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Abstract: A novel intelligent complementary sliding mode control (ICSMC) method is proposed
for nonlinear systems with unknown uncertainties in this paper. A self-evolving Chebyshev radial
basis function neural network (RBFNN) (SECRBFNN) with self-learning parameters and structure is
proposed and combined with complementary sliding mode control (CSMC). CSMC not only has the
advantages of the strong robustness of traditional SMC but also has certain advantages in reducing
chattering and control accuracy. The SECRBFNN, which combines the advantages of the Chebyshev
network (CN) and an RBFNN, is used to estimate unknown uncertainties in nonlinear systems.
Meanwhile, a node self-evolution mechanism is proposed to avoid redundancy in the number of
neurons. Eventually, the detailed simulation results demonstrate the feasibility and superiority of the
proposed method.

Keywords: complementary sliding mode control (CSMC); self-evolving Chebyshev radial basis
function neural network (SECRBFNN); node self-evolution mechanism; nonlinear systems control
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1. Introduction

In the practical application of control technology, there is a general difference between
the actual model and the known nominal model. This difference makes it difficult to design
controllers for a group of nonlinear systems [1,2]. In past research, some linear control
methods have been applied to solve the control problems of unknown models, but poor
control accuracy and overall performance are the disadvantages of these methods. In addi-
tion, some model-independent control methods such as neural network control [3], fuzzy
logic systems [4,5], and PID control are also applied to unknown systems [6]. However,
the parameter adjustment of these methods needs to be combined with actual application
scenarios, which means that empirical methods are almost the only methods to adjust
parameters in the face of different unknown models.

Sliding mode control (SMC), as a control method which does not depend on an
accurate model and has strong robustness, has unique advantages in solving the control
field of systems with unknown uncertainties [7]. In many applications, SMC is often
used to suppress the influence of lumped uncertainty in the system and achieve fast
response of control [8]. However, the discontinuous switching characteristics of sliding
mode control will cause chattering of the system [9,10]. Research on SMC often focuses on
weakening chattering as much as possible on the premise of ensuring the advantages of
SMC. Adaptive SMC (ASMC) is proposed to avoid unnecessary chattering caused by the
setting of switching gain of the sliding mode controller. This method makes the switching
gain change adaptively by designing the switching gain adaptive law [11–13]. Super-
twisted SMC (STSMC) theory makes the switching term more continuous and smoother by
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transforming the switching term [14]. Similarly, the quasi-sliding mode method replaces
the sign function in the traditional SMC by using the saturation function or continuous
relay characteristics, thus reducing the discontinuity of switching terms and weakening
chattering [15]. In addition, the CSMC method is proposed, which can not only weaken
chattering but also has good tracking accuracy. Theoretically, it can be proven that the
CSMC method has a smaller steady-state error bound than the quasi-sliding mode method
with the saturation function [10,16,17]. However, the sliding mode controller needs to
continuously increase the value of switching gain to maintain stability when there is a
large amount of uncertainty inside and outside the system, which exacerbates control
discontinuity. This makes the effectiveness of the improved sliding mode control method
in weakening chattering less significant. Especially for some power electronic devices with
high-frequency switches, excessive system vibration can reduce their service life and even
cause safety issues [18,19].

Therefore, acquiring unknown uncertainties and compensating for them in the sliding
mode controller can fundamentally weaken chattering without damaging the performance
of the controller. Fortunately, neural networks (NNs) are widely used in the field of system
identification and function approximation because they can approximate any continuous
nonlinear function [20–24]. Therefore, in past studies, various networks have been proposed
to obtain accurate and fast function approximation. Among them, RBFNNs are widely used
in the field of function approximation and system identification with a simple structure
and faster convergence speed than multi-layer perceptual networks [25,26]. Moreover, in
order to improve the performance of RBFNNs, some improved RBFNN methods have been
studied [13]. These networks add connections between hidden layer nodes and recursive
structures between output layer nodes and hidden layer nodes. Without exception, these
optimized RBFNNs greatly increase the complexity of the control algorithm, especially by
increasing the number of hidden layers and adopting a recursive structure. In modern
digital control systems, the realization of a control algorithm usually depends on the
computing power of the control unit. With the increase in the complexity of the control
algorithm, this will inevitably lead to the limited sampling frequency of the system and the
aggravation of the algorithm delay [27]. For the above reasons, a simple network structure
that can improve the approximation accuracy of NNs is needed. The functional link NN
(FLNN), as a single-layer network based on extension polynomials, happens to meet this
requirement. As a member of the FLNN, the Chebyshev network (CN) can also expand
with nonlinear functions to generate nonlinear decision boundaries, thus forming complex
decision regions. Meanwhile, functional expansion can effectively increase the dimension of
the input vector, so that the hyperplane generated by the network will have good resolution
in the input data space [28]. Moreover, the CN is widely used in the field of intelligent
control due to its recursive characteristics and optimal approximation theory [29,30]. The
existing research has proven that the unified model NN based on Chebyshev polynomials
not only has function approximation ability but also has a faster learning speed than the
traditional feedforward or recursive NNs [31,32]. The parameter learning methods of NNs
and gradient descent and genetic algorithms are investigated in [33,34].

In addition, in order to avoid the problem of all hidden layer nodes being far away
from the input signal, resulting in a network output of almost zero, this article proposes
a structural self-evolution mechanism. Based on the distance between the center value
vector of the Gaussian basis function and the input signal, it is determined whether it is
necessary to add new nodes to expand the mapping range of the network. In summary, a
self-evolving Chebyshev radial basis function neural network (SECRBFNN) is proposed to
remove the influence of unknown nonlinear impact. The initial hidden layer node of the
proposed SECRBFNN is one, and the number of final nodes and new node parameters are
determined by the actual control situation. Therefore, the integration of this mechanism
ensures that the structure of the proposed network can automatically evolve according to
the actual situation when facing different application scenarios. Eventually, a shunt active
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power filter (SAPF) is used as a simulation model to verify the designed control method.
The main research contributions are summarized as:

(1) The designed new CSMC algorithm is oriented to a multi-dimensional uncertain
nonlinear system and does not depend on an accurate mathematical model. The
superiority of the proposed method is explored to show that it has a smaller steady-
state error.

(2) A network combining the CN and the RBFNN is designed. The network combines
the advantages of the CN and the RBFNN in function approximation and is not
obvious in increasing the complexity of the algorithm. At the same time, the structure
self-evolution mechanism is added to the network, so that the network structure can
be adjusted according to the actual control scenario.

(3) The SAPF model is adopted in the simulation phase. CSMC and the proposed method
are respectively applied to the SAPF current control system. The comparative study
between two methods is accomplished to highlight the superiority of the proposed
method, from the perspectives of current tracking, harmonic compensation, and
network operation time.

2. Problem Statement and Preliminaries

Consider the following N-order model with single input and single output:

.
x1 = x2.
x2 = x3
· · ·
.
xn = f (X) + b(X)u
y = x1

(1)

where X =
[
x1 x2 · · · xn

]T , X is the system state, and y is an output of the sys-
tem. f (X) and b(X) are the nonlinear dynamics and control gains which satisfy the
followingassumptions:

Assumption 1. f (X) and b(X) are all bounded and satisfy:

| f (X)| < F(X) (2)

|b(X)| < B(X) (3)

where F(X) and B(X)are the positive bounded function.

Remark 1. In practical applications, objective factors such as equipment aging, temperature,
humidity, etc., are highly likely to cause the actual model parameters to differ from the nominal
values. In addition, human modeling errors and measurement errors are also important reasons for
the occurrence of unknown uncertainties. Therefore, designing controllers using nominal values
is bound to be influenced by unknown uncertainties. In this article, unknown uncertainty is
summarized as a term in system dynamics [35,36].

Therefore, (1) can be rewritten as:

.
x1 = x2.
x2 = x3
· · ·
.
xn = f0(X) + b0(X)u + ∆
y = x1

(4)
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where f0(x) and b0(x) are the nonlinear dynamics and control gains with nominal value,
respectively, and ∆ is the lumped unknown nonlinear impact, which is assumed to be
Lipschitz continuous and bounded and satisfies:

|∆| < D (5)

where D is a positive constant.

3. Proposed Control Method and Stability Verification

The block diagram of the proposed control method is shown in Figure 1, where the
SECRBFNN is used to obtain ∆̂ and CSMC to form the new ICSMC. Meanwhile, parameter
learning laws and structural self-evolution mechanisms are used to adjust the parameters
and structure of the network based on the actual control situations. In the Figure 1, e
represents the tracking error, which can be written as:

e = y− yd (6)

where yd is a desired signal. The control goal is to design a controller with good performance
so that y can track yd accurately and robustly.
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Figure 1. Block diagram of the proposed control systems.

Thus,
.
yd and

.
e are the first derivative of expected signal in control system and tracking

error, respectively; u represents control law.

3.1. Structure of the Self-Evolving Chebyshev Radial Basis Function Neural Network

The proposed SECRBFNN’s structure is described in Figure 2, which is a four-layer
network. Firstly, the input data are processed using Chebyshev extended polynomials,
and then function approximation is achieved through the RBFNN. The following is an
expression of the relationship between the input signals and output signals of each layer.

(1) Layer 1—the first input layer: This layer is used to transfer the input signal. For each
node, the relationship between the output and input are as follows:

y(1)i = u(1)
i , (i = 1, 2, · · · , m) (7)

u(1)
i = xi (8)
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where y(1)i and u(1)
i are the output and input signal of the i-th node, respectively. The input

of the entire network is the tracking error.
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(2) Layer 2—Chebyshev layer: Chebyshev polynomials are used to map the NN input to
a higher dimensional space. In the high-dimensional space, the input signals can be
divided as:

Ω = [Ω1, Ω2, · · · , Ωv]
T

= [C0, C1(y
(1)
1 ), · · · , Cp(y

(1)
1 ), C1(y

(1)
2 ), · · · , Cp(y

(1)
2 ),

· · · , C1(y
(1)
m ), · · · , Cp

(
y(1)m

)
]T

(9)

where Ω is the output vector after Chebyshev expansion, Ch(xi) is the Chebyshev polyno-
mials, and h = 1, 2, · · · , p represents the order of a polynomial. Chebyshev polynomials
of each order are expressed as:

C0 = 1;
C1(xi) = xi
C2(xi) = 2x2

i − 1
C3(xi) = 4x3

i − 3xi
...

Ch+1(xi) = 2xiCh(xi)− Ch−1(xi)

(10)

Finally, the output of this layer can be written as:

y(2)k =
v

∑
l=1

o(2)rk Ωr, k = 1, 2, · · · , c; r = 1, 2, · · · , v (11)

where y(2)k is the output signal of the k-th output node of this layer and o(2)rk represents the
corresponding combined weight of the Chebyshev basis functions.

(3) Layer 3—the second input layer: This layer is the bridge between the CNN and the
RBFNN. The output is expressed as:

y(3)kj = u(3)
kj , (j = 1, 2, · · · , l) (12)

u(3)
kj = y(2)k (13)
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where y(3)kj is the output signal of this layer from the k-th output node in the Chebyshev
layer, which is sent to the j-th node in the hidden layer.

(4) Layer 4—hidden layer: The mapping of input signals in this layer is the key to the
performance of the RBFNN [35]. The output of this layer can be expressed as:

y(4)j = e−net4
j , net4

j =
k

∑
c=1

(u(4)
kj −mkj)

2

(δkj)
2 (14)

u(4)
kj = y(3)kj (15)

where mkj and δkj are the center and width in the Gaussian function, calculated in the j-th

node for the k-th input, respectively. y(4)j represents the output of the j-th hidden layer node.

(5) Layer 5—output layer: This layer is used to transport the output signal of the entire
network. The expression of the output of this layer is as follows:

y(5)o =
l

∑
j=1

w(5)
jo u(5)

jo , o = 1, 2 · · · , N (16)

u(5)
jo = y(4)j (17)

where wjo is the output weight between the j-th hidden layer node and the o-th output

layer node; y(5)o is the output of the o-th output layer node; and ujo is the input of the o-th
output layer node from the o-th output layer node.

We summarize all self-learning parameter vectors as follows:

W =
[

W1 , W2, . . . Wn
]
∈ <n (18)

M =
[

m11 . . . mc1 , m12 . . . mc2, . . . . . . , m1l . . . mcl
]T ∈ <c·l (19)

δ =
[

δ11 . . . δc1, δ12 . . . δc2, . . . . . . , δ1l . . . δcl
]T ∈ <c·l (20)

3.2. Self-Evolving Mechanism

RBFNNs have been widely used in the field of function approximation, but a thorny
problem is that they may not have good approximation ability due to the inability of all
hidden layer nodes to map the current input signal well. Therefore, to avoid this problem,
setting up multiple nodes is a common approach. However, in practical applications,
multiple network nodes can lead to an increase in algorithm complexity, thereby increasing
the cost of algorithm implementation. Therefore, setting an appropriate number of nodes
has become the primary issue in neural network applications. This section proposes a
structural self-evolution mechanism. At 0 s, the number of hidden layer nodes in the
SECRBFNN is set to 1, and then, nodes are added when the activation intensity of the
hidden layer does not meet the preset value. The initial value of the parameters of the new
node is determined by the current input, ensuring that at least one hidden layer node can
map the current input signal well.

The initial number of nodes in the hidden layer is set to 1. Equation (21) is used to
calculate the generalized distance matrix between the input signal and the hidden layer
node. The generalized distance matrix reflects the degree of correlation between the current
input and the hidden layer nodes at the previous time. The result is proportional to the
difference between the input signal and the center value of the previous moment mj(t− 1)
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and inversely proportional to the base width. The influence of the base width and center
value on the mapping ability of Gaussian counting functions is explained in Remark 2:

dj = (uj(t)−mj(t− 1))TΛ−2
j (uj(t)−mj(t− 1)) (21)

where dj is the distance matrix between the current input uj(t) and the existing j-th hidden
layer nodes; the input signal of the jth hidden layer node in the fourth layer of the network

at current time uj(t) =
[
u(4)

1j u(4)
2j · · · u(4)

kj

]T
; and mj(t− 1) =

[
m1j m2j · · · mkj

]T

is the center value vector of the j-th hidden layer node at the previous moment and
Λj = diag(δ1j(t− 1), δ2j(t− 1) · · · , δkj(t− 1)).

Finding the hidden layer node closest to the current input:

dmin = min
j=1,2,··· ,N(t−1)

dj (22)

If
dmin > dth (23)

which indicates that the current effective mapping range of the hidden layer nodes does
not include the input signal at this moment. Therefore, a new hidden layer node needs to
be customized according to the current input. The initial parameters of the new node are:

mnew = x(t) (24)

δnew = δinit (25)

wnew = 0 (26)

Remark 2. The center value and width value of the Gaussian function determine the mapping
ability of the hidden layer nodes to specific input signals. The closer the center value is to the input
signal, the more sensitive the Gaussian function is. Therefore, the selection of initial values for the
newly added node center value vector in this article depends on the current input signal vector. In
NN identification applications, the initial value of the width is often set to a larger value to increase
the coverage range of the Gaussian basis function and enhance the adaptability of the hidden layer to
various input signals. After adding a node, the NN will enter the parameter self-learning process.
Then, with parameter learning, dmin will be recalculated, and it will be checked as to whether it
meets the requirements. If dmin meets the preset requirements, the new node is retained, otherwise
the candidate node will be discarded.

3.3. Controller Design and Stability Proof

N-dimensional generalized and complementary sliding surfaces are designed, respec-
tively, as follows:

Sg = (p + λ)n
∫ t

t0

e(τ)dτ (27)

Sc = (p + λ)n−1(p− λ)
∫ t

t0

e(τ)dτ (28)

where λ is a sliding mode parameter and p is a differential operator.
Thus, a key equation can be obtained:

.
Sc + λ

(
Sg + Sc

)
=

.
Sg (29)



Mathematics 2023, 11, 3231 8 of 18

The intelligent complementary sliding mode controller is designed as:

u(t) = ueq + usw (30)

ueq = − 1
b0
[ f0(X) + ∆̂− y(n)d +

n−1

∑
k=0

(
n + 1
k + 1

)
e(k)λn−k + λn+1

∫ t

t0

e(τ)d(τ)] (31)

usw = −kwsat
(

Sg + Sc

φ

)
(32)

where ueq represents an equivalent control law and usw is a switching control law, and
sat(·) is the saturation function, which can be represent as:

sat
(

Sg + Sc

φ

)
=

{
sgn(Sg + Sc)

∣∣Sg + Sc
∣∣≥ φ

Sg+Sc
φ

∣∣Sg + Sc
∣∣< φ

(33)

where φ is the boundary-layer thickness.
According to the approximation theory of NNs, ∆ and the approximation of ∆̂ can be

expressed as:
∆ = W∗Tσ∗(M∗, δ∗, x) + ε(x) (34)

∆̂ = ŴT σ̂(M̂, δ̂, x) (35)

where W∗ and σ∗(M∗, δ∗, x) are the optimal output weight and the output of the hidden
layer, respectively; M∗ and δ∗ are the optimal center value and width of the hidden layer,
respectively; and ε(x) represents the smallest approximation error. Similarly, Ŵ and
σ̂(M̂, δ̂, x) are the actual output weight and the output of the hidden layer, respectively,
and M̂,δ̂ are the actual center value and width of the hidden layer.

Therefore, the approximation error in the NN can be deduced as:

∆− ∆̂ = W∗Tσ∗ − ŴT σ̂ + ε(x)
= W∗T(σ̂ + σ̃)− ŴT σ̂ + ε(x)
= W∗T σ̂ + W∗T σ̃− ŴT σ̂ + ε(x)
= W̃T σ̂ + ŴT σ̃ + W̃T σ̃ + ε(x)

(36)

where σ̃ = σ∗ − σ̂, W̃ = W∗ − Ŵ.
The Taylor expansion of δ∗ at M∗ = M̂ and δ∗ = δ̂; then, σ̃ can be rewritten as:

σ̃ = ∂σ̃
∂M

∣∣∣
M=M̂

(
M∗ − M̂

)
+ ∂σ̃

∂δ

∣∣∣
δ=δ̂

(
δ∗ − δ̂

)
+ Oh

= Dσ(M)·M̃ + Dσ(δ)·δ̃ + Oh
(37)

where Oh represents high-order terms in Taylor expansion expressions, and

Dσ(M) =


∂σ1

∂m11
. . . ∂σ1

∂mcl
...

. . .
...

∂σl
∂m11

. . . ∂σl
∂mcl


l×cl

(38)

Dσ(δ) =


∂σ1
∂δ11

· · · ∂σ1
∂δcl

...
. . .

...
∂σl
∂δ11

· · · ∂σl
∂δcl


l×cl

(39)
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Therefore,

∆− ∆̂ = W̃T σ̂ + ŴT σ̃ + W̃T σ̃ + ε(x)
= W̃T σ̂ + ŴT [Dσ(M)·M̃ + Dσ(δ)·δ̃ + Oh] + W̃T σ̃ + ε(x)
= W̃T σ̂ + ŴDσ(M)·M̃ + ŴDσ(δ)·δ̃ + e∆

(40)

where e∆ = ŴTOh + W̃T σ̃ + ε(x) is the lumped high-order approximation error and
assuming |e∆| ≤ e∆.

The parameter learning methods of NNs include gradient descent, genetic algo-
rithms [36], and other methods. In order to make the proposed network achieve the
optimal approximation in theory, the parameter learning law is designed as follows:

.
W̃ = −η1(Sg + Sc)σ̂ (41)

.
δ̂

T
= −η2(Sg + Sc)ŴT Dσ(δ) (42)

.
M̂

T
= −η3(Sg + Sc)ŴT Dσ(M) (43)

where η1, η2, and η3 are the parameter learning rates and all are positive constants.
Considering the following Lyapunov function:

V =
1
2
(S2

g + S2
c ) +

1
2η1

W̃TW̃ +
1

2η2
δ̃T δ̃ +

1
2η3

M̃T M̃ (44)

Taking the time derivative of (44) and using (30)–(33), we obtain:

.
V = Sg

.
Sg + Sc

.
Sc + H

= (Sg + Sc)(
.
Sg − λSc) + H

= (Sg + Sc)
{

p[(p + λ)n∫ t
t0

e(τ)dτ]− λSc

}
+ H

= (Sg + Sc)
{

e(n) − λSc + [p(p + λ)n∫ t
t0

e(τ)dτ − e(n)]
}
+ H

= (Sg + Sc)
{

x(n) − x(n)d − λSc + [p(p + λ)n∫ t
t0

e(τ)dτ − e(n)]
}

= (Sg + Sc)
{

f (x) + bu + ∆− x(n)d − λSc + [p(p + λ)n∫ t
t0

e(τ)dτ − e(n)]
}
+ H

= (Sg + Sc)

{
∆− ∆̂−

n−1
∑

k=0

(
n + 1
k + 1

)
e(k)λn−k − λn+1

∫ t
t0

e(τ)d(τ)

−λSc + [p(p + λ)n∫ t
t0

e(τ)dτ − e(n)]
}
+ H

= (Sg + Sc)
{

∆− ∆̂− λSg − λSc − kwsat( Sg+Sc
φ )

}
+ H

(45)

where H = 1
η1

W̃T
.

W̃ + 1
η2

δ̃T
.
δ̃ + 1

η3
M̃T

.
M̃.

By substituting parameter learning laws and (40), we can obtain:

.
V = −λ(Sg + Sc)

2 + [e∆ − kwsat( Sg+Sc
φ )](Sg + Sc)

≤ −λ(Sg + Sc)
2 + e∆

∣∣Sg + Sc
∣∣− kwsat( Sg+Sc

φ )(Sg + Sc)
(46)

Thus, if kw > e∆ is satisfied when
∣∣Sg + Sc

∣∣ ≥ φ, the Lyapunov function is negative
definite. This ensures that any position error trajectory will reach the boundary layer∣∣Sg + Sc

∣∣ < φ in finite time [17]. Stability proof of the proposed controller is completed.
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4. Simulation Study
4.1. Introduction of the Model and Parameters

To verify the feasibility of the proposed controller, a shunt active power filter (SAPF)
was used as the control object. The SAPF’s control system can be divided into three main
parts: power supply voltage, nonlinear load, and the SAPF’s main circuit. The principle of a
SAPF for harmonic suppression can be simply summarized as enabling the output current
of the SAPF, namely the compensation current, to track the expected current calculated by
the harmonic detection algorithm. Then, the compensating current is reversely injected
into the power grid to counteract the harmonic current caused by nonlinear loads.

The circuit topology diagram of the SAPF is shown in Figure 3. The simulation model
parameters are shown in Table 1. In order to simulate the system uncertainties caused by
aging in actual circuits, in the MATLAB/Simulink simulation model, the inductance L and
resistance R values in the SAPF main circuit are changed to 18 mH and 1 Ω, respectively.
However, the nominal values in Table 1 were used in the controller design.
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Table 1. System parameters for simulation.

Parameters Value

Grid voltage and frequency 24 V/50 Hz
Nonlinear load at steady state R = 5 Ω, R2 = 15 Ω, C = 10−3 F

Additional nonlinear loads in parallel R = 15 Ω, R2 = 15 Ω, C = 10−3 F
Main circuit parameters of the SAPF L = 10−3 H, R = 0.1 Ω, Udc = 50 V

Sampling period Ts = 10−5 s

For PWM-based models, the most common modeling method is state space averaging,
which converts a nonlinear time-varying switching circuit into an equivalent nonlinear
time-varying continuous circuit mainly by weighted averaging of state variables. Therefore,
the average dynamic model of an active filter can be written as:

dic
dt = (1− u)

(
− R

L ic − Us+Udc
L

)
+ u

(
− R

L ic +
Udc−Us

L

)
= − R

L ic − Udc+Us
L + 2Udc

L u
(47)

where ic represents the compensation current, Us is the power supply voltage, is is the
power supply current, Udc is the voltage between capacitor C; L and R are the circuit
inductance and resistance, respectively; and u is the duty cycle of the PWM control input,
which is determined by four IGBTs.

Based on the above analysis, the model of the SAPF is written as:

.
x = f (x) + bu + ∆(x) (48)
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where x represents ic, f (x) = − R
L x − US+Udc

L , b = 2Udc
L and ∆(x) represents

unknown uncertainty.
Define current tracking error e = ic − ir, where ir is a reference current. Consequently,

according to the results deduced in Section 3, the control law for the SAPF current loop
control is:

ueq = −1
b
[ f (x) + ∆̂− ..

xd + λ2e + 2λ
.
e + λSg] (49)

usw = −Kwsat(Sg + Sc) (50)

u = ueq + usw (51)

In order to highlight the superiority of the proposed method, traditional CSMC is
used as a comparative method. The parameters of both methods are shown in Table 2. In
addition, the parameters of DC side voltage control are also displayed.

Table 2. Parameters of the controller in the simulation.

Method Parameters

CSMC kw = 0.7, λ= 30

New CSMC kw = 0.6, λ = 30, dth = 800, ηw = 3× 106, ηm = 0.005,
ηδ = 0.03, φ = 0.05

Voltage loop PI controller Kp = 0.15, KI = 0.02

4.2. Steady-State Study

During steady-state response, the load in the power grid remains constant. Figure 4
shows the load current, compensation current, and power supply current curve (from top
to bottom) under steady-state response. Not surprisingly, the current flowing through a
nonlinear load is severely distorted. When the compensation current precisely tracks the
reference current detected by the harmonic detection algorithm and is injected into the grid
in the reverse direction, the power supply current changes to a standard sinusoidal signal.
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Figure 4. Load current, compensation current, and power supply current (from top to bottom).

Figure 5 shows the situation of compensating for current tracking of the reference
current in SAPF current loop control. Within 0.03 s, the compensation current accurately
tracks the expected current and the tracking error amplitude is only about 0.05, which
demonstrates that the proposed method has an accurate steady-state tracking ability.
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Figure 5. Current tracking and tracking error.

Figures 6 and 7 show the spectral analysis of the power supply current before and after
SAPF connection. When the SAPF is not connected, the total harmonic distortion (THD) index
of the grid current is as high as 36.81%, while after the SAPF is connected, the THD value of
the power supply current is 1.58%. This indicates that most harmonics in the grid have been
compensated, and the proposed method has good steady-state compensation ability.
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4.3. Dynamic Study

The parallel connection and removal of loads in power networks are common phe-
nomena in power networks. Therefore, in order to test whether the proposed method still
maintains good performance under load variation, another nonlinear load will be parallel
to the power grid at 0.3 s and removed at 0.6 s.

Figure 8 shows the load current, compensation current, and power supply current
(from top to bottom) under dynamic response. Evidently, the amplitude of the load current
and power supply current increase when a nonlinear load parallels to the power gird.
However, the power supply current maintains a standard sinusoidal waveform and is
smooth as it increases.
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Figure 8. Load current, compensation current, and power supply current (from top to bottom) under
dynamic response.

Figures 9 and 10 show the current tracing and tracking error when the load increases
and decreases at 0.3 s and 0.6 s, respectively. Although the instantaneous tracking error
increases instantaneously when the load increases at 0.3 s, the amplitude is only 0.1 and
the duration is 0.01 s. This is due to the reference current changing at the moment of load
change, which results in dynamic errors. However, since the tracking error is still small
and the duration is short, the effect on the THD value in a cycle is not obvious.
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Figures 11 and 12 show the power grid current spectrum analysis after load increase
and removal, respectively. Obviously, compared to the steady-state THD value of 1.58%,
the THD value after load increase and removal is still very small at 1.22% and 1.89%,
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respectively. The phenomenon reveals the fact that the performance of the proposed control
method is not able to be influenced through load variation.
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Figure 13 describes the variation curve of the hidden layer nodes. Ultimately, the self
evolution of the number of nodes to three can achieve the above control effect. Figure 14
shows the DC side voltage curve (blue curves). The SAPF voltage loop PI controller can
maintain the voltage on both sides of the capacitor at around 50V(red dotted line), which
also meets expectations.
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4.4. Comparison Study

In order to explore the superiority of the proposed method, CSMC is used as a
comparative method in this part. Figure 15 shows the comparison of current tracking and
tracking errors between the new CSMC and the CSMC.
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As a control method insensitive to uncertainties such as external disturbances, param-
eter perturbations, and modeling errors, the CSMC method in the SMC family can also
achieve accurate current tracking. However, its error waveform is not smooth and exhibits
obvious periodicity, indicating that the suppression of the uncertainty of SAPF periodicity
using CSMC is not sufficient. On the contrary, the current tracking error under new CSMC
control is smoother, indicating that the unknown periodic uncertainty present in the system
is compensated. If more outstanding control performance of CSMC is desired, a larger
switching gain is needed. This will inevitably lead to an exacerbation of chattering. On the
contrary, under the estimation of unknown uncertainty in the SAPF by the SECRBFNN,
the switching gain of the CSMC part can be set to be smaller, and the chattering can be
weakened as a result.

Table 3 shows the calculation time comparison of existing networks. Obviously,
compared to the double-loop recurrent NN (DLRNN) [13] with two recursive structures
and the double hidden layer recurrent NN (DHLRNN) [7] with multiple hidden layers, the
proposed network has a shorter computational time.

Table 3. Computational time comparison.

Methods RBFNN DLRNN [12] DHLRNN [7] SECRBFNN

Time (s) 25.194 49.737 75.641 42.562
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Remark 3. The NNs in Table 3 are all simulated in MATLAB/Simulink. The simulation method
and simulation environment are identical. We used the built-in Profile Viewer function in MATLAB
to calculate the running time of the four methods and used this as an indicator to evaluate whether
the proposed method increases the computational burden while achieving good control effects.

Table 4 connects the THD index of the two methods under three states. The THD
of the proposed method is lower than that of CSMC in both steady-state and load varia-
tion situations, indicating that the proposed method has better steady-state and dynamic
harmonic compensation capabilities.

Table 4. THD index comparison.

State\Strategy THD of CSMC THD of the New CSMC

Steady-state 2.41% 1.58%
After the load increases 2.17% 1.22%
After the load decreases 2.64% 1.89%

5. Conclusions

This paper presents a new type of intelligent complementary sliding mode controller.
Compared with the classical sliding mode controller, the proposed new CSMC uses a
SECRBFNN to estimate the unknown uncertainties and to compensate for the effects
of uncertainties. Since the influence of uncertainty in the system is compensated, the
switching gain of the CSMC part can also be set to be smaller to reduce system chattering.
The designed SECRBFNN combines parameter self-learning and structural self-evolution
mechanisms by the combination of the CN and an RBFNN, enabling the structure and
parameters of the SECRBFNN to be automatically adjusted. Eventually, the superiority
of the proposed method was verified through simulation research on the SAPF model.
The proposed method can achieve better current control performance than the classical
CSMC method. In all three simulation scenarios, the THD of the grid current after APF
connection controlled by the proposed method is lower than that of CSMC, and the network
computational complexity is lower compared to the existing NN.
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Nomenclature

ICSMC Intelligent complementary sliding mode control
RBFNN Radial basis function neural network
SECRBFNN Self-evolving Chebyshev radial basis function neural network
CSMC Complementary sliding mode control
ASMC Adaptive sliding mode control
STSMC Super-twisted sliding mode control
CN Chebyshev network
NN Neural network
FLNN Functional link NN
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