
Citation: Barron, Y. The Delay Time

Profile of Multistage Networks with

Synchronization. Mathematics 2023,

11, 3232. https://doi.org/10.3390/

math11143232

Academic Editors: Maria Do Castelo

Gouveia and Carla Oliveira

Henriques

Received: 23 June 2023

Accepted: 11 July 2023

Published: 23 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Delay Time Profile of Multistage Networks
with Synchronization
Yonit Barron

Industrial Engineering and Management, Ariel University, Ariel 40700, Israel; ybarron@ariel.ac.il

Abstract: The interaction between projects and servers has grown significantly in complexity; thus,
applying parallel calculations increases dramatically. However, it should not be ignored that parallel
processing gives rise to synchronization constraints and delays, generating penalty costs that may
overshadow the savings obtained from parallel processing. Motivated by this trade-off, this study
investigates two special and symmetric systems of split–join structures: (i) parallel structure and
(ii) serial structure. In a parallel structure, the project arrives, splits into m parallel groups (subprojects),
each comprising n subsequent stages, and ends after all groups are completed. In the serial structure,
the project requires synchronization after each stage. Employing a numerical study, we investigates
the time profile of the project by focusing on two types of delays: delay due to synchronization
overhead (occurring due to the parallel structure), and delay due to overloaded servers (occurring
due to the serial structure). In particular, the author studies the effect of the number of stages, the
number of groups, and the utilization of the servers on the time profile and performance of the
system. Further, this study shows the efficiency of lower and upper bounds for the mean sojourn
time. The results show that the added time grows logarithmically with m (parallelism) and linearly
with n (seriality) in both structures. However, comparing the two types of split–join structures shows
that the synchronization overhead grows logarithmically undr both parallelism and seriality; this
yields an unexpected duality property of the added time to the serial system.

Keywords: parallelism; synchronization overhead; sojourn time; queueing; split–join networks

MSC: 90B15; 90B22; 60J28

1. Introduction

Nowadays, the concept of a “project” is becoming much more general and multidimen-
sional. The interaction between projects and servers has grown in complexity, originating
from today’s practice that projects are predominantly parallel subprojects that involve par-
allel calculations. Examples of such departures from the traditional one-server-per-project
model include data centers at Google, Microsoft, and Facebook, where parallelism can
occur both at the hardware and software levels [1–3], process mining and business activities
evaluations [4–6].

Split–join networks are a key modeling tool for parallelism in operations research,
queueing models, and supply chain management. The basic split–join network (also known
as the fork–join network), is a one-stage network (see Figure 1). A stream of projects arrives
at the split node (the first pink triangle), where each project is split into m tasks that are
allocated to m parallel servers (the gray circles). A task may have to wait in a queue (the
black rectangle) until its server finishes all previous tasks. After the task is completed,
it waits in a join-type queue (the second pink triangle) until all the other m− 1 tasks of
the same project are completed. When all m tasks of the same project are completed, they
rejoin (are synchronized) at the join node. The sojourn time is the time from the arrival
of the project until its completion. (i.e., until its departure from the join node). Here, the
terminology “server” is used when talking about something that processes tasks, such as

Mathematics 2023, 11, 3232. https://doi.org/10.3390/math11143232 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143232
https://doi.org/10.3390/math11143232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6635-095X
https://doi.org/10.3390/math11143232
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143232?type=check_update&version=2

Mathematics 2023, 11, 3232 2 of 30

a machine, a single CPU core, or a single thread. Additionally, the label “queue” is used
to represent the place where the task waits. Accordingly, there are two types of queues: a
queue before each server where the task is delayed due to a busy server, and a queue where
a group waits until all the parallel groups are completed. In the remainder of the paper,
the author refers to these two types of queues as operational queues and synchronization
queues, respectively.

Microsoft, and Facebook, where the parallelism can occur both at the hardware and software levels

([1], [30], [14]), process mining and business activities evaluations ([2], [10]).

Split-join networks are a key modeling tool for parallelism in operations research, queueing models,

and supply chain management. The basic split-join network (also known as the fork-join network),

is a one-stage network; see Figure 1. A stream of projects arrive at the split node (the first pink

triangle), where each project is split into m tasks that are allocated to m parallel servers (the gray

circles). A task may have to wait in a queue (the black rectangle) until its server finishes all previous

tasks. After the task is completed, it waits in a join-type queue (the second pink triangle) until all

the other m− 1 tasks of the same project are completed. When all m tasks of the same project are

completed, they rejoin (are synchronized) at the join node. The sojourn time is the time from the

arrival of the project until its completion. (i.e., until its departure from the join node). Here, we use

the terminology "server" whenever we are talking about something that processes tasks, such as a

machine, a single CPU core, or a single thread. Additionally, the label "queue" is used to represent

the place where the task waits. Accordingly, there are two types of queues: a queue before each

server where the task is delayed due to a busy server, and a queue where a group waits until all the

parallel groups are completed. In the remainder of the paper, we refer to these two types of queues

operational queues and synchronization queues, respectively.

Figure 1. The basic split-join network.

A split-join network with a more general topological structure is illustrated in Figure 2. Here,

the project starts with task 1, and then splits into two parallel groups, starting with tasks 2 and

8, respectively. After finishing task 2, the project continues to three parallel groups, the first of

which consists of two consecutive tasks (tasks 3 and 6). Finishing all these three groups, the project

continues with task 7. After finishing tasks 7 and 8, the project is completed. The operational queues

are marked by striped black rectangles, and the join (synchronization) queues are marked by half

blue-ellipses. Note that the splitting action takes no time; similarly, the joining action takes no time

(after all the relevant groups have arrived).

2

Figure 1. The basic split–join network.

A split–join network with a more general topological structure is illustrated in Figure 2.
Here, the project starts with task 1, and then splits into two parallel groups, starting with
tasks 2 and 8, respectively. After finishing task 2, the project continues to three parallel
groups, the first of which consists of two consecutive tasks (tasks 3 and 6). Finishing all
these three groups, the project continues with task 7. After finishing tasks 7 and 8, the
project is completed. The operational queues are marked by striped black rectangles, and
the join (synchronization) queues are marked by blue half-ellipses. Note that the splitting
action takes no time; similarly, the joining action takes no time (after all the relevant groups
have arrived).

Figure 2. A general split-Join network.

The scope of applications that use the split-join structure in reality is huge. It includes data center

services, web searching, social networking and big data analysis, systems with a wide range of queue

policies and service time distributions, systems with multiple servers per split node for failure finding

and load balancing, and systems with a varying number of parallel tasks or sharing services due

to limited resources ([47], [30], [12]). In manufacturing, the split-join structure is used in assembly

systems of high-tech equipment manufacturers (OEMs) that require several parts to be processed

simultaneously at separate work stations or plant locations ([21], [11], [39]). In project management

and supply chain management, the split-join structure is typically used for representing the arrival of

an order composed of several different items or products from a vendor, or for synchronization between

arriving and departing vehicles at the transshipment location ([40]). The split-join structure is also

prevalent in healthcare and in particular in emergency departments, where multiple customer classes

share multiple processing resources ([3], [31]), in supply chain networks of high-tech manufacturers

with multiple suppliers that each produce a unique component of the product ([37]), and in ocean

transport for managing container terminals ([35]).

In this study we investigate two special split-join networks with a symmetric topological structure.

We start with the parallel split-join network; see Figure 3. The project arrives, and splits into m

parallel groups, each including n subsequent stages allocated to n different servers (in total m × n
tasks). The project leaves after all its groups are completed. We assume that projects arrive according

to a renewal process and are served in first-come-first-served (FCFS) order. Importantly, we note

that the FCFS policy is used in many settings, such as the Google Borg task scheduler and the

management of multiserver jobs in the cloud-computing industry ([47]). However, we note that other

scheduling rules such as FIFO or cµ rules are also examined in the literature (see, e.g., [43], [31], [3]).

In reality, we are indeed witnessing that projects must be processed in parallel. However, in

practice we cannot ignore that parallel processing needs to be more synchronized. Characterizing

this constraint, we introduce the second type of split-join network, namely, the serial split-join

3

Figure 2. A general split–join network.

The scope of applications that use the split–join structure in reality is huge. It includes
data center services, web searching, social networking and big data analysis, systems with a
wide range of queue policies and service time distributions, systems with multiple servers
per split node for failure finding and load balancing, and systems with a varying number
of parallel tasks or sharing services due to limited resources [3,7,8]. In manufacturing, the
split–join structure is used in assembly systems of high-tech equipment manufacturers
(OEMs) that require several parts to be processed simultaneously at separate work stations
or plant locations [9–11]. In project management and supply chain management, the

Mathematics 2023, 11, 3232 3 of 30

split–join structure is typically used for representing the arrival of an order composed of
several different items or products from a vendor, or for synchronization between arriving
and departing vehicles at the transshipment location [12,13]. The split–join structure is
also prevalent in healthcare and, in particular, in emergency departments, where multiple
customer classes share multiple processing resources [14,15], in supply chain networks of
high-tech manufacturers with multiple suppliers that each produce a unique component of
the product [16–19], and in ocean transport for managing container terminals [20].

This study investigates two special split–join networks with a symmetric topological
structure. The first is the parallel split–join network (see Figure 3). The project arrives, and
splits into m parallel groups, each including n subsequent stages allocated to n different
servers (in total, m× n tasks). The project leaves after all its groups are completed. It is
assumed that projects arrive according to a renewal process and are served in a first-come-
first-served (FCFS) order. Importantly, note that the FCFS policy is used in many settings,
such as the Google Borg task scheduler and the management of multiserver jobs in the
cloud-computing industry [8]. However, note that other scheduling rules such as FIFO or
cµ rules are also examined in the literature (see, e.g., [14,15,21]).

Figure 3. A typical Parallel split—join network.

Note that after splitting, each group goes through all n stages/tasks, thereafter it waits at the

synchronization node (joint point). Thus, we have one synchronization queue and n×m operational

queues. We shall now introduce the definitions and notations to be used throughput this paper:

• Let Ak, k = 1, 2, ..., with A0 = 0, be the arrival time of the k-th project. We assume that

the arrival process is a renewal process with rate λk (specifically, we will focus on the Poisson

process with rate λ). Let νk = Ak − Ak−1, k = 1, 2, ... be the inter-arrival time between the

k-th project and the (k − 1)-th project. Thus, νk, k = 1, 2, ... are identical independent (i.i.d)
random variables (r.v.s) with average 1/λk.

• Upon arrival, each project k is split into m parallel groups. Alternatively, one can think on m

parallel treatments that the project may simultaneously go through. Each group i, i = 1, ..,m

includes n sequel stages/tasks. Completion of stage j, j = 1, ..., n − 1 enables the group to
continue to stage j + 1. In what follows, we use the index i to group i = 1, ...,m, the index j

to stage j = 1, ..., n, and the double-index (i, j) to task j in group i.

• Each task is allocated independently to its own station. The station is characterized by an
infinite queue and a single server. The queue is managed according to FCFS discipline. As

a result, a task (i, j) of project k cannot enter the server before its predecessor tasks (i, j) of

projects 1, 2, ..., k − 1..

• Let Sk(i, j) be the service time of task (i, j) of project k. We assume that the times Sk(i, j)
are independent r.v.s in i, j and k, having exponential distribution with rate µk(i, j).

• A project k is completed when all its groups finish their n stages. We assume that the time of
that final synchronization is negligible. Thus, when all groups are finished, they are reunited

7

Figure 3. A typical parallel split–join network.

In reality, we are indeed witnessing that projects must be processed in parallel. How-
ever, in practice, we cannot ignore that parallel processing needs to be more synchronized.
Characterizing this constraint, this study introduces the second type of split–join network,
namely, the serial split–join network. The serial network has similar features to the parallel
split–join network, except that it has, in addition, multiple synchronization queues. Specifi-
cally, a project arrives and splits into m parallel groups; each of which is composed of n
stages. When all groups of the same project complete stage j, they are obliged to reunite,
after which they can continue to the next (j + 1)-th stage; this procedure is the same for all
stages. The project can exit the system when all groups in the last stage (the n-th stage) are
completed. Here, there are n×m operational queues, but n synchronization queues.

Although the basic split–join network has been studied intensively in the literature,
e.g., [22–28], no analytical expressions are known for the joint steady-state number of
projects in the queues, nor for the mean sojourn time. There is agreement that split–
join networks are another of those infamous queueing systems for which the stationary
distribution is intractable; the complexity of the analysis is explained by the dependence of
the times of the projects, due to their common moments of arrival [3,29]. Most exact results
on split–join networks are limited to systems with two parallel servers. For example, Nelson
and Tantawi [30] and Nelson et al. [31] obtain an exact expression for a two-node M/M/1
homogeneous split–join network where the jobs arrive according to a Poisson process and
the service times are i.i.d exponentially distributed random variables (r.v.s). For split–join
networks with more than two parallel servers, only approximations for the performance
measures are obtained. For example, Nelson and Tantawi [30] used a scaling approximation
technique to approximate the mean sojourn time in an M/M/1 split–join system. Ko and
Serfozo [27] provided results on G/M/1 queues, and Fiorini [32] and Wang et al. [8]
studied M/G/1 queues. Networks with different types of products at different machines

Mathematics 2023, 11, 3232 4 of 30

were discussed in Ding [9]. For the general GI/G/1 split–join networks, upper and lower
bounds on the mean sojourn time were derived by Baccelli and Makowski [22,23], Baccelli
et al. [24,25], Lebrecht and Knottenbelt [33], Kemper and Mandjes [34], and, more recently,
Enganti et al. [7] and Grobunova and Vishnevsky [2]. Ko and Serfozo [26] developed
bounds and approximate expressions for evaluating the mean sojourn time and queue
length distribution at join nodes. Takahashi et al. [35] used matrix analytic methods and
assumed finite queue sizes, called buffers. Using the latter method, Qiu et al. [36] developed
an efficient algorithm to approximate the distribution of response time in homogeneous
multi-MAP/PH/1 split–join networks. Nelson et al. [30] compared four different structures
of split–join networks: with/without central queueing and splitting/not splitting projects.
Most of the above papers focus on systems where the number of servers is finite. Work on
the heavy-traffic processing limit has been performed by, e.g., Varma and Makowski [37],
Tan and Knessl [38], Knessl [39], Kushner [40], Atar et al. [14], Wang et al. [8], Schol
et al. [19], Nguyen et al. [3], Zeng et al. [41] and Meijer et al. [42].

The above literature review shows that a great deal of effort has been devoted to the
understanding and analysis of split–join queueing networks. This effort mainly focuses on
deriving the sojourn time of a project, usually when there is only one type of project and
two parallel servers. Indeed, the sojourn time is known to be intractable in more complex
split–join networks; thus, only (upper and lower) bounds and approximations have been
provided for them.

As far as the author knows, no explicit results are available for networks with more
than two parallel groups or with more synchronization points. Despite their simple and
symmetric structure, parallel and serial split–join networks have hardly been investigated
and, at present, very little is known about their performance and time profile. Note
that, in practice, parallel processing is subject to synchronization constraints and delays
generating penalty costs that can offset the gains obtained from such processing. These
include the cost of intermediate storage of uncompleted products, or the cost of memory in
computer networks where subprojects are processed by different servers and then wait in
the synchronization buffer. Thus, a thorough study of the performance and time profile of
these systems is lacking but necessary. This study aims to take a first step toward filling
this research gap.

To this end, the author focuses on the mean sojourn time of the parallel and the
serial systems. This starts with the derivation of lower and upper bounds for the mean
sojourn time; each bound emphasizes a different aspect of the time profile. Using extensive
simulations, the efficiency of these bounds are evaluated, providing some insights into
the interplay between operational delays (due to overloaded servers or limited resources)
and synchronization delays. Then, a sensitivity analysis is carried out to study how the
time profile is affected by different parameters of the networks, i.e., by the number of
groups m, the number of stages n, and the utilization of the servers. Clearly, operational
and synchronization delays are interdependent. Thus, accurately cataloging the time
profile according to the different types of delays is not applicable and, hence, not possible.
However, it is reasonable to attribute the number of groups to the synchronization delays,
and the number of stages to the operational delays. In the serial split–join network, the
overhead incurred due to additional synchronizations is significant; thus, comparing the
serial network with the parallel network can improve our understanding of the time profile,
the types of delays, and the impact of the various parameters on the mean sojourn time.

The contributions of this paper are summarized as follows. Two multistage split–join
networks are introduced: the parallel network and the serial network. To the best of the
author’s knowledge, such networks have hardly been discussed in the literature (with
the exception of the two-stage serial split–join network discussed in Ko [29]). These net-
works can serve as applied models (or as effective approximations) in many fields, such as
industry and manufacturing, computer modelling, reliability systems, and supply chain
management. Moreover, while most existing studies on split–join networks deal with the
sojourn times, this study differs by focusing on the time profile and distinguishing between

Mathematics 2023, 11, 3232 5 of 30

two types of delays: synchronization delay (due to parallelism) and operational delay (due
to seriality). Diagnosing the time profile and studying the effect of the parameters on the
different types of delays can serve as a practical tool for decision makers in setting the opti-
mal schedule for the project stages and allocating optimal resources at each stage in order
to maximize its economic profitability. Furthermore, motivated by real-world examples,
this study compares, numerically, the two networks and studies the effect of imposing syn-
chronization constraints on the system’s performance and time profile. Doing so provides
a better understanding of the interplay between parallelism and seriality, and addresses
how to deal with situations of adding constraints or a change in resource allocation.

The main results can be summarized as follows: (i) Synchronization delays have a
logarithmic impact O(ln m) on the mean sojourn time, while operational delays have a
linear impact O(n); (ii) When increasing the number of stages n and the number of groups
m, the impact of these delays diminishes; (iii) The impact of parallelism and seriality is
(almost) independent of the utilization; (iv) Contrary to expectations, the serial network is
less sensitive to changes (and sometimes even robust to them), compared to the parallel one;
(v) Comparing the two networks shows that the ratio of the mean sojourn time is increasing
logarithmically in both n and m. As a result, this further reveals a kind of duality property,
implying that the extra time in the serial network is relatively similar due to parallelism
and seriality; (vi) Finally, the results show that, in most cases, increasing servers’ utilization
slightly obscures the differences between the systems.

In summary, this analysis may shed some light on the time profile of multistage
networks and, in particular, on the interplay between different types of delays: delays due
to overloaded servers (seriality) and delays due to synchronization constraints (parallelism).
As such, the analysis presented here can be used for estimation purposes when designing
optimal multistage networks and allocating resources when more constraints are needed
or, alternatively, in situations when reducing unnecessary synchronizations is possible.

The rest of the paper is organized as follows. Section 2 describes the parallel split–join
network. Section 3 is devoted to preliminary results. Analyses of parallel and serial split–
join networks are presented in Sections 4 and 5, respectively. Finally, Section 6 concludes
and discusses potential avenues of future research.

2. Description of the Parallel Split–Join Network

A project arrives and splits into m parallel groups, each including n subsequent stages
allocated to n different servers (in total, m × n tasks). When group i, i ∈ {1, . . . , m},
completes its n stages, it enters the synchronization queue, waiting for the other (m− 1)
groups of the same project to be completed. The project leaves after all its groups are
completed. A typical parallel split–join network is presented in Figure 3.

Note that, after splitting, each group goes through all n stages/tasks; thereafter, it
waits at the synchronization node (join point). Thus, the system has one synchronization
queue and n×m operational queues. The definitions and notations to be used throughput
this paper are now introduced:

• Let Ak, k = 1, 2, . . . ,, with A0 = 0, be the arrival time of the k-th project. Assume that
the arrival process is a renewal process with rate λk (specifically, this paper focuses on
the Poisson process with rate λ). Let νk = Ak − Ak−1, k = 1, 2, . . . be the inter-arrival
time between the k-th project and the (k − 1)-th project. Thus, νk, k = 1, 2, . . . are
identical independent (i.i.d) random variables (r.v.s) with average 1/λk;

• Upon arrival, each project k is split into m parallel groups. Alternatively, one can
think of this as m parallel treatments that the project may simultaneously go through.
Each group i, i = 1, . . . , m includes n sequential stages/tasks. Completion of stage j,
j = 1, . . . , n− 1 enables the group to continue to stage j + 1. In what follows, the index
i to group i = 1, . . . , m, the index j to stage j = 1, . . . , n, and the double-index (i, j) to
task j in group i are used;

• Each task is allocated independently to its own station. The station is characterized
by an infinite queue and a single server. The queue is managed according to FCFS

Mathematics 2023, 11, 3232 6 of 30

discipline. As a result, a task (i, j) of project k cannot enter the server before its
predecessor tasks (i, j) of projects 1, 2, . . . , k− 1;

• Let Sk(i, j) be the service time of task (i, j) of project k. Assume that the times Sk(i, j)
are independent r.v.s in i, j, and k, having exponential distribution with rate µk(i, j);

• A project k is completed when all its groups finish their n stages. Assume that the time
of that final synchronization is negligible. Thus, when all groups are finished, they
are reunited with no time, and the project immediately leaves the system. Clearly, the
FCFS discipline implies that a project cannot leave before its predecessors;

• A sufficient and necessary condition for stability of the station (i, j) is E(Sk(i, j)E(νk) =
µk(i, j)/λk < 1, k = 1, 2, . . .The system is stable if ρk(i, j) = µk(i, j)/λk < 1 for all
i, j, k [21,23];

• Let Wk(i, j) be the waiting time of the project k at station (i, j) (i.e., the operational
delay), and denote by Tk(i, j) = Sk(i, j) + Wk(i, j) as the sojourn time (i.e., the waiting
time plus the service time).

A snapshot of the system at time t ≥ 0 can be modeled by the m-column vector L(t) =
(L1(t), L2(t), . . . , Lm(t))T , where Li(t) is an n-row vector Li(t) = (Li,1(t), Li,2(t), . . . , Li,n(t)).
The component Li,j(t) indicates the number of tasks at station (i, j) at time t (i.e., Li,j(t)− 1
tasks are waiting at the queue, along with one task at the server). Recall that the syn-
chronization action at the end join point does not take any time. In addition, let Ni,P(t),
i = 1, . . . , m be the number of groups waiting at the joint point at time t. It is easy to verify
that Ni,P(t) satisfies

Ni,P(t) = Max
1≤i≤m

{
n

∑
j=1

Li,j(t)

}
−

n

∑
j=1

Li,j(t).

Example 1. Let m = 5, n = 4, and assume that project 7 arrives. Figure 4 demonstrates the system
as observed by project 7. Here, L(t−)= ((0, 0, 1, 1, 2), (0, 3, 2, 0, 1), (1, 0, 1, 1, 3), (0, 0, 0, 0, 0))T .
(Use t− (t+) for the time just before (after) time t.) Hence, project 7 enters immediately to servers
1, 2 and 3 and L(t) = ((1, 0, 1, 1, 2), (1, 3, 2, 0, 1), (2, 0, 1, 1, 3), (1, 0, 0, 0, 0))T . We also see that
Max

1≤i≤m

{
∑4

j=1 L1,j(t)
}
= Max{5, 7, 7, 1} = 7, leading to N1,P(t) = 2, N2,P(t) = 0, N3,P(3) = 0,

and N4,P(t) = 6. Examples of possible transitions from L1(t) = (1, 0, 1, 1, 2) to L′1(t
+) are,

e.g., at rate µ7(1, 1), we reach L′1(t
+) = (0, 1, 1, 1, 2), and at rate µ6(1, 3), we reach L′1(t

+) =
(1, 0, 0, 2, 2). Similarly, from L2(t) = (1, 3, 2, 0, 1), we reach L′2(t

+) = (0, 4, 2, 0, 1) and L′2(t
+)

at rates µ7(2, 1) and µ4(2, 2), respectively.

As mentioned in Section 1, accurate analytical analysis of the parallel network is
complicated and intractable. Thus, upper and lower bounds for the sojourn time of the
parallel network are derived; then, a numerical analysis is used to evaluate the efficiency of
these bounds and to study the time profile of the system. The author first presents some
preliminary results to be used.

Mathematics 2023, 11, 3232 7 of 30

Figure 1: Figure 4. A snapshot of the parallel system upon arrival project 7.

3 Preliminary Results

3.1 Tandem System

Assume an M/M/1 system with a Poisson arrival process with rate λ, exponentially distributed

service time with rate µ, and utilization ρ = λ/µ < 1. It is well known that the sojourn time T in

such a system is exponentially distributed r.v. with rate (µ − λ), and mean 1/(µ − λ). Applying
Burke’s theorem [8], the departure process is also a Poisson process with rate λ.

Next, consider a tandem system that consists of n stations, each with one server and infinite

queue. The service time of server j is independent r.v. with distribution exp(µj). Customers join

the first queue according to a Poisson process with rate λ, and on completing service immediately

enter the next queue. We have:

• The departure process form the first station (server), which is now also the arrival process of the
second station (queue), is a Poisson process with rate λ, provided that the queue is in equilibrium.

This can be achieved if λ < µ1 ([8]).

• Recursively, it is easy to prove that the departure rate from station j (j = 1, ..., n− 1), which is
now also the arrival process of the subsequent station j+1, is a Poisson process with rate λ, provided

that λ < µj .

• The sojourn time at station j, j = 1, ..., n are mutually independent ([46]).

As a result, we obtain:

Corollary 3.1 Conditioning on λ < min
j=1,...,n

{µj}, the sojourn time Tj at station j is exponential

9

Figure 4. A snapshot of the parallel system upon arrival of project 7.

3. Preliminary Results
3.1. Tandem System

Assume an M/M/1 system with a Poisson arrival process with rate λ, exponentially
distributed service time with rate µ, and utilization ρ = λ/µ < 1. It is well known that the
sojourn time T in such a system is an exponentially distributed r.v. with rate (µ− λ) and
mean 1/(µ− λ). Applying Burke’s theorem [43], the departure process is also a Poisson
process with rate λ.

Next, consider a tandem system that consists of n stations, each with one server
and infinite queue. The service time of server j is an independent r.v. with distribution
exp(µj). Customers join the first queue according to a Poisson process with rate λ, and, on
completing service, immediately enter the next queue. We have the follwing:

• The departure process from the first station (server), which is now also the arrival
process of the second station (queue), is a Poisson process with rate λ, provided that
the queue is in equilibrium. This can be achieved if λ < µ1 [43];

• Recursively, it is easy to prove that the departure rate from station j (j = 1, . . . , n− 1),
which is now also the arrival process of the subsequent station j + 1, is a Poisson
process with rate λ, provided that λ < µj;

• The sojourn times at station j, j = 1, . . . , n are mutually independent [44].

As a result, we obtain Corollary 1.

Corollary 1. Under the condition that λ < min
j=1,...,n

{µj}, the sojourn time Tj at station j is an

exponentially distributed r.v. with rate (µj − λ); the total sojourn time at the tandem system
∑n

j=1 Tj has a hyperexponential distribution with average

E

[
n

∑
j=1

Tj

]
=

n

∑
j=1

1
µj − λ

.

Remark 1. Note that the hyperexponential distribution is a special case of the phase-type (PH)
distribution family with representation (α,T) of order n, where α is the initial probability (1× n)
vector and T is the (n× n) transition rate matrix among the transient states. More about the PH
distribution can be found in Latouche and Ramaswami [45]. For the above tandem system, the
(1× n) vector α and (n× n) matrix T are given by

Mathematics 2023, 11, 3232 8 of 30

α = (1, 0, . . . , 0), T =

(µ1 − λ) 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 (µn − λ)

.

3.2. Associated Random Variables

Definition 1. The R-valued r.v.s {X1, . . . , XK} are said to be associated if and only if

E[f (X)g(X)] ≥ E[f (X)]E[g(X)]

for all monotonic non-decreasing mappings f , g : RK → R1 for which the expectations exist [24].

Definition 2. The R-valued r.v.s {X1, . . . , XK} form independent versions of the r.v.s {X1, . . . , XK}
if

(i) the r.v.s {X1, . . . , XK} are mutually independent;

(ii) for every 1 ≤ k ≤ K, the r.v.s Xk and Xk have the same probability function.

The following properties are an easy consequence of Definitions 1 and 2.
Properties (Baccelli and Makowski [23]):
P1. Independent r.v.s are associated;
P2. The union of independent collections of associated r.v.s forms a set of associated

r.v.s;
P3. Any subset of a family of associated r.v.s forms a set of associated r.v.s;
P4. Any monotonic non-decreasing function of associated r.v.s generates a set of

associated r.v.s;
P5. If the r.v.s {X1, . . . , XK} are associated, then the inequality

p
[

max
1≤k≤K

Xk ≤ x
]
≥ p

[
max

1≤k≤K

(
Xk ≤ x

)]
=

K
Π

i=1
p
(
Xk ≤ x

)
holds true for all x in R.

4. The Parallel Split–Join System: Analysis and Bounds

Let us start with some important results for the parallel system. Recall that projects
arrive according to a renewal process and the service times are exponential.

Claim 1. Generalized Lindley equation. The classic Lindley equation [46] for the GI/G/1 system
can be expanded to the parallel system as follows. For i, j, and k, we have

Wk+1(i, j) =

[
j

∑
l=1

Tk(i, l)−
j−i

∑
l=1

Tk+1(i, l)− νk+1

]+
, k = 1, 2, . . . , j = 1, 2, . . . , n, i = 1, . . . , m, (1)

where [x]+ = max(x, 0).

Proof. The proof is given in Appendix A.

Assume project k arrives. Let Tk(i) be the total sojourn time of group i, i.e., the time
elapsed from stage 1 to n (not including a possible final synchronization delay), and let Tk

Mathematics 2023, 11, 3232 9 of 30

be the total sojourn time of project k in the system. Immediately after splitting, each group
continues independently until the final synchronization; thus, we obtain

Tk(i) =
n

∑
j=1

Tk(i, j), i = 1, . . . , m.

Tk = Max
i=1,...,m

{Tk(i)}. (2)

Claim 2. (1). The set of random variables {Wl(i, j), Sl(i, j),−νl , i = 1, . . . , m, j = 1, . . . , n, l =
1, . . . , k} are associated.

(2). The set of random variables {Tk(i), i = 1, . . . , m} are associated.

Proof. The proof of Claim 2(1) is obtained by applying Claim 1 and a double induc-
tion on i and j, and is detailed in Appendix B. Applying P3, we obtain that any sub-
set of a family of associated r.v.s forms a set of associated r.v.s. Now, consider the set
{Wk(i, j), Sk(i, j), i=1, . . . , m, j = 1, . . . , n}, and note that

Tk(i) =
n

∑
j=1

(Wk(i, j) + Sk(i, j)), i = 1, . . . , m. (3)

The times {Tk(i), i = 1, . . . , m} are nondecreasing functions of associated r.v.s, and,
thus, by applying P4, we obtain that they are associated, which completes the proof of
Claim 2(2).

Conclusion 1. Applying P5 yields that

p
[

max
1≤i≤m

{Tk(i)} > t
]
≤ 1−

m
Π

i=1

[
p
(
Tk(i) ≤ t

)]
. (4)

Conclusion 1 enables us to compare two systems. The left side of Equation (4) refers to

the parallel system. Here, applying (2) yields that p
[

max
1≤i≤m

{Tk(i)} > t
]
= p(Tk > t). As for

the right side of Equation (4), recall that the set
{

Tk(i), i = 1, . . . , m
}

forms an independent
version of {Tk(i), i = 1, . . . , m}. Hence, an alternative and useful way to describe the right
side of Equation (4) is to consider a similar parallel system except for the common arrival;
i.e., there are m independent renewal arrivals of groups, each comprising n stages, that are
synchronized at the end (we refer to this system as a parallel–independent system). Now, let
Tk be the sojourn time of project k in such a system. We have

1−
m
Π

i=1

[
p
(
Tk(i) ≤ t

)]
= 1− p

(
Tk(1) ≤ t

)
· . . . · p

(
Tk(m) ≤ t

)
= 1− p(Tk(1) ≤ t, . . . Tk(m) ≤ t) = 1− p

(
max

1≤i≤m
Tk(i) ≤ t

)
= p

(
max

1≤i≤m
Tk(i) > t

)
= p(Tk > t). (5)

Integrating all yields
p(Tk > t) ≤ p(Tk > t), t ≥ 0. (6)

Conclusion 2. The parallel system has a lower probability of a long sojourn time compared to
that of the parallel-independent system; i.e., an initial synchronization stochastically reduces the
sojourn time.

Mathematics 2023, 11, 3232 10 of 30

Let Tm,n = lim
k→∞

Tk and Tm,n = lim
k→∞

Tk be the sojourn time in steady state of the parallel

system and the parallel–independent system, respectively. Equation (6) immediately
implies that p(Tm,n > t) ≤ p(Tm,n > t) for t ≥ 0. Consequently,

E(Tm,n) =
∫ ∞

0
p(Tm,n > t)dt ≤

∫ ∞

0
p(Tm,n > t)dt = E(Tm,n). (7)

Conclusion 3. The interdependency created as a result of the joint arrival (in other words, the
initial synchronization) reduces the mean sojourn time of the parallel system compared to the mean
sojourn time of the parallel–independent system.

Remark 2. Consider constant inter-arrival times, i.e., νk = a for some fixed a, k = 1, 2, . . . Using
Claim 1, it is easy to verify that the set of waiting times {Wk(i, j), j = 1, . . . , n} is independent
of i = 1, . . . , m. As a result, Tk(i) = ∑n

j=1(Wk(i, j) + Sk(i, j)), i = 1, 2, . . . , m, and the sojourn
times of the groups are also independent of i. The immediate conclusion is that constant inter-arrival
times lead to the parallel–independent system.

5. A Special Case: The Poisson Arrival Process
5.1. Lower and Upper Bounds

This section studies how the system performance is affected by the parameters; it
focuses on the impact of the number of stages (n), the number of groups (m), and the
servers’ utilization (ρ) on the mean sojourn time. It assumes a Poisson arrival process
with rate λk = λ, i.i.d. exponential service times with rate µk(i, j) = µ and utilization
ρ = λ/µ < 1. Due to the complexity of performing an exact analysis, three bounds for
the mean sojourn time are presented and then a numerical analysis is applied. Start by
presenting two lower bounds (marked by subscript 1 and 2, respectively) and one upper
bound (marked by subscript 3), as follows:

1. The first lower bound is obtained by neglecting operational queues and assuming an
empty system for all arrivals (System 1). In this case, the sojourn time is the maximum
of m i.i.d. services, each composed of n exponential stages; i.e., we have m i.i.d. r.v.s
T1(i) ∼ Erlang(n, µ). Let T1 be the sojourn time in this system. Then,

T1 = max
1≤i≤m

{T1(i)}

E
(

T1
)
=

∞∫
t=0

[
1−

(
1−

n−1

∑
k=0

e−µt(µt)k

k!

)m]
dt; (8)

2. The second lower bound is obtained by assuming no splitting into m groups; i.e., m = 1
(System 2). Let T2 be the sojourn time. It is well known that T2 ∼ Erlang(n, µ− λ),

and, thus, E(T2) =
n

µ− λ
.

Comparing Systems 1 and 2 (the lower bounds) to the parallel system highlights
the different types of delays. The difference between the performance of System 1
(without operational queues) and the parallel system gives an estimate of the waiting
time for a server. Moreover, the difference between the performance of System 2
(without splitting) and the parallel system gives an estimate of the impact of the
final synchronization. Obviously, the quality of the bounds depends on the servers’
utilization. When ρ is low, neglecting operational delays is acceptable and, thus, the
first bound performs better. However, as ρ increases, the operational delays become
significant and the additional delay due to synchronization is negligible; thus, the
second bound is preferred;

3. An upper bound is obtained by assuming m independent arrival processes of groups
(System 3). Applying Burke’s theorem [43] and Conclusions 2 and 3, we obtain that

Mathematics 2023, 11, 3232 11 of 30

the sojourn times of group i, i = 1, . . . , m, are i.i.d. r.v.s. with T3(i) ∼ Erlang(n, µ− λ)
distribution. Let T3 = max

1≤i≤m
{T3(i)} (the total sojourn time). We obtain

E
(

T3
)
=

∞∫
t=0

[
1−

(
1−

n−1

∑
k=0

e−(µ−λ)t[(µ− λ)t]k

k!

)m]
dt. (9)

Clearly, System 3 highlights the impact of the initial interdependency of the m groups.
Note that when ρ → 0 (i.e., λ → 0), E

(
T3) and E(T1) converge to the same limit

(intuitively, when the frequency of arrivals is low, there are almost no operational
delays, so the effect of joint arrival is negligible, and we see a similar behavior in
systems 1 and 3). Since E(T1) ≤ E(Tm,n) ≤ E

(
T3), by the Sandwich theorem (Squeeze

theorem), these two bounds become tight.

5.2. Asymptotic Analysis for Large n and m

For a large n, Kang and Serfozo [47] prove that

lim
m−→∞

(
T3 − b(m, n)

a(m, n)

)
−→ −→

X ,

lim
m−→∞

(
T1 − b(m, n)

a(m, n)

)
−→ X−→, (10)

where the r.v.s
−→
X and X−→ are asymptotically Gumbel with normalizing constants

b(m, n) = (µ− λ)−1(ln m + (n− 1) ln ln m− ln(n− 1)!), a(m, n) =
1

(µ− λ)
,

b(m, n) = µ−1(ln m + (n− 1) ln ln m− ln(n− 1)!), a(m, n) =
1
µ

. (11)

The Gumbel distribution function represents the asymptotic limit distribution of the
maximum among m exponentially distributed variables. Furthermore, it is well known
that, for an r.v.Xk satisfying

lim
k−→∞

p
(

Xk − bk
ak

≤ x
)
= G(x), (12)

it follows that, under some conditions (such as Xk obtains positive values only), its expecta-
tion also converges:

lim(ak)
−r

k−→∞
E(Xk − bk)

r =
∫ ∞

0
xrdGx. (13)

Equations (10) and (11) show that both bounds grow at a linear convergence rate in
n, and a logarithmic convergence rate in m. Applying the Sandwich theorem (Squeeze
theorem) implies that the mean sojourn time of the parallel system E(Tm,n) has the same
growth rate:

lim
m−→∞

E(Tm,n)

ln m
−→ 1, ∀n,

lim
n−→∞

E(Tm,n)

n
−→ 1, ∀m. (14)

Equation (14) says that E(Tm,n) grows at logarithmic rate O(ln m) and linear rate
O(n) for large m and n, respectively.

Mathematics 2023, 11, 3232 12 of 30

5.3. The Efficiency of the Bounds

While the bounds E
(
T3) and E(T1) are tight for a low utilization ρ −→ 0, it is

necessary to estimate the efficiency of the bounds for other cases. To do so, this study
uses the Maple 2022 software tool to numerically obtain E(Tm,n). Let λ = 1 and vary µ in
{5, 2, 1.25, 1.052} so that ρ ∈ {0.2, 0.5, 0.8, 0.95}. For each pair (λ, µ), let n ∈ [2, 100] and
m ∈ [2, 7]. In addition, the bounds E

(
T1) and E

(
T3) are derived for each pair (λ, µ) by

applying (8) and (9), respectively. To study the efficiency of the bounds, the following
measures have been suggested:

EU =
E(Tm,n)

E(T3)
, EL =

E
(
T1)

E(Tm,n)
.

Clearly, we have 0 < EU , EL ≤ 1. The ratio EU captures the amount of time shortened
due to initial synchronization. The ratio EL captures the additional time accumulated due
to the stochastic nature of the arrival process and the resulting queues. Figures 5 and 6 plot
EU and EL as a function of m and n for ρ = {0.2, 0.5, 0.8, 0.95} (the black circles, red squares,
blue crosses, and green stars, respectively). Observations and insights are summarized in
Conclusion 3.

However, we see that both ratios are certainly influenced by n, m, and ρ.

Conclusion 4. (i) The effect the number of groups (splits) m. Increasing m increases the
dependency between the groups due to the joint arrival, the difference between E(Tm,n)
and E

(
T3) increases, and, thus, EU decreases. On the other hand, as m increases, the

synchronization delay at the final join node becomes significant compared to the operational
delays for servers. As a result, the relative weight of those operational delays decreases and EL
increases. Despite this increase, Figure 5 shows that, when comparing EU and EL, the ratio EU
is more efficient for estimating the mean sojourn time, and, therefore, is more recommended;

(ii) The effect of the number of stages n. Clearly, as n increases, the effect of the joint arrival fades.
This is particularly evident in EU , which is increasing in n. Regarding EL, we would expect
to see a decrease in EL, since increasing n further yields more servers and queues. However,
Figure 6 and additional results (that are not reported here) imply that the changes in EL are
inconsistent, probably since increasing n adds variability that blurs the differences between
the groups and yields inconsistency;

(iii) In fact, Figures 5 and 6 show that the changes in EU and EL are relatively low in m and n.
This can be explained by the fact that both T3 and T1 grow in m and n at the same rate (in
orders O(ln m) and O(n), respectively) and, thus, also E(Tm,n) changes at the same rate
(which is consistent with the results in Section 5.2);

(iv) The effect of the utilization ρ. The lower bound assumes only one project with no operational
queues. Clearly, when ρ is low, the lower bound becomes tighter (see the black circles in
Figure 6). However, when projects arrive more frequently, and ρ increases, EL drops sharply.
By contrast, the changes in EU are inconsistent, and, although EU slightly decreases in ρ, its
efficiency is quite high for most values of ρ.

Mathematics 2023, 11, 3232 13 of 30

5.3 The effi ciency of the bounds

While the bounds E
(
T 3
)
and E(T 1) are tight for a low utilization ρ −→ 0, it is necessary to

estimate the effi ciency of the bounds for other cases. To do so, we use the Maple 2022 software

tool to numerically obtain E(Tm,n). We let λ = 1 and vary µ in {5, 2, 1.25, 1.052} so that ρ ∈
{0.2, 0.5, 0.8, 0.95}. For each pair (λ, µ) we let n ∈ [2, 100] and m ∈ [2, 7]. In addition, the bounds
E
(
T 1
)
and E

(
T 3
)
are derived for each pair (λ, µ) by applying (8) and (9) , respectively. To study

the effi ciency of the bounds, the following measures have been suggested:

EU =
E (Tm,n)

E (T 3)
, EL =

E
(
T 1
)

E (Tm,n)
.

Clearly, we have 0 < EU , EL ≤ 1. The ratio EU captures the amount of time shortened due to initial
synchronization. The ratio EL captures the additional time accumulated due to the stochastic nature

of the arrival process and the resulting queues. Figures 5 and 6 plot EU and EL as a function of

m and n, for ρ = {0.2, 0.5, 0.8, 0.95} (the black circles, red squares, blue crosses, and green stars,
respectively). Observations and insights are summarized in Conclusion 3.

However, we see that both ratios are certainly influenced by n,m and ρ

Figure 5. The ratio EU =
E(Tm,n)
E(T 3)

as a

function of m,n for ρ ∈ {0.2, 0.5, 0.8, 0.9}.
Figure 6. The ratio EL =

E(T 1)
E(Tm,n)

as a function

of m,n for ρ ∈ {0.2, 0.5, 0.8, 0.9}.

Conclusion 3

(i) The effect the number of groups (splits) m. Increasing m increases the dependency between the

groups due to the joint arrival, the difference between E (Tm,n) and E
(
T 3
)
increases, and thus EU

decreases. On the other hand, as m increases, the synchronization delay at the final join node

becomes significant compared to the operational delays for servers. As a result, the relative weight

15

Figure 5. The ratio EU =
E(Tm,n)
E(T3)

as a function of m, n for ρ ∈ {0.2, 0.5, 0.8, 0.9}.

5.3 The effi ciency of the bounds

While the bounds E
(
T 3
)
and E(T 1) are tight for a low utilization ρ −→ 0, it is necessary to

estimate the effi ciency of the bounds for other cases. To do so, we use the Maple 2022 software

tool to numerically obtain E(Tm,n). We let λ = 1 and vary µ in {5, 2, 1.25, 1.052} so that ρ ∈
{0.2, 0.5, 0.8, 0.95}. For each pair (λ, µ) we let n ∈ [2, 100] and m ∈ [2, 7]. In addition, the bounds
E
(
T 1
)
and E

(
T 3
)
are derived for each pair (λ, µ) by applying (8) and (9) , respectively. To study

the effi ciency of the bounds, the following measures have been suggested:

EU =
E (Tm,n)

E (T 3)
, EL =

E
(
T 1
)

E (Tm,n)
.

Clearly, we have 0 < EU , EL ≤ 1. The ratio EU captures the amount of time shortened due to initial
synchronization. The ratio EL captures the additional time accumulated due to the stochastic nature

of the arrival process and the resulting queues. Figures 5 and 6 plot EU and EL as a function of

m and n, for ρ = {0.2, 0.5, 0.8, 0.95} (the black circles, red squares, blue crosses, and green stars,
respectively). Observations and insights are summarized in Conclusion 3.

However, we see that both ratios are certainly influenced by n,m and ρ

Figure 5. The ratio EU =
E(Tm,n)
E(T 3)

as a

function of m,n for ρ ∈ {0.2, 0.5, 0.8, 0.9}.
Figure 6. The ratio EL =

E(T 1)
E(Tm,n)

as a function

of m,n for ρ ∈ {0.2, 0.5, 0.8, 0.9}.

Conclusion 3

(i) The effect the number of groups (splits) m. Increasing m increases the dependency between the

groups due to the joint arrival, the difference between E (Tm,n) and E
(
T 3
)
increases, and thus EU

decreases. On the other hand, as m increases, the synchronization delay at the final join node

becomes significant compared to the operational delays for servers. As a result, the relative weight

15

Figure 6. The ratio EL =
E(T1)
E(Tm,n)

as a function of m, n for ρ ∈ {0.2, 0.5, 0.8, 0.9}.

Overall, we may conclude that EU is a good approximation, especially for large n.
Table 1 summarizes the effect of increasing m, n, and ρ on the ratios EU and EL; ” ↑ ” and
” ↓ ” denote increasing and decreasing functions, respectively; ” ⇓ ” and ” l ” further
denote a significant decrease and an inconsistent change, respectively.

Table 1. The efficiency of the bound as a function of m, n, and ρ.

The Efficiency of the Bound m ↑ n ↑ ρ ↑

EU =
E(Tm,n)
E(T3)

↓ ↑ ↓

EL =
E(T1)
E(Tm,n)

↑ l ⇓

Mathematics 2023, 11, 3232 14 of 30

5.4. Simulation Study

In this section, the aim is to investigate in depth the impact of the parameters (n, m, and
ρ) on the parallel system’s performance for relatively small n and m. To do so, a simulation
study is used and, in each run, one of the parameters m, n, and ρ is varied while keeping
the others fixed.

5.4.1. The Influence of the Synchronization Delay

Start by investigating the effect of the final synchronization on the mean sojourn time.
First, fix n and ρ, and define the m-ratio Isynch(m) as follows:

Isynch(m) =
E(Tm,n)

E(T1,n)
. (15)

The ratio Isynch(m) compares the parallel system with m ≥ 1 groups to a parallel
system with a single group and no synchronization. In this way, Isynch(m) captures the
effect of parallelism intensified by the final synchronization and subsequent overhead.
Clearly, Isynch(m) ≥ 1 with Isynch(m = 1) = 1. Table 2 presents Isynch(m) where m and n
vary in {1, . . . , 10} and ρ varies in {0.2, 0.4, 0.5, 0.8, 0.9}. Figure 7a–c plots Isynch(m) as a
function of m for n ∈ {1, . . . , 10} and ρ = 0.2, 0.5, and 0.9, respectively.

Table 2. Isynch(m), m, n ∈ {1, ..., 10}, ρ = {0.2, 0.4, 0.5, 0.8, 0.9}.

(a) ρ = 0.2 (b) ρ = 0.5 (c) ρ = 0.9

Figure 7. The ratio Isynch(m) as a function of m for n={1,...,10} and different values of ρ.

18

Figure 7. The ratio Isynch(m) as a function of m for n = {1, . . . , 10} and different values of ρ.

Conclusion 5. (i) Figure 7a–c shows that Isynch(m) increases logarithmically in m; this increase
is consistent with the results of Section 5.2 for large m;

(ii) Increasing n decreases Isynch(m) for fixed m, and decreases the growth rate of Isynch(m) in
m. This can be explained by the fact that increasing n increases the number of servers and the
operational delays. In this case, the time required for the final synchronization takes a relatively
small fraction of the total sojourn time. As a result, the difference between E(Tm,n) and E(T1,n)
is reduced, and Isynch(m) decreases. We can further add that increasing n causes the system to
be more deterministic, since each group behaves as an Erlang(n, µ− λ) distributed r.v. with
coefficient of variation c.v. = 1/

√
n, which is decreasing in n. Thus, the final synchronization

has less effect. Turning to the edge case, consider that n −→ ∞. In this case, the total sojourn
time at each group is deterministic and equal to the sojourn time of other groups; statistically,
there is no difference between the groups, and, thus, Isynch(m) −→ 1;

(iii) Comparing Figure 7a–c shows that Isynch(m) is slightly decreasing in ρ. As discussed above,
as the system becomes overloaded, more time is spent in waiting for servers rather than in
synchronization. However, contrary to expectation, the results show that Isynch(m) is hardly
affected by ρ, and the changes are quite negligible. Here, too, consider the edge case ρ −→ 0,
where almost no operational delays exist but only the final synchronization. In this case, the
differences between the systems are significant, and Isynch(m) increases to its maximum value.

Mathematics 2023, 11, 3232 15 of 30

Table 2. Isynch(m), m, n ∈ {1, . . . , 10}, ρ = {0.2, 0.4, 0.5, 0.8, 0.9}.

Isynch(m) n m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10
1 1.4800 1.8000 1.9950 2.1900 2.3350 2.4800 2.7025 2.7413 2.7800
2 1.3400 1.5500 1.6850 1.8200 1.9100 2.0000 2.1400 2.1650 2.1900
3 1.2800 1.4500 1.5500 1.6500 1.7200 1.7900 1.8900 1.9050 1.9200
4 1.2500 1.3950 1.4825 1.5700 1.6275 1.6850 1.7713 1.7856 1.8000

ρ = 0.2 5 1.2200 1.3400 1.4150 1.4900 1.5350 1.5800 1.6525 1.6663 1.6800
6 1.2000 1.3100 1.3775 1.4450 1.4875 1.5300 1.5938 1.6044 1.6150
7 1.1800 1.2800 1.3400 1.4000 1.4400 1.4800 1.5350 1.5425 1.5500
8 1.1701 1.2635 1.3186 1.3736 1.4103 1.4470 1.5004 1.5087 1.5170
9 1.1599 1.2465 1.2965 1.3464 1.3797 1.4130 1.4647 1.4738 1.4830

10 1.1500 1.2300 1.2750 1.3200 1.3500 1.3800 1.4300 1.4400 1.4500
1 1.4500 1.7400 1.9300 2.1200 2.2450 2.3700 2.5775 2.6188 2.6600
2 1.3200 1.5100 1.6300 1.7500 1.8300 1.9100 2.0300 2.0500 2.0700
3 1.2500 1.4100 1.5000 1.5900 1.6450 1.7000 1.7925 1.8113 1.8300
4 1.2150 1.3550 1.4300 1.5050 1.5550 1.6050 1.6850 1.7000 1.7150

ρ = 0.4 5 1.1800 1.3000 1.3600 1.4200 1.4650 1.5100 1.5775 1.5888 1.6000
6 1.1700 1.2700 1.3275 1.3850 1.4225 1.4600 1.5188 1.5294 1.5400
7 1.1600 1.2400 1.2950 1.3500 1.3800 1.4100 1.4600 1.4700 1.4800
8 1.1468 1.2235 1.2752 1.3269 1.3553 1.3836 1.4295 1.4382 1.4470
9 1.1332 1.2065 1.2548 1.3031 1.3298 1.3564 1.3980 1.4055 1.4130

10 1.1200 1.1900 1.2350 1.2800 1.3050 1.3300 1.3675 1.3738 1.3800
1 1.4400 1.7300 1.9000 2.0700 2.2000 2.3300 2.4750 2.5325 2.5900
2 1.3000 1.4800 1.6000 1.7200 1.7900 1.8600 1.9800 2.0050 2.0300
3 1.2500 1.3900 1.4750 1.5600 1.6150 1.6700 1.7575 1.7738 1.7900
4 1.2200 1.3350 1.4100 1.4850 1.5300 1.5750 1.6500 1.6650 1.6800

ρ = 0.5 5 1.1900 1.2800 1.3450 1.4100 1.4450 1.4800 1.5425 1.5563 1.5700
6 1.1700 1.2550 1.3125 1.3700 1.4025 1.4350 1.4888 1.4994 1.5100
7 1.1500 1.2300 1.2800 1.3300 1.3600 1.3900 1.4350 1.4425 1.4500
8 1.1401 1.2135 1.2602 1.3069 1.3353 1.3636 1.4061 1.4132 1.4203
9 1.1299 1.1965 1.2398 1.2831 1.3098 1.3364 1.3764 1.3830 1.3897

10 1.1200 1.1800 1.2200 1.2600 1.2850 1.3100 1.3475 1.3538 1.3600
1 1.4100 1.6800 1.8200 1.9600 2.0900 2.2200 2.3950 2.4175 2.4400
2 1.2700 1.4400 1.4400 1.4400 1.6000 1.7600 1.9100 1.9050 1.9000
3 1.2100 1.3500 1.3500 1.3500 1.4750 1.6000 1.7225 1.7213 1.7200
4 1.1800 1.3050 1.3050 1.3050 1.4075 1.5100 1.6088 1.6069 1.6050

ρ = 0.8 5 1.1500 1.2600 1.2600 1.2600 1.3400 1.4200 1.4950 1.4925 1.4900
6 1.1350 1.2300 1.2300 1.2300 1.3025 1.3750 1.4438 1.4419 1.4400
7 1.1200 1.2000 1.2000 1.2000 1.2650 1.3300 1.3925 1.3913 1.3900
8 1.1134 1.1868 1.1868 1.1868 1.2485 1.3102 1.3661 1.3632 1.3603
9 1.1066 1.1732 1.1732 1.1732 1.2315 1.2898 1.3389 1.3343 1.3297

10 1.1000 1.1600 1.1600 1.1600 1.2150 1.2700 1.3125 1.3063 1.3000
1 1.4000 1.4200 1.6750 1.9300 2.0450 2.1600 2.3175 2.3388 2.3600
2 1.2700 1.4200 1.5200 1.6200 1.6800 1.7400 1.8250 1.8375 1.8500
3 1.2200 1.3300 1.4050 1.4800 1.5300 1.5800 1.6500 1.6600 1.6700
4 1.1850 1.2800 1.3450 1.4100 1.4500 1.4900 1.5475 1.5563 1.5650

ρ = 0.9 5 1.1500 1.2300 1.2850 1.3400 1.3700 1.4000 1.4450 1.4525 1.4600
6 1.1400 1.2050 1.2575 1.3100 1.3350 1.3600 1.4000 1.4075 1.4150
7 1.1300 1.1800 1.2300 1.2800 1.3000 1.3200 1.3550 1.3625 1.3700
8 1.1201 1.1668 1.2135 1.2602 1.2802 1.3002 1.3336 1.3402 1.3469
9 1.1099 1.1532 1.1965 1.2398 1.2598 1.2798 1.3115 1.3173 1.3231

10 1.1000 1.1400 1.1800 1.2200 1.2400 1.2600 1.2900 1.2950 1.3000

Mathematics 2023, 11, 3232 16 of 30

5.4.2. The Influence of Multiple Stages

Next, the influence of the operational delays is studied, characterized by the number
of stages n. Fix m and ρ and define the n-ratio Iseq(n) to be

Iseq(n) =
E(Tm,n)

E(Tm,1)
. (16)

The ratio Iseq(n) compares the parallel system with n stages to a parallel system with
only one stage (the basic split–join network; see Figure 1). In this way, Iseq(n) captures the
effect of operational delays intensified by the serial servers and queues; clearly, Iseq(n) ≥ 1
and Iseq(n = 1) = 1. Table 3 tabulates Iseq(n), where n and m vary in {2, . . . , 10} and ρ
varies in {0.2, 0.4, 0.5, 0.8, 0.9}. Figure 8a,b plots Iseq(n) as a function of n for m ∈ {1, . . . , 10}
and ρ = 0.2 and 0.9, respectively.

(a) ρ = 0.2 (b) ρ = 0.9

Figure 8. The ratio Iseq(n) as a function of n for m∈{1,...,10} and ρ=0.2 and 0.9.

Conclusion 5.

(i) Figure 8(a)-(b) shows a statistically significant linear growth of Iseq(n) as a function of n. Consis-

tent with the results of Section 5.2 for large n, the mean sojourn time increases proportionally with

the number of the added stages.

(ii) Increasing m both decreases Iseq(n) for fixed n, and decreases the growth rate of Iseq(n) in n.

Obviously, the reason lies in the fact that increasing m decreases the relative weight of the opera-

tional delays compared to the synchronization delay, and so Iseq(n) decreases.

(iii)We further see that Iseq(n) is hardly affected by ρ. This can be explained by the fact that changes

in the utilization have a similar effect on all servers. Therefore, there is an negligible dependence

between ρ and Iseq(n).

Summarizing Conclusions 5.4.1 and 5.4.2, we see that parallelism (i.e., synchronization delays) has

a logarithmic effect O(lnm) on the mean sojourn time, while seriality (i.e., operational delays) has a

linear effect O(n). However, these two effects slightly decrease as n and m increase, respectively. This

highlights the interplay between the relative weights of the different delays. Accordingly, changes in

the utilization have an effect mostly on the synchronization time, and hardly at all on the waiting

times for servers; generally speaking, the effect of parallelism and seriality are (almost) independent

in the utilization.

6 The Serial Split-Join System

In this section we study a version of the parallel split-join system, called the serial system. The

parallel processing of tasks gives rise to synchronization constraints that may cause project delays.

The trade-off between increasing the number of servers engaged in parallel processing at the expense

22

Figure 8. The ratio Iseq(n) as a function of n for m ∈ {1, . . . , 10} and ρ = 0.2 and 0.9.

Conclusion 6. (i) Figure 8a,b shows a statistically significant linear growth in Iseq(n) as a
function of n. Consistent with the results of Section 5.2 for large n, the mean sojourn time
increases proportionally with the number of added stages;

(ii) Increasing m both decreases Iseq(n) for fixed n and decreases the growth rate of Iseq(n) in
n. Obviously, the reason lies in the fact that increasing m decreases the relative weight of the
operational delays compared to the synchronization delay, and so Iseq(n) decreases;

(iii) We further see that Iseq(n) is hardly affected by ρ. This can be explained by the fact that
changes in the utilization have a similar effect on all servers. Therefore, there is a negligible
dependence between ρ and Iseq(n).

Summarizing Conclusions 4 and 5, we see that parallelism (i.e., synchronization
delays) has a logarithmic effect O(ln m) on the mean sojourn time, while seriality (i.e.,
operational delays) has a linear effect O(n). However, these two effects slightly decrease as
n and m increase, respectively. This highlights the interplay between the relative weights of
the different delays. Accordingly, changes in the utilization have an effect mostly on the
synchronization time, and hardly at all on the waiting times for servers; generally speaking,
the effects of parallelism and seriality are (almost) independent in the utilization.

Mathematics 2023, 11, 3232 17 of 30

Table 3. Iseq(n), m, n ∈ {1, . . . , 10}, ρ = {0.2, 0.4, 0.5, 0.8, 0.9}.

Iseq(n) m n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
1 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000
2 1.8200 2.6000 3.3650 4.1300 4.8600 5.5900 6.3167 7.0433 7.7700
3 1.7300 2.4100 3.0700 3.7300 4.3550 4.9800 5.5967 6.2133 6.8300
4 1.6950 2.3350 2.9475 3.5600 4.1425 4.7250 5.2950 5.8650 6.4350

ρ = 0.2 5 1.6600 2.2600 2.8250 3.3900 3.9300 4.4700 4.9933 5.5167 6.0400
6 1.6350 2.2100 2.7525 3.2950 3.8100 4.3250 4.8217 5.3183 5.8150
7 1.6100 2.1600 2.6800 3.2000 3.6900 4.1800 4.6500 5.1200 5.5900
8 1.5968 2.1336 2.6388 3.1439 3.6174 4.0909 4.5477 5.0045 5.4613
9 1.5832 2.1064 2.5963 3.0861 3.5426 3.9991 4.4423 4.8855 5.3287

10 1.5700 2.0800 2.5550 3.0300 3.4700 3.9100 4.3400 4.7700 5.2000
1 2.0000 3.0100 4.0150 5.0200 6.0200 7.0200 8.0200 9.0200 10.0200
2 1.8200 2.5900 3.3300 4.0700 4.8300 5.5900 6.3100 7.0300 7.7500
3 1.7300 2.4300 3.0850 3.7400 4.3750 5.0100 5.6267 6.2433 6.8600
4 1.6900 2.3400 2.9450 3.5500 4.1400 4.7300 5.3017 5.8733 6.4450

ρ = 0.4 5 1.6500 2.2500 2.8050 3.3600 3.9050 4.4500 4.9767 5.5033 6.0300
6 1.6300 2.2000 2.7375 3.2750 3.7950 4.3150 4.8167 5.3183 5.8200
7 1.6100 2.1500 2.6700 3.1900 3.6850 4.1800 4.6567 5.1333 5.6100
8 1.5935 2.1236 2.6288 3.1339 3.6124 4.0909 4.5544 5.0178 5.4813
9 1.5765 2.0964 2.5863 3.0761 3.5376 3.9991 4.4490 4.8988 5.3487

10 1.5600 2.0700 2.5450 3.0200 3.4650 3.9100 4.3467 4.7833 5.2200
1 2.0000 3.0000 4.0050 5.0100 6.0100 7.0100 8.0133 9.0167 10.0200
2 1.8100 2.6000 3.3600 4.1200 4.8550 5.5900 6.3233 7.0567 7.7900
3 1.7100 2.4000 3.0550 3.7100 4.3400 4.9700 5.5867 6.2033 6.8200
4 1.6900 2.3300 2.9450 3.5600 4.1450 4.7300 5.3050 5.8800 6.4550

ρ = 0.5 5 1.6700 2.2600 2.8350 3.4100 3.9500 4.4900 5.0233 5.5567 6.0900
6 1.6350 2.2100 2.7550 3.3000 3.8175 4.3350 4.8450 5.3550 5.8650
7 1.6000 2.1600 2.6750 3.1900 3.6850 4.1800 4.6667 5.1533 5.6400
8 1.5901 2.1336 2.6354 3.1372 3.6190 4.1008 4.5710 5.0411 5.5113
9 1.5799 2.1064 2.5946 3.0828 3.5510 4.0192 4.4724 4.9255 5.3787

10 1.5700 2.0800 2.5550 3.0300 3.4850 3.9400 4.3767 4.8133 5.2500
1 2.0100 3.0100 4.0200 5.0300 6.0300 7.0300 8.0367 9.0433 10.0500
2 1.8100 2.6000 3.3550 4.1100 4.8650 5.6200 6.3700 7.1200 7.8700
3 1.7300 2.4100 3.0950 3.7800 4.4000 5.0200 5.6767 6.3333 6.9900
4 1.7050 2.3500 2.9825 3.6150 4.2150 4.8150 5.4250 6.0350 6.6450

ρ = 0.8 5 1.6800 2.2900 2.8700 3.4500 4.0300 4.6100 5.1733 5.7367 6.3000
6 1.6350 2.2300 2.7825 3.3350 3.8775 4.4200 4.9583 5.4967 6.0350
7 1.5900 2.1700 2.6950 3.2200 3.7250 4.2300 4.7433 5.2567 5.7700
8 1.5834 2.1502 2.6620 3.1738 3.6623 4.1508 4.6454 5.1401 5.6347
9 1.5766 2.1298 2.6280 3.1262 3.5977 4.0692 4.5446 5.0199 5.4953

10 1.5700 2.1100 2.5950 3.0800 3.5350 3.9900 4.4467 4.9033 5.3600
1 2.0100 3.0200 4.0350 5.0500 6.0600 7.0700 8.0700 9.0700 10.0700
2 1.8300 2.6300 3.3950 4.1600 4.9300 5.7000 6.4367 7.1733 7.9100
3 1.7000 2.4000 3.0500 3.7000 4.3450 4.9900 5.6133 6.2367 6.8600
4 1.6900 2.3550 2.9775 3.6000 4.2150 4.8300 5.4183 6.0067 6.5950

ρ = 0.9 5 1.6800 2.3100 2.9050 3.5000 4.0850 4.6700 5.2233 5.7767 6.3300
6 1.6500 2.2600 2.8275 3.3950 3.9450 4.4950 5.0300 5.5650 6.1000
7 1.6200 2.2100 2.7500 3.2900 3.8050 4.3200 4.8367 5.3533 5.8700
8 1.6068 2.1869 2.7121 3.2372 3.7440 4.2507 4.7542 5.2576 5.7611
9 1.5932 2.1631 2.6730 3.1828 3.6811 4.1793 4.6692 5.1590 5.6489

10 1.5800 2.1400 2.6350 3.1300 3.6200 4.1100 4.5867 5.0633 5.5400

Mathematics 2023, 11, 3232 18 of 30

6. The Serial Split–Join System

This section studies a version of the parallel split–join system called the serial system.
The parallel processing of tasks gives rise to synchronization constraints that may cause
project delays. The trade-off between increasing the number of servers engaged in parallel
processing at the expense of synchronization delays plays an important role in choosing
the structure of the network, especially when the network must process different types of
projects or servers. To mitigate this trade-off, serial system is introduced. As in the parallel
system, a project arrives and splits into m parallel groups, each of which is composed of n
stages. However, after each stage j, all groups must be synchronized before the next stage,
j + 1, begins. The project exits the system when all groups in the n-th stage are completed.
A typical serial system is presented in Figure 9. The serial system highlights the effect of
synchronization. Here, there are n×m operational queues, and n synchronization queues
where the groups must wait to be joined at each stage.

of synchronization delays should play an important role in choosing the structure of the network,

especially when the network must process different types of projects or servers. To mitigate this

trade-off, we introduce the serial system. As in the parallel system, a project arrives and splits into

m parallel groups, each of which is composed of n stages. However, after each stage j, all groups

must be synchronized before the next stage, j + 1, begins. The project exits the system when all

groups in the n-th stage are completed. A typical serial system is presented in Figure 9. The serial

system highlights the effect of synchronization. Here, we have n × m operational queues, and n

synchronization queues where the groups must wait to be joined at each stage.

In practice, there is a growing interest in serial systems. One example of such a system is a

medical process in an emergency room, where some of the initial tests (stage 1) can be administered

simultaneously (for example, while a blood sample is being analyzed, a CT scan can be made).

However, the patient cannot be discharged until all these stage-1 tests are completed. After the

results are analyzed, the patient continues to the stage-2 analysis, etc. In manufacturing systems, a

maintenance procedure for a product requires parallel integrity checks that can only be assessed after

receiving the results of previous tests. In supply chains, an order for a product requires several items

simultaneously from vendors, where multiple parts are produced in parallel and then assembled into

the product ([18]). Other example are provided by the increase in multiprocessing technology and

parallel programming in computer and telecommunications networks. For example, there are grid

systems that divide applications into parallel and synchronized tasks ([9]), buffer size optimization

systems for data transmission, and memory constraints in computer networks ([11]). In real systems,

it may happen that, although parallelism does shorten time, the ensuing synchronization delays may

play a significant role, and affect managers’decisions.

Figure 9. A typical serial system.

For background, the serial split-join network has hardly been investigated in the literature; it is

only mentioned in the work of Ko [18] who considers a two-stage serial split-join network with m = 2

splits and a Poisson arrival process. However, only an approximation of the mean sojourn time of

23

Figure 9. A typical serial system.

In practice, there is a growing interest in serial systems. One example of such a system
is a medical process in an emergency room, where some of the initial tests (stage 1) can be
administered simultaneously (for example, while a blood sample is being analyzed, a CT
scan can be performed). However, the patient cannot be discharged until all these stage-1
tests are completed. After the results are analyzed, the patient continues to the stage-2
analysis, etc. In manufacturing systems, a maintenance procedure for a product requires
parallel integrity checks that can only be assessed after receiving the results of previous
tests. In supply chains, an order for a product requires several items simultaneously
from vendors, where multiple parts are produced in parallel and then assembled into the
product [29]. Other examples derive from the increase in multiprocessing technology and
parallel programming in computer and telecommunications networks. For example, there
are grid systems that divide applications into parallel and synchronized tasks [48], buffer
size optimization systems for data transmission, and memory constraints in computer
networks [9]. In real systems, it may happen that, although parallelism shortens time, the
ensuing synchronization delays may play a significant role and affect managers’ decisions.

For background, the serial split–join network has hardly been investigated in the
literature; it is only mentioned in the work of Ko [29], who considers a two-stage serial
split–join network with m = 2 splits and a Poisson arrival process. However, only an
approximation of the mean sojourn time of the network is derived.

The serial system at time t ≥ 0 is characterized by an n-row vector L(t) = (L1(t), L2(t),
. . . , Ln(t)), where Lj(t) is an m-column vector Lj(t) = (L1,j(t), L2,j(t), . . . , Lm,j(t))T . The
value Li,j(t) indicates the number of waiting tasks at station (i, j) (i.e., in the queue and at
the server). Due to the FCFS policy, all tasks of project k are held in the same stage (either
in the queue, waiting to be served, or at the join node after being served). For simplicity,
denote each subsequent join node at stage j = 1, .., n with the index j, leading to have the
next corollary.

Mathematics 2023, 11, 3232 19 of 30

Corollary 2. Let N(i,j),S(t) be the number of groups i waiting at join node j, j = 1, . . . , n at time
t. It is easy to verify that N(i,j),S(t) satisfies

N(i,j),S(t) = Max
1≤i≤m

{
Li,j(t)

}
− Li,j(t). (17)

Example 2. Let m = 3, n = 3, and assume that project 6 arrives to a system withL(t)= ((1, 0, 2)T ,
(2, 0, 1)T , (1, 0, 1)T). In this case, groups 1 and 3 of project 6 join the queues, and group 2 en-
ters the server immediately. As a result, we obtain L(t+) = ((2, 1, 3)T , (2, 0, 1)T , (1, 0, 1)T) (see
Figure 10). We also see that

Max
i=1,2,3

{Li,1(t+)} = 3, Max
i=1,2,3

{Li,2(t+)} = 2, Max
i=1,2,3

{Li,3(t+)} = 1. (18)

The number of waiting groups at the join nodes are N(1,1),S(t+) = 1, N(2,1),S(t+) = 2,
N(3,1),S(t+) = 0 (at join node 1), N(1,2),S(t+) = 0, N(2,2),S(t+) = 2, N(3,2),S(t+) = 1 (at
join node 2), and N(1,2),S(t+) = 0, N(2,3)S(t+) = 1, N(3,3),S(t+) = 0 (at join node 3). Exam-
ples of possible transitions are, e.g., the state L1(t) = (2, 1, 3)T with rate µ1,1(5) is changed to
L′1(t

+) = (1, 1, 3)T , and the states L1(t) = (2, 1, 3)T and L2(t) = (2, 0, 1)T with rate µ3,1(4) are
changed to L′1(t

+) = (2, 1, 2)T and L′2(t
+) = (3, 1, 2)T , respectively (here, tasks (3, 1) of project 4

is completed, so project 4 finishes stage 1, and continues to stage 2; as a result, both L1(t) and L2(t)
are changed).

Figure 10. A snapshot of the serial multi-join system upon arrival of project 6.

As discussed above, the mathematical analysis of the serial systems is complicated,
even for m = 3, and, thus, a numerical analysis is performed. The aim is to investigate the
impact of the additional time due to synchronization delays as a function of the system
parameters. To do so, the results of the serial system are numerically compared to those of
the parallel system with the same parameters.

6.1. The Influence of Synchronization Overhead and Stages

Denote by E(T̃m,n) the mean sojourn time of the serial system with m groups and
n stages. Similar to the ratios defined in (15) and (16), define respectively the m-ratio
Ĩsynch(m) and the n-ratio Ĩseq(n) as follows:

Ĩsynch(m) =
E
(

T̃m,n

)
E
(

T̃1,n

) , Ĩseq(n) =
E
(

T̃m,n

)
E
(

T̃m,1

) . (19)

Clearly, Ĩsynch(m) ≥ 1 and Ĩseq(n) ≥ 1 (equality holds when m = 1 and n = 1,
respectively). The ratio Ĩsynch(m) denotes the effect of synchronization overhead that
can be attributed to parallelism. The ratio Ĩseq(n) denotes the effect of seriality that
contributes to resource (server) delays and synchronization overhead simultaneously.

Mathematics 2023, 11, 3232 20 of 30

Tables 4 and 5 tabulate Ĩsynch(m) and Ĩseq(n) where m, n vary in {1, . . . , 10}, respectively, and
ρ = {0.2, 0.4, 0.5, 0.8, 0.9}. For ρ = 0.5, Figures 11 and 12 illustrate Ĩsynch(m) and Ĩseq(n) for
n ∈ {1, . . . , 10} and m ∈ {1, . . . , 10}, respectively.

Table 4. The ratio Ĩsynch for n, m = {1, . . . , 10}, ρ∈ {0.2, 0.4, 0.5, 0.8, 0.9}.

Ĩsynch(m) m

ρ n 2 3 5 7 10

1 1.48 1.80 2.19 2.48 2.78
2 1.47 1.78 2.19 2.46 2.76

0.2 3 1.47 1.77 2.18 2.45 2.75
5 1.47 1.77 2.17 2.44 2.73
7 1.46 1.76 2.16 2.43 2.72

10 1.46 1.76 2.16 2.42 2.71

1 1.45 1.74 2.12 2.37 2.66
2 1.44 1.72 2.09 2.34 2.61

0.4 3 1.44 1.71 2.08 2.32 2.58
5 1.43 1.70 2.06 2.30 2.55
7 1.43 1.70 2.05 2.29 2.54

10 1.42 1.69 2.04 2.28 2.53

1 1.44 1.73 2.07 2.33 2.59
2 1.43 1.70 2.05 2.28 2.54

0.5 3 1.42 1.68 2.03 2.26 2.51
5 1.41 1.67 2.01 2.24 2.48
7 1.41 1.67 2.00 2.23 2.46

10 1.40 1.66 1.99 2.21 2.45

1 1.41 1.68 1.96 2.22 2.44
2 1.38 1.62 1.92 2.13 2.35

0.8 3 1.38 1.62 1.92 2.11 2.33
5 1.37 1.59 1.88 2.08 2.29
7 1.37 1.59 1.88 2.07 2.27

10 1.36 1.58 1.87 2.06 2.26

1 1.40 1.68 1.93 2.16 2.36
2 1.36 1.59 1.90 2.10 2.32

0.9 3 1.37 1.58 1.88 2.07 2.39
5 1.34 1.57 1.86 2.04 2.24
7 1.34 1.56 1.85 2.02 2.22

10 1.34 1.56 1.83 2.01 2.22

Conclusion 7. (i) Figure 11 shows a statistically significant logarithmic growth rate of Ĩsynch(m)

in m (the test shows that R2 > 95%). Similarly, Figure 12 shows a statistically significant
linear growth rate of Ĩseq(n) in n (the test shows that R2 > 99%);

(ii) We see that Ĩsynch(m) is hardly affected by n when m is fixed, and, similarly, Ĩseq(n) is
hardly affected by m when n is fixed. This can be explained by the synchronization constraints
needed at the end of each stage (which is the beginning of the next stage). Specifically, the
variability obtained between the different groups does not accumulate, and each stage is almost
identical to the first stage. This absence of dispersion aggregation causes Ĩsynch(m) to be
almost independent in n, and Ĩseq(n) ≈ n;

(iii) Tables 4 and 5 show that, as in the parallel system, Ĩsynch(m) is slightly decreasing in ρ, and
Ĩseq(n) is hardly affected by ρ; see Conclusions 4(iii) and 5(iii).

To summarize, we see that the effects of m, n, and ρ are similar in both the serial system
and the parallel system. However, and contrary to expectation, the rate of change in the
serial system is slower and may even be negligible. Thus, it seems that the serial system is
significantly less sensitive to marginal changes and sometimes even indifferent.

Mathematics 2023, 11, 3232 21 of 30

Table 5. The ratio Ĩseq for n, m = {1, . . . , 10}, ρ∈ {0.2, 0.4, 0.5, 0.8, 0.9}.

Ĩseq(n) n

ρ m 2 3 5 7 10

1 2.00 3.00 5.00 7.00 10.00
2 1.99 2.98 4.97 6.94 9.90

0.2 3 1.98 2.96 4.92 6.87 9.79
5 1.99 2.98 4.94 6.90 9.83
7 1.99 2.97 4.92 6.87 9.79

10 1.99 2.96 4.91 6.85 9.76

1 2.00 3.01 5.02 7.02 10.02
2 1.99 2.97 4.93 6.89 9.82

0.4 3 1.98 2.96 4.90 6.84 9.74
5 1.97 2.94 4.86 6.77 9.63
7 1.97 2.94 4.85 6.76 9.76

10 1.97 2.92 4.83 6.72 9.55

1 2.00 3.00 5.01 7.01 10.02
2 1.99 2.96 4.91 6.86 9.78

0.5 3 1.96 2.92 4.83 6.75 9.60
5 1.98 2.94 4.87 6.77 9.62
7 1.96 2.92 4.81 6.70 9.51

10 1.96 2.91 4.79 6.67 9.47

1 2.01 3.01 5.03 7.03 10.05
2 1.97 2.94 4.90 6.82 9.72

0.8 3 1.95 2.90 4.78 6.67 9.48
5 1.98 2.94 4.85 6.74 9.59
7 1.93 2.86 4.72 6.57 9.32

10 1.94 2.87 4.73 6.55 9.31

1 2.01 3.02 5.05 7.07 10.07
2 1.96 2.95 4.84 6.79 9.67

0.9 3 1.91 2.85 4.75 6.59 9.40
5 1.97 2.94 4.85 6.76 9.55
7 1.96 2.90 4.78 6.63 9.39

10 1.98 3.06 4.81 6.66 9.50

Table 4. The ratio Ĩsynch for n,m = {1, ..., 10}, ρ∈ {0.2, 0.4,
0.5, 0.8, 0.9}. Figure 11. Ĩsynch(m) for n = {1, ..., 10}, ρ = 0.5.

26

Figure 11. Ĩsynch(m) for n = {1, . . . , 10}, ρ = 0.5.

Mathematics 2023, 11, 3232 22 of 30

Table 5. The ratio Ĩseq for n,m = {1, ..., 10}, ρ∈ {0.2, 0.4,
0.5, 0.8, 0.9}. Figure 12. Ĩseq(n) for m = {1, ..., 10}, ρ = 0.5.

Conclusion.6.

(i) Figure 11 shows a statistically significant logarithmic growth rate of Ĩsynch(m) in m (our test

shows that R2 > 95%). Similarly, Figure 12 shows a statistically significant linear growth rate of

Ĩseq(n) in n. (our test shows that R2 > 99%).

(ii) We see that Ĩsynch(m) is hardly affected by n when we hold m fixed, and similarly, Ĩseq(n) is

hardly affected by m when we hold n fixed. This can be explained by the synchronization constraints

needed at the end of each stage (which is the beginning of the next stage). Specifically, the variability

that obtains between the different groups does not accumulate, and each stage is almost identical to

the first stage. This absence of dispersion aggregation causes Ĩsynch(m) to be almost independent in

n, and Ĩseq(n) ≈ n.
(iii) Tables 4 and 5 show that, as in the parallel system, Ĩsynch(m) is slightly decreasing in ρ, and

Ĩseq(n) is hardly affected by ρ; see Conclusions 4(iii) and 5(iii).

To summarize, we see that the effects of m,n, and ρ are similar in both the serial system and

the parallel system. However, and contrary to expectation, the rate of change in the serial system is

27

Figure 12. Ĩseq(n) for m = {1, . . . , 10}, ρ = 0.5.

6.2. Comparison of the Systems

In the previous section, we studied the performance of the serial system as a function
of the different parameters. Here, to complete our investigation, we explore in greater
depth the influence of multiple synchronization constraints on the project duration. To
do so, we compare the mean sojourn time of the two systems with the same parameters.
Obviously, due to the additional synchronizations, the time in the serial system E(T̃m,n)
is greater than that of corresponding parallel system E(Tm,n) (the equality holds when
m = 1 or n = 1). Accordingly, it is interesting to study how significant the differences are
in relation to the parameters. The insights gained from this study can be used in practice
when more synchronization constraints are required for a project or, vice versa, when
synchronization constraints are no longer necessary and can be eliminated. Let IS/P be the
ratio of the mean sojourn times:

IS/P =
E(T̃m,n)

E(Tm,n)
. (20)

The values IS/P are summarized in Table 6 for n, m ∈ {2, . . . , 10} and ρ ∈ {0.2, 0.4, 0.5,
0.8, 0.9}; the cases m = 1 or n = 1, where IS/P = 1, are omitted.

Table 6 implies that the ratio IS/P is increasing in n and m, and decreasing in ρ. This is
more formally stated in Conclusion 7. In addition, Figures 13 and 14 plot IS/P as a function
of m and n for ρ = 0.5, respectively. We see that IS/P grows logarithmically in m, and,
surprisingly, also logarithmically in n. Checking this growth rate for other utilizations leads
to the same conclusion. For example, the blue, black, and purple surfaces of Figure 15 show
IS/P as a function of n and m for ρ = 0.2, 0.5 and 0.9.

Mathematics 2023, 11, 3232 23 of 30

Table 6. The ratio IS/P for m, n ∈ {2, . . . , 10}, ρ ∈ {0.2, 0.4, 0.5, 0.8, 0.9}.

ρ IS/P n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
0.2 1.0960 1.1466 1.1751 1.2036 1.2227 1.2418 1.2529 1.2642 1.2752
0.4 1.0910 1.1461 1.1786 1.2110 1.2218 1.2325 1.2439 1.2554 1.2667
0.5 m = 2 1.0961 1.1390 1.1649 1.1908 1.2091 1.2274 1.2368 1.2464 1.2557
0.8 1.0856 1.1340 1.1624 1.1907 1.2023 1.2139 1.2208 1.2278 1.2347
0.9 1.0714 1.1214 1.1416 1.1617 1.1761 1.1905 1.2011 1.2119 1.2224
0.2 1.1447 1.2244 1.2720 1.3195 1.3491 1.3787 1.3969 1.4152 1.4332
0.4 1.1431 1.2175 1.2637 1.3099 1.3366 1.3633 1.3819 1.4006 1.419
0.5 m = 3 1.1468 1.2148 1.2581 1.3013 1.3297 1.3581 1.3747 1.3914 1.4078
0.8 1.1266 1.2020 1.2340 1.2659 1.2977 1.3294 1.3384 1.3476 1.3565
0.9 1.1237 1.1898 1.2363 1.2827 1.3018 1.3208 1.3372 1.3537 1.3699
0.2 1.1721 1.2695 1.3290 1.3885 1.4251 1.4618 1.4847 1.5079 1.53065
0.4 1.1685 1.2609 1.3192 1.3775 1.4102 1.4430 1.4645 1.4863 1.5076
0.5 m = 4 1.1680 1.2581 1.3108 1.3636 1.3984 1.4332 1.4531 1.4733 1.493
0.8 1.1516 1.2448 1.2905 1.3362 1.3665 1.3969 1.4110 1.4253 1.43935
0.9 1.1490 1.2299 1.2819 1.3340 1.3588 1.3836 1.4021 1.4208 1.4391
0.2 1.1995 1.3145 1.3860 1.4575 1.5012 1.5448 1.5726 1.6006 1.6281
0.4 1.1938 1.3042 1.3746 1.4450 1.4839 1.5227 1.5472 1.5719 1.5962
0.5 m = 5 1.1892 1.3014 1.3636 1.4258 1.4671 1.5083 1.5316 1.5551 1.5782
0.8 1.1766 1.2875 1.3470 1.4064 1.4354 1.4643 1.4836 1.5031 1.5222
0.9 1.1743 1.2700 1.3276 1.3852 1.4158 1.4463 1.4670 1.4878 1.5083
0.2 1.2157 1.3430 1.4208 1.4986 1.5468 1.5950 1.6266 1.6584 1.68965
0.4 1.2092 1.3335 1.4078 1.4820 1.5261 1.5702 1.5982 1.6266 1.6544
0.5 m = 6 1.2099 1.3268 1.3971 1.4674 1.5113 1.5552 1.5810 1.6071 1.6326
0.8 1.1947 1.3023 1.3697 1.4372 1.4731 1.5091 1.5291 1.5492 1.56895
0.9 1.1918 1.2901 1.3551 1.4200 1.4554 1.4908 1.5115 1.5325 1.5531
0.2 1.2319 1.3715 1.4556 1.5397 1.5925 1.6452 1.6805 1.7162 1.7512
0.4 1.2245 1.3628 1.4409 1.5190 1.5683 1.6176 1.6493 1.6813 1.7126
0.5 m = 7 1.2305 1.3521 1.4305 1.5089 1.5555 1.6021 1.6304 1.6590 1.687
0.8 1.2128 1.3170 1.3925 1.4679 1.5109 1.5539 1.5745 1.5953 1.6157
0.9 1.2092 1.3102 1.3825 1.4548 1.4950 1.5352 1.5561 1.5772 1.5979
0.2 1.2423 1.3898 1.4787 1.5676 1.6240 1.6805 1.7180 1.7558 1.7929
0.4 1.2360 1.3783 1.4620 1.5456 1.5981 1.6505 1.6843 1.7183 1.7517
0.5 m = 8 1.2370 1.3680 1.4506 1.5332 1.5831 1.6329 1.6639 1.6952 1.7259
0.8 1.2202 1.3313 1.4110 1.4907 1.5364 1.5822 1.6069 1.6318 1.6563
0.9 1.2244 1.3498 1.4156 1.4814 1.5222 1.5630 1.5876 1.6124 1.6368
0.2 1.2529 1.4084 1.5021 1.5958 1.6559 1.7161 1.7558 1.7958 1.835
0.4 1.2477 1.3939 1.4832 1.5725 1.6282 1.6838 1.7196 1.7558 1.7911
0.5 m = 9 1.2436 1.3840 1.4709 1.5577 1.6109 1.6640 1.6978 1.7318 1.7652
0.8 1.2277 1.3457 1.4297 1.5137 1.5622 1.6107 1.6396 1.6687 1.6973
0.9 1.2398 1.3897 1.4490 1.5083 1.5497 1.5911 1.6194 1.6480 1.676
0.2 1.2632 1.4265 1.5250 1.6234 1.6872 1.7510 1.7928 1.8350 1.8764
0.4 1.2591 1.4092 1.5041 1.5989 1.6577 1.7164 1.7542 1.7924 1.8299
0.5 m = 10 1.2500 1.3997 1.4908 1.5818 1.6382 1.6945 1.7309 1.7677 1.8038
0.8 1.2351 1.3598 1.4481 1.5363 1.5875 1.6387 1.6716 1.7049 1.7375
0.9 1.2548 1.4289 1.4818 1.5346 1.5766 1.6186 1.6506 1.6829 1.7146

Mathematics 2023, 11, 3232 24 of 30

Figure 13. IS/P (m) for

n = {1, ..., 10}, ρ = 0.5.
Figure 14. IS/P (n) for

m = {1, ..., 10}, ρ = 0.5.
Figure 15. The ratio IS/P (m,n) for

ρ = {0.2, 0.5, 0.9}.

Figure 16. The duality property

IS/P (m,n) ≈ IS/P (n,m) for (m,n) = {(7, 3),
(10, 3), (8, 5)}.

Conclusion 7.

(i) The impact of n and m. Figures 13-15 show that IS/P increases in both n andm at a logarith-

mic rate. Its logarithmic growth rate in m is consistent with the previous conclusions. However, its

logarithmic growth rate in n is quite surprising, and contrary to the expectation for a linear growth

rate. This can be explained as follows. The addition of stages adds operational delays in a relatively

similar way to both systems, but it adds synchronization delays only to the serial system (since the

parallel system has only one final join node, independently of n). Thus, these delays intensify the

31

Figure 13. IS/P(m) for n = {1, . . . , 10}, ρ = 0.5.

Figure 13. IS/P (m) for

n = {1, ..., 10}, ρ = 0.5.
Figure 14. IS/P (n) for

m = {1, ..., 10}, ρ = 0.5.
Figure 15. The ratio IS/P (m,n) for

ρ = {0.2, 0.5, 0.9}.

Figure 16. The duality property

IS/P (m,n) ≈ IS/P (n,m) for (m,n) = {(7, 3),
(10, 3), (8, 5)}.

Conclusion 7.

(i) The impact of n and m. Figures 13-15 show that IS/P increases in both n andm at a logarith-

mic rate. Its logarithmic growth rate in m is consistent with the previous conclusions. However, its

logarithmic growth rate in n is quite surprising, and contrary to the expectation for a linear growth

rate. This can be explained as follows. The addition of stages adds operational delays in a relatively

similar way to both systems, but it adds synchronization delays only to the serial system (since the

parallel system has only one final join node, independently of n). Thus, these delays intensify the

31

Figure 14. IS/P(n) for m = {1, . . . , 10}, ρ = 0.5.

Mathematics 2023, 11, 3232 25 of 30

Figure 13. IS/P (m) for

n = {1, ..., 10}, ρ = 0.5.
Figure 14. IS/P (n) for

m = {1, ..., 10}, ρ = 0.5.
Figure 15. The ratio IS/P (m,n) for

ρ = {0.2, 0.5, 0.9}.

Figure 16. The duality property

IS/P (m,n) ≈ IS/P (n,m) for (m,n) = {(7, 3),
(10, 3), (8, 5)}.

Conclusion 7.

(i) The impact of n and m. Figures 13-15 show that IS/P increases in both n andm at a logarith-

mic rate. Its logarithmic growth rate in m is consistent with the previous conclusions. However, its

logarithmic growth rate in n is quite surprising, and contrary to the expectation for a linear growth

rate. This can be explained as follows. The addition of stages adds operational delays in a relatively

similar way to both systems, but it adds synchronization delays only to the serial system (since the

parallel system has only one final join node, independently of n). Thus, these delays intensify the

31

Figure 15. The ratio IS/P(m, n) for ρ = {0.2, 0.5, 0.9}.

Conclusion 8. (i) The impact of n and m. Figures 13–15 show that IS/P increases in both n
and m at a logarithmic rate. Its logarithmic growth rate in m is consistent with the previous
conclusions. However, its logarithmic growth rate in n is quite surprising, and contrary
to the expectation of a linear growth rate. This can be explained as follows. The addition
of stages adds operational delays in a relatively similar way to both systems, but it adds
synchronization delays only to the serial system (since the parallel system has only one final
join node, independently of n). Thus, these delays intensify the logarithmic component of the
growth rate and offset the other components.
Furthermore, this observation leads to an unexpected result. Since m and m have the same
logarithmic effect on the growth rate, the ratio IS/P shows a kind of duality for a fixed ρ:

IS/P(m, n) ≈ IS/P(n, m). (21)

Equation (21) implies that the added time in the serial system beyond that of the parallel
system is relatively similar due to parallelism (i.e., increasing m) or due to seriality (i.e.,
increasing n). For example, Figure 16 shows IS/P(m, n) and its dual-value IS/P(n, m) (solid
and dashed curves, respectively) for the pairs (m, n) = {(7, 3), (10, 3), (8, 5)} as a function
of ρ. We see that IS/P(7, 3) ≈ IS/P(3, 7) (blue curves), IS/P(10, 3) ≈ IS/P(3, 10) (black
curves), and IS/P(8, 5) ≈ IS/P(5, 8) (gray curves);

(ii) The impact of ρ. In most cases, increasing ρ decreases IS/P for fixed n and m. The explanation
is simple: for a low utilization, the operational queues are almost empty and, thus, synchro-
nization times (which exist mainly in the serial system) constitute the key share of the total
time. Here, the serial system is significantly slower than the parallel system and, thus, IS/P
increases. However, for an overloaded system (with a high utilization), the operational delays
increase in both systems, thereby offsetting the synchronization delays that slightly decrease
IS/P. In summary, the effect of efficiency is significant mainly for high n and m and for a low
utilization. In this case, the large number of synchronizations becomes a major component in
the time profile.

Mathematics 2023, 11, 3232 26 of 30

Figure 13. IS/P (m) for

n = {1, ..., 10}, ρ = 0.5.
Figure 14. IS/P (n) for

m = {1, ..., 10}, ρ = 0.5.
Figure 15. The ratio IS/P (m,n) for

ρ = {0.2, 0.5, 0.9}.

Figure 16. The duality property

IS/P (m,n) ≈ IS/P (n,m) for (m,n) = {(7, 3),
(10, 3), (8, 5)}.

Conclusion 7.

(i) The impact of n and m. Figures 13-15 show that IS/P increases in both n andm at a logarith-

mic rate. Its logarithmic growth rate in m is consistent with the previous conclusions. However, its

logarithmic growth rate in n is quite surprising, and contrary to the expectation for a linear growth

rate. This can be explained as follows. The addition of stages adds operational delays in a relatively

similar way to both systems, but it adds synchronization delays only to the serial system (since the

parallel system has only one final join node, independently of n). Thus, these delays intensify the

31

Figure 16. The duality property IS/P(m, n) ≈ IS/P(n, m) for (m, n) = {(7, 3), (10, 3), (8, 5)}.

7. Concluding Remarks and Future Research

The present paper studies the influence of multiple stages and multiple synchroniza-
tions in expanded split–join/fork–join networks. Two different architectures are introduced,
the parallel structure and the serial one. Since the mathematical analysis of such systems is
difficult and mostly impossible, a sensitivity analysis is obtained to evaluate the efficiency
of various bounds for the mean sojourn time. For each system, an extensive numerical
study is performed to investigate the impact of (i) the number of stages n, (ii) the number
of groups m, and (iii) the utilization ρ on the mean sojourn time. Numerical results show
that the mean sojourn time of both systems is hardly effected by ρ, and increases linearly
in n and logarithmically in m, although the serial system is significantly less sensitive to
changes in m and n. If we attribute the number of stages to operational delays due to slow
servers or limited resources, and the number of groups to synchronization delays, then the
limited resources have a linear influence, while the synchronization gap has a logarithmic
influence. Accordingly, it is advisable to invest extensively in limited resource in order to
improve the performance of the system.

Furthermore, comparing the two systems with the same parameters surprisingly
shows a logarithmic rate effect of both parallelism (the synchronization delays) and seriality
(operational delays). Thus, we obtain a kind of duality property for the ratio between the
two systems. This duality can be used for estimation purposes in designing and optimizing
the systems when more synchronization constraints are required or, alternatively, when
fewer synchronization constraints are required.

For future research, it would be interesting to investigate mixed split–join systems that
include both parallel and serial structures. In real life, the need to synchronize may be a
probabilistic decision. Thus, assigning a probability to each join node (which is actually a
combination of the serial and parallel systems) would be a promising practical stream of
research. Moreover, this paper assumed an exponential service time and a Poisson arrival
process. It would be interesting to generalize this work by including other distributions for
service times or studying more general arrival processes. In this case, however, the author
believes that it would be highly difficult to analyze these systems using only mathematical
tools and, thus, the use of numerical analysis would probably be essential.

Mathematics 2023, 11, 3232 27 of 30

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. The Proof of Claim 1

Proof. Claim 1 is obtained by a double induction on the number of projects k and the
number of stages j in group i.

Step-1. Substituting j = 1 in (1) yields

Wk+1(i, 1) = [Tk(i, l)− νk+1]
+ = [Wk(i, 1) + Sk(i, 1)− νk+1]

+, (A1)

which is equal to the original Lindley equation with one task (i.e., m = 1), and, thus, holds
for all k.

Induction-Step. Assume that Claim 1 holds for j; it is now proven for j + 1.
Step-2. Use induction on k.
Step-1. Let k = 1.

W1(i, j + 1) =

[
j+1

∑
l=1

T0(i, l)−
j

∑
l=1

T1(i, l)− ν1

]+
= 0

Clearly for the first project, the system is empty.
Induction-Step. Assume that Claim 1 holds for k; prove it for k + 1 (recall that we

assume j + 1).
Step-2. By the induction, Wk(i, 1), Wk(i, 2), . . . , Wk(i, j + 1) are the waiting times of

project k in group i. Since Sk(i, 1), Sk(i, 2), . . . , Sk(i, j + 1) are the service times, we have

j+1

∑
l=1

Tk(i, l) = Wk(i, 1) + Sk(i, 1) + . . . + Wk(i, j + 1) + Sk(i, j + 1)

to determine the time project k finishes task j + 1. Similarly, ∑
j
l=1 Tk+1(i, l) is the time that

project k + 1 finishes task j. Project k + 1 starts νk+1 units of time after project k. Thus, if
j+1
∑

l=1
Tk(i, l) < ∑

j
l=1 Tk+1(i, l) + νk+1, the station j + 1 is empty when project k + 1 arrives;

otherwise, project k + 1 will wait, i.e.,

Wk+1(i, j) =

[
j

∑
l=1

Tk(i, l)−
j−i

∑
l=1

Tk+1(i, l)− νk+1

]+
.

Appendix B. The Proof of Claim 2(1)

Proof. The proof is obtained by using a double induction on the number of projects k and
the number of stages j in group i.

Step-1. Assume j = 1. Use induction on k.
Step-1. k = 1. Clearly, W1(i, 1) = 0, ∀i. The service times {S1(i, 1)}, i = 1, . . . , m are

independent r.v.s; thus, by property P1, they are associated r.v.s. Since ν1 is an independent
r.v., by P2, the r.v.s in the set

{W1(i, 1), S1(i, 1),−t1, i = 1, . . . , m}

are associated.

Mathematics 2023, 11, 3232 28 of 30

Induction-Step. Assume that

{Wl(i, 1), Sl(i, 1),−tl , i = 1, . . . , m, l = 1, . . . , k}

forms a set of associated r.v.s. Now, prove for k + 1.
Step-2. The proof is obtained immediately, by applying Appendix A of Nelson and

Tantawi [30], and Chapter 4.2.III of Baccelli and Makowski [23].
Induction-Step. Assume {Wl(i, r), Sl(i, r),−tl , r = 1, . . . , j, l = 1, . . . , k} forms a set of

associated r.v.s. Prove for j + 1.
Step-2. Assume j + 1. Use induction on k.

Step-1. k = 1. For the first project, W1(i, j + 1) = 0; thus, applying P1 and P2, the r.v.s
in set

{W1(i, r), S1(i, r),−t1, W1(i, j + 1), S1(i, j + 1), r = 1, . . . , j}

are associated.
Induction-Step. Assume that the r.v.s in set

{Wl(i, r), Sl(i, r),−tl , Wl(i, j + 1), Sl(i, j + 1), r = 1, . . . , j, l = 1, . . . , k}

are associated. Prove for k + 1.
Step-2. By Claim 1 we have

Wk+1(i, j + 1) =

[
j+1

∑
l=1

Tk(i, l)−
j

∑
l=1

Tk+1(i, l)− νk+1

]+

=

[
j+1

∑
l=1

Wk(i, l) + Sk(i, l)−
j

∑
l=1

(Wk+1(i, l) + Sk+1(i, l))− νk+1

]+
.

The function [x]+ is a non-decreasing monotonic function. Thus, by the induction
assumption and applying P4, the elements of set {Wk+1(i, l), l = 1, . . . , j + 1} are also as-
sociated. Furthermore, the set {Sk+1(i, l), l = 1, . . . , j + 1} contains independent r.v.s, and,
thus, by P1, are associated. Finally, applying P2, the elements in set

{Wl(i, r), Sl(i, r),−tl , Wl(i, j + 1), Sl(i, j + 1), r = 1, . . . , j + 1, l = 1, . . . , k + 1}

are associated.

References
1. Alesawi, S.; Ghanem, S. Overcome heterogeneity impact in modeled fork-join queuing networks for tail prediction. In Proceedings

of the 2019 International Conference on Computing, Networking and Communications (ICNC), IEEE, Honolulu, HI, USA, 18–21
February 2019; pp. 270–275.

2. Gorbunova, A.; Vishnevsky, V. The analysis of big data centers performance. Adv. Syst. Sci. Appl. 2022, 22, 70–83.
3. Nguyen, M.; Alesawi, S.; Li, N.; Che, H.; Jiang, H. A black-box fork-join latency prediction model for data-intensive applications.

IEEE Trans. Parallel Distrib. Syst. 2020, 31, 1983–2000. [CrossRef]
4. Ardagna, D.; Bernardi, S.; Gianniti, E.; Karimian Aliabadi, S.; Perez-Palacin, D.; Requeno, J.I. Modeling performance of

hadoop applications: A journey from queueing networks to stochastic well formed nets. In Proceedings of the Algorithms
and Architectures for Parallel Processing: 16th International Conference, ICA3PP 2016, Granada, Spain, 14–16 December 2016;
Springer International Publishing: Berlin/Heidelberg, Germany, 2016; Proceedings 15, pp. 599–613.

5. Delias, P.; Lagopoulos, A.; Tsoumakas, G.; Grigori, D. Using multi-target feature evaluation to discover factors that affect business
process behavior. Comput. Ind. 2018, 99, 253–261. [CrossRef]

6. Sethuraman, S. Analysis of Fork-Join Systems: Network of Queues with Precedence Constraints; CRC Press: Boca Raton, FL, USA, 2022.
7. Enganti, P.; Rosenkrantz, T.; Sun, L.; Wang, Z.; Che, H.; Jiang, H. ForkMV: Mean-and-variance estimation of fork-join queuing

networks for datacenter applications. In Proceedings of the 2022 IEEE International Conference on Networking, Architecture and
Storage (NAS), IEEE, Philadelphia, PA, USA, 3–4 October 2022; pp. 1–8.

8. Wang, W.; Harchol-Balter, M.; Jiang, H.; Scheller-Wolf, A.; Srikant, R. Delay asymptotics and bounds for multi-task parallel jobs.
ACM Sigmetrics Perform. Eval. Rev. 2019, 46, 2–7. [CrossRef]

http://doi.org/10.1109/TPDS.2020.2982137
http://dx.doi.org/10.1016/j.compind.2018.03.022
http://dx.doi.org/10.1145/3308897.3308901

Mathematics 2023, 11, 3232 29 of 30

9. Ding, S. Multi-Class Fork-Join Queues & The Stochastic Knapsack Problem. Ph.D. Thesis, Universiteit Leiden, Amsterdam, The
Netherlands, 2011.

10. Krishnamurthy, A.; Suri, R. Performance analysis of single stage kanban controlled production systems using parametric
decomposition. Queueing Syst. 2006, 54, 141–162. [CrossRef]

11. Shaaban, S.; Romero-Silva, R. Performance of merging lines with uneven buffer capacity allocation: The effects of unreliability
under different inventory-related costs. Cent. Eur. J. Oper. Res. 2021, 29, 1253–1288. [CrossRef]

12. Matta, A.; Dallery, Y.; Di Mascolo, M. Analysis of assembly systems controlled with kanbans. Eur. J. Oper. Res. 2005, 166, 310–336.
[CrossRef]

13. Raghavan, N.S.; Viswanadham, N. Generalized queueing network analysis of integrated supply chains. Int. J. Prod. Res. 2001, 39,
205–224.

14. Atar, R.; Mandelbaum, A.; Zviran, A. Control of fork-join networks in heavy traffic. In Proceedings of the 2012 50th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), IEEE, Monticello, IL, USA, 1–5 October 2012;
pp. 823–830.

15. Özkan, E. Control of fork-join processing networks with multiple job types and parallel shared resources. Math. Oper. Res. 2022,
47, 1310–1334. [CrossRef]

16. Prabhakar, B.; Bambos, N.; Mountford, T.S. The synchronization of Poisson processes and queueing networks with service and
synchronization nodes. Adv. Appl. Probab. 2000, 32, 824–843. [CrossRef]

17. Ramakrishnan, R.; Krishnamurthy, A. Analysis of kitting Operations in manufacturing systems. Asia Pac. J. Oper. Res. 2008, 25,
187–216. [CrossRef]

18. Ramakrishnan, R.; Krishnamurthy, A. Performance evaluation of a synchronization station with multiple inputs and population
constraints. Comput. Oper. Res. 2012, 39, 560–570. [CrossRef]

19. Schol, D.; Vlasiou, M.; Zwart, B. Large fork-join networks with nearly deterministic service times. Mathematics 2019,
arXiv:1912.11661. [CrossRef]

20. Roy, D.; van Ommeren, J.K.; de Koster, R.; Gharehgozli, A. Modeling landside container terminal queues: Exact analysis and
approximations. Transp. Res. Part B Methodol. 2022, 162, 73–102. [CrossRef]

21. Towsley, D.; Rommel, C.G.; Stankovic, J.A. Analysis of fork-join program response times on multiprocessors. IEEE Trans. Parallel
Distrib. Syst. 1990, 1, 286–303. [CrossRef] [PubMed]

22. Baccelli, F.; Makowski, A.M. Simple Computable Bounds for the Fork-Join Queue. Ph.D. Thesis, INRIA, Le Chesnay-Rocquencourt,
France 1985.

23. Baccelli, F.; Makowski, A.M. Queueing models for systems with synchronization constraints. Proc. IEEE 1989, 77, 138–161.
[CrossRef]

24. Baccelli, F.; Makowski, A.M.; Shwartz, A. The fork-join queue and related systems with synchronization constrains: Stochastic
Ordering and Computable Bounds. Adv. Appl. Probab. 1989, 21, 629–660. [CrossRef]

25. Baccelli, F.; Massey, W.A.; Towsley, D. Acyclic fork join queuing networks. J. Assoc. Comput. Machanics 1989, 36, 615–642.
[CrossRef]

26. Ko, S.S.; Serfozo, R.F. Response times in M/M/s fork-join networks. Adv. Appl. Probab. 2004, 36, 854–871. [CrossRef]
27. Ko, S.S.; Serfozo, R.F. Sojourn Times in G/M/1 fork-join networks. Nav. Res. Logist. 2008, 55, 432–443. [CrossRef]
28. Varki, E. Mean value technique for closed fork-join networks. Perform. Eval. Rev. 1999, 27, 103–112. [CrossRef]
29. Ko, S.S. Cycle times in a serial fork-join network. In Proceedings of the Computational Science and Its Applications–ICCSA

2007: International Conference, Kuala Lumpur, Malaysia, 26–29 August 2007; Springer: Berlin/Heidelberg, Germany, 2007;
Proceedings, Part I 7, pp. 758–766.

30. Nelson, R.; Tantawi, A.N. Approximation analysis of Fork/Join synchronization in parallel queues. IEEE Trans. Comput. 1988, 37,
739–743. [CrossRef]

31. Nelson, R.; Towsley, D.; Tantawi, A.N. Performance analysis of parallel processing systems. IEEE Trans. Softw. Eng. 1988, 14,
532–540. [CrossRef]

32. Fiorini, P.M. Analytic approximations of fork-join queues. In Proceedings of the 2015 IEEE 8th International Conference on
Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), IEEE, Warsaw, Poland,
24–26 September 2015; Volume 2, pp. 966–971.

33. Lebrecht, A.S.; Knottenbelt, W.J. Response time approximations in fork-join queues. In Proceedings of the 23rd Annual UK
Performance Engineering Workshop (UKPEW 2007), ORMS, Kirk, UK, 31 July 2007.

34. Kemper, B.; Mandjes, M. Mean sojourn times in two-queue fork-join systems: Bounds and approximations. OR Spectr. 2012, 34,
723–742. [CrossRef]

35. Takahashi, M.; Osawa, H.; Fujisawa, T. On a synchronization queue with two finite buffers. Queueing Syst. 2000, 36, 107–123.
[CrossRef]

36. Qiu, Z.; Pérez, J.F.; Harrison, P.G. Beyond the mean in fork-join queues: Efficient approximation for response-time tails. Perform.
Eval. 2015, 91, 99–116. [CrossRef]

37. Varma, S.; Makowski, A.M. Interpolation approximations for symmetric fork-join queues. J. Perform. Eval. 1994, 20, 245–265.
[CrossRef]

http://dx.doi.org/10.1007/s11134-006-9396-4
http://dx.doi.org/10.1007/s10100-019-00670-9
http://dx.doi.org/10.1016/j.ejor.2003.09.035
http://dx.doi.org/10.1287/moor.2021.1170
http://dx.doi.org/10.1239/aap/1013540246
http://dx.doi.org/10.1142/S0217595908001742
http://dx.doi.org/10.1016/j.cor.2011.05.009
http://dx.doi.org/https://doi.org/10.48550/arXiv.1912.11661
http://dx.doi.org/10.1016/j.trb.2022.05.012
http://dx.doi.org/10.1109/71.80157
http://www.ncbi.nlm.nih.gov/pubmed/15539869
http://dx.doi.org/10.1109/5.21076
http://dx.doi.org/10.2307/1427640
http://dx.doi.org/10.1145/65950.65957
http://dx.doi.org/10.1239/aap/1093962238
http://dx.doi.org/10.1002/nav.20294
http://dx.doi.org/10.1145/301464.301484
http://dx.doi.org/10.1109/12.2213
http://dx.doi.org/10.1109/32.4676
http://dx.doi.org/10.1007/s00291-010-0235-y
http://dx.doi.org/10.1023/A:1019127002333
http://dx.doi.org/10.1016/j.peva.2015.06.007
http://dx.doi.org/10.1016/0166-5316(94)90016-7

Mathematics 2023, 11, 3232 30 of 30

38. Tan, X.; Knessl, C. A fork-join queueuing model:diffusion approximation, integral representations and asymptotics. Queueing
Syst. 1996, 22, 287–332. [CrossRef]

39. Knessl, C. A diffusion model for two parallel queues with processor sharing: Transient behavior and asymptotics. J. Appl. Math.
Stoch. Anal. 1999, 12, 311–338. [CrossRef]

40. Kushner, H.J. Heavy Traffic Analysis of Controlled Queueing and Communication Networks; Springer: New York, NY, USA, 2001.
41. Zeng, Y.; Tan, J.; Xia, C.H. Fork and join queueing networks with heavy tails: Scaling dimension and throughput limit. J. ACM

(JACM) 2021, 68, 1–30. [CrossRef]
42. Meijer, M.S.; Schol, D.; van Jaarsveld, W.; Vlasiou, M.; Zwart, B. Extreme-value theory for large fork-join queues, with an

application to high-tech supply chains. arXiv 2021. arXiv:2105.09189.
43. Burke, P.J. The output process of a stationary M/M/s queueing system. Ann. Math. Stat. 1968, 39, 1144–1152. [CrossRef]
44. Walrand, J. An Introduction to Queueing Networks; Caopter 4; Prentice Hall: Hoboken, NJ, USA, 1988.
45. Latouche, G.; Ramaswami, V. Introduction to Matrix Analytic Methods in Stochastic Modeling; SIAM: Philadelphia, PA, USA, 1999.
46. Lindley, D.V. The theory of queues with a single server. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge

University Press: Cambridge, UK, 1952; Volume 48, pp. 277–289.
47. Kang, S.; Serfozo, R.F. Extreme values of phase-type and mixed random variables with parallel-processing examples. J. Appl.

Probab. 1999, 36, 194–210. [CrossRef]
48. Cremonesi, P.; Turrin, R.; Alexandrov, V.N. Modeling the effects of node heterogeneity on the performance of grid applications.

J. Netw. 2009, 4, 837–854. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF01149176
http://dx.doi.org/10.1155/S1048953399000295
http://dx.doi.org/10.1145/3448213
http://dx.doi.org/10.1214/aoms/1177698238
http://dx.doi.org/10.1239/jap/1032374241
http://dx.doi.org/10.4304/jnw.4.9.837-854

	Introduction
	Description of the Parallel Split–Join Network
	Preliminary Results
	Tandem System
	Associated Random Variables

	The Parallel Split–Join System: Analysis and Bounds
	A Special Case: The Poisson Arrival Process
	Lower and Upper Bounds
	Asymptotic Analysis for Large n and m
	The Efficiency of the Bounds
	Simulation Study
	The Influence of the Synchronization Delay
	The Influence of Multiple Stages

	The Serial Split–Join System
	The Influence of Synchronization Overhead and Stages
	Comparison of the Systems

	Concluding Remarks and Future Research
	The Proof of Claim 1
	The Proof of Claim 2(1)
	References

