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Abstract: There is a strong demand for multi-attribute auctions in real-world scenarios for non-price
attributes that allow participants to express their preferences and the item’s value. However, this
also makes it difficult to perform calculations with incomplete information, as a single attribute—
price—no longer determines the revenue. At the same time, the mechanism must satisfy individual
rationality (IR) and incentive compatibility (IC). This paper proposes an innovative dual network to
solve these problems. A shared MLP module is constructed to extract bidder features, and multiple-
scale loss is used to determine network status and update. The method was tested on real and
extended cases, showing that the approach effectively improves the auctioneer’s revenue without
compromising the bidder.
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1. Introduction

The multi-attribute auction is a practical tool widely used on various occasions, such
as government auctions of rare resources such as minerals, land, and spectra; online
advertising auctions [1]; and supply chain management [2]. In a single-attribute auction,
bidders only need to consider one bidding factor, such as price, to determine their bidding
strategy. Such auctions lack universality. Multi-attribute auctions provide participants with
more options. Bidders can consider multiple factors, such as, in the auction of transportation
services, to ensure that the transported items arrive at the designated location more safely.
Participants have special needs in terms of price, service quality, delivery time, etc.; this
makes the formulation of bidding strategies more complex.

Myerson [3] designed a unique mechanism: the single-item optimal auction mech-
anism. This is in line with the pursuit of maximizing the interests of one party in the
auction. For example, in the aforementioned public resource auction scenario, the optimal
auction can pursue the maximization of public welfare. But the optimal mechanism design
is complex. In terms of item quantity, the optimal mechanism design for a single item is
easy, but it is difficult for multiple items. Dütting [4] solved the 40-year stagnation problem
of multiple items using the deep learning method and subsequently derived more complex
single-attribute optimal auction mechanisms.

However, the problem of multiple attributes has yet to be solved. Previous papers have
proven that the multi-attribute optimal mechanism for single bidders is highly complex [5].
Furthermore, attributes contain private information belonging to participants and cannot
be directly converted to one attribute. This paper proposes a new network model and a
shared module in Section 4.2 to address this issue.

We noticed that maximizing expected utility implies no labels for network training.
Additionally, multi-attribute optimal auctions must satisfy individual rationality (IR) and
incentive compatibility (IC) [6] constraints, where IR means that individuals make decisions
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that they believe will lead to optimal rewards and IC means that each participant can
achieve their best outcome by acting according to their true preferences. These require
the network to be updated within a certain range. Therefore, a multi-scale loss network
optimization method (MLN) was designed.

Then, the MLN method was tested on real reverse-auction cases. The results indicate
that this method could effectively reduce auctioneers’ expenses while not causing harm to
bidders, ensuring the sustainability of the auction. Moreover, the method was tested with
extended experiments, demonstrating its generalization performance and robustness.

2. Contributions

1. This paper proposes a dual network structure that includes a shared module. This
module extracts multiple non-price attributes from multi-attribute optimal auctions as
standard features, which can handle bidding with different preferences and settings.

2. A multi-scale loss method is proposed to optimize the networks. IR, IC, and
additional constraints in special auction scenarios are mapped to multi-scale loss functions,
ensuring that the auction rule satisfies all parties’ interests.

3. Related Work

The optimal auction is a special auction mechanism and concept, with the core of
maximizing revenue for one party. Myerson solved the problem of maximizing seller
returns in a single-indivisible-item, multi-bidder auction while satisfying the incentive
compatibility mechanism for bidders to submit true valuations, which is a great innovation.
Although Myerson’s method cannot achieve the mechanism design of a multi-item, multi-
bidder auction, it has indeed been proven to be difficult to calculate [7,8]. With the increase
in the number of bidders and items and the complexity of auction forms, especially when
bidders’ submissions are continuous, the design and verification of mechanisms become
extremely difficult [9,10].

Machine learning methods have brought about a turnaround in this matter. For ex-
ample, Duting [11] designed a simple three-layer MLP network (RochetNet) based on
Rochet’s idea [12], successfully solving the single-attribute optimal auction problem for
multiple items and single bidders. Subsequently, the author proposed a new network
structure (RegretNet) to solve the optimal auction problem of multiple items and bidders.
The author designed two networks for allocation and payment, where the networks’ input
is the bidding of multiple bidders for multiple lots, and the output is the probability of
each bidder obtaining each item and the price that should be paid. With the emergence
of RegretNet, many mechanism design methods for dealing with more complex scenarios
have been derived, such as considering the budget of bidders [13], coding, and classifying
participants’ preferences [14,15]. Meanwhile, machine learning methods have proven effec-
tive in practice. Zhe [16] applied the design of an optimal auction mechanism based on
neural networks to allocate vehicular edge computing resources. Liu [1] used an optimal
auction mechanism based on neural networks in advertising bidding in e-commerce.

The earliest multi-attribute mechanism, consisting of two attributes, i.e., the cost and
time of the bidder, was proposed by Ellis [17] and was applied to the auction of highway
contracting. Although the auction content is relatively simple and the time factors can
be converted to calculate profits, it initiated formal research on multi-attribute auctions.
Compared with the single-attribute mechanism, multiple attributes can better take care
of the needs of participants [18,19]. Therefore, this mechanism is widely used in real life.
But multiple attributes also bring more uncertainty. In 1991, Staschus et al. [20] proposed a
multi-attribute auction framework, which was not verified with experiments, that converts
all bid attributes of bidders into a single price attribute of the auctioneer. But this method
is difficult to calculate in complex scenarios.

On the other hand, attributes and utility functions represent participants’ private
information. On this topic, Chen Ritzo et al. [21] proposed a multi-attribute reverse-auction
mechanism with limited information feedback. Gupta et al. [22] analyzed the information
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disclosure mechanism in multi-attribute auctions and designed a multi-attribute auction
mechanism with changeable feedback information for experiments. However, the problem
of multi-attribute optimal mechanism design has not been solved. Existing research has
proved that it is difficult to calculate the multi-dimension of a single bidder [5,23], let
alone multiple bidders.

4. Methodology
4.1. Optimal Multi-Attribute Auction

Let us suppose a multi-attribute, multi-item, multi-bidder auction scenario: There are
a set of N bidders {1, 2, . . . , n} with additive valuations and individual rationality, and
G items {1, 2, . . . , g}. Each bidder i has t non-price attributes requirements for each item
{pij, qij1, . . . , qijt}, where pij is the price of the item and qijt are non-price attributes. The bid
submitted by bidder i in the auction is bi = {bi1, bi2, . . . , big}, where bij =

{
pij, qij1, . . . , qijt

}
and bi : 2G → R ≥ 0.

After receiving bids from all bidders, the auctioneer decides the probability of each
person winning each item and the fee. Then, the bidder’s expected utility (ui) can be
expressed as

ui = ∑
j

Prij
(
bij

)
pij − Payij (1)

where the formula indicates that the expected return of the bidder is calculated by subtract-
ing the actual expenditure from the expected expenditure.

In this simple scenario, let us assume that the auctioneer has t reserved attributes
R =

(
rj1, . . . rjt

)
for item j. If the submitted attribute qi exceeds the reserved attribute, it

harms the auctioneers’ revenue, and the weight is Wjk. Then, the auctioneer’s expected
utility (u0) can be expressed as follows:

u0 = ∑
i

∑
j

Prij
(
bj
)

Payij −
t

∑
k

Wijk

(
rjk − qijk

)
(2)

where the formula states that the auctioneer’s expected utility is calculated by subtracting
the expected revenue from the loss due to the non-price attributes being lower than the
reserved attributes.

Due to IR, which also conforms to the characteristics of the economic behavior of the
auction, the bidders’ purpose must be to maximize profit, at least not to cause losses to
themselves. It is foreseeable that if there are no conditional restrictions, the bidder obtains
extra income ei by submitting an untrue bid b′i .

ei = ∑
j

∑
k

ϕijk

(
q′ijk − qijk

)
(3)

where ϕ represents the weight of lying and q are untrue non-price attributes. Then, the
bidder’s expected utility (ui) is

ui = ∑
j

Prij
(
bij

)
pij + eij − Payij (4)

The purpose of the optimal mechanism is to maximize the auctioneer’s expected
utility; hence, the most direct way to satisfy this purpose is to let bidders submit their actual
values. In order to satisfy this condition and make the mechanism sustainable, IC must be
satisfied, whereby bidder i’s income from submitting a true bid must not be lower than
that from submitting an untrue one.

ui(bi, b−i) ≥ u′i
(
b′i , b−i

)
(5)
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At the same time, the mechanism needs to satisfy IR, whereby it cannot damage the
participants’ benefits.

ui(bi, b−i) ≥ 0 (6)

4.2. Network Design

Since the design of the multi-attribute optimal mechanism mainly consists of payment
rules and allocation rules, this paper designed a dual network with reference to Dütting [4].
The Allocation Network and Payment Network were constructed to determine the probabil-
ity of bidders obtaining items and the proportion of their payments, respectively (Figure 1).
The Allocation Network is denoted by Aγ, and the Payment Network is denoted by Pδ.
Among them, γ and δ represent the parameters of the network. These two networks
together constitute our optimal mechanism or rules

(
Aγ, Pδ

)
. The input multi-attribute

bidding data are extracted into one feature using shared modules. The extracted features
are then processed by the Allocation Network and the Payment Network to obtain allo-
cation and payment results, respectively. The two results are used for the computerized
status and for updating the networks.

Figure 1. Figure of network structure.

The purpose of the optimal auction is to maximize the auctioneer’s expected utility (u0)
(Formula (7)) while satisfying the IR and IC conditions. Usually, the artificially designed
mechanism considers the participation enthusiasm of bidders and the sustainability of the
auction by restricting rules based on IC, such as adjusting payment prices based on ranking
or bidding content to satisfy IC constraints.

max u0 = Aγ(b)× Pδ(b)× ( price + W(q− r)) (7)

Without constraints, the payment rules would cause significant losses to bidders
for deep learning networks. If there were only the IC constraint, it would only make
misreporting lose meaning for bidders, as the auctioneer could infinitely increase the
payment ratio without considering true and untrue bids. Therefore, Formulas (8) and
(9) are used to measure whether the degrees of incentive compatibility and individual
rationality are satisfied, respectively. Then, these two parameters are used to assist in
network optimization.

IC = Aγ
(
b′i , bi

)
× Pδ

(
b′i , bi

)
×

(
price′i + ϕi

(
q′i − qi

))
− Aγ(bi)× Pδ(bi)× pricei (8)

IR = Aγ(bi, b−i)× Pδ(bi, b−i)× pricei − Aγ(bi)× pricei (9)

max Aγ(b)× Pδ(b)× (price + W(q− r)) (10)

s.t IR ≥ 0

IC = 0
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In previous mechanism design research based on deep learning, researchers commonly
used a sigmoid function as the activation function of the Payment Network to convert the
specific payment price into a payment proportion between 0 and 1, which increases the
generalization performance and robustness of the model. However, due to the limitations
of sigmoid functions, the network does not generate a penalty or incentive payment ratio
exceeding 100%.

To solve this problem, this paper introduces the Rigmoid function.

Rigmoid =
1

0.5 + e−x . (11)

Although this expands the payment ratio to between 0 and 2, the payment ratio does
not reach an astonishing 200% due to the limitation of IR. It is even possible to create a
“win-win space” without infringing the interests of both parties when the utility functions
of bidders and auctioneers are significantly different.

As for the output of the Allocation Network, since the allocated probability of an item
is at most 1 and there is no case where all bidders are unqualified, we use a simple SoftMax
function as the activation function of the output layer of the Allocation Network.

In addition, compared with single-attribute auction research, this paper faces the
problem of mapping multiple attributes. As noted above, the auctioneer does not know
the bidders’ true bids or utility function. It would violate the rule to suppose that multiple
attributes are mapped as a single attribute by directly using the utility function of the bidder
in the data pre-processing stage. If all the attributes submitted by all bidders were added
in the hidden layer without processing, in that case, it would result in (1) slow training due
to the increase in network parameters and (2) possible over-fitting.

In order to solve the above two foreseeable problems, this paper created a shared
encoder to extract the characteristics of bidders’ bids and then output the allocation and
payment results that satisfy each bidder of Formulas (5) and (6) with the Allocation Net-
work and Payment Network. Finally, the network is used for optimization according
to the feedback of Formulas (5) and (6), and the auctioneer’s income. In this paper,
the multi-attribute bidding of each bidder has the same nature, so it can be processed
by sharing weights. A four-layer MLP (Multi-Layer Perceptron) module was built. This
module was placed before the Allocation and Payment Networks to extract the original
{G items, N bids, t + 1 attributes} data into the features of {G items, N bidders}.

4.3. Model Adjustment

Multi-attribute auctions are complex. To demonstrate the effectiveness of the MLN
method, we chose the “Yili” case with rich parameters for the experiments [24]. It is an
auction of about 100 units of dairy transportation rights with detailed information on
the auctioneer (shipper) and bidders (carriers) (carrier’s shipping cost (costi), shipping
time (timei), damage rate during shipping (deti), and carrier’s shipping capacity (capi))
(Table 1); three preferences for bidding attributes (cases 1, 2, 3); and two preferences for time
requirements (cases A, B) (Table 2). The shipper expects that shipping time ta is completed
within 5 days, and the deterioration rate (ma) of shipping dairy products is less than 5%.
The bidders’ delivery performance impacts the auctioneer’s costs, and the revised cost is

S = ∑
i

costi +∆t× ti + ∆m×mi (12)

where ∆mi = mi −ma. The revised costs are subsequently deemed to be the auctioneer’s
costs.
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Table 1. Bidders’ information.

Attribute a1 a2 a3 a4 a5 a6 a7 a8 a9

Cost (USD 100) 9.5 9 10 10 7 8 9.5 9 8.5
Transportation time (day) 5 4 2 3 6 8 6 4 7
Deteriorate rate (percent) 5 6 4 2 7 6 3 1 7
Capacity (truckload) 30 25 20 30 35 20 25 30 30

Table 2. Auction settings based on auctioneer’s preference.

Case A ∆ti = 2× (max{0, (ti− ta)})− 2× (max{0, (ta− ti)}) (focus on speed)

Case B ∆ti = |ti− ta|0.5 (focus on punctuality)

Case 1 Wtime = 0.1, WDeteriorate rate = 0.1 (focus on cost)

Case 2 Wtime = 2, WDeteriorate rate = 0.1 (focus on time)

Case 3 Wtime = 0.1, WDeteriorate rate = 2 (focus on service quality)

As mentioned above, the model’s loss function should be composed of three con-
straints, auctioneer expenditure, IC, and IR, which is different from the conventional model
training process. In addition, in the “YILI” case, each bidder has transportation capacity
limitations. Using the SoftMax function in the output layer of the Allocation Network is
likely to output results that exceed the capabilities of bidders.

Constructing several loss functions can solve these problems. In this case, the higher
the payment ratio of the bidder, the higher the auctioneer’s expenses. Therefore, maximiz-
ing the expected revenue is changed to minimizing the expected fees (p0) (Formula (13)).

min p0 = Aγ(b)× Pδ(b)× Si (13)

exti stands for the extra benefits that bidders obtain by misreporting (Formula (14)).
exti is used to limit the motivation of bidders to “lie” and ensure that bidders do not lose
money in the auction as much as possible.

exti = ReLu
(

Aγ
(
b′i , bi

)
× Pδ

(
b′i , bi

)
× price′i − Aγ(bi)× Pδ(bi)× pricei

)
(14)

de fi is a new IR constraint, which means that the deficit calculation function of the
profit part is weakened (Formula (15)).

defi = LeakyReLu
(

Aγ
(
b′i
)
× price′i − Aγ

(
b′i
)
× Pδ

(
b′i
)
× price′i

)
(15)

revi measures whether the allocation result is over-allocate (OA). Then, it is necessary
to determine which loss function to use to optimize the model based on the priority of OA
= IR = IC > goal (Figure 2).

revi = ReLu(Aγ(bi)× 100− Capacity) (16)

Bidders explore how to adjust misreport b′i under the rules during the auction process
to pursue higher profits. The problem is solved by calculating the gradient of the bidding
content based on the earnings from misreports.

∇b′i
Aγ

(
b′i , bi

)
× Pδ

(
b′i , bi

)
× pricei (17)
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Figure 2. The network state is judged according to the loss function; then, the corresponding loss
function is selected to optimize the network.

The training process of the MLN model is described below.

Training Process

hyper-parameters: learning rate of the Network η = 0.0001, learning rate of
updating misreport ξ = 0.01, batch size = 20, Penalty weight ρ > 0

Initialize: Lagrange multipliers λ, µ, ν ∈ {R}, network parameters γ, δ ∈ {R}

For 0 to data size/batch size:

Batch B = {b1, b2, . . . , b20}

For 0 to B

Input true bid bi into Allocation and Payment Network→ Aγ(b), P

Update misreport b′i by calculating bi gradient:

b′i = b′i − ξ∇b′i
Aγ

(
b′i , bi

)
× Pδ

(
b′i , bi

)
× pricei

Input misreport b′i into Allocation and Payment Network→ Aγ
(
b′i
)
, Pδ

(
b′i
)

Calculate revised cost: S = ∑i cosi +∆t× ti + ∆m×mi
Calculate the bidder’s deficit de f (15).
Calculate the additional benefit bidders gain by misrepresenting ext (14).
Calculate the degree to which the allocation results exceed the bidder’s

transportation capacity rev (16).

loss function judgment:

if de f > 0: loss = de f

else if ext > 0: loss = ext

else if rev > 0: loss = rev

else: loss = p0 (13)

loss.backward()

Updating model

5. Experiments

The range of data attributes was determined with reference to Table 1:

costi ∼
1
2
×Ucost[7, 10] ∈ Z (18)

timei ∼ Utime [2, 8] ∈ Z (19)
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deti ∼ Udet[1, 7] ∈ Z (20)

capi ∼ 4×Ucap[4, 8] ∈ Z (21)

Then, auction datasets (1), (2), and (3) were generated with uniform distribution,
and three experiments were conducted on each dataset corresponding to the same cases
(A1, A2, A3) of auction preferences as the original.

(1) One item, nine bidders.

Randomly generated bidder data were used for model training. Then, we used the
same information as Zhang as the input data for the model during validation and compared
the results of testing with other methods.

Figure 3 and Table 3 show that the performance of the rules generated with the MLN
method in terms of time and deterioration rate was similar to that of the method by Zhang
and was subject to IC constraints. In case A1, the auctioneer had a low weight of 0.1 for
both time and deterioration rate, which had little impact on the correction cost function.
MLN maintained a good level of time and deterioration rate and reduced expenses for
auctioneers by approximately 55 (USD 100) without causing deficits to bidders.

Figure 3. Experimental results. (a) Auctioneer’s expenditure results caused by the model’s output
rules during training under three case settings. (b) Time results. (c) Deterioration rate results.

Table 3. Results of experiment (1).

A1 A2 A3

Ours Zhang P-VCG [25] Ours Zhang P-VCG Ours Zhang P-VCG

Time (day) 5.64 5.5 6.25 3.78 3.25 6.25 4.24 3.75 6.25

Deterioration (%) 5.6 5 5.25 3.6 3.25 5.25 2.7 2.5 5.25

Cost 848.50 904 937 441.86 884 1469 483.72 918.5 1108

IC 0 0 None 0 0 None 0 0 None

In case A2, the time and deterioration rate weights were 2 and 0.1, respectively, due to
the auctioneer’s preference for time being “faster is better” and four out of nine bidders
having transportation times shorter than ta = 5 days, which could create more revenue
for the auctioneer. This gave the MLN method a better chance at improving performance,
ultimately resulting in a reduction of more than half in the revised cost of the auctioneer.
In case A3, the time and deterioration rate weights were 0.1 and 2, respectively. The revised
cost was higher than that in case A2, for the magnification of ∆ mi was smaller than ∆ ti,
but our method still made significant progress.

The MLN method could achieve good time and deterioration rates and reduce ex-
penses for auctioneers under all three preferences. The reason is that it did not transfer the
profits obtained thanks to the bidder’s good performance to the bidder, and it can be seen
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that the bidder had no deficit in the auction and received an higher average price than the
bid. Overall, the auction rules generated by the model are sustainable and can significantly
reduce auctioneers’ expenses.

The mechanism design of multi-attribute, multi-item auctions is complex. To further
expand the experiment, the original numbers of items and participants were modified
to demonstrate the robustness of the MLN model and its contribution to multi-attribute,
multi-item auctions.

(2) Three items, nine bidders.

The number of items was increased to three. The experiment used randomly generated
data that followed the data distribution for model training (Figure 4) and testing and
presented the last epoch’s results (Table 4).

Figure 4. Experimental results. (a) Auctioneer’s expenditure results caused by the model’s output
rules during training under three case settings. (b) Time results. (c) Deterioration rate results.

Table 4. Results of experiment (2).

A1 A2 A3

Time 4.79 3.89 4.92

Deterioration rate (%) 3.90 3.96 2.96

Payment (USD 100) 804.86 385.15 450.85

IR −13.2 −15.3 −37.3

IC 0 0 0

Similar to experiment (1), the average expenditure of auctioneers under the three cases
was the same as the trend in (1) due to the weights of time and damage rate preferences.
After increasing the number of items, MLN also achieved good results. It was found that
the average cost of testing results was relatively lower than that obtained using nine-bidder
original data because there was a strong correlation between the transportation time and
damage rate of bidders in the original dataset, unlike in random bidding generated based
on the distribution.

(3) Four items, seven bidders.

To further test the generalization performance of MLN, this paper conducted experi-
ments on four items and seven bidders. The bidder data were still random, followed the
same distribution, and were used during testing.

It was noticed that compared with the setting of nine bidders, the experimental
performance of seven bidders was slightly inferior (Table 5), especially in cases A2 and A3,
where the average payment of the auctioneer in experiment (3) increased compared with
experiment (2) (Figure 5). The reason is that as the number of bidders increases, the bidding
base conducive to auctioneers also increases relatively.
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Table 5. Results of experiment (3).

A1 A2 A3

Time 4.81 4.36 4.93

Deterioration rate (%) 3.91 3.99 3.32

Payment (USD 100) 817.76 595.60 508.24

IR −19.26 −24.04 −6.22

IC 0 0 0

Figure 5. Experimental results. (a) Auctioneer’s expenditure results caused by the model’s output
rules during training under three case settings. (b) Time results. (c) Deterioration rate results.

6. Conclusions

This paper proposes a dual network based on multi-scale loss and shared modules
that encodes the inputs of multiple attributes of bidders into a single feature, solving
the problem of incomplete information and computation in designing multi-attribute
mechanisms. The scene settings for multi-attribute auctions are complex and diverse. In the
experimental phase, the post-paid “YILI” case was used. The loss function of the network
was adjusted according to the limit of the number of bidders allocated, and the model
significantly reduced the expenditure of the auctioneer. Subsequently, in the expansion
experiment, the model also performed well when dealing with different combinations of
bidders, and numbers of bidders and items, demonstrating its generalization performance
and robustness.
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