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Abstract: Metaheuristic optimization is considered one of the most efficient and powerful techniques
of recent decades as it can deal effectively with complex optimization problems. The performance
of the optimization technique relies on two main components: exploration and exploitation. Unfor-
tunately, the performance is limited by a weakness in one of the components. This study aims to
tackle the issue with the exploration of the existing jellyfish search optimizer (JSO) by introducing a
hybrid jellyfish search and particle swarm optimization (HJSPSO). HJSPSO is mainly based on a JSO
structure, but the following ocean current movement operator is replaced with PSO to benefit from
its exploration capability. The search process alternates between PSO and JSO operators through a
time control mechanism. Furthermore, nonlinear and time-varying inertia weight, cognitive, and
social coefficients are added to the PSO and JSO operators to balance between exploration and
exploitation. Sixty benchmark test functions, including 10 CEC-C06 2019 large-scale benchmark test
functions with various dimensions, are used to showcase the optimization performance. Then, the
traveling salesman problem (TSP) is used to validate the performance of HJSPSO for a nonconvex
optimization problem. Results demonstrate that compared to existing JSO and PSO techniques,
HJSPSO contributes in terms of exploration and exploitation improvements, where it outperforms
other well-known metaheuristic optimization techniques that include a hybrid algorithm. In this case,
HJSPSO secures the first rank in classical and large-scale benchmark test functions by achieving the
highest hit rates of 64% and 30%, respectively. Moreover, HJSPSO demonstrates good applicability
in solving an exemplar TSP after attaining the shortest distance with the lowest mean and best
fitness at 37.87 and 36.12, respectively. Overall, HJSPSO shows superior performance in solving most
benchmark test functions compared to other optimization techniques, including JSO and PSO. As a
conclusion, HJSPSO is a robust technique that can be applied to solve most optimization problems
with a promising solution.

Keywords: metaheuristics optimization; hybrid algorithm; benchmark functions; traveling salesman
problem

MSC: 90C26; 68T20; 65C10

1. Introduction

Most problems in critical applications such as engineering, sciences, and economics
require a decision-making mechanism or optimization technique. The optimization tech-
nique is used to choose between various possible solutions to reach the best decision based
on a designated objective function [1]. Various types of optimization techniques are used to
successfully solve problems in many applications. In the last two decades, metaheuristic
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optimization techniques have received more attention compared to classical optimization
techniques [2]. The main reason behind this discrepancy is because classical optimizations
are commonly trapped in a local optimum [3]. On the contrary, metaheuristic techniques
can escape from the local optimum and search for a better solution, which leads to the
global optimum. Furthermore, the classical optimization technique is highly dependent on
the starting point to give a good solution. By contrast, the performance of metaheuristic
optimization techniques is not significantly affected by the starting point [3].

The two major components in metaheuristic techniques are known as exploration and
exploitation. Exploration is a search for possible solutions in promising areas within a
search space, while exploitation is a search for a better solution within the surrounding
area of the optimum solution so far. A good balance between exploration and exploitation
should be arranged to achieve effective performance in solving an optimization problem [4].
However, many recent studies revealed that exploration and exploitation in most exist-
ing metaheuristic techniques are still not treated well [5]. For instance, particle swarm
optimization (PSO), grey wolf optimizer (GWO), and heap-based optimizer (HBO) have
poor exploitation but better exploration [6]. By contrast, artificial bee colony [7], firefly
algorithm (FA) [8,9], and cuckoo search [10] have poor exploration but better exploitation.
Consequently, several new hybrid techniques have been suggested to improve the balance
between exploitation and exploration. The hybrid techniques consist of two or more meta-
heuristic algorithms to complement one another and take advantage of their good features
to produce a more accurate technique [11,12].

In general, metaheuristic optimization techniques can be classified into four main
categories: evolutionary-based, physical-based, human-based, and swarm-intelligence-
based techniques [13]. Evolutionary-based techniques imitate the processes of biological
evolution, which are selection, reproduction, mutation, and recombination. There are
several popular evolutionary-based techniques, including genetic algorithm (GA) [14],
differential evolution (DE) [15], and biography-based optimizer (BBO) [16]. Physical-
based techniques are inspired by physical laws and phenomena such as gravitational
force, inertia force, and lightning phenomena. Popular physical-based techniques include
gravitational search algorithm [17], simulated annealing [18], and lightning search algo-
rithm (LSA) [19]. Human-based techniques, such as teaching–learning-based optimization
(TLBO) [20], HBO [13], and coronavirus herd immunity optimizer (CHIO) [21], mimic
human social behavior. Swarm-intelligence-based techniques are inspired by the collective
food-foraging behavior of social creatures in nature, such as flocks of birds, schools of
fishes, and colonies of insects. The popular optimization techniques from this category are
PSO [22], jellyfish search optimizer (JSO) [23], and rat swarm optimizer (RSO) [24].

JSO is one of the most recent swarm-intelligence-based techniques. This algorithm
is inspired by the foraging behavior of jellyfish in the ocean [23]. Its competitive features
make it popular, and it is used to solve various optimization problems and different
engineering problems [25]. However, JSO has shown poor exploration capability [26].
Therefore, hybridizing the JSO with a good exploration technique will balance exploration
and exploitation to improve the search process. In the last two decades, PSO has been
presented as a robust metaheuristic optimization technique with many features, such
as simplicity, fast convergence, and excellent exploration capability [27]. Therefore, the
present paper proposes a novel hybrid optimization algorithm based on JSO and PSO,
which is called hybrid jellyfish search and particle swarm optimization (HJSPSO). The main
contributions of this paper are as follows:

• A significant improvement in HJSPSO in terms of accuracy at fast convergence rates
compared to the original PSO and JSO techniques.

• The superiority of HJSPSO is verified by comparing it with nine well-known optimiza-
tion techniques, including the existing hybrid algorithm.

• The robustness of HJSPSO is validated through unimodal, multimodal, and large-scale
benchmark test functions.
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The remaining sections of this paper are structured as follows: Section 2 reviews
the recent literature on PSO and JSO, including their existing hybridization. Section 3
explains the original formulations of PSO and JSO, and Section 4 presents and discusses the
proposed HJSPSO. Section 5 evaluates the performance of HJSPSO by using benchmark test
functions and an exemplar TSP to showcase its effectiveness compared to other optimization
techniques. Finally, Section 6 draws a conclusion.

2. Review of PSO and JSO Applications

Numerous studies have been published recently in the field of metaheuristic tech-
niques, and this trend is expected to continue as more new techniques are introduced.
Metaheuristic optimization techniques are popular and widely used in engineering applica-
tions because of their good performance in providing a promising solution [28]. Introduced
by Kennedy and Eberhart [22] in 1995, PSO is now considered one of the most popular
optimization techniques. In the last two decades, many studies have been conducted
to improve the performance of PSO, whether by modifying the original form of PSO or
hybridizing it with other metaheuristic techniques. Cui et al. [29] introduced a disturbance
factor in PSO to improve its performance. In that case, a few particles are selected when no
improvement is observed for a period longer than the disturbance factor, and then their
velocities are modified to escape from the local optimum. Ibrahim et al. [30] adopted an
artificial immune system in PSO to tackle the issue with constraint violations. Gupta and
Devi [31] presented a modified PSO where the inertia weight and acceleration coefficients
are varied nonlinearly along with iterations to balance global exploration and local exploita-
tion. Yan et al. [32] modified PSO with an exponential decay weight where a constraint
factor is inserted into the velocity-updating procedure. Al-Bahrani and Patra [33] presented
an orthogonal PSO where the swarm particles are divided into two groups to enhance the
diversity in the population. The first group comprises the active best personal experience,
while the remaining particles form the second group, representing passive personal experi-
ences. In each iteration, the positions of the active group are orthogonally diagonalized
to enhance the exploration capability. Numerous researchers have also sought balance
between exploration and exploitation in PSO by hybridizing it with other metaheuristic
techniques. For instance, PSO is hybridized with the spotted hyena optimizer (HPSSHO),
differential evolution (HPSO-DE), fireworks algorithm (PS-FW), and gravitational search
algorithm (HGSPSO) [4,34–36].

JSO is one of the more recent swarm-based optimization techniques. It was introduced
by Chou and Truong [23] in 2020 and, therefore, only several studies have been carried out
to enhance its performance. Most previous studies focused on modifying the formulation of
JSO to enhance its performance. Abdel-Basset et al. [37] proposed a premature convergence
strategy in the JSO algorithm to improve its capability to search for the optimal solution.
This strategy is based on a control mechanism to accelerate the convergence toward the best
solution and decrease the probability of being stuck in the local optimum. It consists of two
steps: (i) it randomly selects two particles from the population to relocate their positions
and (ii) seeks better solutions between the current best and the random positions in the
population. Manita and Zermani [26] proposed an orthogonal JSO that uses an orthogonal
learning strategy to improve the exploration capability. This strategy helps to search for
the best solution by forecasting the best combination between two solution vectors based
on limited trials. In another work, Juhaniya et al. [38] improved the exploration capability
of JSO by using an opposition-based learning strategy to solve an optimal stator and
stator slot designs. Rajpurohit and Sharma [39] introduced seven chaotic maps into JSO
by inserting these into the active movement step to improve its accuracy and efficiency.
Only one study has been found to hybridize the JSO with another metaheuristic technique.
Introduced by Ginidi et al. [40], the hybrid technique, called hybrid heap-based and jellyfish
search algorithm (HBJSA), combined HBO and JSO to solve the combined heat and power
economic dispatch problem. On the other hand, Chou et al. [41] presented a hybrid model
that integrates JSO with a machine learning algorithm called convolutional neural network
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(CNN) to improve the predictive accuracy of energy consumption in 20 cities in Taiwan.
The best CNN model was selected by evaluating available models with different training
datasets before it was integrated with JSO. In this case, the role of JSO was limited to
determining the best internal parameters of the CNN model, where the effectiveness of
JSO in finding the best solution was very minimal. Therefore, similar work to that in [40]
should be carried out to improve the performance of JSO and benefit from its advantages.

The prior literature clearly shows that numerous attempts have been made to achieve
a balance between exploration and exploitation in JSO and PSO by either modifying their
operators or hybridizing them with other metaheuristic optimization techniques. However,
no hybrid technique that combines JSO and PSO has been found in the literature. It is
important to utilize the advantages of PSO’s exploration capability and JSO’s exploitation
capability by hybridizing them to achieve a balance between exploration and exploitation.
The existing formulation of PSO and JSO is explained in the next section to provide a better
understanding before they can be hybridized.

3. The Existing Optimization Formulation
3.1. PSO Formulation

PSO is a famous optimization technique based on swarm intelligence, which is in-
spired by the social behavior of animals during food collection, like bird flocks and fish
schooling [22]. It is an iterative algorithm consisting of a swarm of particles where the
position of each particle, X, is a potential solution for the optimization problem. A group
of particles (population) is initialized by randomly locating the positions of each particle in
the search space. In each iteration, the velocity of the i-th particle, Vi, is updated according
to the individual best performance, known as the personal best (Pbest), and the best particle
performance of the entire swarm, known as the global best (Gbest) using the following
expression [22]:

Vt+1
i = wVt

i + c1r1
(

Pbestt
i − Xt

i
)
+ c2r2

(
Gbestt − Xt

i
)

(1)

where w is the inertia weight that provides the balance between exploration and exploitation
by decreasing the velocity while solutions reach the global minimum, c1 and c2 are the
cognitive and social coefficients, and r1 and r2 are real random vectors in the range of [0, 1].
The position of each particle is updated as follows [22]:

Xt+1
i = Xt

i + Vt+1
i 1 ≤ i ≤ N (2)

Pbest is updated when individual particles find an improvement in their performance
so far, and Gbest is updated when the swarm finds a better solution. This process is repeated
until the termination criterion is satisfied.

3.2. JSO Formulation

JSO, which is also derived from the swarm intelligence technique, simulates the
foraging behavior of jellyfish in the ocean as they search for food [23]. JSO consists of
two main movements: (i) following the ocean current and (ii) moving inside the swarm
of jellyfish. A time control mechanism is used to switch between the movements. At
the beginning, the swarm of jellyfish (population) is initialized randomly using one of
the chaotic maps known as a logistic map. The logistic map provides better initialization
by distributing jellyfish in the search space to ensure they are not trapped in the local
optimum and improve the convergence accuracy. The initialization of JSO can be expressed
as follows:

Xi = LB + (UB− LB)Li 1 ≤ i ≤ N (3)

where Xi represents the position of the i-th jellyfish, and UB and LB are the upper and
lower bounds of the search space, respectively. Li refers to the logistic value of the i-th
jellyfish, which can be expressed as
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Lt+1
i = ηLt

i
(
1− Lt

i
)

0 ≤ L0
i ≤ 1 (4)

where L0
i is the initial value of the jellyfish, L0

i /∈ {0, 0.25, 0.5, 0.75, 1}, and η is set to 4.
The position of the jellyfish in each iteration is updated either by following the ocean

current or moving inside the swarm of jellyfish with respect to the time control mechanism.
A new location of the i-th jellyfish can be updated in the following ocean current as
follows [23]:

Xt+1
i = Xt

i + r1(X∗ − 3r2Xt
i ) 1 ≤ i ≤ N (5)

where Xt+1
i and Xt

i are the updated and current positions of the i-th jellyfish, respectively.
r1 and r2 are the random vectors generated between 0 and 1. X∗ refers to the current best
location in the swarm so far.

On the other hand, movements inside the swarm are divided into two types: passive
and active motions. In passive motion (type A), jellyfish move around their own positions
to find better positions using the following expression [23]:

Xt+1
i = Xt

i + r1γ(UB− LB) 1 ≤ i ≤ N (6)

where γ is the motion coefficient associated with the length of motion around the locations
of jellyfish and is usually at 0.1 [23].

In active motion (type B), a random position of the j-th jellyfish is selected to compare
with the current position of the i-th jellyfish to determine the direction of movement based
on the food quality. If the food quality at the j-th jellyfish is better, then the i-th jellyfish
moves toward the direction of the j-th jellyfish; otherwise, the i-th jellyfish moves away
from the j-th jellyfish. The position-updating mechanism can be expressed as follows [23]:

Xt+1
i = Xt

i + r1 ~Step 1 ≤ i ≤ N (7)

~Step =

{
Xt

i − Xt
j , if f (Xt

i ) < f (Xt
j)

Xt
j − Xt

i , if f (Xt
j) < f (Xt

i )
(8)

As mentioned in Section 3.2, a time control mechanism is used to switch between
following the ocean current and moving inside the swarm. This mechanism consists of a
function of time control c(t) and a constant co. c(t) gives a random value that fluctuates
between 0 and 1, while co is a mean value between 0 and 1, in which co = 0.5 [23]. The time
control function c(t) is computed using the following expression [23]:

c(t) =
∣∣∣∣(1− t

T

)
× (2r− 1)

∣∣∣∣ (9)

where T is the total number of iterations and r is a random number that distributes
uniformly in a range of [0,1].

The decided movement is to follow the ocean current when c(t) is higher than co; otherwise,
it is to move inside the swarm. At the same time, the time control function is used to switch
between the active and passive motions inside the swarm. A function of 1− c(t) is compared
with a random variable in the range of [0,1], and then the passive motion (type A) is executed if
1− c(t) is higher than the random variable, or the active motion (type B) is executed otherwise.
The value of 1− c(t) increases gradually from 0 to 1. In other words, the probability of the
passive motion (type A) is higher than the active motion (type B) at the beginning, but the active
motion (type B) has more probability to be selected as time goes on [23]. In JSO, following
the ocean current represents the exploration (global search) while moving inside a swarm of
jellyfish represents the exploitation (local search).
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4. Proposed Optimization Formulation

The main goal of this study is to tackle the poor exploration capability of the exist-
ing JSO to achieve a proper balance between the exploration and exploitation through a
combination with PSO, resulting in a hybrid algorithm called HJSPSO. In addition, the
fusion between JSO and PSO enables HJSPSO to escape from the local optimum and avoid
premature convergence. The basic structure of the HJSPSO algorithm is based on JSO but
with some modifications to adopt PSO operators as follows:

• The movement of following the ocean current in JSO is replaced with the velocity and
position-updating mechanism of PSO to take advantage of its exploration capability
(referred as PSO phase).

• The passive motion in JSO is modified by introducing a new formulation with respect
to the global solution to improve the exploration capability (referredto as JSO phase).

• Nonlinear time-varying inertia weight and cognitive and social coefficients are added
to enable the technique to escape from the local optimum.

• The time control mechanism of JSO is used to switch between PSO and JSO phases.

An inertia weight is usually used in optimization techniques to adjust the treatment
between exploration and exploitation. A low inertia weight gives high exploitation and
low exploration. On the other hand, a high inertia weight gives low exploitation and high
exploration. A linear transition from exploration to exploitation in the original PSO [22] is
fixed and unable to be adjusted. As an alternative, a nonlinear decreasing inertia weight
enables adjustment to give emphasis to either exploration or exploitation. Since JSO is
lacking in terms of exploration, the introduced nonlinear decreasing inertia weight helps
to improve the exploration and balance with the existing strong exploitation. Apart from
that, cognitive and social coefficients are used in PSO to control the influence of exploration
and exploitation, respectively. Similar to inertia weight, time-varying cognitive and social
coefficients help to ensure high diversity for global exploration at the early stage and exploit
around the global solution at the later stage. Then, sine and cosine functions are used
in [42] to make them nonlinear and complementary to each other. The parameters w, c1,
and c2 in (1) are modified as follows:

w = wmin + (wmax − wmin)

(
1− t

T

)β

(10)

c1 = cmin + (cmax − cmin) sin
(

π

2

[
1− t

T

])
(11)

c2 = cmin + (cmax − cmin) cos
(

π

2

[
1− t

T

])
(12)

where wmin = 0.4, wmax = 0.9, β = 0.1, cmin = 0.5, and cmax = 2.5. As more emphasis
should be given to exploration at the early state, the cognitive coefficient is thus set at the
maximum while the social coefficient is at the minimum. At a later stage, toward the end
of the searching process, more emphasis is given to exploitation. In this case, c1 varies from
2.5 to 0.5 and c2 from 0.5 to 2.5 [42]. The inertia weight w nonlinearly decreases from 0.9 to
0.4 along with iteration.

Figure 1 presents the flowchart of HJSPSO. At the beginning, the position of each
member in the population is initialized randomly by using a chaotic logistic map to
avoid premature convergence as in (3), while the velocity of each member is set to 0.
Next, the position is updated either by the PSO or JSO phase depending on the time control
mechanism as in (9). If the PSO phase is selected, then the position is updated using (1)–(2),
while inertia weight, cognitive coefficient, and social coefficient are based on expressions
in (10)–(12). Otherwise, the JSO phase is selected, and the position is updated using the
movement inside the swarm. The JSO phase retains the movement inside the swarm,
which consists of passive motion (type A) and active motion (type B). However, the passive
motion is replaced with the following ocean current movement as in (5), and the nonlinear
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time-varying inertia weight w is added to the equation to standardize between the phases.
A new expression of passive motion in HJSPSO is obtained as follows:

Xt+1
i = Xt

i + wr1 × (X∗ − 3r2Xt
i ) 1 ≤ i ≤ N (13)

Figure 1. Flowchart of HJSPSO algorithm.

The nonlinear time-varying inertia weight w is also introduced in the active motion.
As a result, the step in the active motion reduces gradually over time to avoid moving
far away from the optimal solution at the later period. At the same time, the JSO phase
has a higher probability to be selected according to the time control mechanism during
this period. Therefore, the process of local exploitation to find the optimal solution can be
improved. A new active motion in HJSPSO can be expressed as follows:

Xt+1
i = Xt

i + wr1 ~Step 1 ≤ i ≤ N (14)
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The search process of HJSPSO swings between the PSO and JSO phases with respect
to the time control function c(t). If c(t) is higher than or equal to co, then the PSO phase is
selected; otherwise, the JSO phase is executed. According to the time control function, only
the JSO phase is involved when the search reaches half of the total iteration. As a result,
HJSPSO can benefit from the advantage of PSO at the early stage to explore the search
space and the advantage of JSO at the later stage to exploit the global optimum solution.

5. Results and Discussions

This section showcases the performance of HJSPSO in solving 60 benchmark test
functions and a TSP. The performance is compared with nine well-known metaheuristic
optimization techniques, including PSO and JSO. The 60 benchmark test functions to
evaluate performance are described in the next subsection.

5.1. Benchmark Test Functions

The performance of a new technique is typically evaluated using benchmark test
functions with different characteristics and compared with various optimization techniques
to showcase its effectiveness. A set of 50 classical benchmark test functions (Table 1) and
10 CEC-C06 2019 test benchmark functions (Table 2) are used to evaluate the performance
of HJSPSO. The classical test functions consist of unimodal, multimodal, regular, irregular,
separable, and nonseparable functions with various dimensions in the range of 2–30 vari-
ables [43]. The first 17 functions (F1–F17) are unimodal and commonly used to evaluate the
exploitation capability. The rest of the functions (F18–F50) are multimodal and have many
local optima to test the exploration capability. On the other hand, the CEC-C06 2019 test
benchmark functions (CEC01–CEC10) are multimodal large-scale optimization problems
where the dimensions of the first three functions (CEC01–CEC03) are fixed, whereas the
other seven functions (CEC04–CEC10) are shafted and rotated within their dimensions [44].

Table 1. Description of 50 classical benchmark test functions.

No. Function’s Name Types Optimal Value Dimension Range

1 Setpint US 0 5 [−5.12, 5.12]
2 Step US 0 30 [−100, 100]
3 Sphere US 0 30 [−100, 100]
4 SumSquares US 0 30 [−10, 10]
5 Quartic US 0 30 [−1.28, 1.28]
6 Beale UN 0 2 [−4.5, 4.5]
7 Easom UN −1 2 [−100, 100]
8 Matyas UN 0 2 [−10, 10]
9 Colville UN 0 4 [−10, 10]
10 Trid 6 UN −50 6 [−D2, D2]
11 Trid 10 UN −210 10 [−D2, D2]
12 Zakharov UN 0 10 [−5, 10]
13 Powell UN 0 24 [−4, 5]
14 Schwefel 2.22 UN 0 30 [−10, 10]
15 Schwefel 1.2 UN 0 30 [−100, 100]
16 Rosenbrock UN 0 30 [−30, 30]
17 Dixon-Price UN 0 30 [−10, 10]
18 Foxholes MS 0.998 2 [−65.536, 65.536]
19 Branin MS 0.398 2 [−5, 10], [0, 15]
20 Bohachevsky1 MS 0 2 [−100, 100]
21 Booth MS 0 2 [−10, 10]
22 Rastrigin MS 0 30 [−5.12, 5.12]
23 Schwefel MS −12,569.5 30 [−500, 500]
24 Michalewicz 2 MS −1.8013 2 [0, π]
25 Michalewicz 5 MS −4.6877 5 [0, π]
26 Michalewicz 10 MS −9.6602 10 [0, π]
27 Schaffer MS 0 2 [−100, 100]
28 Six Hump Camel Back MS −1.03163 2 [−5, 5]
29 Bohachevsky 2 MS 0 2 [−100, 100]
30 Bohachevsky 3 MS 0 2 [−100, 100]
31 Shubert MS −186.73 2 [−10, 10]
32 Goldstein-Price MS 3 2 [−2, 2]
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Table 1. Cont.

No. Function’s Name Types Optimal Value Dimension Range

33 Kowalik MS 0.00031 4 [−5, 5]
34 Shekel 5 MS −10.15 4 [0, 10]
35 Shekel 7 MS −10.4 4 [0, 10]
36 Shekel 10 MS −10.53 4 [0, 10]
37 Perm MS 0 4 [−D, D]
38 Powersum MS 0 4 [0, 1]
39 Hartman 3 MS −3.86 3 [0, D]
40 Hartman 6 MS −3.32 6 [0, 1]
41 Griewank MS 0 30 [−600, 600]
42 Ackley MS 0 30 [−32, 32]
43 Penalized MS 0 30 [−50, 50]
44 Penalized 2 MS 0 30 [−50, 50]
45 Langermann 2 MS −1.08 2 [0, 10]
46 Langermann 5 MS −1.5 5 [0, 10]
47 Langermann 10 MS NA 10 [0, 10]
48 Fletcher Powell 2 MS 0 2 [−π, π]
49 Fletcher Powell 5 MS 0 5 [−π, π]
50 Fletcher Powell 10 MS 0 10 [−π, π]

US: unimodal and separable function; UN: unimodal and nonseparable function; MS: multimodal and separable
function; and MN: multimodal and nonseparable function.

Table 2. Description of CEC-C06 2019 benchmark test functions.

No. Function Function’s Name Optimal Value Dimension Range

1 CEC01 Storn’s Chebyshev polynomial fitting problem 1 9 [−5.12, 5.12]
2 CEC02 Inverse Hilbert matrix problem 1 16 [−100, 100]
3 CEC03 Lennard–Jones minimum energy cluster 1 18 [−100, 100]
4 CEC04 Rastrigin’s function 1 10 [−10, 10]
5 CEC05 Grienwank’s function 1 10 [−1.28, 1.28]
6 CEC06 Weierstrass function 1 10 [−4.5, 4.5]
7 CEC07 Modified Schwefel’s function 1 10 [−100, 100]
8 CEC08 Expanded Schaffer’s F6 function 1 10 [−10, 10]
9 CEC09 Happy CAT function 1 10 [−10, 10]
10 CEC10 Ackley Function 1 10 [−D2, D2]

5.2. Metaheuristic Techniques for Comparison

The seven well-known techniques besides the original techniques (i.e., PSO and JSO)
that are used for comparison are as follows:

• Grey Wolf Optimizer [45]: GWO was introduced in 2014. It is one of the swarm-
intelligence-based techniques inspired by the hunting strategy of grey wolves, which
includes searching, surrounding, and attacking the prey.

• Lightning Search Algorithm [19]: LSA was proposed in 2015. It is one of the physical-
based techniques that simulates the lightning phenomena and the mechanism of
spreading the step leader by using the conception of fast particles known as projectiles.

• Hybrid Heap-Based and Jellyfish Search Algorithm [40]: HBJSA was proposed in 2021.
It is a hybrid optimization technique based on HBO and JSO that benefits from the
exploration feature of HBO and the exploitation feature of JSO.

• Rat Swarm Optimizer [24]: RSO was introduced in 2020. It is one of the swarm-
intelligence-based algorithms that imitates rats’ behavior in chasing and attacking prey.

• Ant Colony Optimization [46]: Ant colony optimization (ACO) was introduced in
1999. It is one of the intelligence-based swarm algorithms that simulates the foraging
behavior of ants in finding food and depositing pheromones on the ground to guide
other ants to the food.

• Biogeography-based Optimizer [16]: BBO was introduced in 2008. It is an evolutionary-
based technique closely related to GA and DE. BBO is inspired by the migration
behavior of species between habitats.
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• Coronavirus Herd Immunity Optimizer [21]: CHIO was proposed in 2020. It is one of
the human-based techniques that mimics the concept of herd immunity to face the
coronavirus.

The parameter settings of the selected optimization techniques, including PSO, JSO,
and HJSPSO, are tabulated in Table 3.

Table 3. Parameter settings of the optimization techniques.

Technique Parameter Settings

HJSPSO N = 50; T = 3000; cmin = 0.5; cmax = 2.5; wmin = 0.4; wmax = 0.9; β = 0.1; γ = 0.1; co = 0.5
PSO [22] N = 50; T = 3000; c1 = 0.5; c2 = 2.5; wmin = 0.4; wmax = 0.9
JSO [23] N = 50; T = 3000; γ = 0.1, co = 0.5

GWO [45] N = 50; T = 3000; control parameter a linearly decreases from 2 to 0
LSA [19] N = 50; T = 3000; channel time is set to 10

HBJSA [40] N = 50; T = 3000; adaptive coefficient ϕ increases gradually until reaching 0.5
RSO [24] N = 50; T = 3000; ranges of R and C are set to [1, 5] and [0, 2], respectively
ACO [46] N = 50; T = 3000; pheromone evaporation rate, ρ = 0.5; pheromone exponential weight; α = 1; heuristic exponential weight, β = 2

BBO [16]
N = 50; T = 3000; habitat modification probability = 1; immigration probability bound per iteration = [0,1]; step size for numerical
integration of probability at 1; mutation probability, Mmax = 0.005; maximal immigration rate, I = 1;
maximal emigration rate, E = 1; elitism parameter = 2

CHIO [21] N = 50; T = 3000; number of initial infected cases = 1; basic reproduction rate, BPr, and maximum infected cases age,
MaxAge, are positive integers

5.3. Comparison of Optimization Performance

The proposed HJSPSO and other optimization techniques were carried out within
MATLAB environment using a PC with 2.7 GHz Core i7 processor and 20 GB memory.
All optimization techniques were executed for 30 runs at each benchmark function to
evaluate their effectiveness and robustness. The statistical results consist of the mean,
standard deviation, and best and worst fitness values for each benchmark function tabu-
lated in Tables A1 and A2 in the Appendix A. The mean and standard deviation of fitness
are considered the key indicators to determine the best performance. The lowest mean
value is considered as the best performance, but the lowest standard deviation is selected
if their mean values are equal (the best performance techniques are highlighted in bold).
A hit rate is used to determine the overall best performance to count how many times
the individual optimization technique achieves the best performance score from the total
number of test functions [23]. A fitness value below 10−12 is normally assumed to be 0
in [43,47] for simplification purposes. However, this criterion misleads the selection of best
performance and causes confusion in the comparison, especially for those very competitive
optimization techniques. Therefore, the actual mean values used are those presented in
the tables. Tables 4 and 5 are used to simplify the presentation by ranking the techniques
based on their performance, where the same rank is given if they share the same mean and
standard deviation values. In the tables, the optimization techniques that provide the best
solution (i.e., first rank) are highlighted in bold.

Table 4 clearly shows that the exploration capability of HJSPSO is superior to its
competitors in solving 22 out of 33 multimodal classical test functions (F18–F50) with the
best solution, while the rest solved as follows: HBJSA (17/33), JSO (16/33), PSO (9/33),
LSA (9/33), ACO (8/33), GWO (6/33), RSO (6/33), BBO (5/33), and CHIO (1/33). At the
same time, HJSPSO demonstrates better exploitation capability compared to the other eight
optimization techniques in solving 10 functions out of 17 unimodal test functions (F1–F17)
with the best solution, while the rest solved as follows: RSO (9/17), JSO (7/17), ACO (5/17),
PSO (5/17), LSA (4/17), GWO (3/17), BBO (3/17), and CHIO (1/17). In this case, HBJSA
shows better exploitation when performed in 12 of the 17 unimodal test functions compared
to HJSPSO, which had an advantage in only two functions. Note that HBJSA and HJSPSO
provide similar solutions in eight of the test functions. In other words, HJSPSO has better
exploitation than HBJSA in two other functions (F9 and F10), where it is solely the best
performer in solving the functions, whereas HBJSA shares the same best performance with
RSO in three different test functions (F12–F14). HBJSA secures the first rank only in one
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function (F5). Therefore, HJSPSO has a good and unique exploitation capability. Apart from
the above results, HJSPSO has shown superiority in solving large-scale, shifted, and rotated
benchmark test functions (CEC-C06 2019) compared to other optimization techniques after
providing the best solution in three functions out of 10, while the rest solved as follows
(Table 5): JSO (2/10), RSO (2/10), ACO (2/10), HBJSA (1/10), PSO (0/10), GWO (0/10),
LSA (0/10), BBO (0/10), and CHIO (0/10). Although HBJSA is a good competitor, as it
secured the first and second places for the classical test functions, it is far behind HJSPSO
in terms of solving the large-scale test functions.

Table 4. Performance comparison of classical test functions.

Function JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

F1 1 1 1 1 1 1 1 1 1 1
F2 1 8 1 10 1 9 1 1 7 1
F3 9 6 5 8 1 1 7 9 10 1
F4 8 6 4 7 1 1 5 9 10 1
F5 5 7 3 9 1 2 8 6 10 4
F6 1 1 8 1 1 10 1 7 9 1
F7 1 1 8 1 1 9 1 1 10 1
F8 1 1 1 1 1 1 1 9 10 1
F9 2 4 8 3 5 10 6 7 9 1
F10 2 3 8 4 7 10 5 6 9 1
F11 3 1 9 4 8 10 1 6 7 5
F12 7 4 3 5 1 1 8 9 10 6
F13 5 8 3 6 1 1 7 9 10 4
F14 6 8 4 7 1 1 5 9 10 3
F15 8 5 4 7 1 1 6 9 10 1
F16 1 8 6 2 3 7 5 9 10 4
F17 1 3 6 4 8 7 2 9 10 5
F18 1 6 10 4 1 7 8 9 5 1
F19 1 1 9 1 1 10 7 6 8 1
F20 1 1 1 1 1 1 1 1 10 1
F21 1 1 8 1 1 10 1 7 9 1
F22 6 9 1 10 1 1 7 8 5 1
F23 7 8 9 5 2 10 4 3 1 6
F24 1 1 9 1 1 10 1 7 8 1
F25 3 9 8 6 1 10 7 5 2 4
F26 3 8 9 7 1 10 5 6 2 4
F27 1 1 1 9 1 1 10 1 8 1
F28 2 2 8 2 2 10 2 1 9 2
F29 1 1 1 1 1 1 1 1 10 1
F30 1 1 1 1 1 1 1 9 10 1
F31 1 7 10 4 2 9 5 5 8 3
F32 5 5 9 1 4 8 1 7 10 1
F33 2 6 10 4 3 7 9 5 8 1
F34 1 9 5 6 1 10 8 7 4 1
F35 2 9 5 6 1 10 7 8 4 2
F36 2 8 4 6 2 10 9 7 5 1
F37 2 5 9 3 4 10 8 7 6 1
F38 2 4 9 3 7 10 5 6 8 1
F39 2 2 9 2 2 10 2 1 8 2
F40 2 7 8 9 3 10 6 5 4 1
F41 1 8 1 7 1 1 6 9 10 1
F42 4 9 6 10 1 2 5 7 8 3
F43 2 6 7 9 3 10 8 4 5 1
F44 5 4 9 6 2 10 1 3 8 7
F45 1 1 7 1 1 10 1 9 8 1
F46 1 8 7 6 1 10 5 9 4 1
F47 1 6 7 8 3 10 2 9 4 5
F48 1 1 8 1 6 10 5 7 9 1
F49 1 9 4 7 6 10 5 8 3 2
F50 2 9 6 5 8 10 4 7 3 1

No. best hits 23 14 9 13 29 15 13 8 2 32
Hit rate (%) 46 28 18 26 58 30 26 16 4 64
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Table 5. Performance comparison of CEC-C06 2019 test functions.

Function JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

CEC01 5 7 4 6 2 1 8 9 10 3
CEC02 4 6 5 8 2 1 9 7 10 3
CEC03 4 2 5 3 8 10 9 7 6 1
CEC04 1 8 6 9 7 10 2 4 5 3
CEC05 2 7 9 8 4 10 3 6 5 1
CEC06 2 6 7 9 1 10 4 5 8 3
CEC07 2 9 5 8 6 10 1 7 4 3
CEC08 3 8 4 7 9 10 1 6 5 2
CEC09 1 6 4 9 8 10 2 3 7 5
CEC10 2 7 6 4 3 10 8 9 5 1

No. best hits 2 0 0 0 1 2 2 0 0 3
Hit rate (%) 20 0 0 0 10 20 20 0 0 30

Overall, HJSPSO outperforms the other optimization techniques by securing the
first rank in the classical and large-scale benchmark test functions. This outcome clearly
indicates the ability of HJSPSO to efficiently solve unimodal, multimodal, separate, nonsep-
arable, rotated, and shifted composite functions. HJSPSO attains 64% of the hit rate, higher
than all the competing techniques in the classical benchmark test functions: HBJSA (58%),
JSO (46%), RSO (30%), PSO (28%), LSA (26%), ACO (26%), GWO (18%), BBO (16%), and
CHIO (4%). On the other hand, the HJSPSO attains 30% of the hit rate in the large-scale
benchmark test functions, higher than JSO (20%), RSO (20%), ACO (20%), HBJSA (10%),
PSO (0%), GWO (0%), LSA (0%), BBO (0%), and CHIO (0%). Therefore, HJSPSO can be
considered a robust metaheuristic optimization technique based on its ability to explore
the search space and exploit unvisited areas in the search space to avoid the local optimum
and find a better solution efficiently [23].

5.4. Convergence Performance Analysis

Six functions are selected from the benchmark test functions where two functions are
randomly taken to represent the main three categories: unimodal (F7 and F9), multimodal
(F33 and F50), and large-scale (CEC03 and CEC10). The convergence curves of HJSPSO and
other optimization techniques in solving the selected benchmark functions are shown in
Figure 2. The figure shows that HJSPSO has faster convergence in most cases compared to
other optimization techniques. A notable ability of HJSPSO to exploit the promising areas
can be observed in its solving of the unimodal benchmark functions (F7 and F9). Likewise,
HJSPSO demonstrates the ability to escape quickly from the local optimum when solving
the multimodal functions (F33, F50, CEC03, CEC10). It is important to note that PSO has
good performance at the beginning because it converges fast, but there is no improvement
in the later period. This behavior can be considered as premature convergence, which
PSO is unable to exploit for a better solution. On the other hand, JSO has shown good
exploitation in the unimodal test functions where the optimal solution is improved slowly
until it reaches maximum iteration. Therefore, a combination of JSO and PSO in the form
of HJSPSO, supported by some modifications, improved the performance significantly.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Convergence curves of the selected test functions: (a) Easom (F7); (b) Colville (F9); (c) Kowa-
lik (F33); (d) Fletcher Powell 10 (F50); (e) Lennard–Jones energy cluster (CEC03); (f) Ackley function
(CEC10).

A computational time analysis of the obtained results in Figure 2 is carried out to
explain the time complexity of HJSPSO compared to other optimization techniques. Table 6
shows a computational time and convergence point for each optimization technique in solv-
ing the selected six benchmark test functions. The results generally show that HJSPSO has a
slightly higher computational time than JSO due to a combination with PSO. On a positive
note, the computational time of HJSPSO is significantly less than PSO. This computational
performance of HJSPSO can be achieved because it alternates between the operators of
JSO and PSO instead of cascading them. A convergence point is also important to give the
actual time taken to obtain the optimal solution. Although LSA shows high computational
burden, it is usually converged at the lowest iteration, which leads to a significantly low
time taken if it stops at the convergence point. In this perspective, HJSPSO is almost similar
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to most of the selected optimization techniques with less computational time. Accordingly,
HJSPSO gives better results for the time taken compared to the optimization techniques.

Table 6. Time complexity analysis of the selected test functions.

Technique
Time Taken per Iteration (ms) Convergence Point (Iteration)

F7 F9 F33 F50 CEC03 CEC10 F7 F9 F33 F50 CEC03 CEC10

JSO 0.228 0.255 0.216 0.475 0.957 0.883 183 2989 2978 1750 2998 2115
PSO 1.329 2.218 1.531 1.519 2.980 3.049 114 3000 2969 2034 324 714

GWO 0.359 0.344 0.362 0.595 0.756 0.646 2997 2999 2999 3000 3000 1999
LSA 1.367 3.490 3.792 6.153 16.40 7.193 37 2998 1059 225 397 522

HBJSA 0.344 0.316 0.438 0.482 1.076 1.043 435 2198 2231 2238 403 2163
RSO 0.147 0.123 0.126 0.233 0.507 0.524 1933 2321 2359 2597 2913 1369
ACO 1.162 2.674 2.676 3.249 10.47 9.009 38 3000 3000 2315 2447 169
BBO 0.719 1.437 1.548 2.239 5.988 4.252 724 2999 3000 2605 2960 2939

CHIO 1.064 1.049 1.127 1.109 2.666 2.522 2800 2322 2903 2922 2869 2997
HJSPSO 0.268 0.255 0.233 0.467 0.870 1.001 229 2971 1616 1755 2994 2367

5.5. Nonparametric Statistical Test

The performance of metaheuristic techniques is normally evaluated using basic statis-
tics such as mean value, standard deviation, best fitness, and worst fitness, as presented
earlier. However, this evaluation method requires a more accurate statistical test [48].
The best-performing technique should give a mean value that is as small (i.e., minimization
problems) as possible and a standard deviation of 0. It is difficult to decide which one has
better performance when one of the techniques has a slightly small mean value but higher
standard deviation. As an alternative, a nonparametric statistical test is used to evaluate
the performance of metaheuristic techniques. The statistical test is considered more suitable
for metaheuristic techniques owing to their stochastic behavior [49]. The nonparametric
statistical test can be divided into two types: (i) pairwise comparison and (ii) multiple
comparisons. Pairwise comparison is used to compare two techniques, whereas multiple
comparisons are used for more than two techniques [49]. Two well-known nonparametric
tests are used, namely, Wilcoxon signed-rank test (pairwise comparison) and Friedman test
(multiple comparisons). Only the large-scale (CEC-C06 2019) benchmark test functions are
used to highlight the effectiveness of HJSPSO in this section.

The Wilcoxon signed-rank test is based on the significance level α at 5%. If the p
value is higher than α, a null hypothesis H0 is confirmed where there is no difference
between HJSPSO and the compared optimization technique. Otherwise, when the p value
is less than or equal to α, an alternative hypothesis H1 is confirmed where a significant
difference is found between the two optimization techniques. Table 7 presents the p values
of HJSPSO compared to the nine other optimization techniques in solving the CEC-C06
2019 benchmark test functions. HJSPSO scores p values higher than α or the alternative
hypothesis H1 in most cases and only a few cases are null hypotheses H0 (bold). This
finding indicates that the reported performance of HJSPSO in Section 5.3 is significantly
different from the existing optimization techniques, especially with RSO when all test
functions are less than 5%. Furthermore, HJSPSO is improved significantly compared to
the original JSO and PSO when the majority of test functions are H1.

The Friedman test is likewise used to compare the performance of HJSPSO with all the
selected optimization techniques. The lowest value in the Friedman test indicates the best
performance among the selected techniques. Table 8 shows scores using the Friedman test,
where the first ranks are in bold. It clearly shows that HJSPSO secured the highest number
of first ranks (3/10), which is like the hit rate in the previous subsection. This confirms
the previous performance evaluation and accepts that HJSPSO outperforms other selected
optimization techniques.
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Table 7. Statistical results of Wilcoxon signed–ranked test.

Function JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO

CEC01 9× 10−6 2× 10−6 0.943 2× 10−6 2× 10−6 2× 10−6 2× 10−6 2× 10−6 2× 10−6

CEC02 3× 10−6 2× 10−6 7× 10−6 2× 10−6 4× 10−5 6× 10−6 2× 10−6 2× 10−6 2× 10−6

CEC03 2× 10−6 0.053 0.002 0.059 2× 10−6 2× 10−6 2× 10−6 5× 10−5 2× 10−6

CEC04 8× 10−5 6× 10−5 0.079 2× 10−6 2× 10−6 2× 10−6 0.015 0.393 0.658
CEC05 0.704 2× 10−6 2× 10−6 3× 10−6 0.001 2× 10−6 0.043 4× 10−6 8× 10−5

CEC06 0.544 0.045 5× 10−4 4× 10−6 0.171 2× 10−6 0.688 0.382 2× 10−6

CEC07 0.003 2× 10−6 0.002 2× 10−6 3× 10−6 2× 10−6 1× 10−5 5× 10−5 0.910
CEC08 0.910 2× 10−6 3× 10−5 5× 10−6 2× 10−6 2× 10−6 0.471 2× 10−6 2× 10−6

CEC09 2× 10−4 0.229 0.052 5× 10−6 3× 10−6 2× 10−6 0.072 0.03 2× 10−5

CEC10 0.295 7× 10−6 2× 10−5 9× 10−6 2× 10−4 2× 10−6 3× 10−6 5× 10−6 6× 10−6

Table 8. Statistical results of the Friedman test.

Function JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

CEC01 5.60 7.00 3.63 6.13 2.03 1.12 7.47 8.47 10 3.55
CEC02 5.20 6.03 5.57 6.93 2.17 1.17 7.93 7.20 10 2.80
CEC03 5.83 2.43 4.90 2.42 8.43 8.93 8.40 4.87 6.40 2.35
CEC04 2.28 6.60 5.30 7.95 7.00 9.97 0.48 4.58 4.53 4.30
CEC05 2.62 6.17 8.53 6.43 4.67 10 3.45 5.60 5.20 2.33
CEC06 3.38 4.73 6.20 7.77 3.30 10 3.38 4.77 7.93 3.53
CEC07 2.33 7.50 5.33 7.60 6.77 9.73 1.57 6.77 3.83 3.57
CEC08 2.57 6.43 5.13 6.37 8.10 9.93 1.80 6.23 6.10 2.33
CEC09 2.67 5.07 3.23 7.77 7.97 9.40 3.70 3.40 6.77 4.50
CEC10 3.08 3.52 8.30 4.32 5.73 8.17 9.17 4.67 5.63 2.42

5.6. Case Study: Traveling Salesman

A simple traveling salesman problem (TSP) is used to find the shortest route for
visiting all cities u, as given in Table 9 [19]. The control variable in this problem is to decide
whether to travel between the i-th city (ui) and the j-th city (uj) or not as given by the
following expression:

cij =

{
1, if there is a path between ui and uj

0, otherwise
(15)

The objective is to minimize the total traveling distance, subject to the condition of visiting
each city only once and then returning to the initial city where the trip began [19] as follows:

ftsp = min

(
nc

∑
i=1

nc

∑
i 6=j,j=1

dijcij

)
(16)

dij =
√
[(ui(x)− uj(x)]2 + [ui(y)− uj(y)]2 (17)

subject to

nc

∑
i=1,i 6=j

cij = 1, ∀j (18)

nc

∑
j=1,j 6=i

cij = 1, ∀i (19)

∑
i∈Q

∑
j 6=i,j∈Q

cij ≤ |Q| − 1, ∀Q ( {1, . . . , nc}, |Q| ≥ 2 (20)
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Table 9. Coordinates of cities in a sample TSP [19].

Cities
Coordinates

Cities
Coordinates

Cities
Coordinates

Cities
Coordinates

x y x y x y x y

1 4.38 7.51 6 4.89 9.59 11 2.76 8.4 16 4.98 3.49
2 3.81 2.55 7 4.45 5.47 12 6.79 2.54 17 9.59 1.96
3 7.65 5.05 8 6.46 1.38 13 6.55 8.14 18 3.4 2.51
4 7.9 6.99 9 7.09 1.49 14 1.62 2.43 19 5.85 6.16
5 1.86 8.9 10 7.54 2.57 15 1.19 9.29 20 2.23 4.73

The optimization techniques were executed for 30 runs like in the previous analysis,
but the total number of iterations T and population size N were set to 500 and 50, respec-
tively. The results show that HJSPSO outperforms other optimization techniques and gives
the lowest best, worst, and mean fitness values (bold) as tabulated in Table 10. However,
HJSPSO is behind CHIO and HBJSA in terms of standard deviation. The performance
comparison can also be presented in a statistical box plot as in Figure 3, where the red +
represents outliers. In this case, HJSPSO has shown the best fitness within the box without
any outliers. Therefore, HJSPSO can be considered as having the best performance among
the optimization techniques. Figure 4 shows the shortest path obtained by the optimization
techniques where HJSPSO provides the best shortest distance at 36.12. The solution is the
same for GWO and ACO, but their starting points are different (HJSPSO at 3, ACO at 7,
and GWO at 13). Nevertheless, the solutions provided by HJSPSO are more accurate and
precise than GWO and ACO because HJSPSO gives significantly lower mean and standard
deviation values.

Figure 3. Box plots for performance comparison in solving TSP.

Table 10. Optimization performance in solving TSP.

Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

Mean 39.67 48.84 41.83 48.94 44.08 50.42 39.51 45.71 42.61 37.87
Std. 2.98 5.08 4.00 3.35 1.80 5.51 2.58 4.16 1.53 1.87
Best 36.97 41.22 36.12 43.32 39.90 41.91 36.12 37.42 38.60 36.12

Worst 48.47 61.80 53.77 55.33 47.70 61.98 45.93 55.26 46.05 45.36
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(i) (j)
Figure 4. Path variations of the best solution in TSP by each optimization technique: (a) the shortest
path by JSO: 3→ 17→ 10→ 12→ 9→ 8→ 16→ 2→ 18→ 14→ 20→ 7→ 1→ 11→ 5→ 15→
6 → 13 → 4 → 19 → 3; (b) the shortest path by PSO: 13 → 1 → 11 → 5 → 15 → 6 → 19 → 3 →
7→ 20→ 14→ 18→ 2→ 16→ 8→ 9→ 12→ 10→ 17→ 4→ 13; (c) the shortest path by GWO:
13→ 6→ 15→ 5→ 11→ 1→ 19→ 7→ 20→ 14→ 18→ 2→ 16→ 8→ 9→ 12→ 10→ 17→
3 → 4 → 13; (d) the shortest path by LSA: 18 → 9 → 10 → 12 → 17 → 8 → 2 → 16 → 7 → 19 →
3→ 4→ 13→ 6→ 1→ 15→ 5→ 20→ 11→ 14→ 18; (e) the shortest path by HBJSA: 14→ 20→
1→ 15→ 5→ 11→ 6→ 13→ 4→ 3→ 17→ 10→ 8→ 9→ 12→ 19→ 7→ 16→ 2→ 18→ 14;
(f) the shortest path by RSO: 5→ 11→ 1→ 6→ 13→ 4→ 19→ 3→ 17→ 8→ 9→ 10→ 12→
16→ 7→ 20→ 18→ 2→ 14→ 15→ 5; (g) the shortest path by ACO: 7→ 19→ 1→ 11→ 5→
15→ 6→ 13→ 4→ 3→ 17→ 10→ 12→ 9→ 8→ 16→ 2→ 18→ 14→ 20→ 7; (h) the shortest
path by BBO: 10 → 17 → 3 → 4 → 13 → 19 → 7 → 1 → 6 → 11 → 5 → 15 → 20 → 14 → 18 →
2 → 16 → 12 → 8 → 9 → 10; (i) the shortest path by CHIO: 8 → 10 → 17 → 3 → 4 → 13 → 6 →
15 → 5 → 11 → 1 → 19 → 7 → 2 → 18 → 14 → 20 → 16 → 12 → 9 → 8; (j) the shortest path by
HJSPSO: 3 → 17 → 10 → 12 → 9 → 8 → 16 → 2 → 18 → 14 → 20 → 7 → 19 → 1 → 11 → 5 →
15→ 6→ 13→ 4→ 3.

6. Conclusions

This paper presents a novel HJSPSO that is based on JSO to benefit from the advantage
of its exploitation (local search) capability and adopted a PSO operator to tackle exploration
(global search). The movement of following the ocean current in JSO is replaced with a
PSO operator and the movement of swimming inside the swarm uses a operator with some
modifications. A time control mechanism is used to switch between the two operators to
gain a good balance between exploration and exploitation. The effectiveness of HJSPSO was
tested using a set of 50 classical and 10 large-scale (CEC-C06 2019) benchmark test functions
and compared with 9 well-known metaheuristic optimization techniques, including PSO
and JSO. In addition, a case study of TSP is used to demonstrate the effectiveness of HJSPSO
in solving a nonconvex optimization problem. The results show that HJSPSO contributes in
terms of exploration and exploitation improvements compared to the existing JSO and PSO
techniques, where it ultimately secures the first rank in 64% and 30% of the classical and
large-scale benchmark test functions, respectively. The Wilcoxon signed-ranked and Fried-
man rank tests also confirm that HJSPSO is significantly improved in obtaining the optimal
solution for the complex optimization problems (large-scale benchmark test functions).
In the TSP case study, HJSPSO outperforms the other selected optimization techniques at
the first rank in finding the shortest distance between 20 cities after providing the lowest
mean and best fitness at 38.82 and 36.12, respectively. The results clearly show that HJSPSO
is a robust technique that can be applied to most optimization problems. Nevertheless,
this work can be extended by conducting a sensitivity analysis on the parameter settings
to provide the highest performance. Afterwards, HJSPSO can be applied in a real-world
setting, especially in solving nonlinear and nonconvex power system problems, such as
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optimal power flow, transmission line planning, electric vehicle scheduling, and economic
load dispatch.
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Appendix A

Table A1. A performance comparison of classical test functions.

Function Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

F1 Mean 0 0 0 0 0 0 0 0 0 0
Std. 0 0 0 0 0 0 2.1909 0 0 0
Best 0 0 0 0 0 0 0 0 0 0
Worst 0 0 0 0 0 0 5 0 0 0

F2 Mean 0 0.066667 0 1 0 0 0.23333 0 0.033333 0
Std. 0 0.25371 0 1.0828 0 0 0.50401 0 0.18257 0
Best 0 0 0 0 0 0 0 0 0 0
Worst 0 1 0 4 0 0 2 0 1 0

F3 Mean 4.5× 10−134 1.6× 10−258 6.7× 10−262 1.5× 10−151 0 0 3.5× 10−170 0.024273 0.17284 0
Std. 1.4× 10−133 0 0 4.1× 10−151 0 0 0 0.008728 0.22456 0
Best 4.2× 10−136 9.3× 10−274 7.7× 10−268 1.0× 10−161 0 0 2.5× 10−174 0.011924 1.2× 10−11 0
Worst 7.2× 10−133 4.7× 10−257 1.4× 10−260 1.5× 10−150 0 0 4.2× 10−169 0.04123 1.1317 0

F4 Mean 3.8× 10−135 6.6× 10−259 5.5× 10−264 1.2× 10−150 0 0 5.0× 10−171 0.003411 0.020798 0
Std. 7.5× 10−135 0 0 6.1× 10−150 0 0 0 0.001301 0.02349 0
Best 9.4× 10−138 7.1× 10−269 1.1× 10−269 1.2× 10−160 0 0 1.0× 10−174 0.001423 1.6× 10−8 0
Worst 3.0× 10−134 2.0× 10−257 6.8× 10−263 3.3× 10−149 0 0 5.2× 10−170 0.005714 0.088923 0

F5 Mean 0.000177 0.001899 0.000065 0.011081 0.000011 0.000023 0.002001 0.000768 0.08211 0.000113
Std. 0.000062 0.000635 0.000041 0.002462 7.0× 10−6 0.000023 0.000994 0.000203 0.019275 0.000052
Best 0.000093 0.000813 0.000012 0.006049 1.2× 10−6 1.2× 10−6 0.000744 0.000373 0.041471 0.000045
Worst 0.000338 0.003381 0.000169 0.015718 0.000027 0.000084 0.005450 0.001188 0.11218 0.000255

F6 Mean 0 0 1.5× 10−9 0 0 0.000176 0 1.7× 10−10 0.000097 0
Std. 0 0 1.5× 10−9 0 0 0.000186 0 2.7× 10−10 0.000113 0
Best 0 0 3.7× 10−11 0 0 2.2× 10−6 0 2.3× 10−14 5.5× 10−6 0
Worst 0 0 5.3× 10−9 0 0 0.000611 0.76207 1.2× 10−9 0.000427 0

F7 Mean −1 −1 −1 −1 −1 −0.9987 −1 −1 −0.9916 −1
Std. 0 0 3.8× 10−9 0 0 0.001276 0 0 0.031089 0
Best −1 −1 −1 −1 −1 −0.99995 −1 −1 −1 −1
Worst −1 −1 −1 −1 −1 −0.9938 −1 −1 −0.83808 −1

F8 Mean 0 0 0 0 0 0 0 5.8× 10−13 0.000025 0
Std. 0 0 0 0 0 0 0 1.5× 10−12 0.000030 0
Best 0 0 0 0 0 0 0 3.3× 10−20 9.2× 10−8 0
Worst 0 0 0 0 0 0 0 6.9× 10−12 0.000132 0
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Table A1. Cont.

Function Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

F9 Mean 7.8× 10−17 5.5× 10−12 0.13307 5.5× 10−12 2.8× 10−7 1.5407 0.001242 0.007284 0.4057 4.8× 10−18

Std. 3.7× 10−16 9.0× 10−12 0.406 6.6× 10−12 3.7× 10−7 0.2954 0.004956 0.006838 0.30376 1.3× 10−17

Best 1.5× 10−21 6.3× 10−14 3.6× 10−7 2.1× 10−16 1.6× 10−10 0.29806 2.5× 10−7 0.000147 0.065115 1.9× 10−23

Worst 2.0× 10−15 4.8× 10−11 1.3345 2.5× 10−11 1.5× 10−6 2.3817 0.025051 0.028474 1.0787 6.4× 10−17

F10 Mean −50 −50 −50 −50 −50 −19.3568 −50 −50 −49.952 −50
Std. 3.0× 10−14 4.6× 10−14 2.5× 10−6 7.8× 10−14 1.7× 10−6 10.2918 1.0× 10−13 3.0× 10−11 0.055344 2.8× 10−14

Best −50 −50 −50 −50 −50 −38.6815 −50 −50 −49.9988 −50
Worst −50 −50 −50 −50 −50 0.48768 −50 −50 −49.7493 −50

F11 Mean −210 −210 −204.5386 −210 −206.7294 −6.0603 −210 −209.9979 −206.3257 −210
Std. 4.8× 10−11 6.3× 10−12 16.6674 2.2× 10−9 0.9209 6.1459 6.3× 10−12 0.00057 3.8949 4.5× 10−9

Best −210 −210 −209.9999 −210 −209.0753 −22.3292 −210 −209.9992 −209.7321 −210
Worst −210 −210 −154.3612 −210 −204.6705 4.6506 −210 −209.9964 −192.7169 −210

F12 Mean 2.7× 10−112 1.1× 10−278 4.9× 10−324 6.8× 10−242 0 0 4.0× 10−209 2.3× 10−7 3.2438 2.3× 10−216

Std. 9.1× 10−112 0 0 0 0 0 0 1.8× 10−7 1.7601 0
Best 4.0× 10−118 1.9× 10−292 0 6.8× 10−254 0 0 1.3× 10−217 2.6× 10−8 0.43572 3.7× 10−227

Worst 4.3× 10−111 2.77× 10−277 1.5× 10−323 2.0× 10−240 0 0 1.1× 10−207 7.9× 10−7 7.1901 6.8× 10−215

F13 Mean 2.57× 10−6 0.000212 2.1× 10−6 0.000038 0 0 0.000107 0.015393 0.44318 2.4× 10−7

Std. 7.3× 10−6 0.000277 2.6× 10−6 0.000074 0 0 2.2× 10−5 0.004426 0.24949 5.7× 10−7

Best 2.2× 10−8 0.000031 1.6× 10−8 4.8× 10−6 0 0 5.3× 10−5 0.007004 0.085003 3.2× 10−105

Worst 0.000040 0.001514 9.6× 10−6 0.000381 0 0 0.000134 0.022289 1.0397 3.0× 10−6

F14 Mean 4.2× 10−70 0.000021 1.7× 10−150 1.1× 10−6 0 0 2.9× 10−102 0.044577 0.19129 5.6× 10−177

Std. 1.9× 10−69 0.000077 2.2× 10−150 4.0× 10−6 0 0 6.1× 10−102 0.008846 0.079441 0
Best 2.9× 10−74 1.6× 10−13 1.6× 10−152 1.1× 10−26 0 0 9.1× 10−104 0.029445 0.000365 9.1× 10−180

Worst 1.1× 10−68 0.000347 9.1× 10−150 0.000021 0 0 3.3× 10−101 0.063703 0.34191 5.9× 10−176

F15 Mean 3.7× 10−133 2.1× 10−260 2.1× 10−263 6.6× 10−149 0 0 2.3× 10−168 0.34451 2.314 0
Std. 1.0× 10−132 0 0 3.5× 10−148 0 0 0 0.11744 4.7075 0
Best 6.3× 10−135 1.3× 10−272 8.9× 10−268 2.8× 10−160 0 0 1.1× 10−172 0.17032 1.5× 10−6 0
Worst 5.6× 10−132 3.7× 10−259 3.0× 10−262 1.9× 10−147 0 0 4.5× 10−167 0.63924 25.4599 0

F16 Mean 0.05827 29.6144 26.0825 3.7089 15.546 28.3194 21.6441 59.0824 134.028 20.3876
Std. 0.19107 24.266 0.73251 3.8172 11.2623 0.37112 28.0842 37.7391 65.8768 0.32964
Best 0.000018 0.93178 24.9843 0.000141 0.000035 27.7826 0.000653 25.015 7.0648 19.7712
Worst 1.0276 76.6784 27.9087 15.1608 28.1724 28.9608 111.2683 142.212 265.6228 21.3463

F17 Mean 0.01068 0.66667 0.66667 0.66667 0.54369 0.66667 0.66667 0.9842 2.4386 0.66667
Std. 0.05605 3.2× 10−16 2.3× 10−8 6.0× 10−16 0.18008 4.3× 10−8 2.1× 10−17 0.83249 1.6745 8.4× 10−16

Best 1.4× 10−9 0.66667 0.66667 0.66667 0.070622 0.66667 0.66667 0.66887 0.087339 0.66667
Worst 0.30717 0.66667 0.66667 0.66667 0.68381 0.66667 0.66667 4.8128 5.5449 0.66667
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Table A1. Cont.

Function Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

F18 Mean 0.998 1.3291 2.4375 0.998 0.998 1.9239 2.0781 2.3097 0.998 0.998
Std. 1.1× 10−16 0.60211 2.9447 1.4× 10−16 1.1× 10−16 1.0068 2.5852 2.5508 2.7× 10−12 1.1× 10−16

Best 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
Worst 0.998 2.9821 10.7632 0.998 0.998 2.9821 10.7632 10.7632 0.998 0.998

F19 Mean 0.39789 0.39789 0.39789 0.39789 0.39789 0.57724 0.39789 0.39789 0.39789 0.39789
Std. 0 0 4.8× 10−8 0 0 0.15066 2.9× 10−14 1.9× 10−15 3.3× 10−8 0
Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39805 0.39789 0.39789 0.39789 0.39789
Worst 0.39789 0.39789 0.39789 0.39789 0.39789 0.93725 0.39789 0.39789 0.39789 0.39789

F20 Mean 0 0 0 0 0 0 0 0 9.6× 10−6 0
Std. 0 0 0 0 0 0 0 0 0.000047 0
Best 0 0 0 0 0 0 0 0 0 0
Worst 0 0 0 0 0 0 0 0 0.000259 0

F21 Mean 0 0 5.0× 10−9 0 0 0.000138 0 3.8× 10−11 3.7× 10−6 0
Std. 0 0 5.5× 10−9 0 0 0.000185 0 9.8× 10−11 0.000013 0
Best 0 0 1.4× 10−10 0 0 3.2× 10−6 0 0 1.3× 10−10 0
Worst 0 0 2.1× 10−8 0 0 0.000761 0 3.9× 10−10 0.000068 0

F22 Mean 4.5872 42.9158 0 57.9397 0 0 16.6821 21.8759 3.2392 0
Std. 4.752 12.9218 0 13.4727 0 0 4.1204 6.1509 1.7512 0
Best 0 25.8689 0 37.8084 0 0 9.9496 12.9555 0.041411 0
Worst 13.9294 70.642 0 80.5915 0 0 25.8689 44.78 6.2076 0

F23 Mean −8097.69 −6548.23 −5987.234 −8279.335 −10486.3 −5822.831 −8765.300 −9168.879 −11631.16 −8249.76
Std. 596.0855 862.8825 627.9572 622.6347 1663.726 701.2344 635.8039 504.1961 190.2833 460.9557
Best −9209.117 −8339.086 −7508.985 −9544.808 −12150.5 −6951.771 −9915.361 −9959.251 −12029.93 −9248.716
Worst −6651.382 −5101.433 −4716.264 −7156.004 −7486.446 −3579.892 −7572.415 −8123.383 −11300.07 −7432.332

F24 Mean −1.8013 −1.8013 −1.8013 −1.8013 −1.8013 −1.4896 −1.8013 −1.8013 −1.8013 −1.8013
Std. 9.0× 10−16 9.0× 10−16 4.6× 10−8 9.0× 10−16 9.0× 10−16 0.27273 9.0× 10−16 9.5× 10−16 7.8× 10−14 9.0× 10−16

Best −1.8013 −1.8013 −1.8013 −1.8013 −1.8013 −1.7815 −1.8013 −1.8013 −1.8013 −1.8013
Worst −1.8013 −1.8013 −1.8013 −1.8013 −1.8013 −0.94607 −1.8013 −1.8013 −1.8013 −1.801

F25 Mean −4.6793 −4.538 −4.5439 −4.6003 −4.6877 −2.3764 −4.5908 −4.6491 −4.6877 −4.6701
Std. 0.016991 0.18897 0.2033 0.089854 1.8× 10−15 0.31557 0.0897 0.054374 6.9× 10−8 0.047281
Best −4.6877 −4.6877 −4.6876 −4.6877 −4.6877 −2.8405 −4.6877 −4.6877 −4.6877 −4.6877
Worst −4.6459 −3.8658 −3.8446 −4.3331 −4.6877 −1.7803 −4.3331 −4.4831 −4.6877 −4.5377

F26 Mean −9.5319 −8.8762 −7.9497 −8.9966 −9.6602 −3.7965 −9.3772 −9.2552 −9.6589 −9.5186
Std. 0.094523 0.57564 1.0323 0.30029 4.4× 10−6 0.58715 0.16955 0.26029 0.002079 0.093213
Best −9.6602 −9.5527 −9.3656 −9.4641 −9.6602 −5.0334 −9.6602 −9.6176 −9.6602 −9.6184
Worst −9.3281 −6.9144 −5.7263 −8.3181 −9.6591 −2.8528 −9.0305 −8.5856 −9.6526 −9.3356
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Table A1. Cont.

Function Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

F27 Mean 0 0 0 0.002911 0 0 0.0044 0 0.002658 0
Std. 0 0 0 0.01108 0 0 0.0133 0 0.008571 0
Best 0 0 0 0 0 0 0 0 1.5× 10−10 0
Worst 0 0 0 0.043671 0 0 0.043671 0 0.043671 0

F28 Mean −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std. 6.8× 10−16 6.8× 10−16 2.4× 10−10 6.8× 10−16 6.8× 10−16 7.8× 10−6 6.8× 10−16 6.1× 10−16 8.7× 10−10 6.8× 10−16

Best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Worst −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

F29 Mean 0 0 0 0 0 0 0 0 1.5× 10−6 0
Std. 0 0 0 0 0 0 0 0 3.9× 10−6 0
Best 0 0 0 0 0 0 0 0 0 0
Worst 0 0 0 0 0 0 0 0 0.000017 0

F30 Mean 0 0 0 0 0 0 0 7.1× 10−9 0.001155 0
Std. 0 0 0 0 0 0 0 1.3× 10−8 0.001576 0
Best 0 0 0 0 0 0 0 4.9× 10−15 9.2× 10−8 0
Worst 0 0 0 0 0 0 0 6.8× 10−8 0.007948 0

F31 Mean −186.7309 −186.7309 −186.7284 −186.7309 −186.7309 −186.7286 −186.7309 −186.7309 −186.7308 −186.7309
Std. 1.8× 10−14 4.0× 10−14 0.009404 3.4× 10−14 2.0× 10−14 0.007582 3.9× 10−14 3.9× 10−14 0.000254 2.8× 10−14

Best −186.7309 −186.7309 −186.7309 −186.7309 −186.7309 −186.7309 −186.7309 −186.7309 −186.7309 −186.7309
Worst −186.7309 −186.7309 −186.6817 −186.7309 −186.7309 −186.6946 −186.7309 −186.7309 −186.7297 −186.7309

F32 Mean 3 3 3 3 3 3 3 3 3 3
Std. 2.0× 10−15 2.0× 10−15 1.0× 10−7 1.3× 10−15 1.7× 10−15 3.6× 10−8 1.3× 10−15 3.4× 10−15 0.000013 1.3× 10−15

Best 3 3 3 3 3 3 3 3 3 3
Worst 3 3 3 3 3 3 3 3 3.0001 3

F33 Mean 0.000307 0.000368 0.002435 0.000338 0.000307 0.000675 0.001675 0.000354 0.000677 0.000307
Std. 1.9× 10−19 0.000244 0.006086 0.000167 5.6× 10−9 0.000267 0.005083 0.00006 0.000123 1.2× 10−19

Best 0.000307 0.000307 0.000307 0.000307 0.000307 0.000354 0.000307 0.000307 0.000317 0.000307
Worst 0.000307 0.001594 0.020363 0.001223 0.000308 0.0013 0.020363 0.000514 0.00087 0.000307

F34 Mean −10.1532 −5.9744 −9.6449 −8.3806 −10.1532 −1.3749 −6.2478 −7.228 −10.1528 −10.1532
Std. 7.2× 10−15 3.37 1.5509 2.5859 7.2× 10−15 0.77448 3.7292 3.2898 0.000973 7.2× 10−15

Best −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −3.1593 −10.1532 −10.1532 −10.1532 −10.1532
Worst −10.1532 −2.6305 −5.0552 −2.6305 −10.1532 −0.4962 −2.6305 −2.6305 −10.1489 −10.1532

F35 Mean −10.4029 −7.6896 −10.2257 −8.1426 −10.4029 −1.5068 −7.9193 −7.7295 −10.4024 −10.4029
Std. 1.8× 10−15 3.4513 0.97043 3.2909 1.6× 10−15 1.3311 3.5796 3.5849 0.00173 1.8× 10−15

Best −10.4029 −10.4029 −10.4029 −10.4029 −10.4029 −7.7302 −10.4029 −10.4029 −10.4029 −10.4029
Worst −10.4029 −2.7519 −5.0877 −2.7659 −10.4029 −0.58241 −2.7519 −2.7519 −10.3939 −10.4029
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Table A1. Cont.

Function Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

F36 Mean −10.5364 −7.9068 −10.5364 −9.4643 −10.5364 −1.6671 −7.0608 −7.9283 −10.5349 −10.5364
Std. 1.8× 10−15 3.7907 0.000015 2.4485 1.8× 10−15 0.88478 3.8008 3.5144 0.003992 1.7× 10−15

Best −10.5364 −10.5364 −10.5364 −10.5364 −10.5364 −4.4413 −10.5364 −10.5364 −10.5364 −10.5364
Worst −10.5364 −2.4217 −10.5363 −3.8354 −10.5364 −0.67852 −2.4273 −1.6766 −10.515 −10.5364

F37 Mean 0.00485 0.095574 0.33591 0.014761 0.016679 4.0769 0.1465 0.11938 0.11862 0.004616
Std. 0.001181 0.15826 0.5384 0.036154 0.019922 5.7771 0.18854 0.13962 0.09118 0.001398
Best 0.002045 2.9× 10−6 6.4× 10−6 7.1× 10−6 0.001936 0.06555 5.6× 10−6 0.00062 0.00169 0.000088
Worst 0.006389 0.47231 1.5377 0.13066 0.090347 28.3114 0.47231 0.47231 0.37234 0.006388

F38 Mean 0.000114 0.000221 0.030126 0.000192 0.005479 17.2902 0.000938 0.001726 0.010195 0.000083
Std. 0.000173 0.000177 0.16084 0.000173 0.003202 24.8812 0.003020 0.002537 0.007209 0.000093
Best 5.5× 10−7 1.0× 10−9 0.000026 6.4× 10−9 0.001122 0.38614 3.1× 10−14 6.9× 10−7 0.000441 7.3× 10−7

Worst 0.000831 0.000428 0.88168 0.000419 0.011985 124.7192 0.015394 0.008246 0.030697 0.000325

F39 Mean −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −2.7081 −3.8628 −3.8628 −3.8628 −3.8628
Std. 2.7× 10−15 2.7× 10−15 0.002405 2.7× 10−15 2.7× 10−15 0.924 2.7× 10−15 2.5× 10−15 5.2× 10−10 2.7× 10−15

Best −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8537 −3.8628 −3.8628 −3.8628 −3.8628
Worst −3.8628 −3.8628 −3.8549 −3.8628 −3.8628 −0.57993 −3.8628 −3.8628 −3.8628 −3.8628

F40 Mean −3.3224 −3.2588 −3.2579 −3.2469 −3.3224 −2.1921 −3.2826 −3.3065 −3.3224 −3.3224
Std. 5.9× 10−16 0.060487 0.067123 0.058427 6.4× 10−16 0.44001 0.057155 0.041215 3.0× 10−8 5.7× 10−16

Best −3.3224 −3.3224 −3.3224 −3.3224 −3.3224 −2.9142 −3.3224 −3.3224 −3.3224 −3.3224
Worst −3.3224 −3.2032 −3.1376 −3.2032 −3.3224 −1.3712 −3.2032 −3.2032 −3.3224 −3.3224

F41 Mean 0 0.010826 0 0.008372 0 0 0.000986 0.062207 0.14432 0
Std. 0 0.012326 0 0.011661 0 0 0.003077 0.022368 0.14044 0
Best 0 0 0 0 0 0 0 0.027649 1.2× 10−7 0
Worst 0 0.051369 0 0.044263 0 0 0.012321 0.12754 0.46368 0

F42 Mean 4.9× 10−15 0.15683 8.0× 10−15 1.8126 8.9× 10−16 2.6× 10−15 5.9× 10−15 0.040649 0.11434 3.3× 10−15

Std. 1.2× 10−15 0.41725 0 1.1327 0 1.8× 10−15 1.8× 10−15 0.007439 0.097559 1.5× 10−15

Best 4.4× 10−15 8.0× 10−15 8.0× 10−15 8.0× 10−15 8.9× 10−16 8.9× 10−16 4.4× 10−16 0.025084 4.7× 10−6 4.4× 10−16

Worst 8.0× 10−15 1.5017 8.0× 10−15 3.9346 8.9× 10−16 4.4× 10−15 8.0× 10−15 0.055848 0.31791 4.0× 10−15

F43 Mean 3.3× 10−27 0.003456 0.009783 0.27412 3.6× 10−9 0.31638 0.027645 0.000057 0.002775 1.3× 10−27

Std. 1.7× 10−26 0.018927 0.008449 0.6863 2.7× 10−9 0.12895 0.081371 0.000023 0.002182 2.9× 10−27

Best 2.1× 10−30 1.6× 10−32 3.9× 10−8 2.1× 10−32 9.0× 10−10 0.091686 1.6× 10−32 0.000019 2.2× 10−9 1.7× 10−30

Worst 9.2× 10−26 0.10367 0.039231 3.4496 1.2× 10−8 0.78704 0.41467 0.000119 0.008432 1.6× 10−26

F44 Mean 0.006036 0.003383 0.1448 0.006264 2.7× 10−8 2.7347 4.1× 10−32 0.000697 0.036811 0.029482
Std. 0.022972 0.018532 0.10267 0.023854 1.6× 10−8 0.055416 1.1× 10−31 0.000236 0.034919 0.051025
Best 2.2× 10−29 1.5× 10−33 2.7× 10−7 2.5× 10−32 5.3× 10−9 2.6245 1.5× 10−33 0.000278 5.3× 10−12 2.0× 10−22

Worst 0.090543 0.1015 0.38505 0.097371 7.2× 10−8 2.8429 6.1× 10−31 0.001363 0.10215 0.14521
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Table A1. Cont.

Function Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

F45 Mean −1.0809 −1.0809 −1.0809 −1.0809 −1.0809 −0.73561 −1.0809 −1.0494 −1.0809 −1.0809
Std. 4.5× 10−16 4.5× 10−16 3.8× 10−9 4.5× 10−16 4.5× 10−16 0.23848 4.5× 10−16 0.058208 0.000013 4.5× 10−16

Best −1.0809 −1.0809 −1.0809 −1.0809 −1.0809 −1.0661 −1.0809 −1.0809 −1.0809 −1.0809
Worst −1.0809 −1.0809 −1.0809 −1.0809 −1.0809 −0.098209 −1.0809 −0.94563 −1.0809 −1.0809

F46 Mean −1.5 −1.1997 −1.2323 −1.2909 −1.5 −0.21821 −1.3641 −1.0043 −1.4064 −1.5
Std. 6.8× 10−16 0.28879 0.29904 0.28109 6.8× 10−16 0.22497 0.25189 0.36935 0.21175 6.8× 10−16

Best −1.5 −1.5 −1.5 −1.5 −1.5 −0.90126 −1.5 −1.5 −1.5 −1.5
Worst −1.5 −0.73607 −0.57409 −0.79773 −1.5 −0.011193 −0.79782 −0.51319 −0.90597 −1.5

F47 Mean −0.97768 −0.71091 −0.62771 −0.58377 −0.89084 −0.000724 −0.89442 −0.56605 −0.77381 −0.72769
Std. 0.35818 0.36188 0.36267 0.27362 0.2944 0.001587 0.24859 0.24859 0.093677 0.22809
Best −1.5 −1.5 −1.5 −1.5 −1.4993 −0.006644 −1.5 −0.79769 −0.96436 −1.5
Worst −0.46585 −0.27494 −0.13427 −0.27494 −0.41215 −8.0× 10−7 −0.35577 −0.14546 −0.51318 −0.27494

F48 Mean 0 0 0.000029 0 1.9× 10−14 0.018916 5.5× 10−18 9.8× 10−6 0.007613 0
Std. 0 0 0.000054 0 9.4× 10−14 0.030807 3.0× 10−17 0.000026 0.009496 0
Best 0 0 7.0× 10−8 0 0 0.000327 0 3.3× 10−10 0.00021 0
Worst 0 0 0.000194 0 5.1× 10−13 0.1483 1.7× 10−16 0.000121 0.03329 0

F49 Mean 6.6× 10−28 463.6839 75.4101 158.0587 152.2686 1842.241 91.0691 231.8756 7.5535 6.5× 10−6

Std. 4.1× 10−28 1188.208 167.4468 291.4037 273.25 1737.654 200.0792 324.0105 6.1844 0.000035
Best 0 0 0.004088 0 0.000025 92.7308 1.1× 10−25 5.0× 10−14 0.16645 0
Worst 1.0× 10−27 5066.931 692.4573 677.3945 692.4565 6188.255 677.3945 692.4565 29.5654 0.000194

F50 Mean 7.1× 10−28 528.6916 81.3611 67.7395 426.0675 1824.006 63.7245 209.8042 6.1735 5.3× 10−28

Std. 6.6× 10−28 1084.965 165.7652 206.6924 302.0439 2047.863 170.1124 317.1288 5.3754 5.2× 10−28

Best 0 0 10.5397 0 3.1356 72.1616 2.8× 10−26 2.2× 10−14 0.23867 0
Worst 3.4× 10−27 4348.837 692.4587 677.3945 692.4565 6139.581 692.4565 692.4565 23.6686 1.6× 10−27

Number of best hits 23 14 9 13 29 15 13 8 3 32
Hit rate (%) 46 28 18 26 58 30 26 16 6 64
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Table A2. A performance comparison of CEC-C06 2019 test functions.

Function Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

CEC01 Mean 1897.46 9347.033 471.4735 7110.052 1 1 30345.25 75567.76 2159895 47.7927
Std. 2867.538 10741.98 1809.455 10272.97 4.2× 10−10 0 30030.01 79953.37 1323728 103.9644
Best 7.8959 8.663 1 2.6238 1 1 397.1488 278.5102 329903.2 1
Worst 12599.68 35716.12 9008.052 41270.07 1 1 94955.56 338853.2 5778371 465.4388

CEC02 Mean 158.8989 211.8816 182.3192 276.0412 4.9543 4.3106 334.29 274.2638 1456.037 22.8269
Std. 71.7895 98.4277 157.8209 88.4675 0.16205 0.18938 130.13 92.8797 336.3427 18.0358
Best 28.4168 41.025 5.359 129.4601 4.246 4.2195 4.2181 140.061 809.6388 4.2165
Worst 347.462 413.0268 607.7932 468.4655 5 5 689.29 562.2011 2146.505 66.2613

CEC03 Mean 1.7018 1.6056 1.7967 1.6192 4.316 4.7439 4.6179 2.2463 1.8273 1.3745
Std. 0.38958 1.1557 1.1508 1.1505 0.4813 1.0933 0.5127 2.1707 0.28045 0.1407
Best 1.4092 1 1 1.4091 3.506 1.5614 3.3381 1.4091 1.4713 1
Worst 2.8196 7.7119 6.6594 7.7109 5.33 7.4524 5.3898 7.7104 2.5396 1.6115

CEC04 Mean 5.227 16.6208 11.489 24.5473 15.161 58.7958 8.0011 9.3577 9.4372 8.7707
Std. 2.2936 9.0368 5.9399 10.6468 3.1066 10.0195 6.9928 3.7647 2.5852 3.1094
Best 2.0785 5.9748 2.9972 6.9698 9.8662 41.6655 1 2.9899 5.4216 3.9849
Worst 11.9445 39.8033 24.7274 46.768 22.4859 79.5955 72.0561 18.9092 15.5778 15.9244

CEC05 Mean 1.0372 1.118 1.3418 1.1254 1.0715 37.0238 1.0400 1.0865 1.0832 1.0343
Std. 0.02394 0.076811 0.21881 0.073322 0.037814 9.068 0.0954 0.04696 0.046503 0.023769
Best 1.0074 1.0296 1.0807 1.0172 1.0085 22.8897 1 1.0197 1.0114 1
Worst 1.0935 1.3568 1.7945 1.3761 1.1425 66.7916 1.5356 1.2143 1.1841 1.0935

CEC06 Mean 1.1217 1.6565 1.6752 2.991 1.0389 7.3074 1.3068 1.3217 2.5675 1.1953
Std. 0.21817 0.87821 0.65429 1.3046 0.033307 0.99091 0.4634 0.6039 0.48689 0.39333
Best 1 1 1.079 1.0813 1.0042 5.6741 1 1.0083 1.6862 1
Worst 1.965 4.1344 3.4022 5.5246 1.1199 9.6955 2.5143 3.4939 3.6444 2.5774

CEC07 Mean 176.394 780.0061 506.8545 770.3265 640.8752 1231.502 103.99 676.6212 310.6974 309.9096
Std. 157.7418 226.8214 243.8092 325.8487 119.8646 199.7113 108.2556 299.1341 98.4024 145.5422
Best 1.1249 416.0599 1.4188 126.5957 388.7151 837.7197 7.8924 4.6023 38.2768 1.2498
Worst 544.3641 1284.386 1073.91 1705.947 855.2098 1662.029 506.7367 1138.152 508.1458 593.3495

CEC08 Mean 2.2995 3.4544 3.0741 3.4037 3.7788 4.5351 2.2804 3.3504 3.3275 2.2913
Std. 0.43068 0.57327 0.60597 0.50727 0.1974 0.2013 0.43776 0.53345 0.26203 0.41965
Best 1.2409 2.4356 2.201 2.0071 3.1342 4.1857 1.6891 2.0506 2.834 1.6462
Worst 3.1437 4.475 4.524 4.4785 4.0983 5.0861 3.2139 4.4073 3.6896 3.1452

CEC09 Mean 1.0775 1.1329 1.0951 1.2409 1.2019 1.5009 1.0804 1.0943 1.1646 1.1155
Std. 0.025239 0.052233 0.044148 0.12048 0.035946 0.41023 0.017094 0.038149 0.03367 0.029268
Best 1.0369 1.0522 1.0509 1.0451 1.1324 1.3755 1.0346 1.0273 1.1144 1.0635
Worst 1.1524 1.2664 1.2025 1.6425 1.257 3.6701 1.1132 1.177 1.2318 1.1796
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Table A2. Cont.

Function Indicator JSO PSO GWO LSA HBJSA RSO ACO BBO CHIO HJSPSO

CEC10 Mean 5.8004 20.327 19.9744 19.1228 15.8228 21.1176 20.5397 20.9998 19.6332 4.2985
Std. 7.9161 3.6503 4.9802 5.7526 8.9673 0.51525 3.7005 0.000733 4.3111 6.833
Best 1 1 1.0836 2.1551 1.0044 18.764 1 20.9961 5.8547 1
Worst 21.3698 21 21.3918 21.1417 21.209 21.4353 21.4105 21 21.0587 21.3619

Number of best hits 2 0 0 0 1 2 2 0 0 3
Hit rate (%) 20 0 0 0 10 20 20 0 0 30
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