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Abstract: Dunnett’s procedure has been frequently used for multiple comparisons of group means
of several treatments with a control, in drug development and other areas. However, in practice,
researchers usually face missing observations when performing Dunnett’s procedure. This paper
presents an improved Dunnett’s procedure that can construct unique ensemble confidence inter-
vals for comparing group means of several treatments with a control, in the presence of missing
observations, using a derived multivariate t distribution under the framework of Rubin’s rule. This
procedure fills the current research gap that Rubin’s repeated-imputation inferences cannot adjust
for multiplicity and, thereby, cannot give a unified confidence interval to control the family-wise
error rate (FWER) when dealing with this problem. Simulation results show that the constructed
pooled confidence intervals archive nominal joint coverage and the interval estimations preserve
comparable precision to Rubin’s repeated-imputation inference as the missing rate increases. The
proposed procedure with propensity-score imputation method is shown to produce more accurate
interval estimations and control the FWER well.

Keywords: Dunnett’s procedure; many-to-one comparisons; missing data; simultaneous confidence
interval

MSC: 62F30

1. Introduction

Comparisons of drug effect at different dosage levels with a control (many-to-one
comparisons) is a common technique used in modern clinical trials for drug develop-
ment. Since the pioneering work of Dunnett (1955) on many-to-one comparisons with
normally distributed data [1], this problem has gained wide attention from methodologists
in recent decades.

Dunnett’s comparison was applied to dichotomous data by Passing in terms of com-
paring individual treatment proportions against the control proportions simultaneously [2].
Alternatively, Piegorsch [3] pointed out that the Bonferroni-based intervals for pairwise
contrasts of multinomial proportions (Goodman, 1964) [4] could be applied for construct-
ing pooled confidence intervals for multiple comparisons to a control with the difference
of dichotomous proportions. However, the conservativeness of the Bonferroni adjust-
ment is widely known, since it ignores the correlation structure among the comparisons.
Bonferroni-based intervals have poor power in many-to-one comparisons, particularly
when the number of comparisons becomes large and when comparisons are highly cor-
related [5]. An application of analogous method to construct simultaneous intervals for
many-to-one comparisons of proportions was proposed by Piegorsch [3], by adapting the
Jeffreys–Perks (JP) reformulation to Bonferroni-based intervals and Dunnett-style intervals.
Simulation results demonstrated that JP results are superior to Bonferroni-based intervals
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and Dunnett-style intervals. Klingenberg discussed several methods for construction of
asymptotic simultaneous confidence limits of relative risks for comparing several treat-
ments to a control, and a method inverting the minimum of score statistics, together with
estimating the correlation matrix of these statistics, proves to be most powerful [6]. Many-
to-one comparisons have also been investigated for survival data. However, statistical
procedures that developed for many-to-one comparisons on survival data have been less
discussed in the literature [7]. Chakraborti and Desu proposed a class of linear rank tests
for comparing several treatments with a control when data are subject to different censoring
patterns [8,9]. Herberich and Hothorn described a many-to-one comparisons procedure in
the frailty Cox model, allowing clustered survival data of several experimental treatments
to be compared—overall and pairwise—with a control with adjustment for covariates [7].
Wu proposed a multiple comparison procedure for many-to-one treatment mean lifetimes
with the control for exponential distributions under heteroscedasticity [10]. Later, Wu
extended the procedure to doubly censored samples [11].

It is indicated that most of the procedures proposed for many-to-one comparisons
are for inferential families containing hypotheses that are all either one-sided or two-
sided [12]. However, when researchers have prior information that some of the treatments
are better than the placebo while having no prior information for other treatments, an
inferential family consisting of a mixture of one-sided and two-sided hypotheses may be
desirable. This problem was discussed by Cheung [13] and Kwong [14]. They proposed
a class of one-stage or two-stage procedures for many-to-one comparisons under the
assumption of normality and unknown equal variances in direction-mixed families. After
that, Chauhana proposed a procedure for this problem under the assumption of normality
and unknown unequal variances [12]. Further, Chauhana proposed a procedure for many-
to-one comparisons of the location parameters for exponential distributions in direction-
mixed families [15].

In recent years, many-to-one comparisons have been discussed in a variety of inno-
vative applications. Gao developed a response-adaptive treatment-allocation procedure
to compare efficacy between two treatments in trials with recurrent event data, which
was shown to be superior to balanced treatment allocation [16]. Further, the procedure
was improved for both pairwise comparisons and many-to-one comparisons [17]. As
mentioned previously, many-to-one comparisons are often considered in dose response
studies, especially in the early drug development process, where different dosage levels
need to be compared with a control simultaneously. Liu proposed a method to construct
simultaneous confidence lower bounds for the differences between the mean response
of any active dose level and that of the control to identify the minimum effective dose,
under a monotonicity assumption of dose response [18]. This method was shown to be
more powerful than Dunnett’s procedure, since the preliminary assumption ruled out the
possibility of data deviation from the monotonicity. Yang proposed a procedure to construct
asymptotic simultaneous confidence intervals for many-to-one comparisons of proportional
differences on correlated paired data, which could be applied for data collected from paired
organs of patients [19]. Maharjan proposed a new multiple comparison procedure to study
the significant dose–response association with skew-normal response [20].

Missing observations is a problem which often appears in scientific research. In these
studies, variables representing the effects of treatments or control might be missing due to
multiple reasons, e.g., sample loss, instrument failure, subject dropouts, etc. The missing
values lead to less efficient estimates because of the reduced sample size. In addition,
standard complete-data methods usually cannot be directly used to analyze the incomplete
data [21]. Naive case deletion handling causes information loss. It was pointed out that
discarding incomplete cases and ignoring possible systematic differences between the
complete cases and the incomplete cases could lead to underestimation of uncertainty in
inferences [21–23]. The missing observations are problematic to the Dunnett’s procedure
likewise. Firstly, in practice, many researchers are even unaware of the case deletion
handling in Dunnett’s procedure because major statistical software packages automatically
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omit missing values in default set. Secondly, researchers usually adopt either the single
imputation or the multiple imputation techniques, such as the group arithmetic mean or
the predicted value from a regression with associated variables, to impute the missing
data, and then conduct regular Dunnett’s procedure. There are obvious disadvantages
of the single imputation method, arising from the fact that the one imputed value cannot
itself represent any uncertainty, the actual confidence coverage using single imputation
might be less than the nominal coverage, and the rejection rate for a true null hypothesis
might be higher than nominal [24]. For Dunnett’s procedure with the multiple imputation
technique, a major challenge comes from combining the confidence intervals obtained
from each imputation to produce a unique confidence interval. In practice, a unique
confidence interval is much easier for making statistical inference and decision. Currently,
the standard approach for combining univariate or multivariate estimations from multiple
imputed datasets, i.e., Rubin’s repeated-imputation inferences [21], only gives combined
point estimates for multiple comparisons, along with unadjusted confidence intervals,
leading to the inflation of family-wise error rate (FWER) for many-to-one comparisons.
A new procedure is needed to solve this challenge, giving a unique confidence interval
that accounts for the multiplicity and can, thereby, control the FWER at a prespecified
confidence level. In addition, rather than constructing simultaneous confidence intervals,
researchers may consider some basic FWER control approaches on results of t tests for
each comparison based on multiple imputed datasets, e.g., Bonferroni adjustment [25] and
Step-down Bonferroni adjustment (Holm’s procedure) [26]. However, these approaches are
often used as the last resort for multiple comparisons, as they may yield overly conservative
adjustments in the case of high dependence among comparisons or when there are many
comparisons to perform [5,27,28].

The purpose of this article is to advocate a new procedure to compare group means
of several treatments with a control, using multiple imputation. Our work starts with
notations of the problem in Section 2 and a brief introduction to Dunnett’s Procedure in
Section 3. In Section 4, the improved Dunnett’s procedure to make simultaneous statistical
inferences for comparing means of several treatments with a control group based on
multiple imputation is proposed, to fill the aforementioned research gap. In Section 5, we
discuss the statistical properties of the proposed procedure by performing two simulation
studies, comparing its coverage, average length of the confidence intervals, and two types
of error with those from their methodological counterparts; impact on performance by
the difference imputation methods is also studied. In Section 6, an application using the
proposed procedure is illustrated with a real-data example. Sections 7 and 8 conclude this
article with brief discussions.

2. Notations

Denote the number of observations in the control group by N0 and the numbers
of observations in k treatment groups by N1, N2, · · · , Nk. Denote these observations by
{(Xij, rij) : i = 0, 1, 2, · · · , k; j = 1, 2, · · · , Ni}, where rij = 1 indicates Xij is observable;
otherwise, it is missing. Assume that all Xij are independent and normally distributed
with variances σ2

i (i = 0, 1, 2, · · · , k) and means µi (i = 0, 1, 2, · · · , k). The research aim
is to obtain a unique confidence interval for the test of many-to-one comparisons µi − µ0,
(i = 1, 2, · · · , k) simultaneously, adjusting for multiplicity. The joint confidence coefficient,
i.e., the probability P (0 < P < 1) that all k confidence intervals will contain the correspond-
ing µi − µ0 is equal to value 1− α, where α is a preassigned significance level to control
FWER of k comparisons. To put this in another way, the problem is to test simultaneous
null hypotheses Hi0 : µi − µ0 = 0 vs. HiA : µi − µ0 6= 0, i = 1, 2, · · · , k.

3. Brief Review of Dunnett’s Test

If all observations are completely observed, that is, rij = 1 (i = 0, 1, 2, · · · , k;
j = 1, 2, · · · , Ni), then the classic Dunnett’s procedure [1], also called Dunnett’s multi-
ple comparison, can be used for this many-to-one comparison. A preliminary assumption
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of Dunnett’s procedure is that all Xij share a common variance, that is, σ2
i = σ2 (i =

0, 1, 2, · · · , k). Denote the observed group means by Xi = ∑Ni
j=i Xij/Ni (i = 0, 1, 2, · · · , k).

Therefore, s2 = ∑k
i=0 ∑Ni

j=1

(
Xij − Xi

)2/n is an available estimate of σ2, which is based on n

degrees of freedom, where n =
(

∑k
i=0 Ni

)
− (k + 1). Dunnett extended the two-sample t

test assuming equal variances to a general case and gave the solution. Let

zi =
(Xi − X0)− (µi − µ0)√

1
Ni

+ 1
N0

, (1)

and ti =
zi
s , i = 1, 2, · · · , k; the lower bounds of the confidence limits for k comparisons

µi − µ0 are given by

Xi − X0 ± sd
′
i

√
1
Ni

+
1

N0
, (i = 1, 2, · · · , k), (2)

where d′is are constants satisfying Pr(t1 < d′1, t2 < d′2, · · · , tk < d′k) = P. Similarly, the
upper bounds of the confidence limits are given by

Xi − X0 + sd
′
i

√
1
Ni

+
1

N0
, (i = 1, 2, · · · , k). (3)

The two-sided confidence limits for k comparisons µi − µ0 are given by

Xi − X0 ± sd
′′
i

√
1
Ni

+
1

N0
, (i = 1, 2, · · · , k), (4)

where the constants d
′′
i s satisfy Pr(|t1| < d

′′
1 , |t2| < d

′′
2 , · · · , |tk| < d

′′
k ) = P. To find the

constants d
′
i and d

′′
i , Dunnett took the correlations between the test statistics into account

by using a multivariate t-distribution. The joint distribution of the tis is a multivariate
t-distribution with means 0 and correlation matrix (ρij)k×k, where

ρij =
1√(

N0
Ni

+ 1
)(

N0
Nj

+ 1
) , (i, j,= 1, 2, · · · , k).

4. Improved Dunnett’s Procedure for Many-to-One Comparisons with Missing Data

In this section, we introduce an improved Dunnett’s procedure that can be applied for
the scenario with missing observations in Xij. We first assume the missing data mechanism
is missing at random (MAR), as defined by Rubin [29]: missing data values carry no
information about probabilities of missingness and depend on the observed values. Without
loss of generality, we do not make any assumption of equal variance among groups, that
is, Xijs are independent and normally distributed with variance σ2

i (i = 0, 1, 2, · · · , k) and
means µi (i = 0, 1, 2, · · · , k).

Let Q = (µ1 − µ0, µ2 − µ0, · · · , µk − µ0)
T , a k-dimensional row vector, be the quantity

of interest. Assume that, with complete data, inference for Q would be based on the
statement that (Q − Q̂) ∼ N(0, U), where Q̂ is the estimate of Q and N(0, U) is the k-
variate normal distribution with mean 0 and variance U. Based on the theory of normal
distribution, the estimate of Q has the form

Q̂ = (µ̂1 − µ̂0, µ̂2 − µ̂0, · · · , µ̂k − µ̂0)
T , (5)
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and its covariance matrix U is as follows:

U =



σ2
0

N0
+

σ2
1

N1

σ2
0

N0
· · · σ2

0
N0

σ2
0

N0

σ2
0

N0
+

σ2
2

N2
· · · σ2

0
N0

...
...

. . .
...

σ2
0

N0

σ2
0

N0
· · · σ2

0
N0

+
σ2

k
Nk


. (6)

Because of the presence of missing observations, Q̂ cannot be obtained directly. Hence,
we impute the incomplete dataset m times by replacing the missing observations with
multiple plausible values to create m imputed complete datasets. The following three
imputation methods can be used for one-way data with a simple monotonic missing
data pattern.

(1) Regression method, in which each missing value is replaced by a predicted value
with simulated normal deviation from the regression model [21];

(2) Predictive mean matching method, which imputes a value randomly from a set of
observed values whose predicted values are closest to the predicted value for the missing
value from the simulated regression model [30,31];

(3) Propensity-score method, in which an approximate Bayesian bootstrap imputa-
tion [21] is applied to observation groups divided by propensity scores, estimating the
probability that the observations are missing [32,33].

Denote the observed values and the replacement of missing values in the yth imputed
complete dataset by Xyij, (y = 1, 2, · · · , m; i = 0, 1, 2, · · · , k; j = 1, 2, · · · , Ni). We can
calculate the mean and standard deviation of each group based on the yth complete
dataset as Xyi = ∑Ni

j=1 Xyij/Ni and s2
yi =

1
Ni−1 ∑Ni

j=1(Xyij − Xyi)
2. Then, we obtain a set of

estimated parameters{
µ̂y0, µ̂y1, · · · , µ̂yk; σ̂y0, σ̂y1, · · · , σ̂yk

}
, (y = 1, 2, · · · , m) (7)

where µ̂yi = Xyi, σ̂yi = s2
yi, i = 0, 1, 2, · · · , k, y = 1, 2, · · · , m. Putting these estimates

into Formulas (5) and (6), we obtain a set Sm which comprises m draws of estimates of Q,
Q̂y(y = 1, 2, · · · , m), and m draws of estimates of U, Ûy(y = 1, 2, · · · , m), from m imputed
complete datasets i.e., Sm = {Q̂y, Ûy : y = 1, 2, · · · , m}.

Let Qm = ∑m
y=1 Q̂y/m be the average of the m estimates from imputed complete

datasets, Um = ∑m
y=1 Ûy/m be the average of the m variances from imputed complete

datasets, and Bm = 1
m−1 ∑m

y=1(Q̂y −Qm)
T(Q̂y −Qm) be the variance between (among) the

m estimates from imputed complete datasets. Then, the total variance of (Q− Q̂) can be
denoted by Tm = Um + (1 + m−1)Bm.

Based on Rubin’s theory, the conditional distribution of Q given Sm can be expressed
as a multivariate t distribution approximation as follows:

(Q|Sm) ∼ tv(Qm, Tm), (8)

where the degree of freedom of the t distribution is v = (m − 1)(1 + r−1
m )2, in which

rm = (1 + m−1) Trace(BmU−1
m )/k. The ratio rm is called the relative increase in variance

due to nonresponse. Then, we construct the simultaneous unique confidence interval for
this many-to-one comparisons problem as follows.

Denote the mean of multivariate t distribution in (8) by Qm = (q1, q2, · · · , qk)
T , and its

covariance matrix by Tm = (a2
e f )k×k, (e = 1, 2, · · · , k, f = 1, 2, · · · , k). To construct the con-

fidence intervals, we need a t statistic to standardize the multivariate t distribution [34]. Let

ti =
(µi − µ0)− qi

aii
, (i = 1, 2, · · · , k), (9)
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then, we have t = (t1, t2, · · · , tk)
T , which is based on the statement t ∼ tv(0, Rm), where

Rm is a matrix, i.e.,
Rm = Inv{Diag(Tm)} Tm Inv{Diag(Tm)}. (10)

Denote the probability density function of the standardized t distribution by t(x) =
t(x1, x2, · · · , xk). The lower confidence limits for k comparisons µi − µ0 are given by

qi − g
′
iaii, (i = 1, 2, · · · , k). (11)

where the constants g
′
is satisfy

Pr
(

t1 < g
′
1, t2 < g

′
2, · · · , tk < g

′
k

)
=
∫ g

′
1

−∞
· · ·

∫ g
′
k

−∞
t(x1, x2, · · · , xk)dx1 · · ·dxk = P, (12)

where the probability P equals 1− α and α is the significance level to control FWER of all
k comparisons.

Similarly, the upper confidence limits are given by

qi + g
′
iaii, (i = 1, 2, · · · , k). (13)

The two-sided confidence limits for k comparisons µi − µ0 are given by

qi ± g
′′
i aii, i = 1, 2, · · · , k, (14)

where the constants g
′′
i s satisfy

Pr
(
|t1| < g

′′
1 , · · · , |tk| < g

′′
k

)
=
∫ g

′′
1

−g′′1
· · ·

∫ g
′′
k

−g′′k
t(x1, x2, · · · , xk)dx1 · · ·dxk = P (15)

In our work, the constants g
′
i and g

′′
i are calculated as the equicoordinate quantiles

of the multivariate t distribution with R package ‘mvtnorm’ [35], using a stochastic root-
finding algorithm [36].

Apparently, the proposed method above produces the same point estimates, but
with unique and adjusted confidence interval, compared to Rubin’s repeated-imputation
inferences by pooling estimates of group differences from k two-sample t tests between
each treatment and the control. In a special case of k = 1, that is, there is only one
treatment group, and therefore there is only one comparison, the multivariate t distribution
in Equation (8) reduces to a univariate t distribution with the same degrees of freedom.
In this case, the point estimate and its confidence intervals from the proposed procedure
are exactly the same with Rubin’s repeated-imputation inferences by pooling estimates of
group difference from a single two-sample t test between the treatment and the control.

The proposed procedure is started with the assumption of heterogeneity of variance.
It can be also adapted to the assumption of homogeneity of variance by replacing the form
of U in Equation (6) with the following:

U = σ2



1
N0

+ 1
N1

1
N0

· · · 1
N0

1
N0

1
N0

+ 1
N2
· · · 1

N0

...
...

. . .
...

1
N0

1
N0

· · · 1
N0

+ 1
Nk

. (16)

When estimating U with the form in Equation (16), we replace the aforementioned
s2

yi with the mean squared error from One-way Analysis of Variance based on each of the

completed datasets, as an estimate of the common variance σ2.
A summary of the proposed procedure is presented in Algorithm 1.
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Algorithm 1 Main algorithm
Input: Xij with missing observations.

1: Impute the missing observations m times with multiple plausible values and obtain m
imputed complete datasets;

2: Select the form of U in Equation (6) or Equation (16), according to the result of homo-
geneity of variance test or prior knowledge on data population;

3: Obtain a set Sm which contains m draws of estimates of Q and U from m imputed
complete datasets in Step 1;

4: Pool the estimates of Q and U, calculate the average Qm as the mean, the total vari-
ance Tm as the variance, and the degrees of freedom v for the reference conditional
distribution (Q|Sm) ∼ tv(Qm, Tm);

5: Obtain the point estimates of Q from Qm and build one- or two-sided confidence
intervals based on Equation (11), Equation (13), or Equation (14).

Output: Point estimates and pooled confidence intervals for comparisons µi − µ0.

5. Simulation Study
5.1. Simulation I

The first simulation study investigated the trends of changes in accuracy and precision
of estimates due to many-to-one adjustment and increasing missing rate. We calculated
coverage and average length of the confidence intervals given by the proposed procedure
and compared them with existing statistical methods correspondingly. The following
Table 1 includes the statistical methods used in the first simulation study. In this study, the
performance of three imputation methods, described in Section 4, are compared in one-way
data simulations with a simple monotonic missing data pattern.

Table 1. Statistical methods used in the first simulation study.

Multiple Comparison Adjustment

None Many-to-One

Complete data Two-sample t test (equal variances) Dunnett’s Procedure

Incomplete data

First perform multiple imputation on
the incomplete data, then pool the
two-sample t test (equal variances) re-
sults using Rubin’s rule

First perform multiple imputation on
the incomplete data, then use the pro-
posed procedure (equal variances as-
sumption) to produce simultaneous
statistical inferences based on multi-
ple imputed datasets

We let k = 2, that is, there were two treatment groups and one control group, and,
therefore, there were two comparisons against the control to perform. We denoted the
name of the control group by T0 and the names of treatment groups by T1 and T2. The
responses to be compared were normally distributed independently in two scenarios: in
the first scenario, µ(0) = 0, µ(1) = 0, µ(2) = 0, and common variance σ2 = 9; in the second
scenario, µ(0) = 0, µ(1) = 1.5, µ(2) = 2, and common variance σ2 = 9. The sample sizes
in the three treatment groups were N0 = 50, N1 = 50, N2 = 50. We first created an original
complete dataset based on the above setup. Then, the missing observations were generated
using an MAR mechanism at missing rate 10%, 20%, 30%, and 40%. Each of the incomplete
datasets was imputed m = 40 times from three aforementioned imputation methods to
create the imputed complete datasets. The number of times m was set to 40 to ensure
the relative efficiency (RE) in units of variance was always higher than 99% of the fully
efficient imputation using an infinite imputation time. RE is calculated with the following
formula [21]:

RE ≈
(

1 +
missing rate

m

)−1
(17)
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The two-sided 95% confidence intervals were calculated using appropriate methods in
Table 1 based on these datasets.

5.1.1. Coverage of Confidence Interval

The coverage of the confidence interval is calculated as the proportion of times that
the obtained confidence interval contains the difference of group means based on the
true parameters [37]. In addition to the coverage of the interval for T1 vs. T0 and T2
vs. T0, we also calculated the joint coverage ofthe two comparisons, which refers to the
proportion of times that the two confidence intervals contain corresponding true differences
simultaneously. The results based on 10,000 independent simulations are summarized
in Table 2.

Table 2. Coverage (%) of 95% CIs varying with missing rate.

None Adjustment Many-to-One Adjustment

MR T1 vs. T0 T2 vs. T0 Joint T1 vs. T0 T2 vs. T0 Joint

Scenario I: µ(0) = 0, µ(1) = 0, µ(2) = 0

0% 94.72 94.73 90.50 97.48 97.06 94.93
Imputation using linear regression

10% 94.78 94.57 90.30 96.95 97.06 94.47
20% 94.52 94.53 90.07 97.14 96.94 94.48
30% 94.29 94.39 89.67 96.81 97.13 94.33
40% 94.52 94.51 89.91 96.97 97.04 94.39

Imputation using predictive mean matching method
10% 93.19 92.64 87.27 95.88 95.74 92.32
20% 90.14 89.15 81.55 93.85 93.02 88.03
30% 86.30 83.46 73.34 90.68 88.60 81.27
40% 81.66 77.66 65.13 86.44 83.29 73.41

Imputation using propensity-score method
10% 95.13 94.69 90.81 97.18 97.07 94.66
20% 95.52 94.76 91.13 97.68 97.20 95.21
30% 96.10 93.85 90.66 98.05 96.46 94.79
40% 96.00 93.62 90.30 97.97 96.28 94.61

Scenario II: µ(0) = 0, µ(1) = 1.5, µ(2) = 2

0% 95.36 94.98 91.17 97.53 97.33 95.27
Imputation using linear regression

10% 95.13 94.46 90.44 97.42 97.11 94.97
20% 95.27 94.73 90.90 97.37 96.94 94.80
30% 95.15 94.65 90.65 97.38 97.03 94.78
40% 95.01 94.77 90.46 97.20 96.93 94.50

Imputation using predictive mean matching method
10% 93.71 92.90 87.81 96.52 95.85 92.99
20% 90.75 89.34 82.11 94.39 93.34 88.72
30% 87.02 84.55 74.83 91.04 89.12 82.06
40% 82.19 77.40 65.27 86.86 83.06 73.49

Imputation using propensity-score method
10% 95.44 94.63 90.86 97.66 97.24 95.24
20% 95.78 94.70 91.27 97.72 97.20 95.32
30% 96.20 93.53 90.41 97.95 96.29 94.66
40% 95.90 93.64 90.19 97.78 96.47 94.51

NOTE: MR, missing rate; Statistical methods for complete data are used when missing rate = 0; otherwise, multiple
imputation methods are used. See Table 1 for details.

From the results in Table 2, at first glance the predictive mean matching method has
poor performance in covering true difference, suggesting that it is not an appropriate
method for one-way data imputation. From its algorithm, we know that, as the missing rate
increases, more missing values are randomly replaced with identical observed values in the
same treatment groups, leading to underestimation of uncertainty and biased estimations.
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Hence, the results from the predictive mean matching method are not provided and
interpreted hereinafter. Additionally, the predictive mean matching method was not
applied in the later work in this article.

The portion of none adjustment in Table 2 indicates that, although the coverages of
single comparison are very close to their nominal coverage 1− α (95%), the joint coverages
shrink to around 90%. This suggests the necessity of adjustment when performing multiple
comparisons. It also implies the rationale of an adjustment for multiple comparisons, which
is to expand the coverage of separate confidence intervals more conservatively than without
adjustment, so that the joint coverage can reach a prespecified confidence coefficient. The
portion of many-to-one adjustment indicates that the joint coverage from the proposed
procedure on incomplete datasets is very close to the overall nominal coverage 1− α (95%)
from its complete-data counterpart, Dunnett’s procedure. These numbers suggest that the
proposed procedure produces separate confidence intervals for each of the comparisons,
which generally well covers the true differences simultaneously, at a prespecified joint
confidence coefficient. In addition, this good property is not shown to be affected by the
increasing missing rate.

5.1.2. Average Length of Confidence Interval

Based on methods without adjustment and with many-to-one adjustment, we calcu-
lated the average length of the 95% confidence interval of group difference at each missing
rate level. The average lengths of the confidence intervals of 10,000 simulations in Simula-
tion I are tabulated in Table 3. The average lengths from methods for incomplete datasets
are compared with their complete-data counterparts, and the expansion rates are also given
in the parentheses.

Table 3. Average lengths of 95% CIs varying with missing rate.

None Many-to-One

MR T1 vs. T0 ER (%) T2 vs. T0 ER (%) T1 vs. T0 ER (%) T2 vs. T0 ER (%)

Scenario I: µ(0) = 0, µ(1) = 0, µ(2) = 0

0% 2.374 — 2.374 — 2.675 — 2.675 —
Imputation using linear regression

10% 2.458 3.54 2.48 4.47 2.777 3.81 2.803 4.79
20% 2.591 9.14 2.649 11.58 2.928 9.46 2.992 11.85
30% 2.751 15.88 2.866 20.72 3.107 16.15 3.234 20.90
40% 2.95 24.26 3.166 33.36 3.329 24.45 3.564 33.23

Imputation using propensity-score method
10% 2.446 3.03 2.47 4.04 2.763 3.29 2.793 4.41
20% 2.557 7.71 2.656 11.88 2.887 7.93 3.003 12.26
30% 2.669 12.43 2.962 24.77 3.005 12.34 3.347 25.12
40% 2.799 17.90 3.18 33.95 3.148 17.68 3.587 34.09

Scenario II: µ(0) = 0, µ(1) = 1.5, µ(2) = 2

0% 2.374 — 2.375 — 2.675 — 2.675 —
Imputation using linear regression

10% 2.459 3.58 2.484 4.59 2.78 3.93 2.805 4.86
20% 2.595 9.31 2.652 11.66 2.932 9.61 2.994 11.93
30% 2.757 16.13 2.872 20.93 3.114 16.41 3.239 21.08
40% 2.954 24.43 3.166 33.31 3.333 24.60 3.563 33.20

Imputation using propensity-score method
10% 2.454 3.37 2.479 4.38 2.771 3.59 2.8 4.67
20% 2.572 8.34 2.671 12.46 2.901 8.45 3.017 12.79
30% 2.69 13.31 2.974 25.22 3.023 13.01 3.363 25.72
40% 2.822 18.87 3.196 34.57 3.169 18.47 3.608 34.88

NOTE: MR, missing rate; ER, expansion rate.
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According to the results in Table 3, when there is no adjustment for multiple com-
parisons, the confidence interval expands as the missing rate increases, indicating the
variability due to uncertainty by imputing values grows. This association also holds when
performing an adjustment for many-to-one comparisons using the proposed procedure.
The expansion rates at each missing rate via the same imputation method for each of the
specific comparisons between no adjustment and many-to-one adjustment are very close.
This indicates that, as the missing rate increases, the interval estimations from the proposed
procedure preserve comparable precision as Rubin’s repeated-imputation inferences, as
they have close expansion rates of interval length. It is worth noting that the propensity-
score method produces longer confidence intervals than the regression method, suggesting
that the propensity-score method is a relatively more conservative method for multiple
imputation when performing many-to-one comparisons.

5.2. Simulation II

The second simulation study compared the proposed procedure with case deletion
method, single imputation method, Bonferroni adjustment, and Holm’s procedure on
incomplete datasets, specifically, from the type-I error and type-II error perspectives. The
five methods are detailed as follows:

(1) Naive deletion method: Delete the observations with missing data, and then
perform Dunnett’s test based on the data remaining;

(2) Single imputation method: First, impute missing observations with the mean
of observed values in the same group; then, perform Dunnett’s procedure on the im-
puted dataset;

(3) Multiple imputation with Bonferroni adjustment: First, perform multiple imputa-
tion on the incomplete data via regression method or propensity-score method; then, obtain
the unadjusted p-values from two-sample t tests for k comparisons based on multiple
imputed datasets; finally, apply a Bonferroni adjustment to obtain the adjusted p-values
for inferences;

(4) Multiple imputation with Holm’s procedure: First, perform multiple imputation
on the incomplete data data via regression method or propensity-score method; then,
obtain the unadjusted p-values from two-sample t tests for k comparisons based on mul-
tiple imputed datasets; finally, apply Holm’s procedure to obtain the adjusted p-values
for inferences;

(5) Multiple imputation with the proposed procedure: First, perform multiple imputa-
tion on the incomplete data via regression method or propensity-score method; then, use
the proposed procedure (equal variances assumption) to produce simultaneous statistical
inferences based on multiple imputed datasets.

The data generation process and multiple imputation process for (3), (4) and (5) were
similar to the first simulation study, except that the missing rate was fixed at 30% and
sample size in each group was varied, i.e., N0 = N1 = N2, Ni = 80 or 120, i = 0, 1, 2. FWER
in the first scenario and power in the second scenario from 15,000 simulations at group
sample size 80 and 120 are tabulated in Table 4. The FWER is calculated as the proportion
of times that there is at least one false rejection. The power is calculated as the proportion
of times in which a separate null hypothesis of no difference is rejected and in which both
null hypotheses of no difference are simultaneously rejected [37].

Table 4 indicates that FWER by single imputation method is much large than the
pre-specified α, which implies that the method is much more prone to detect significant
results incorrectly. The poor performance suggest that single imputation method is not
an appropriate solution for this problem at all. Hence, the high test power of the single
imputation method is not worth discussing.

In Scenario I, the case deletion method and multiple imputation via propensity-score
method with three adjustment approaches (Bonferroni adjustment, Holm’s procedure,
and the proposed procedure) can control the FWER well under nominal α (5%), while the
latter generates more conservative interval estimations. Multiple imputation via regression
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method with three adjustment approaches provides interval estimations which are neither
conservative nor overconfident, as the empirical FWER is very close to the nominal level,
while FWER from adjustment by the new procedure is the closest.

In Scenario II, the multiple imputation via regression method with three adjustment
approaches has similar test power with the case deletion method, while the multiple impu-
tation via propensity-score method performs a little worse than case deletion and multiple
imputation via propensity-score method. Among the three adjustment approaches for
multiple imputation, Holm’s procedure has a sightly advantage in test power than the other
two. One possible reason is that k in this simulation study is too small to demonstrate the
new procedure’s superiority in accounting for correlations between (among) comparisons.
Envisage a scenario when it is desired to strictly control the FWER under a pre-specified
level, the proposed procedure via propensity-score method for multiple imputation can be
considered; however, the interval estimations might be relatively conservative. Envisage
another scenario when it is desired to simultaneously control FWER for those compar-
isons without difference and preserve test power for other comparisons with difference
in a many-to-one comparison, especially when the number of comparisons k is large, the
proposed procedure via regression method for multiple imputation is recommended.

Table 4. Rejection rates of null hypothesis using different correction or adjustment methods.

Multiple (PS/RE)

Naive Single Bonferroni Holm’s Proposed

N = 80 Scenario I: µ(0) = 0, µ(1) = 0, µ(2) = 0

Joint Test (Family-wise error rate)
4.83 20.88 3.71/4.83 3.71/4.83 4.28/5.06

Scenario II: µ(0) = 0, µ(1) = 1.5, µ(2) = 2

T1 vs. T0 (Power to reject H01: µ(0) = µ(1))
69.15 87.28 63.49/67.62 72.22/76.04 65.46/69.2

T2 vs. T0 (Power to reject H02: µ(0) = µ(2))
89.5 97.35 83.39/88.69 85.92/90.51 84.3/89.55
Joint Test (Power to reject H0: µ(0) = µ(1), µ(0) = µ(2))
65.29 85.87 58.17/63.41 69.42/73.65 60.42/65.21

N = 120 Scenario I: µ(0) = 0, µ(1) = 0, µ(2) = 0

Joint Test (Family-wise error rate)
4.69 20.87 4.48/4.79 4.48/4.79 4.73/4.94

Scenario II: µ(0) = 0, µ(1) = 1.5, µ(2) = 2

T1 vs. T0 (Power to reject H01: µ(0) = µ(1))
86.03 95.47 84.05/85.63 89.22/90.73 84.53/86.01

T2 vs. T0 (Power to reject H02: µ(0) = µ(2))
97.62 99.61 93.54/97.43 95.31/98.07 93.71/97.51
Joint Test (Power to reject H0: µ(0) = µ(1), µ(0) = µ(2))
84.89 95.2 80.09/84.34 87.02/90.09 80.81/84.82

NOTE: Naive, the method with naive deletion of missing observations; Single, the proposed method with the
single imputation using observed mean value; Multiple, Multiple imputation method via Propensity-score method
(PS) or Regression method (RE); Bonferroni, Bonferroni adjustment; Holm’s, Holm’s procedure.

6. Application

As an example, we considered the data from a randomized, double-blind, placebo-
controlled Phase II dose-finding study described by Bretz et al. [38]. In this study, we
included 100 patients who were equally allocated to either placebo (dose = 0) or one of four
active dosages (dose = 0.05, 0.2, 0.6 and 1), and their responses to the drug were measured.
The actual dosages in the original study design were scaled to lie within the [0, 1] interval
to maintain confidentiality. The response variable was tested to be normally distributed,
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and larger response values indicated better outcome. In such a dose finding study, patients
who receive placebo or lower dosages might drop out early due to poor efficacy, while
patients who receive higher dosages might also drop out early due to adverse drug reaction.
These patients did not show up again, causing missing observations in the response. In this
case, the data are missing at random since there is a systematic relationship between the
propensity of missing values and the treatment allocations. The total missing rate in data is
approximately 30%. The missing values are identified with NA in the first section of Table 5.
We imputed the incomplete dataset twenty times with the propensity-score method. We
obtained 20 imputed complete datasets, and the plausible values in parentheses replacing
the missing values are different each time; the first three imputed datasets are tabulated in
Table 5.

Table 5. The original and imputed complete dose response data.

Data Dose Response

Original 0.00 NA, 0.14, −0.02, NA, NA, 0.36, 0.31, NA, 0.62, NA, −0.31,
−0.45, −0.20, NA, NA, NA, −0.16, NA, 0.81, NA

0.05 NA, NA, −0.07, 0.58, 0.96, NA, −0.00, 0.52, −0.36, NA, NA,
0.44, −0.02, 0.37, 1.53, NA, 0.37, 1.01, 0.28, 0.99

0.20 1.20, 1.57, −0.16, 0.21, 1.85, 1.00, 2.45, −0.52, 0.05, 0.63, 0.53,
0.42, 1.23, 1.87, 1.06, 0.35, NA, 0.48, 0.57, 1.01

0.60 1.17, NA, 1.78, 0.31, 0.06, 0.90, 0.74, 0.23, 1.39, 0.91,
NA, NA, NA, NA, 1.60, 1.58, NA, NA, 2.16, 0.69

1.00 2.25, NA, 1.25, 1.86, NA, 1.20, 1.97, 0.63, NA, NA, 0.89,
0.56, 0.73, NA, 0.49, NA, NA, NA, 1.13, 0.95

First imputed 0.00 (−0.45), 0.14, −0.02, (−0.45), (−0.45), 0.36, 0.31, (0.31), 0.62, (−0.45),
−0.31, −0.45, −0.20, (−0.31), (−0.31), (0.36), −0.16, (0.36), 0.81, (0.62)

0.05 (0.28), (0.44), −0.07, 0.58, 0.96, (1.01), −0.00, 0.52, −0.36, (1.01),
(−0.02), 0.44, −0.02, 0.37, 1.53, (−0.02), 0.37, 1.01, 0.28, 0.99

0.20 1.20, 1.57, −0.16, 0.21, 1.85, 1.00, 2.45, −0.52, 0.05, 0.63,
0.53, 0.42, 1.23, 1.87, 1.06, 0.35, (0.05), 0.48, 0.57, 1.01

0.60 1.17, (1.17), 1.78, 0.31, 0.06, 0.90, 0.74, 0.23, 1.39, 0.91,
(0.91), (1.17), (0.90), (1.17), 1.60, 1.58, (1.58), (1.78), 2.16, 0.69

1.00 2.25, (1.97), 1.25, 1.86, (0.49), 1.20, 1.97, 0.63, (1.20), (1.25),
0.89, 0.56, 0.73, (1.97), 0.49, (2.25), (0.49), (1.13), 1.13, 0.95

Second imputed 0.00 (−0.20), 0.14, −0.02, (0.81), (0.81), 0.36, 0.31, (−0.31), 0.62, (−0.31),
−0.31, −0.45, −0.20, (−0.31), (0.81), (−0.16), −0.16, (0.62), 0.81, (0.81)

0.05 (0.96), (−0.36), −0.07, 0.58, 0.96, (1.53), −0.00, 0.52, −0.36, (0.28),
(0.96), 0.44, −0.02, 0.37, 1.53, (−0.02), 0.37, 1.01, 0.28, 0.99

0.20 1.20, 1.57, −0.16, 0.21, 1.85, 1.00, 2.45, −0.52, 0.05, 0.63,
0.53, 0.42, 1.23, 1.87, 1.06, 0.35, (0.63), 0.48, 0.57, 1.01

0.60 1.17, (2.16), 1.78, 0.31, 0.06, 0.90, 0.74, 0.23, 1.39, 0.91,
(1.39), (1.58), (1.39), (0.23), 1.60, 1.58, (0.90), (0.69), 2.16, 0.69

1.00 2.25, (0.89), 1.25, 1.86, (0.73), 1.20, 1.97, 0.63, (1.86), (1.25),
0.89, 0.56, 0.73, (0.73), 0.49, (1.25), (0.95), (2.25), 1.13, 0.95

Third imputed 0.00 (0.14), 0.14, −0.02, (0.31), (0.81), 0.36, 0.31, (−0.02), 0.62, (−0.20),
−0.31, −0.45, −0.20, (−0.20), (0.36), (0.14), −0.16, (0.81), 0.81, (−0.20)

0.05 (0.99), (0.96), −0.07, 0.58, 0.96, (0.99), −0.00, 0.52, −0.36, (1.53),
(−0.36), 0.44, −0.02, 0.37, 1.53, (1.01), 0.37, 1.01, 0.28, 0.99

0.20 1.20, 1.57, −0.16, 0.21, 1.85, 1.00, 2.45, −0.52, 0.05, 0.63,
0.53, 0.42, 1.23, 1.87, 1.06, 0.35, (0.42), 0.48, 0.57, 1.01

0.60 1.17, (1.78), 1.78, 0.31, 0.06, 0.90, 0.74, 0.23, 1.39, 0.91,
(0.23), (1.78), (1.78), (1.58), 1.60, 1.58, (1.58), (1.78), 2.16, 0.69

1.00 2.25, (1.86), 1.25, 1.86, (1.25), 1.20, 1.97, 0.63, (1.20), (1.13),
0.89, 0.56, 0.73, (0.49), 0.49, (0.49), (1.20), (1.13), 1.13, 0.95

To test the homogeneity of variance in the underlying distribution, we performed
Levene’s test with squared residuals [39] on the incomplete data. Since the p-value of



Mathematics 2023, 11, 3233 13 of 16

the test is 0.125, the null hypothesis of homogeneity of variance is not rejected under the
significance level of 0.05. Using the proposed procedure under assumption of homogeneity
of variance in Section 3, the point estimates and their 95% two-sided confidence intervals
of this four-to-one comparison of group means were drawn from the 20 imputed complete
datasets, as given in the first section of Table 6. Additionally, the point and interval estima-
tions based on each imputed dataset by the standard Dunnett’s procedure and the pooled
point and interval estimations based on 20 imputed datasets by the proposed procedure
are illustrated in Figure 1. The pooled confidence intervals show that, based upon the
incomplete dataset, an active drug dosage of 0.2, 0.6, or 1 has significantly better response
than placebo. Compared to the proposed procedure, the lengths of confidence intervals by
naive deletion Dunnett’s procedure, presented in the second section of Table 6, are wider,
implying a significant improvement in interval estimations using the proposed method,
while there is not much difference between the point estimates by the two procedures.
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Figure 1. Forest plot showing the point estimates and 95% confidence intervals with the multiple
imputation dataset and the pooled 95% confidence intervals in many-to-one comparisons.

Table 6. Simultaneous statistical inferences of mean differences in dose response.

Methods Dose Comparison Point Estimate of
(µi − µ0)

95% Confidence
Interval

Proposed 0.05 vs. 0 0.374 (−0.181, 0.930)
method 0.20 vs. 0 0.712 (0.222, 1.203)

0.60 vs. 0 0.951 (0.370, 1.532)
1.00 vs. 0 1.060 (0.538, 1.582)

Dunnett’s 0.05 vs. 0 0.362 (−0.270, 0.995)
procedure 0.20 vs. 0 0.722 (0.125, 1.319)
with naive 0.60 vs. 0 0.929 (0.287, 1.572)
case deletion 1.00 vs. 0 1.050 (0.396, 1.704)
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7. Discussion

In this article, we investigated comparing group means of several treatments against
a control group in the presence of missing observations. By associating the group mean
differences with a multivariate normal distributed quantity, we obtained their underly-
ing conditional multivariate t distributions following Rubin’s derivation of the repeated-
imputation inferences, thereby constructing the simultaneous statistical inferences for this
problem. The proposed procedure is shown to possess good frequency properties in sim-
ulations. Specifically, as the missing rate rises higher, the joint coverages of confidence
intervals can archive the nominal coverage generally, and the interval estimations can
preserve comparable precision to Rubin’s repeated-imputation inferences, as they have
close expansion rates of interval length. The proposed procedure with propensity-score
method for imputation is shown to generate more conservative interval estimations and
control the FWER well. The proposed procedure with regression method for imputation
provides confidence intervals which are neither conservative nor overconfident, as the
empirical FWER is very close to the nominal α, while the test power can be persevered well.

The proposed procedure gives inferences both under assumption of homogeneity of
variance and assumption of heterogeneity of variance. Unless the group variances are
extremely different, the inference under assumption of homogeneity is relatively robust
and superior, due to fewer degrees of freedom. Researchers are recommended to choose
the assumption of variance based not only the homogeneity of variance test but also the
features of data population. As Box notes, “To make the preliminary test on variances is
rather like putting to sea in a rowing boat to find out whether conditions are sufficiently
calm for an ocean liner to leave port!” (Box, 1953) [40].

Based on the same t distribution for references in Rubin’s derivation of the repeated-
imputation inferences, the proposed procedure has exactly the same point estimates as
repeated-imputation inferences from two-sample t tests between each treatment with the
control, with adjusted interval estimations only. Therefore, it gives unbiased point estimates
when the data are missing at random [21]. The proposed procedure might be invalid when
the data are not missing at random. Therefore, researchers should scrutinize the reasons
for missing data, to see if the assumption of missing at random holds before using the
proposed procedure.

The proposed procedure does not give any derivation of p-values for testing simul-
taneous null hypotheses. The presentation of multiple comparison inference in terms of
p-values is not recommended by Hsu [41], as the confidence intervals are always more
informative [14]. When Hi0 is rejected, the confidence interval gives additional information
on the magnitude of the difference, which is not conveyed by the associated p-value. When
Hi0 is accepted, the associated p-value cannot differentiate between the possibility that the
difference exists but the sample size is too small to detect the difference, and the possibility
that the difference does not exist. In spite of these, it is often desirable to see the p-value, as
it is more intuitive for inference. The derivation of p-values for the proposed procedure
will be investigated in a future study.

The proposed procedure conducts many-to-one comparisons on the means, which
might be adequate for comparing groups in one-way and approximately balanced designs.
However, in unbalanced designs with more than one effect, the arithmetic mean might
not accurately reflect the reality, and the least squares (LS) mean adjusted for other effects
might be more appropriate [42]. Performing many-to-one comparisons with LS means
from a linear model on multiple imputed datasets based on similar derivation in this article
might be another subject of future research. In a liner model comparing LS means, the
impact from systematic differences between the complete cases and the incomplete cases
might be investigated deeply via simulations introducing other effects, and, thereby, the
superiority of the multiple imputation method against a naive case deletion method might
be significantly demonstrated.
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8. Conclusions

In this paper, we propose an improved Dunnett’s procedure that can construct unique
ensemble confidence interval for comparing group means of several treatments with
a control in the presence of missing observations. This work fills the current research
gap, that is, the lack of a standard approach for combining estimations of confidence
intervals obtained from multiple imputed dataset.The proposed method extends Rubin’s
rule of point estimation to a rule of interval combination.The effectiveness of the proposed
procedure is demonstrated to be good through simulation studies with finite sample
sizes. Compared to other methods, the confidence interval constructed using the proposed
method controls the FWER better.
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