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Abstract: The notion that the occurrence of an event is surprising has been discussed in the literature
without adequate details. By definition, a surprise index is an index by which how surprising an
event is may be determined. Since its inception, this index has been evaluated for univariate discrete
probability models, such as the binomial, negative binomial, and Poisson probability distributions.
In this article, we derive and discuss using numerical studies, in addition to the above-mentioned
probability models, surprise indices for several other univariate discrete probability models, such as
the zero-truncated Poisson, geometric, Hermite, and Skellam distributions, by adopting a established
strategy and using the Mathematica, version 12 software. In addition, we provide symbolical
expressions for the surprise index for several univariate continuous probability models, which
has not been previously discussed. For illustrative purposes, we present some possible real-life
applications of this index and potential challenges to extending the notion of the surprise index to
bivariate and higher dimensions, which might involve ubiquitous normalizing constants.
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1. Introduction

The notion of the surprise index (SI) is not new in the literature, but has not been dis-
cussed thoroughly due to a lack of applicability and complexity in deriving for probability
models that do not conform to well-known generating functions. The scarcity of scholarly
works in this direction is reminiscent of this fact. The earliest reference dates back to 1948,
when [1] asserted that an event with a low probability may be rare but is not surprising.

Interestingly enough, research on this topic is very limited. Some pertinent references
are given as follows: Ref. [2] generalized and derived the SI for the multivariate normal
distribution, but it has a different expression and notion. Ref. [3] derived the SIs for the
binomial and Poisson distributions but without adequate details. Ref. [4] discussed the SI
for the negative binomial distribution. Ref. [5] discussed the role of the SI in the context of
macro-surprises from a monetary economics perspective. From the above-cited references,
one may arrive at the conclusion that finding the SI is difficult to achieve analytically and
subsequently requires the assistance of a powerful and efficient computing environment,
such as Mathematica, which is utilized in this paper to obtain closed-form expressions for
probability distributions in both the discrete domain and in the continuous domain other
than those that have already been discussed.

In this article, we aim to discuss, in adequate details, the computation of SIs for various
discrete probability distributions, including the binomial, negative binomial, and Poisson
distributions (i.e., those that have been at least discussed in the literature), and SIs for
zero-truncated Poisson, geometric, Hermite, and Skellam distributions, which are new
contributions to the current topic. In addition, we also provide an analogous expression
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for deriving the SI for univariate continuous probability models using the definition given
in Equation (19) and defined later. For illustrative purposes, we compute SIs for various
well-known univariate absolutely continuous probability models using Equation (19). It
appears that, in most of the cases, the resulting expression of the SI associated with each of
the discrete probability distributions is available in closed form, involving special functions
and infinite series wherever applicable. Furthermore, we provide some empirical studies
of the SIs corresponding to several discrete probability models. We conjecture that a similar
development can be made in terms of identifying SIs for bivariate and/or multivariate
continuous probability models, which will be the subject matter of a separate article. In
summary, the major contributions of this article on the topic of SIs can be summarized
as follows:

• We revisit the computation of the SIs for the binomial, Poisson, and negative binomial
distributions and provide the correct expression of the SI for the Poisson distribution
using Mathematica.

• Surprise indices are computed for the geometric and negative binomial, zero-truncated
Poisson, and Hermite (for which closed-form expressions involving special functions
and/or infinite series are available) distributions, while for the generalized Poisson
distribution, the associated SI is not available in closed form, and a numerical solution
is to be searched for. All of these derivations are new contributions to this topic.

• In addition, we provide the derivation of SIs for univariate continuous probability models
using an analogous expression based on the geometric mean of a random variable.

• Finally, we conduct empirical studies on SIs for several of the discrete distributions with
varying parameter choices, and several useful observations are derived accordingly.

The remainder of this article is organized in the following manner: In Section 2, we
provide the computational details of deriving the SI for each of the univariate discrete prob-
ability models assumed in this paper with empirical studies on several of such probability
models. In Section 3, we derive the SI for a continuous probability model based on the
definition according to [2] and provide some useful conjectures on the properties of SIs.
Section 4 presents several potential applications of the SI in a practical setting along with
some potential challenges to extending this definition in bivariate and higher domains.
Finally, some concluding remarks are presented in Section 5.

2. Surprise Index Derivation: Preliminaries

We begin this section by providing the definition of SI. According to [1], the SI, Si, is
defined as the comparison of the expected probability and the observed probability, which
has the following form:

Si =
∑ p2

m
pi

, (1)

where pm = P(X = m) and pi represents the probability that an event Ei has actually
occurred. The expression in Equation (1) of the SI is from [3]. This feature can be obtained for
discrete probability distributions in computing their corresponding probability generating
functions, a strategy which is discussed later. Based on a suggestion by an anonymous
reviewer, alternatively, Equation (1) can be rewritten as

Si =
E(pX)

pi
.

Noticeably, this form is also independently obtained in [1].
Next, we revisit the computation of the SIs for the binomial, negative binomial, and

Poisson distributions that have been independently discussed and derived in [3,4]. Proceed-
ing in the same manner, we derive SIs for the zero-truncated Poisson, geometric, Hermite,
and Skellam distributions. The process of obtaining the SI involves the following steps (for
details, see [3]):
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• Step 1: Calculate the generating function of pm, which is of the form ∑
m≥0

pmxm from a

given probability mass function (p.m.f.).
• Step 2: Set x = eiθ , and e−iθ , to obtain the following quantity ∑m≥0 p2

m = ∑m≥0 pme−imθ

pmeimθ , which is the numerator of Equation (1), where i =
√
−1.

• Step 3: Integrate the simplified quantity on the R.H.S. obtained in Step 2, from 0 to 2π.

Then, substitute the value obtained in Step 3 to the numerator of Equation (1). Observe
that, since the rationale behind this strategy of obtaining the SI has already been discussed
in [3], it is not discussed here.

Next, this simple process is carried out below, for each of the discrete probability
distributions selected for this purpose. It is important to note that the goal of the above
steps is to obtain an expression for the sum of p2

m, which involves solving the integral in
step 3. In the next subsection, we begin by revisiting the SI for a binomial distribution
at first.

2.1. Surprise Index for a Binomial Distribution

The binomial distribution is denoted as B(n, p), with n ∈ {0, 1, 2, . . .} being the
number of trials and p ∈ [0, 1] being the probability of success resulting from each trial.
The associated probability mass function (p.m.f.) is

pm =

(
n
m

)
pmqn−m,

where m ∈ {0, 1, 2, . . . , n} is the number of successes, with p + q = 1. The associated
generating function will be

n

∑
m=0

pmxm = (q + px)n.

Then, following steps two and three (given earlier) and simplifying, we obtain

n

∑
m=0

p2
m =

n

∑
m=0

(pm exp(−imθ))(pm exp(imθ))

=
1

2π

∫ 2π

0
(q2 + 2qp cos(θ) + p2)n dθ

= (p− q)2n
2F1

(
1
2

,−n; 1;− 4pq
(p− q)2

)
, on using Mathematica, (2)

where

2F1(a, b; c, d) =
(a)n(b)ndn

n!(c)n
, (3)

is the Gauss hypergeometric function, and (W)n = W(W + 1)(W + 2) . . . (W + n− 1) if
n > 0 and (W)n = 1 if n = 0.

Therefore, the SI for the binomial distribution related to the i-th probability is (on
substituting Equation (2) in the numerator of Equation (1)):

Si =
(p− q)2n

2F1

(
1
2 ,−n; 1;− 4pq

(p−q)2

)
pi

. (4)

For illustrative purposes, we assume some representative values of p and subsequently
compute the associated values of Si for a fixed value of n = 10 and for varying choices m,
p, and q in Equation (3), which are reported in Table 1.



Mathematics 2023, 11, 3234 4 of 16

Table 1. Surprise index values for binomial distribution for various choices of m, p, and q.

n m p q pi Si

10 1 0.01 0.99 0.0914 9.04

10 3 0.01 0.99 0.0001 7387.44

10 5 0.01 0.99 0.00803 34,478,242.41

10 8 0.01 0.99 4.41× 10−15 1.87× 1014

10 10 0.01 0.99 1.00× 10−20 8.26× 1019

10 1 0.25 0.75 0.1877 1.09

10 3 0.25 0.75 0.2503 0.82

10 5 0.25 0.75 0.0584 3.52

10 8 0.25 0.75 0.0004 531.61

10 10 0.25 0.75 0.000001 215,301.13

10 1 0.8 0.2 0.000004 54,639.75

10 3 0.8 0.2 0.0008 284.58

10 5 0.8 0.2 0.0264 8.47

10 8 0.8 0.2 0.30199 0.74

10 10 0.8 0.2 0.1074 2.08

From Table 1, we can observe the following:

• For fixed n, with pi decreasing, the corresponding SI values increase, which is expected.
• For fixed values of p and q, as the number of successes increase and with pi decreasing,

the SI values increase.

2.2. Surprise Index for a Negative Binomial Distribution

The negative binomial distribution is denoted as NB(r, p), with r > 0 as the number
of successes until the experiment is terminated and p ∈ [0, 1] being the probability of
success for each experiment. The associated p.m.f. is

pm =

(
m + r− 1

m

)
prqm,

where m ∈ {0, 1, 2, . . .} is the number of failures. Consequently, the generating function
will be

∑ pmxm =

(
p

1− qx

)r

.

Proceeding as before, we obtain

n

∑
m=0

p2
m =

1
2π

∫ 2π

0

(
p2

(q2 − 2q cos(θ) + 1)

)r

dθ

= p2(q + 1)−2r
2F1

(
1
2

, r; 1;
4q

(q + 1)2

)
, (5)

using Mathematica, where 2F1() is defined in Equation (3).
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Thus, the SI for the negative binomial distribution is, on substituting Equation (5) in
the numerator of Equation (1),

Si =
p2(q + 1)−2r

2F1

(
1
2 , r; 1; 4q

(q+1)2

)
pi

. (6)

Assuming several representative values of p and q, and substituting various values
for rand pi in Equation (6), we find the following values of Si for this distribution, which
are presented in Table 2.

Table 2. Surprise index values for negative binomial distribution for various choices of r, m, and p.

n m p q pi Si

1 9 0.01 0.99 0.0091 0.55

3 7 0.01 0.99 0.00003 5,616,123,374.28

5 5 0.01 0.99 0.00000001 1.15× 1021

8 2 0.01 0.99 3.53× 10−15 2.98× 1039

10 0 0.01 0.99 1.00× 10−20 9.32× 1052

1 9 0.25 0.75 0.0188 7.61

3 7 0.25 0.75 0.0751 185.21

5 5 0.25 0.75 0.0292 88,714.07

8 2 0.25 0.75 0.0003 2.63× 1010

10 0 0.25 0.75 0.000001 1.93× 1015

1 9 0.5 0.5 0.0010 341.33

3 7 0.5 0.5 0.0352 61.81

5 5 0.5 0.5 0.1230 203.05

8 2 0.5 0.5 0.0352 34,684.81

10 0 0.5 0.5 0.0010 17,668,300.52

From Table 2, one may observe the following:

• The SI values are dependent on the magnitude of either or both of p and pi.
• For fixed p, q as pi increases, the SI values decrease for varying r, m.
• For r > m, p < q, with q increasing, the SI value increases.
• For r < m, with p < q, and q decreasing, as m decreases, the SI values increase.

2.3. Surprise Index for a Poisson Distribution

The associated p.m.f. is

pm =
λme−λ

m!
,

where m ∈ {0, 1, 2, . . .} is the number of occurrences and λ ∈ (0, ∞). The associated
generating function is

∑
m≥0

pmxm = e−λeλx.

Proceeding as before,

n

∑
m=0

p2
m =

e−2λ

2π

∫ 2π

0
e2λ cos(θ) dθ

= e−2λ I0(2λ), (7)
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where I0() is the zero-order modified Bessel function of the first kind.
Therefore, the SI for the Poisson distribution on substituting Equation (7) in the

numerator of Equation (1) is

Si =
e−2λ I0(2λ)

pi
. (8)

Substituting various values for λ and m in Equation (8), we find the following values
of Si for this distribution, given in Table 3.

Table 3. Surprise index values for Poisson distribution for various choices of λ.

λ m pi Si

0.5 1 0.3033 1.54

0.5 3 0.0126 36.86

0.5 5 0.0002 2948.77

0.5 8 0.00000006 7,926,282.59

0.5 10 1.63× 10−10 2,853,461,732.66

1 1 0.3679 0.84

1 3 0.0613 5.03

1 5 0.0031 100.63

1 8 9,123,994.08 33,812.86

1 10 0.0000001 3,043,157.28

2.5 1 0.2052 0.89

2.5 3 0.2138 0.86

2.5 5 0.0668 2.75

2.5 8 0.0031 59.08

2.5 10 0.0002 850.81

From Table 3, it appears that

• For a fixed λ, with m increasing and pi decreasing, the SI values increase.
• For a fixed m, with λ increasing, the SI values decrease.

For a comprehensive view of the SI in this case, further empirical studies are required.

2.4. Surprise Index for a Zero-Truncated Poisson Distribution

The zero-truncated Poisson distribution is denoted as ZTP(λ) with parameter λ ∈
(0, ∞). The p.m.f. is

pm =
e−λ
(

λm

m!

)
1− e−λ

=
λm

(eλ − 1)m!
,

where m ∈ {1, 2, 3, . . .} is the number of occurrences; for a detailed study on this distribu-
tion, see [6]. The associated generating function will be

∞

∑
m=1

pmxm =
eλx

eλ − 1
.

Proceeding as before, the numerator of Equation (1) in this case, will be
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∞

∑
m=0

p2
m =

1
2π(e2λ − 2eλ + 1)

∫ 2π

0
e2λ cos(θ) dθ

= (e2λ − 2eλ + 1)−1 I0(2λ), (9)

where I0() has been defined earlier in the previous subsection. Therefore, upon substitut-
ing Equation (9) in the numerator of Equation (1), the SI for the zero-truncated Poisson
distribution will be

Si =
(e2λ − 2eλ + 1)−1 I0(2λ)

pi
. (10)

Substituting various representative values for λ and m in Equation (10), we find the
following values of Si for this distribution, which is presented in Table 4.

Table 4. Surprise index values for zero-truncated Poisson distribution for various choices of λ.

λ m pi Si

0.5 1 0.7707 0.79

0.5 3 0.0321 19.05

0.5 5 0.0004 1523.94

0.5 8 0.0000001 4,096,347.51

0.5 10 4.14838× 10−10 1,474,685,102.05

1 1 0.5820 0.69

1 3 0.0970 4.14

1 5 0.0048 82.89

1 8 0.00001 27,850.21

1 10 0.0000002 2,506,518.52

2.5 1 0.2236 0.89

2.5 3 0.2329 0.85

2.5 5 0.0728 2.73

2.5 8 0.0034 58.65

2.5 10 0.0002 844.61

From Table 4, one can observe the following:

• The SI values are slightly different from the Poisson distribution’s SI values. Also, we
see that smaller values of λ generate greater differences between the zero-truncated
Poisson and the Poisson SI values.

• The behavior/changing pattern of the SI values are exactly the same (except for the
magnitude) as in the previous case (Poisson distribution), for varying choices of λ, m
and pi.

2.5. Surprise Index for a Geometric Distribution

The geometric distribution is denoted as Geo(p), with p ∈ {1, 2, 3, . . .} being the
number of Bernoulli trials needed to achieve one success. The associated p.m.f. is

pm = (1− p)m−1 p = pqm−1,

where m ∈ {1, 2, 3, . . .} is the number of successes. The generating function is then found
to be

∑ pmxm =
px

1− qx
.
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Consequently, the numerator of Equation (1) will be

∞

∑
m=0

p2
m =

p2

2q2π

∫ 2π

0
(q2 − 2q cos(θ) + 1)−1 dθ

=
p2

q2(1− q2)
, (11)

on using Mathematica.
Hence, on substituting Equation (11) in the numerator of Equation (1), we have the

following expression for the SI for the geometric distribution:

Si =
p2

piq2(1− q2)
. (12)

Assuming various representative values for m and p, in Equation (12), we find the
following values of Si for this distribution, which are given in Table 5.

Table 5. Surprise index values for the Geometric distribution for various choices of p.

m p q pi Si

1 0.01 0.99 0.01 0.51

5 0.01 0.99 0.0096 0.53

10 0.01 0.99 0.00914 0.56

20 0.01 0.99 0.0083 0.62

50 0.01 0.99 0.0061 0.84

1 0.25 0.75 0.25 1.02

5 0.25 0.75 0.0791 3.21

10 0.25 0.75 0.0188 13.53

20 0.25 0.75 0.0011 240.26

50 0.25 0.75 0.0000002 1,345,356.92

1 0.8 0.2 0.8 20.83

5 0.8 0.2 0.0013 13,020.83

10 0.8 0.2 0.0000004 40,690,104.16

20 0.8 0.2 4.19× 10−14 3.97× 1014

50 0.8 0.2 4.50× 10−35 3.70× 1035

From Table 5, one may observe the following:

• For fixed p, q with p < q and with m increasing, the SI values exhibit an increasing
pattern.

• For fixed m, with q decreasing, the SI values increase.

2.6. Surprise Index for a Hermite Distribution

The Hermite distribution is denoted as Herm(a1, a2) with parameters a1 ≥ 0 and
a2 ≥ 0. This distribution is used to measure count data using more than one parameter
and has been used in biological research. There are several scholarly studies related to
this distribution that exist in the literature. For example, Ref. [7] discussed several useful
structural properties of the Hermite distribution and they established the fact that this
distribution is the generalized Poisson distribution. Ref. [8] have discussed the utility of
this distribution in the context of a zero-inflated overdispersed probability model. Ref. [9]
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developed an R package hermite to apply generalized hermite distribution in modeling
real-world scenario(s) of fitting count data in the presence of overdispersion or multimodal-
ity with a lot more added flexibility in terms of inference under the classical method. The
associated p.m.f. of the random variable Y = X1 + X2 is

pm = e−(a1+a2)
bm/2c

∑
j=0

am−2j
1 aj

2
(m− 2j)!j!

.

where m = 0, 1, 2, . . . and bm/2c is the integer part of m/2, and a1, a2 ≥ 0 are the
parameters associated with the two independent Poisson variables X1and X2, respectively.
The associated generating function is given by

bm/2c

∑
m=0

pmxm = ea1(x−1)+a2(x2−1).

Proceeding as before, the numerator of Equation (1) will be

n

∑
m=0

p2
m =

1
2π

∫ 2π

0
e2a1(cos(θ)−1)+2a2(cos(θ)−1) dθ

=
1

2π

∞

∑
j=0

1
j!

∫ 2π

0
[2a1(cos(θ)− 1) + 2a2(cos(θ)− 1)]j dθ

=
∞

∑
j=0

1
j!

(
(−a1)

jΓ(2j + 1)
(

a1
a1+4a2

)−j
2 F̃1

(
−j, j + 1

2 ; j + 1; 4a2
a1+4a2

)
Γ(j + 1)

)
, (13)

where 2 F̃1() is the regularized hypergeometric distribution, obtained using Mathematica.
Therefore, upon substituting Equation (17) in the numerator of Equation (1), the SI for the
Hermite distribution will be

Si =
∞

∑
j=0

1
j!

(
(−a1)

jΓ(2j + 1)
(

a1
a1+4a2

)−j
2 F̃1

(
−j, j + 1

2 ; j + 1; 4a2
a1+4a2

)
piΓ(j + 1)

)
. (14)

Substituting various values for m, a1, anda2 in Equation (14), one can find values of Si
for this distribution, which is not reported in this paper for brevity. Also, it is quite difficult
to obtain numerically, as it involves infinite sums and special functions.

2.7. Surprise Index for a Skellam Distribution

The Skellam distribution, also known as the Poisson difference distribution, is derived
from the difference of two Poisson random variables (for details, see [10]) and is denoted
as Skellam(µ1, µ2) with parameters µ1 ≥ 0 and µ2 ≥ 0. This distribution may be used for
describing the point spread distribution for sports such as hockey, where all points scored
are equal, describing the statistics of the difference of two images with simple photon
noise, or studying treatment effects, as discussed in [10]. The p.m.f. when considering two
Poisson random variables is given by

pm = e−(µ1+µ2)
(µ1

µ2

)m/2
Im(2
√

µ1µ2),

where m is an integer and Im(z) is the m-th order modified Bessel function of the first kind.
The associated generating function will be

∑ pmxm = e−(µ1+µ2)+µ1m+µ2/m.
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Again, by proceeding as before, the numerator of Equation (1) can be derived using the
infinite series expression for the exponential function and using Mathematica, as follows:

n

∑
m=0

p2
m =

1
2π

∫ 2π

0
e(2µ1+2µ2)(cos(θ)−1) dθ

=
1

2π

∞

∑
j=0

(2(µ1 + µ2))
j

j!

∫ 2π

0
(cos(θ)− 1)jdθ

=
∞

∑
j=0

(2(µ1 + µ2))
j

j!

(
(−2)jΓ

(
j + 1

2

)
√

πΓ(j + 1)

)
, (15)

Subsequently, upon substituting Equation (15) in the numerator of Equation (1), the SI
for the Skellam distribution can be written as

Si =
∞

∑
j=0

(2(µ1 + µ2))
j

j!

(
(−2)jΓ

(
j + 1

2

)
pi
√

πΓ(j + 1)

)
. (16)

Substituting various values for m, µ1, and µ2 in Equation (16), one can find expres-
sions of the SI for this distribution. However, from Equation (16), it is clear that it
would be difficult to obtain numerical values as the expression involves infinite sum
and gamma functions.

2.8. Surprise Index for a Generalized Poisson Distribution

The generalized Poisson distribution is denoted as GDP(θ, λ) with parameters θ and λ,
0 ≤ λ < 1 and θ > 0. To allow us to differentiate between the parameter and the integration
variable, we change θ to α, and then, the p.m.f. is

pm =
α(α + nλ)m−1e−mλ−α

m!
,

where m ∈ {0, 1, 2, . . .} is the number of occurrences. The associated generating function
is then, according to [11],

∑ pmxm = exp
{
− α

λ
W
(
− λx exp[−λ]

)
+ λ

}
,

where W(·) is the Lambert W function. Continuing with the prescribed process, we found
the following integral form:

∑ p2
m =

1
2π

∫ 2π

0
exp

{
− α

λ

(
W
(
− λ exp[iθ] exp[−λ]

)
+ W

(
− λ exp[−iθ] exp[−λ]

))
+ 2λ

}
dθ. (17)

Consequently, the associated SI for a GPD, upon substituting Equation (17) in the
numerator of Equation (1), will be

Sj =

(
1

2π

∫ 2π

0
exp

{
− α

λ

(
W
(
− λ exp[iθ] exp[−λ]

)
+ W

(
− λ exp[−iθ] exp[−λ]

))
+ 2λ

}
dθ

)
×
(

α(α + nλ)j−1e−iλ−α

j!

)−1

. (18)

Noticeably, from Equation (18), it can be observed that this integral is difficult to solve
in order to obtain a closed and analytically tractable form because of the involvement of the
Lambert W function which has both real and imaginary parts. Numerical methods must be
adopted, which we have not considered for brevity.
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In addition, for illustrative purposes, we have also provided graphs of the SI for
several discrete probability distributions discussed in this section in Appendix B.

3. Surprise Index for Continuous Probability Models

For a continuous random variable (r.v.), the associated expression for the SI is given
by [2] and has the following form:

ζ =
E(p∗|H)

p
,

where p∗ is the r.v. that is the probability density function (p.d.f.) of the original r.v., p is
a realization of p∗, and H is a simple statistical hypothesis. Equivalently, we may rewrite
the definition as follows. Let X be a continuous random variable with density function f ().
Then, for all x ∈ S(X), the SI is given by

Sx =
E[ f (X)]

f (x)
.

However, an alternative version which does involve the geometric expectation (it is
termed as a generalization of the SI) is given by

ζ0 =
GE(p∗)

p
=

exp
(

E(log X)
)

p
, (19)

where GE stands for the geometric expectation which will be equivalently evaluated using
E(log X). For computation of the SI for various continuous probability models, we use
Equation (19). In Table 6, we provide the expression of Equation (19), which can be viewed
as an expression of the SI (according to [2]) for various univariate absolute continuous
distributions. The symbolic computations are all carried out using Mathematica.

Table 6. Surprise index expressions for several continuous probability models.

Distribution Surprise Index

Uniform (a, b)
(

1
(b−a)

)−1

× exp
((

bb

aa

)1/(b−a)
× e−1

)

Beta(a, b)
(

exp
(
(Γ[a]Γ[b](PolyGamma[0, a]− PolyGamma[0, a + b]))/Γ[a + b]

))
×
(

xa−1(1−x)b−1

B(a,b)

)−1

Beta (type-II)(α, β)
(

exp
(

Γ(α+1)Γ(β−1)(Hα−Hβ−2)
Γ(α+β)B(α,β)

))
×
(

B(α,β)(1+x)α+β

xα

)

Pareto (type-II)
(

exp
(

ψ(0)(−α)− log(σ) + γ

))
×
(

α
σ

(
1 + x

σ

)−(α+1)
)−1

Gamma (α, β)

[(
exp

((
1

βαΓ(α)

)
×
(
− βαΓ(α)

(
log
(

1
β

)
− ψ(0)(α)

))))]
×
(

1
βαΓ(α) xα−1 exp(− x

β )

)−1

Weibull(k, λ)

[
exp

(
−

log
(
( 1

λ )
k
)
+γ

k

)]
×
(

k
λ

( x
λ

)k−1 exp(−( x
λ )

k)

)−1

Log-normal (µ, σ)

(
exp(µ)

)
×
(

1
x
√

2πσ
exp

(
− (log x−µ)2

2σ2

))−1

Exponentiated-exponential (α, β)

(
exp

(
∑∞

j=0 (
α−1

j )(−1)j
(
− αλ(log((j+1)λ)+γ)

jλ+λ

)))
×
(

αλ(1− exp(−λx)α−1 exp(−λx)
)−1

Note: For a Pareto (type-IV) distribution, the associated integral for the numerator of Equation (19) diverges.
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From Table 6, one can make the following observations for fixed X = x:

• For uniform (a, b), and b increasing and a decreasing, the SI will increase.
• For Beta (a, b), as a increases and b increases, SI decreases. On the other hand, when

both a and b increase, the SI increases.
• For Beta (type-II) (α, β), when both α, β increase, the SI will increase.
• For Pareto (type-II) distribution, because of the nature of the polygamma function

as obtained from Mathematica, for any choices of the parameter α, regardless of the
other permissible choices of the other two parameters, it is divergent and, therefore, it
cannot be computed.

• For the Log-normal(µ, σ) distribution, as both µ and σ increase, the associated SI
increases.

• For the Gamma(α, β) distribution—(i) when α is fixed, with β increasing, the SI will
increase and (ii) with β fixed and α increasing, the SI will increase.

• For the Weibull(k, λ) distribution, the following can be observed:

– For a fixed k as λ and γ increase, the SI will increase.
– For a fixed γ as k and λ increase, the SI will increase.
– For any choice of λ < 1 and decreasing with k increasing, for a fixed choice of γ,

the corresponding SI will decrease.

Next, we make the following conjectures. The proofs seem obvious, but we leave this
up to the reader.

• Conjecture 1. The SI, if available, uniquely determines a discrete and/or continuous
probability distribution.

• Conjecture 2. The SI for a truncated model differs only by a scalar quantity (involving
model parameter(s)) corresponding to the non-truncated version of the assumed
discrete probability model and is bigger than the SI computed for the non-truncated
version. For example, the authors of [6] have shown that the SI for the truncated
Poisson is bigger than that for the usual Poisson distribution.

• Conjecture 3. The SI is invariant under all non-singular linear transformations. Equiv-
alently, we can state the following. Let X and Y be two non-degenerate random
variables with valid probability distributions that are well-defined on R. Further, let
Y = aX + b, with a 6= 0, and b ∈ (−∞, ∞), and let SIX and SIY be the surprise indices
for the r.v. X and Y, respectively. Then, SIY = aSIX + b.

Proof. The result follows immediately by using the invariance property of a gener-
ating function. We provide the proof for a discrete r.v.; however, a similar approach
can be made to establish the result for a continuous r.v. If GY(s) and GX(s) are the
probability generating functions of X and Y, respectively, then

GY(s) = E
[
sY
]

= E
[
saX+b

]
= sbE

[
(sa)X

]
= sbGX(sa).

Hence, the proof.

Note that in Appendix A, we provide the Mathematica codes for computing the SI for
both univariate discrete and continuous probability models.

4. Potential Applications and Challenges/Open Problems

The use of Weaver’s SI as an alternative to the use of tail area probabilities was
suggested by [2]. Some applications of the SI have been presented such as determining if
certain events are surprising; i.e., being dealt the same hand of cards consecutively in a
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game of bridge [1] or a fair coin toss with edges of a particular size landing on its edge when
flipped [1]. Although these applications are interesting, they are not particularly useful.
For example, Ref. [4] suggests using the SI for outlier detection which we find intriguing
since detecting outliers can be difficult, and by applying this feature to various data sets,
we established the fact that it can be considered another tool for detecting outliers.

The Hermite distribution is used in the distribution of counts of bacteria in leucocytes.
We assume that applying the surprise index for this distribution could be useful in deter-
mining that the counts of bacteria in white blood cells (leucocytes) are alarmingly high.
This information could be helpful in choosing follow-up tests, determining diseases, or
expediting patient care for patients who need urgent medical attention.

Several potential challenges in extending this definition in bivariate and higher do-
mains might be summarized as follows:

(i) Ref. [2] states, “for multivariate normal distributions, P(p∗ < p), the distribution of
the likelihood density, does not seem to be expressible in elementary terms” (p. 1133);

(ii) The special functions are difficult to determine for the univariate case, which leads to
even more difficulty when more variables are considered;

(iii) The long runtimes when finding the closed-form expressions for several of such
distributions suggest that a multivariate analysis of the SI will require highly efficient
computing environments.

5. Concluding Remarks

In this article, we discuss with adequate details, the derivation of the SI for several
univariate discrete probability distributions that had not been discussed earlier along
with a re-evaluation of the surprise indices for the binomial, Poisson, and the geometric
distributions. Using the Mathematica software, we obtain closed-form expressions for the
SI for the binomial, negative binomial, and Poisson distributions including that of the zero-
truncated Poisson, geometric, Hermite, and Skellam distributions involving either special
functions and/or infinite sums or series. Also, we have computed the SI for univariate
continuous probability models via an analogous expression (similar to the discrete case,
but not exactly the same), which involves computing the geometric mean of a random
variable. Extension to the bivariate and higher dimensions will be the topic of a separate
article. However, the SI is not above criticism. For example, it is conjectured that in the
definition of the SI, the numerator given in Equations (1) and (2) is arbitrary. Furthermore,
the value of SI drastically changes when the results of an experiment are lumped together
in a different way (discrete case) and/or there is a change in the values of stochastically
independent r.v.s in the continuous case.
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authors have read and agreed to the published version of the manuscript.
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Appendix A

In this section, we provide the Mathematica codes for obtaining the numerator of
Equation (1) of the surprise indices for several univariate discrete distributions and a
couple of continuous distributions for illustrative purposes.

• Binomial distribution (Equation (3) numerator) Integrate[(q2 + 2qp cos θ + p2)n,
{θ, 0, 2π}].

• Poisson distribution (Equation (7) numerator)

Integrate[exp
(

2λ× cos θ

)
, {θ, 0, 2π}].
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• Negative binomial distribution (Equation (6) numerator numerator)
p2

π Integrate[
(
1− 2q cos θ + q2)−r, {θ, 0, 2π}].

• Geometric distribution (Equation (5) numerator)
p2

q2π
Integrate[

(
1− 2q cos θ + q2)−1, {θ, 0, 2π}].

• Pareto (type II) distribution (Table 6, row 4)

Integrate[
(
1 + x

σ

)α−1( α
σ

)
∗ log[x], {θ, 0, 2π}].

• For a two parameter beta distribution (Table 6, row 2)
Integrate[xa−1 ∗ (1− x)b−1 ∗ log[x], {θ, 0, 2π}].

Appendix B

In this section, we provide several graphs related to the SI for discrete distributions
for illustrative purposes.

From these figures, one can make the following observation:

1. Observations from Figure A1:

• For p = 0.01, 0.25 as m increases, the log(SI) value increases, i.e., equivalently,
the SI values increase.

• For p = 0.8 as m increases, the log(SI) value decreases, i.e., equivalently, the SI
values decrease.

2. Observations from Figure A2: For all fixed choices of p, as m increases, the log(SI)
value increases, i.e., equivalently, the SI values increase.

3. Observations from Figure A3: For all fixed choices of λ, as m increases, the log(SI)
value increases, i.e., equivalently, the SI values increase; however, the magnitude of
increment decreases as λ becomes larger.

4. Observations from Figure A4: The pattern is almost similar to Figure A3.
5. Observations from Figure A5:

• When p = 0.01, log(SI) takes a constant value for all choices m.
• For p = 0.25, 0.8, as m increases, the log(SI) value increases, i.e., equivalently,

the SI values increase.

Figure A1. Surprise index values for binomial distribution, n = 10.
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Figure A2. Surprise index values for negative binomial distribution, n = 10.

Figure A3. Surprise index values for Poisson distribution.

Figure A4. Surprise index values for zero-truncated Poisson distribution.
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Figure A5. Surprise index values for geometric distribution.
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