncertain
resolution or high cost to ensure a proper resolution via a sufficiently small ∆

RANS-LES:
WMLES/DES

significant uncertainty depending on a variety of simulation settings and high
cost required to compensate the mismatch of imposed and actual resolution

RANS unreliable (can be very inaccurate) and the exclusion of instantaneous
turbulence implies unphysical simulations of separated turbulent flows

2. The CFD Dilemma
2.1. The RANS, LES, and Hybrid RANS-LES Methods

The success of CFD is based on equations that are solved numerically. Let us sum-
marize first the basic concepts to illustrate the current development of CFD equation
methods.

We consider an incompressible flow for simplicity, the extension to a compressible
flow (possibly involving scalar transport) is straightforward; see ref. [16]. The common
mathematical basis for the RANS, LES, and hybrid RANS-LES models is given by the
incompressible continuity equation ∂Ũi/∂xi = 0 and the momentum equation

DŨi
Dt

= −∂( p̃/ρ + 2k/3)
∂xi

+ 2
∂(ν + νt)S̃ik

∂xk
. (1)

Here, D/Dt = ∂/∂t + Ũk∂/∂xk denotes the filtered Lagrangian time derivative, and the sum
convention is used throughout this paper. Ũi refers to the ith component of the spatially filtered
velocity. We have here the filtered pressure p̃, ρ is the constant mass density, k is the modeled
energy, ν is the constant kinematic viscosity, and S̃ij = (∂Ũi/∂xj + ∂Ũj/∂xi)/2 is the rate-of-
strain tensor. Usually, the modeled viscosity is given by νt = Cµk1/2L. Here, Cµ is a model
parameter with standard value Cµ = 0.09, and L is a characteristic length scale. The latter can
be related to the dissipation rate ε = k/τ of the modeled kinetic energy, the dissipation time
scale τ, or the turbulence frequency ω = 1/τ by L = k3/2/ε = k1/2τ = k1/2/ω, respectively.
The RANS and LES approaches differ by different settings of the characteristic length scales L
in νt = Cµk1/2L and the different grids applied.

The RANS applies transport equations for k and, for example, the dissipation ε,

Dk
Dt

= P− ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α
)
+ Dε, (2)

which determine L via L = k3/2/ε. The diffusion terms are given by Dk = ∂[νt ∂k/∂xj]/∂xj,
Dε = ∂[(νt/σε) ∂ε/∂xj]/∂xj, and P = νtS2 is the production of k, where S = (2S̃mnS̃nm)1/2

is the characteristic shear rate. Cε1 is a constant with standard value Cε1 = 1.44, σε = 1.3,
and α = Cε2 /Cε1 , where Cε2 = 1.92 [17] implies α = 1.33. In contrast to the RANS approach
focusing on the modeling of characteristic turbulence length scales, the LES applies a length
scale that is supposed to be small compared to the RANS length scale. The usual setting
is L = ∆. Here, ∆ refers to the filter width, which is proportional to the grid. Sometimes,
minor variations of L = ∆ are considered (see ref. [18], Section 2.3). The latter are not
considered here for simplicity.

The different L settings applied in the RANS (LES) in conjunction with coarse (fine)
computational grids have remarkable consequences, which are illustrated in Figure 3: the
LES (RANS) concept is shown on the LHS (RHS). Due to the relatively large modeled
viscosity, turbulent velocity fluctuations are not resolved in the RANS on coarse grids. All
the turbulent motion is modeled, and we talk about modeled motion. In contrast, due to the
relatively small modeled viscosity, turbulent velocity fluctuations are resolved in the LES on
sufficiently fine grids. This means the LES involves two simulation ingredients: modeled
motion represented by the equations applied and resolved motion represented by the
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resolved velocity fluctuations. Correspondingly, the RANS and LES simulation concepts
show remarkable differences in simulations. The RANS methods are computationally very
efficient because they run in steady mode, and coarse grids can be applied. However, in
regard to separated turbulent flows (see the illustration in Figure 1), which are usually seen
in applications involving solid boundaries, the RANS were found to provide unreliable
turbulent flow predictions because of their inability to properly reflect instantaneous
turbulence. There is a substantial amount of work aiming at the improvement of RANS
predictions for separated flow by the involvement of machine learning methods. However,
so far there is no convincing demonstration that such methods can overcome the typical
RANS issues, see ref. [19]. The LES usually provides much more reliable predictions because
of the ability to involve instantaneous flow. However, the need to apply a sufficiently fine
computational grid makes the LES very often unaffordable for simulations of complex
high-Re flows seen in reality: see Section 2.3.

Model eqs. Model eqs.

Figure 3. An illustration of different amounts of resolved and modeled motions involved in CFD
approaches. The black lines illustrate a computational grid, the small (large) ellipse illustrates
model equations providing a small (large) contribution to the simulation. The colors on the left
illustrate turbulent velocity fluctuations. On the right, there is a stationary solution, where the velocity
fluctuations are missing.

The only promising approach to deal with this problem is an appropriate hybridization
of the RANS and LES [9,18,20,21]. A variety of approaches for combining the RANS and
LES equations have been suggested so far, for example, the wall-modeled LES (WM-
LES) [22–26], the detached eddy simulation (DES) applied in conjunction with several
equations [21,27–32], the Reynolds-stress-constrained LES (RSC-LES) [33], unified RANS-
LES (UNI-LES) [34–47], the partially averaged Navier–Stokes (PANS) [48], the partially
integrated transport modeling (PITM) [49,50], and the scale adaptive simulation (SAS)
methods [21,51,52]. Figure 4 illustrates the use of hybrid RANS-LES methods. The data
shown on the LHS were obtained by searching in ScienceDirect for journal papers and
books that referred to the mentioned phrase in the title, abstract, or keywords. More
specifically, the record of blending methods was obtained by searching for “blending
turbulence model”. A corresponding search for unsteady RANS (URANS) (not shown)
provided a trend almost equivalent to the DES trend. The plot on the RHS of Figure 4
refers to papers that addressed typical problems of popular CFD methods: “log-layer
mismatch”, “grid-induced separation”, or “hybrid gray area”. Interesting observations
related to Figure 4 are as follows. First, there is a large variety of hybrid RANS-LES methods,
but only a few methods are regularly applied, first of all, the WMLES and DES methods and
then three other methods. Both the WMLES and DES are known to suffer from significant
shortcomings. Second, the cumulative number of papers that addressed modeling issues
shows that there is a very limited number of attempts (a total of 15 papers according to this
search, which may give only a partial impression) to address the typical modeling issues
of popular hybrid RANS-LES methods. Correspondingly, the predominant opinion of the
community in this regard is “There exist two kinds of LES-RANS hybrid methodology: one
is WMLES and the other being detached-eddy simulation (DES)” [53].
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Figure 4. (Left) The number of journal papers published per year on the use of specific hybrid
RANS-LES methods according to ScienceDirect. The abbreviations of hybrid RANS-LES applied refer
to the WMLES, DES, scale adaptive simulation (SAS), blending methods, and the partially-averaged
Navier–Stokes (PANS) methods, respectively. (Right) The corresponding cumulative number of
journal papers focusing on modeling issues of popular hybrid RANS-LES methods.

2.2. The CFD Dilemma

Due to the computational cost and simulation performance, the general CFD dilemma
is that resolving simulations on relatively coarse grids are required, but the currently
applied concepts do not provide a proper basis for that (see the overview in Table 1). This
is described now explicitly by focusing on the DES and WMLES because of the reasons
pointed out in the preceding paragraph. In particular, the next two paragraphs focus on the
WMLES, the following two paragraphs focus on the DES, and the last paragraph focuses
on the LES.

The main thrust of the WMLES is on providing appropriate boundary conditions for
the LES performed on relatively coarse grids by using a RANS model close to the wall. The
latter can be accomplished, e.g., by a simplified version of the momentum Equation (1)
used to solve for the wall shear stress,

2
∂(ν + νt)S̃i2

∂x2
=

DŨi
Dt

+
∂( p̃/ρ + 2k/3)

∂xi
= Fi. (3)

The abbreviation Fi is used to refer to the previous expression. The modeled viscosity νt
represents the difference between the total and resolved contributions, νt = νt,tot − νt,res.
Usually, the resolved contribution νt,res is neglected, which may imply significant errors.
Thus, Park and Moin [54] suggested applying νt = νt,tot − νt,res in conjunction with a
prescribed RANS viscosity given by νt,tot. In this approach, the RANS is applied only to a
thin layer near the wall, where the layer thickness may be much smaller than the boundary
layer thickness. This method captures most of the turbulence inside the boundary layer by
the LES without resolving the smallest scales above the viscous sublayer [53].

However, the concept of the WMLES faces issues. An adequate resolution of the
boundary layer thickness (which makes the WMLES orders of magnitude more expensive
than the original DES [25]) as expected is not feasible under many conditions, e.g., in
thin laminar boundary layers. The off-wall location, where the LES is coupled to the wall
model, needs to be prescribed as a fraction of the local boundary layer thickness, but the
boundary layer thickness is unknown a priori for complex geometries [25,26]. Different
computational mesh distributions can significantly affect the WMLES results for the same
number of grid points [55]. An illustration of the uncertainty of the WMLES predictions
in comparison to experiments, the RANS, LES, and other hybrid RANS-LES is given in
Figure 5 regarding periodic hill flows: the corresponding reattachment point (see Figure 1,
the point at about x/h = 3.8) predictions obtained by different methods are shown for a
range of Re. We see large prediction uncertainties depending on the simulation settings.
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Figure 5. Periodic hill flow reattachment points xr depending on the Re reported by different sources.
The fit 0.49[Re/104]−1.4 + 3.71 to experimental data [56] (solid black line) is shown in all plots. The
name of the first author is used to refer to the source. The references are as follows: (a) Exp. (Rapp) [8],
Exp. (Kähler) [56], LES (Gloerfelt) [57], RANS (Razi) [58], (b) PANS (Razi) [58], DES (Šarić) [59],
UNI-LES (Mokht.) [42], WMLES (Duprat) [55], SAS (Jakirlić) [60], Blending (Kumar) [61].

The basic DES concept, which can be applied in a variety of turbulence equations,
is a switch of the LES and RANS length scales. The following equation can be used, for
example,

Dk
Dt

= P− ψε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α
)
+ Dε. (4)

Here, a function ψ = max(1, L/[CDES∆]) is involved, where CDES is a proportionality
coefficient. An alternative writing of the dissipation ψε in the k equation is ψε = k3/2/LDES,
where the DES length scale LDES = min(L, CDES∆) is used. The DES treats a major part
of the attached boundary layer by the RANS, and the LES is applied in separated flow
regions [66, 76]. A typical problem of the original DES is grid-induced separation, triggered
by the shifting from the RANS to the LES. This problem can be addressed by a delayed
DES (DDES), which prevents the shifting from the RANS to the LES within the boundary
layer. Within this approach [28], LDES is replaced by LDDES = L− f max(0, L− CDES∆),
which involves f = 1− tanh[(20η)3]. Here, η = (ν + νt)/(κ2L2[∂Ũi/∂xj∂Ũi/∂xj]

1/2), with
κ being the von Kármán constant. There is also the improved delayed DES (IDDES),
which uses a blending of the DDES and the WMLES to enable the WMLES near the
wall [29]. However, such improvements are no guarantee of a better model performance in
simulations [45].

The basic problem of the DES concepts is the idea that a desired flow resolution in
between the RANS and LES can be imposed by the model. A specific discussion of this
problem is provided in Section 3.3 after presenting different simulation methods. The core
conclusion can be illustrated by considering the PANS and PITM concepts instead of the
DES concept. The PANS and PITM concepts apply a hybridization of the dissipation term
in the scale equation instead of the dissipation in the k equation,

Dk
Dt

= P− ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− αP

)
+ Dε, (5)

where αP = 1 + R(α− 1). The equivalence of such modifications of different dissipation
terms is well known [10,62–64]. The R involved in αP = 1 + R(α − 1) represents the
resolution degree (equivalent to L2

+, see Equation (13) below). In the PANS, this resolution
degree is imposed, and it is provided by a constant. In the PITM, the resolution degree
is also imposed; R = 1.06∆2/3

+ is used (∆+ = ∆/Ltot, with Ltot being the total length
scale, see Section 3.1), which represents k+ = k/ktot. The latter varies between zero and
one indicating complete or no resolution, respectively. The problem of this approach is
illustrated in Figure 6 [10]. Minor variations in the imposed resolution imply significant
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variations in the actual resolution. In particular, the actual resolution is much lower than the
imposed resolution. To accomplish a desired flow resolution and simulation performance,
there would be a significantly higher computational cost (finer grids). More generally
speaking, the problem is that the model is not informed about the actual flow resolution.
Hence, the RANS-LES swing cannot properly work, because there is no basis for the
model to decide about its proper contribution to the simulation depending on the actual
flow resolution.

0 0.2 0.4 0.6 0.8 1

R, k+

0

0.5

1

1.5

2

2.5

3

y
/h

x/h =2.0

CES-KOS

G 120K
G 250K
G 500K

0 0.2 0.4 0.6 0.8 1

R, k+

0

0.5

1

1.5

2

2.5

3

y
/h

x/h =4.0

CES-KOS

G 120K
G 250K
G 500K

Figure 6. Periodic hill flows: PITM concept validation for Re = 37K, G120, G250, and G500 at x/h = (2, 4)
for different grids involving 120K–500K grid points. The dashed lines show R = 1.06∆2/3

+ , and the
solid lines show k+. Reprinted with permission from ref. [10]. Copyright 2020 AIP Publishing.

It looks like the latter problems can be avoided by following the LES concept, but this
leads to corresponding problems. Usually, the LES is based on using the filter width ∆ as
the length scale (motivated by providing a relatively small length scale). However, the filter
width ∆ is an artificial parameter (disconnected from the modeling framework [65]), and ∆
becomes an unphysical length scale near walls.

• More specifically, an implied problem is that the use of ∆ prevents the use of an inherent
actual resolution measure, leading to the nontrivial question about how the resolution
of the LES can be determined [66,67].

• In this way, a resolution is imposed via the LES viscosity νt = Cµk1/2∆, but there is no
guarantee that the imposed resolution equals the actual resolution.

• Then, very similar to the DES and WMLES issue, it requires a high computational cost
(sufficiently fine grids) to ensure an appropriate flow resolution.

2.3. Implied Computational Cost

The problems described in Section 2.2 seem to be of a theoretical nature, but they
have significant practical effects on the DES, WMLES, and LES calculations. This is
illustrated next.

Figure 7 shows an application of the IDDES, which combines the advantages of the
DDES and WMLES, to a complex high-speed train underbody flow [68]. The results of the
RANS, URANS, and LES are also shown: the LES applies the wall-adapting local-eddy
viscosity (WALE) model [69]. The detailed setup of this study can be found elsewhere [68].
Figure 7 leads to the striking observation that such complex flow simulations may require
LES grids, if significant performance shortcomings are to be avoided. We note that the
computational cost of the WMLES and DES are often the same [70]; sometimes, the WMLES
cost is higher than the DES cost, as the LES in the WMLES covers most of the boundary
layer [71]. The reason why these methods are computationally so expensive is the need to
compensate for the model deficiencies by using finer grids.
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Figure 7. RANS, LES, DES, and URANS investigations of a high-speed train underbody flow using
different grids to determine the solution accuracy versus computational cost: (a) underbody flow
velocity; (b) drag; (c) lift. The reference accuracy is the accuracy relative to the LES data of Mesh4.
Reprinted with permission from [72]. Copyright 2020 AIP Publishing.

The following illustrates the enormous challenges of using the LES to calculate the
high-Re turbulent flows involving complex geometries. One challenge of NASA’s 2030
Computational Fluid Dynamics (CFD) Vision is to accomplish the LES of a powered
aircraft configuration across the full flight envelope [11,73–75]. The goal is to simulate
the flow about a complete aircraft geometry at the critical corners of the flight envelope
including low-speed approach and takeoff conditions, transonic buffeting, and possibly
undergoing dynamic maneuvers, where aerodynamic performance is highly dependent
on the prediction of turbulent flow phenomena such as smooth body separation and
shock–boundary layer interaction [73]. A computational cost analysis performed at the
Federal Republic of Germany’s research centre for aeronautics and space (DLR) revealed
the dimensions of this challenge [74]. The study considered the cost of resolving the LES
of a full three-dimensional (3D) wing of an aircraft at flight Re. This conservative cost
estimation concluded the following: even with exclusive access to the largest existing
(Tianhe-2A) cluster of Xeon-CPUs with almost five million cores, such a simulation would
take around 650 years, when extrapolated linearly. It is worth noting that there is active
research aiming at the design of an LES with reduced computational cost, e.g., with the
introduction of adaptive mesh refinement, improved immersed boundary methods, and
advanced numerical schemes. Nevertheless, the largest concern about the LES is related to
its dependence on the filter width ∆, which poses grid requirements that cannot be satisfied
usually for high Re flows: see the explanations in Section 2.2.

3. A Mathematical Solution to the CFD Dilemma

The CFD problems described in Section 2 are addressed here by contrasting the usually
applied LES and hybrid RANS-LES with the recently developed continuous eddy simula-
tion (CES) methods described in refs. [10,16,62–64,76–78]. The corresponding minimal error
simulations methods are presented next followed by the discussion of the implications.

3.1. Minimal Error Simulation Methods

The approach presented here can be applied in a variety of ways. For simplicity, we
apply this method to Equation (2), modified by the introduction of an unknown variable α∗

instead of a constant α,

Dk
Dt

= P− ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α∗

)
+ Dε. (6)

This approach satisfies the requirements described in Section 3.2: equations are used with-
out any need for characteristic WMLES settings and without introduction of a filter width.
The latter can be replaced by a characteristic turbulence length scale L = k3/2/ε. The equa-
tions considered represent one relation between the flow variables (like k and ε) and the
model variables (like Cε1 and α∗). Similar to the idea of a dynamic LES [10,38,39,42–44,79–81],
we apply variational analysis to set up another relation between the model variables and
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the flow variables, which can be used to specify the unknown α∗. The technical framework
applied to derive these results was provided by an analysis of Friess et al. [32]. The dif-
ference from the latter’s findings is that Friess et al. focused on a different question: for
given PANS/PITM-type relations between model coefficients and resolution indicators,
they determined the equivalence criteria for hybrid methods based on other turbulence
models. A relevant assumption made here is that the energy partition (δk/k and δε/ε,
see below) does not change in space and time. This assumption is not a restriction but a
desired stability requirement, it ensures that physically equivalent flow regions are equally
resolved without significant oscillations of δk/k and δε/ε [10,62,76].

For simplicity, we neglect the substantial derivatives Dk/Dt and Dε/Dt in the fol-
lowing. This approach was shown to work very well in previous applications to periodic
hill flows [10]. A different approach is shown in Appendix A, where these substantial
derivatives are not neglected. The difficulty that comes with the approach described in the
Appendix is a required modification of the k-ε equations, which complicates the compar-
isons with the DES methods presented next. Hence, based on the ε equation, we consider a
hybridization error

λ = Cε1

ε2

k

(P
ε
− α∗

)
+ Dε = Cε1

ε2

k

(
1− Dk

ε
− α∗

)
+ Dε, (7)

where the k equation is used to replace P/ε in the previous expression. By applying
L = k3/2/ε, the latter relation can be rewritten as

λ

k2 =
Cε1

L2

(
1− α∗

)
− Cε1

εDk
k3 +

Dε

k2 . (8)

According to the assumptions made about the energy partitions, we find in the first order
of variations the relations

δDk/Dk = 3δk/k− δε/ε, δDε/Dε = 2δk/k. (9)

Hence, the variation of the last two terms in Equation (8) disappears because of

δ
[ εDk

k3

]
=

εDk
k3

[ δDk
Dk

+
δε

ε
− 3

δk
k

]
= 0, δ

[Dε

k2

]
=

Dε

k2

[ δDε

Dε
− 2

δk
k

]
= 0. (10)

Accordingly, the variation of Equation (8) leads to

δ
[ λ

k2

]
=

Cε1

L2

(
1− α∗

)[ δα∗

α∗ − 1
− δL2

L2

]
. (11)

An extremal error is determined by a zero first variation,

δα∗

α∗ − 1
=

δL2

L2 . (12)

This equation can be integrated from the RANS state to a state with a certain level of

resolved motion,
∫ α∗

α dx/(x− 1) =
∫ L2

L2
tot

dy/y. The result is

α∗ = 1 + L2
+(α− 1), (13)

where L+ = L/Ltot refers to the modeled to total length scale ratio. There is a zero
second variation, leading to the question of whether minimum or maximum errors are
obtained in this way. The result obtained is equal to the result obtained by consider-
ing λ = 0. Thus, this analysis implies minimal error models. The same applies to the
corresponding results reported below. The calculation of L+ matters. The turbulence
length scale resolution ratio L+ = L/Ltot involves modeled (L) and total contributions
(Ltot) [76]. The modeled contribution is calculated by L = 〈k〉3/2/〈ε〉, where the brack-
ets refer to averaging in time. The total length scale is calculated correspondingly by
Ltot = k3/2

tot /εtot. Corresponding to ktot = 〈k〉+ kres, εtot is the sum of the modeled and
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resolved contributions, εtot = 〈ε〉+ εres. Here, the resolved contributions are calculated by
kres =

(〈
ŨiŨi

〉
−
〈
Ũi
〉〈

Ũi
〉)

/2, εres = ν
(〈

∂Ũi/∂xj∂Ũi/∂xj
〉
−
〈
∂Ũi/∂xj

〉〈
∂Ũi/∂xj

〉)
.

The consideration of Equation (6) is one way to address the hybridization. Another
way, which is used below for the comparison with other hybrid RANS-LES, is the consider-
ation of

Dk
Dt

= P− ψαε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α
)
+ Dε. (14)

Here, the dissipation ε in the k equation is modified by introducing the unknown ψα. By
following the analysis above, we consider the hybridization error λ in this version as

λ = Cε1

ε2

k

(P
ε
− α
)
+ Dε = Cε1

ε2

k

(
ψα −

Dk
ε
− α
)
+ Dε, (15)

where the k equation is used to replace P/ε in the previous expression. The setting
α∗ = 1 + α− ψα recovers Equation (7), which implies (in combination with α∗ = 1 +
L2
+(α− 1)) ψα = α− L2

+(α− 1).
A relevant question is about the relationship of the length scale L involved here and

the filter width ∆ applied in the LES and other hybrid RANS-LES. This question can be
addressed by assuming an equivalence between a CES simulation using Equation (14)
in conjunction with ψα = α − L2

+(α − 1) with a corresponding DES simulation using
Equation (14) in conjunction with ψ = max(1, L/[CDES∆]). The assumed equivalence
ψα = ψ implies

α− L2
+(α− 1) = max(1, L/[CDES∆]) = max(1, L+/[CDES∆+]), (16)

where ∆+ = ∆/Ltot is introduced. The latter relation represents a quadratic equation in L+,
which is solved by

L+ = min
(√1 + 4α(α− 1)C2

DES∆2
+ − 1

2(α− 1)CDES∆+
, 1
)

. (17)

In addition to looking at L+ = L/Ltot, it is also of interest to look at the relationship of L
and ∆, i.e., L/∆. Equation (16) also provides a quadratic equation for the latter, which is
solved by

L
∆

= min
(
− q

2
+

√
q2

4
+ CDESαq,

1
∆+

)
, (18)

where q = [CDES(α− 1)∆2
+]
−1 is used as an abbreviation. For small ∆+, both Equations (17)

and (18) provide L+ = αCDES∆+. For simplicity, we apply αCDES = 1, which is consistent
with the LES setting; see the discussion following Equation (2). In terms of α = 1.33,
this implies CDES = 0.75, which is not far from the standard value CDES = 0.65. The
corresponding plots of L+ implied by Equation (17) and L/∆ according to Equation (18)
(which are used for the discussion in Section 3.2) are shown in Figure 8. We see a plausible
variation of L+ with ∆+, and we see that L can become much smaller than ∆.

+D

L+

( )a

+D

L
/D

( )b

LES

RANSGray-zone

Figure 8. In (a), the dashed line shows ∆+. The black lines show L+ according to Equation (17). A
plot of L/∆ according to Equation (18) is shown in (b). The blue lines indicate the LES, gray-zone,
and RANS regimes.
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3.2. Implications for the Hybrid RANS-LES and LES: Model Formulations

As shown in Section 2, the usually applied hybrid RANS-LES methods suffer from the
uncertainty of their predictions implied by a variety of parameter settings and the impact
of different mesh distributions. As a consequence, such predictions need evidence through
validation data, which are often unavailable. A closely related problem is the use of ∆ as
the length scale in the LES, see Section 2.2.

Therefore, a first requirementR1 to enable improved separated turbulent flow predic-
tions is a method, which enables the LES to use relatively coarse grids with a minimum
of adjustable settings (without the inclusion of a variety of simulation settings). In other
words, it needs a new type of WMLES without the possibility of choosing between different
(equilibrium or nonequilibrium) wall models, definitions of regions where different mod-
els and grids are applied, different mesh distributions, and setup options to manage the
information exchange between such different flow regions. In regard to this requirement,
the CES equations presented here are independent of the variety of WMLES settings. The
model only depends on the model parameters Cε1 , α, and σε, i.e., the model depends
minimally on setup parameters and conditions.

The second requirementR2 is that the method is independent of the introduction of
an artificial variable, the filter with ∆. As is well known, ∆ is often too large to serve as
an appropriate length scale if relatively coarse grids are applied, as is usually needed for
high-Re flow simulations. This implies then the difficult question of whether a specific
LES is actually (fully) resolving [66,67]. In contrast, the length scale L applied in a CES is
a well-defined physical variable that varies in between the filter width ∆ (for very small
∆+) and the RANS-type length scale Ltot (for large ∆+), see Figure 8. The inability of ∆ to
serve as appropriate length scale in an LES on coarse grids is addressed by the ability of
L to become much smaller than ∆ on coarse grids. According to Equation (18), we find
L/∆ = 1/∆+ asymptotically, which means L/∆ approaches zero for large ∆+. Thus, the
concept presented here enables an LES unrestricted by the strict resolution requirements
of a standard LES: the model can increase its contribution to simulations if there is no full
resolution (a mechanism that is missing in the usual LES). On top of that, the calculation
of L+ involved in the simulation enables a direct evaluation of the resolution standard of
an LES.

There is also the question of which equations can be applied as minimal error LES.
One option is the use of Equation (6), where the hybridization is accomplished in the scale
(ε) equation. Another option is the use of Equation (14), i.e., we consider the equations

DŨi
Dt

= −∂( p̃/ρ + 2k/3)
∂xi

+ 2
∂(ν + νt)S̃ik

∂xk
,

Dk
Dt

= P− ψαε + Dk (19)

in conjunction with a scale model (for ε), where νt = Cµk1/2L, and ψα = α− L2
+(α− 1).

An alternative writing of the dissipation term in the k equation is ψαε = k3/2/LCES, where
the CES length scale LCES is defined by LCES = L/[α− L2

+(α− 1)]. The advantage of this
option is the possibility of providing different (algebraic) models for the scale variable [78].

3.3. Implications for the Hybrid RANS-LES and LES: The Imposed versus Actual Resolution

The modeling strategy of the usually applied computational methods (RANS, LES,
and hybrid RANS-LES, such as the DES and WMLES) is to impose a certain resolution by
the setting of the length scale L in the model viscosity νt = Cµk1/2L. The usual setting of L
in partially resolving methods and the LES is L = ∆ (in partially resolving methods, the LES
region is covered in this way). Depending on a large (small) modeled viscosity, fluctuations
(i.e., resolved motion) cannot (can) be produced. In L = ∆ based methods, the imposed
resolution can be quantified by ∆+ = ∆/Ltot. However, the actual resolution is determined
by L+ = L/Ltot, which specifies the relative amount of the model’s contribution to the
characteristic length scale of the simulated turbulence structures. In general, it cannot be
expected that the imposed resolution controls the actual resolution. Explicit evidence for
the latter was provided in terms of Figure 6.
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The mismatch of the imposed and actual resolution has significant consequences
(regarding the validation of the simulation results, the computational cost, the additional
required model components, and the RANS-LES swing) which are summarized in Table 2.
The uncertainty of the actual resolution (the resolution standard) implies the need for
the validation of the simulation results, but such validation data are often unavailable.
In this way, reliable predictions of very high Re turbulent flows are out of reach. This
mismatch produces a hybridization error. Given the need for accurate simulation results, the
consequence is the need for minimizing this hybridization error by using finer grids, which
explains the relatively high computational cost of the DES and WMLES. The mismatch
also has relevant implications for the fluctuation generation mechanism. The latter is an
issue of many hybrid RANS-LES, which require the stimulation of fluctuations to trigger
the development of instantaneous turbulence or the damping of fluctuations (as does
the DDES, which prevents the shifting from the RANS to the LES within the boundary
layer). Arguably, the most relevant consequence of the mismatch of imposed and actual
resolution is that such hybrid RANS-LES cannot properly cover the RANS-LES swing,
which means the seamless transition from RANS to LES. The mismatch of the imposed
and actual resolution means that the model is not correctly informed about the actual
flow resolution. The latter is the requirement such that the model can properly decrease
(increase) its contribution to the simulation if there is a substantial amount (little amount)
of resolved motion. This is equivalent to the model’s ability to seamlessly transition from
the RANS to LES.

Consequently, the third requirementR3 is that the method should enable a functional
RANS-LES swing, or, equivalently, a match of the imposed and actual resolution. The latter
is accomplished by the CES method presented here. Specifically, the CES method explicitly
determines and responds to the actual resolution, it reduces the computational cost by
excluding the hybridization errors, and it stabilizes the fluctuations by providing damping
(via νt) in consistency with actual fluctuations.

Table 2. Hybrid RANS-LES and LES: consequences of the imposed resolution (IR) and actual resolution
(AR) mismatch. Ltot is a typical length scale of simulated turbulence structures, and ∆ and L are the
filter width and model length scales, respectively.

Model IR = IR(∆/Ltot) 6←→ AR = AR(L/Ltot) implied by modeled + resolved motion
⇒ uncertainty because of uncertain resolution, validation needed, no high-Re flow predictions
⇒ non-minimal errors require finer grids (higher cost) to ensure proper model performance
⇒ triggering/damping of fluctuations possibly needed due to improper fluctuation mechanism
⇒ dysfunctional RANS-LES swing: model cannot respond to resolution, which is unknown

4. Summary

Turbulent flows of practical relevance are often characterized by high Re and solid
boundaries. The need to account for the flow separation seen in such flows implies the use
of at least partially resolving simulation methods (hybrid RANS-LES) on relatively coarse
grids. The CFD dilemma in this regard is to provide the proper working equations, which
enable efficient and reliable simulations. Most applications focus on two methods, the DES
and WMLES types of simulations, which suffer from a variety of problems including their
very significant computational expenses and the need for the validation of their results: see
Table 1. Supporting factors for this development are the notions that the LES on coarse
grids can be properly set up via the addition of the appropriate boundary conditions (the
WMLES concept), the idea that the flow resolution requires the use of the filter width as
the length scale for resolving regimes, and the idea that the actual flow resolution can be
imposed (there is no need to inform the model about the actual flow resolution).

The results of the minimal error CES simulation methods, which are based on exact
mathematics, are contrasted here with these notions. It is shown that a properly working
LES on coarse grids can be set up without many simulation settings (without the typical
WMLES settings). It is also shown that there are characteristic physically sound length
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scale definitions that generalize the usual LES filter width ∆ and avoid the consequences
implied by using ∆, i.e., the methods presented overcome the usual ∆-based LES problems
on coarse grids, where the strict resolution requirement cannot be satisfied. The use of the
physical length scale L instead of ∆ enables the model to contribute to the simulation under
the conditions of incomplete resolution. It is also shown that the model can and needs
to be informed about the actual flow resolution, which is a requirement for a functional
RANS-LES swing.

The minimal error CES simulation methods can be applied to a variety of two-equation
turbulence models, Spalart–Allmaras-type viscosity models, Reynolds-stress transport equation
models, and probability density function models using different hybridzations [10,16,62–64,76–78].
The methods can be also applied to scalar transport modeling [64] and the modeling of
stratified and compressible flow [16]. The CES is proven to work very well in regard to
periodic hill flow simulations (see the illustration of streamlines in Figure 1) and other
separated high-Re applications considered so far [10,82]. In particular, these methods can
properly deal with the RANS-LES swing, they provide very cost-efficient and reliable
alternatives to almost resolving the LES, and they work well as unsteady RANS involving
a stable mechanism of the generation of fluctuations. Based on the functional RANS-LES
swing, the use of these methods enables predictions of extreme Re flow regimes that cannot
be studied properly by other methods. Thus, the use of CES methods as an alternative to
the currently applied methods represents a very promising choice.
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Appendix A

In contrast to the neglect of substantial derivatives regarding the derivation of the
minimal error methods in Section 3.1, these derivatives are included here to show the
implications. This approach is more general; the disadvantage is the need to consider the
turbulent diffusion terms, where the modeled viscosity νt is replaced by the total viscosity
νt,tot, i.e., the equations

Dk
Dt

= P− ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α∗

)
+ Dε (A1)

are combined with Dk = ∂[νt,tot ∂k/∂xj]/∂xj and Dε = ∂[(νt,tot/σε) ∂ε/∂xj]/∂xj. We intro-
duce a hybridization error λ as a residual of the ε equation,

λ = Cε1

ε2

k

(P
ε
− α∗

)
+ Dε −

Dε

Dt
= Cε1

ε2

k

(1
ε

Dk
Dt

+ 1− Dk
ε
− α∗

)
+ Dε −

Dε

Dt
, (A2)

where the k equation is used to replace P/ε in the previous expression. The normalized
error is given by

λ

ε
=

Cε1

τ
(1− α∗) +

Cε1

k

(Dk
Dt
− Dk

)
− 1

ε

(Dε

Dt
− Dε

)
. (A3)
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The suitability of this normalization can be justified by taking the variation of λ and
combining the terms that involve λ. In the first order of variations, we find

δ(Dk/Dt)
Dk/Dt

=
δDk
Dk

=
δk
k

,
δ(Dε/Dt)

Dε/Dt
=

δDε

Dε
=

δε

ε
. (A4)

Hence, the variation of the last two terms in Equation (A3) disappears because of

δ
[1

k
Dk
Dt

]
= δ

[Dk
k

]
= δ

[1
ε

Dε

Dt

]
= δ

[Dε

ε

]
= 0. (A5)

The variation of Equation (A3) then provides

δ
(λ

ε

)
=

Cε1

τ
(1− α∗)

[ δα∗

α∗ − 1
− δτ

τ

]
. (A6)

We set the first variation equal to zero to determine the extremal error,

δα∗

α∗ − 1
=

δτ

τ
. (A7)

This equation can be integrated from the RANS state to a state with a certain level of
resolved motion,

∫ α∗

α dx/(x− 1) =
∫ τ

τtot
dy/y. The result obtained is given by

α∗ = 1 + τ+(α− 1), (A8)

where τ+ = τ/τtot refers to the modeled to total time scale ratio, which is calculated like
L+, see Section 3.1. In correspondence with the explanations in Section 3.1, we may also
consider the equations

Dk
Dt

= P− ψαε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α
)
+ Dε. (A9)

Here, the dissipation ε in the k equation is modified by introducing the unknown ψα. By
repeating the analysis presented above, it turns out that the result of hybridizing this
equation is given by α∗ = 1 + α− ψα, where α∗ = 1 + τ+(α− 1)]. Thus, the relationship
between ψα and α∗ is the same as that found in Section 3.1.
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