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1. Introduction

Many real-world hierarchical problems can be modeled mathematically as bilevel prob-
lems and appear in many practical applications. They are often encountered in the fields
of production and capacity planning [1,2], traffic and transportation [3,4], chemistry [5,6]
and management science [7,8], as well as energy networks and markets [9,10]. In addition,
Nimana et al. [11] proposed an algorithm combining the incremental proximal gradient
method with a smooth penalization technique to solve convex bilevel problems and applied
it to image inpainting and binary classification problem.

Nowadays, we are in a world with various types of big data. In order to obtain the
benefits of such data, we need to integrate advanced knowledge concerning both theory
and methods from many areas, such as mathematics, computer science, statistics, medicine,
etc. In mathematics, optimization plays a very important role in classifying and predicting
large amounts of data because it can provide deep machine learning algorithms with high
accuracy. Among optimization models for machine learning, the bilevel optimization
model approach is an efficient one that makes it possible to create intelligent machine
learning algorithms for data prediction and classification.

In this work, we study a bilevel problem that is an optimization problem where the
constraint is another optimization problem. This problem is formulated as follows:

min
x∈S∗

ω(x), (1)

where ω : Rn → R is assumed to be strongly convex and differentiable, while S∗ is a
nonempty set of inner-level problem minimizers given by
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min
x∈Rn
{ f (x) + g(x)}, (2)

where f : Rn → R is a differentiable and convex function such that ∇ f is L f -Lipschitz-
continuous and g : Rn → R∪ {∞} is a lower-semicontinuous, proper, convex function.

It can be observed that the above bilevel optimization model contains both inner- and
outer-level minimization problems (Equations (1) and (2)). Normally, the minimization
problem in Equation (2) can be applied to data prediction and classification; see [12,13].
However, among the solutions to the inner-level problem (Equation (2)), we use the objec-
tive function ω to select solutions that are minimizers of ω. This method can provide more
accuracy for data prediction and classification than Equation (2) alone.

The inner-level optimization problem is a constraint on the outer-level optimization
problem. There are several algorithms for solving the problem in Equation (2); see [12,14,15].

The proximal gradient (PG) method, also known as the proximal forward–backward
technique, is the basic algorithm used to solve the problem in Equation (2) (see [16,17]). It
is defined by

xn+1 = proxαng(I − αn∇ f )(xn), (3)

where αn > 0 is the step size, proxg is the proximity operator of g and∇ f is the gradient of
f . The algorithm in Equation (3), which is also known as the forward–backward splitting
algorithm (FBSA) [14], is suitable to solve Equation (2) if ∇ f is L-Lipschitz-continuous.
The FBSA is also called an iterative denoising method [18] or a fixed-point continuation
algorithm [19].

One of the most well-known first-order optimization schemes is the fast iterative
shrinkage-thresholding algorithm (FISTA). Beck and Teboulle [15] proposed the FISTA to
solve the problem in Equation (2) by using an inertial technique as follows:

wn = prox 1
L g(I − 1

L∇ f )(xn),

pn+1 = (1 +
√

1 + 4p2
n)/2,

xn+1 = yn +
(

pn−1
pn+1

)
(wn − wn−1), n ≥ 1,

(4)

where x1 = w0 ∈ RN and p1 = 1. They applied the FISTA to image restoration problems
and showed that the rate of convergence of the FISTA was better than other existing
algorithms. The generated sequence’s weak convergence was then proved by Liang and
Schonlieb [20], who modified the FISTA by setting pn+1 = (u +

√
v + sp2

n)/2, where
u, v > 0 and 0 < s ≤ 4.

It may be noticed that the convex minimization problem and fixed-point problem
are related. If 0 < α < 2/L, then we know that a forward–backward operator T :=
proxαg(I − α∇ f ) is nonexpansive. It is known that Fix(T) = argmin{ f (x) + g(x)}. Fixed-
point problems with nonexpansive mappings have been investigated by many authors
using the method of viscosity approximation [21–24]. This method provides a strong
convergence result and it is defined by the following:

xn+1 = βnS(xn) + (1− βn)Txn, n ≥ 1, (5)

where x1 ∈ H, S : H → H is a contraction when H is a Hilbert space and {βn} ∈ (0, 1). We
can also call Equation (5) the viscosity forward–backward algorithm if T := proxαg(I −
α∇ f ).

In 2014, Beck et al. [25] introduced a new, direct first-order method to solve the problem
in Equation (1) and established its convergence results under some suitable conditions,
as well as the rate of convergence of the sequence of function values. After that, Sabach
and Shtern [26] proposed the following algorithm, called the bilevel gradient sequential
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averaging method (BiG-SAM), to solve the problems in Equations (1) and (2). The iterative
process can be defined as follows

un = proxcg(xn−1 − c∇ f (xn−1)),

vn = xn−1 − λ∇ω(xn−1),

xn+1 = γnvn + (1− γn)un, n ≥ 1,
(6)

where x0 ∈ Rn, c ∈ (0, 1/L f ], λ ∈ (0, 2/(Lω + σ)], in which L f and Lω are the Lipschitz
constants of ∇ f and ∇ω, and {γn} satisfies certain conditions from [22]. In terms of the
values of the inner objective function, the authors of [22] studied and analyzed the conver-
gence behavior of the BiG-SAM with a nonasymptotic O(1/n) global rate of convergence.

In 2019, Shehu et al. [27] introduced an inertial extrapolation step into BiG-SAM
(Equation (6)), calling the result the inertial bilevel gradient sequential averaging method
(iBiG-SAM), to solve the problems in Equations (1) and (2). This iterative scheme is de-
fined by 

sn = xn + θn(xn − xn−1),
un = proxcg(I − c∇ f )(sn),

vn = sn − λ∇ω(sn),

xn+1 = γnvn + (1− γn)un, n ≥ 1.

(7)

In their study, they presented a strong convergence analysis of an inertial algorithm that
can be used to approximate fixed points of nonexpansive mappings in infinite-dimensional
real Hilbert spaces. Furthermore, they converted the bilevel optimization problems into
a fixed-point problem of nonexpansive mappings and showed its convergence under
certain conditions.

In 2022, Duan and Zhang [28] introduced an alternated inertial step into BiG-SAM to
create an alternated inertial bilevel gradient sequential averaging method (aiBiG-SAM) for
solving convex bilevel optimization problems. It is defined as

sn =

{
xn if n is even,
xn + θn(xn − xn−1) if n is odd,

and 
un = proxcg(I − c∇ f )(sn),

vn = sn − λ∇ω(sn),

xn+1 = γnvn + (1− γn)un, n ≥ 1.
(8)

They proved that the aiBiG-SAM converges strongly to a solution for the problem and
extended the method into a more general alternating inertial acceleration method.

Recently, in [29,30], the authors proposed new bilevel optimization methods within
the framework of Hilbert spaces and proved the strong convergence of their algorithms
using the viscosity approximation technique.

In this paper, motivated by these results, we present a novel accelerated algorithm
using the viscosity approximation method and the inertial parameter of the FISTA to solve
the convex bilevel optimization problem. We then demonstrate the efficacy of this algorithm
in solving data classification problems.

The paper is organized as follows. In Section 2, we present the preliminaries in terms
of definitions, notations and lemmas for proving the main results. The new accelerated
viscosity-type algorithm is introduced and studied, and then we apply it to solving the
convex bilevel optimization problems described in Section 3. Then, in Section 4, we
present mathematical models for the classification of datasets and the application of the
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results obtained in the previous section, and we provide numerical experimental results in
Section 5. Finally, we present the conclusions and future work in Section 6.

2. Preliminaries

In this section, we present fundamental ideas and principles that will be utilized in
the the rest of the research.

Throughout the present paper, H denotes a real Hilbert space with norm ‖ · ‖ and inner
product 〈·, ·〉, R is the set of real numbers and N is the set of positive integers. I denotes
the identity operator on H. Let C be a nonempty subset of H and let T be a mapping of C
into itself. The strong convergence of a sequence {xn} in H to x ∈ H is denoted by xn → x,
weak convergence by xn ⇀ x and Fix(T) symbolizes the set of all fixed points of T.

For this work, nonlinear mappings from the following classes were essentially needed.

Definition 1. The mapping T : C → C is said to be L-Lipschitz with L ≥ 0 if

‖Tu− Tv‖ ≤ L‖u− v‖

for all u, v ∈ C.
An L-Lipschitz mapping T is said to be a contraction mapping if L ∈ [0, 1), and it is

nonexpansive if L = 1.

Definition 2 ([31]). Let T be a nonexpansive mapping of C into itself and let Tn : C → C be a
family of nonexpansive mappings such that ∅ 6= Fix(T) ⊂ Γ :=

⋂∞
n=1 Fix(Tn), where Fix(Tn) is

the set of all fixed points of Tn for each n ≥ 1. Then, {Tn} is said to satisfy the NST-condition (I)
with T if, for any bounded sequence {xn} ⊂ C,

lim
n→∞

‖xn − Tnxn‖ = 0 implies lim
n→∞

‖xn − Txn‖ = 0.

Definition 3 ([32,33]). For any bounded sequence {un} in H, a family {Tn} of nonexpansive
mappings Tn : C → C with

⋂∞
n=1 Fix(Tn) 6= ∅ is said to satisfy the condition (Z) if

lim
n→∞

‖un − Tnun‖ = 0.

Then, every weak cluster point of {un} ∈
⋂∞

n=1 Fix(Tn).

Using the demicloseness of I − T where T : C → C is a nonexpansive mapping, we
obtain the following remark.

Remark 1. Let T be a nonexpansive mapping. Then, {Tn} satisfies the condition (Z) if {Tn} is a
family of nonexpansive mappings that satisfies NST-condition (I) with T.

The metric projection PC from H onto C is defined by

PCx = argmin{‖x− y‖ : y ∈ C}

for all x ∈ H, where C is a nonempty closed convex subset of H. It is known that v = PCx
if and only if 〈x− v, y− v〉 ≤ 0 for all y ∈ C.

Let us recall the definition of the proximity operator and its properties.

Definition 4 ([34,35]). Let f : H → R ∪ {∞} be a convex, proper and lower-semicontinuous
function. The proximity operator of f , denoted by prox f , is defined as follows:

prox f = min
y∈H

f (y) +
1
2
‖x− y‖2

and it can be formulated in the equivalent form:
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prox f = (I + ∂ f )−1,

where ∂ f is the subdifferential of f defined by

∂ f (x) := {v ∈ H : f (x) + 〈v, u− x〉 ≤ f (u) for all u ∈ H}

for all x ∈ H. For ρ > 0, we also know that proxρ f is firmly nonexpansive and

Fix(proxρ f ) = Argmin f := {v ∈ H : f (v) ≤ f (u) for all u ∈ H}.

Let C be closed convex with ∅ 6= C ⊂ H. In particular, if f := iC, the indicator
function on C is defined by

iC(x) =
{

0 if x ∈ C,
∞ otherwise.

Then, proxρ f = PC.
The following lemmas are well known; see [13,36,37].

Lemma 1 ([13]). Let g : H → R∪ {∞} be a lower-semicontinuous, proper and convex function
and let f : H → R be differentiable and convex such that ∇f is L-Lipschitz-continuous. Let

Tn := proxρng(I − ρn∇f) and T := proxρg(I − ρ∇f),

where ρn, ρ ∈ (0, 2/L) with ρn → ρ as n→ ∞. Then, {Tn} satisfies the NST-condition (I) with T.

Lemma 2 ([36]). Let η, µ ∈ H and ζ ∈ [0, 1]. Then, the following properties hold for H:
(1) ‖η + µ‖2 ≤ ‖η‖2 + 2〈µ, η + µ〉;
(2) ‖η ± µ‖2 = ‖η‖2 ± 2〈η, µ〉+ ‖µ‖2;
(3) ‖ζη + (1− ζ)µ‖2 = ζ‖η‖2 + (1− ζ)‖µ‖2 − ζ(1− ζ)‖η − µ‖2.

Lemma 3 ([37]). Let {cn} ⊂ R+, {bn} ⊂ R and {tn} ⊂ (0, 1) such that ∑∞
n=1 tn = ∞.

Suppose that

cn+1 ≤ (1− tn)cn + tnbn

for all n ∈ N. If lim supi→∞ bni ≤ 0, and for any subsequence {cni} of {cn} satisfying

lim inf
i→∞

(cni+1 − cni ) ≥ 0,

then limn→∞ cn = 0.

In the next section, we introduce an inertial viscosity modified SP algorithm and its
application to the convex bilevel optimization problem.

3. Proposed Method

We first present a new inertial viscosity algorithm and prove a strong convergence
theorem under mild conditions as follows.

Let C be closed convex with ∅ 6= C ⊂ H and the mapping S : C → C be a k-contraction
where 0 < k < 1. Let {Tn} be a family of nonexpansive mappings of C onto itself satisfying
the condition (Z) such that Γ :=

⋂∞
n=1 Fix(Tn) 6= ∅.

Many mathematicians often use inertial-type extrapolation [38,39] in optimization
problems to speed up the convergence of iterative methods by using the technical term
θn(xn − xn−1). The momentum xn − xn−1 is controlled by the parameter θn, also known as
an inertial parameter.

In 2012, Phuengrattana and Suantai [40] introduced an SP algorithm and showed that
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its convergence behavior is better than Mann and Ishikawa iterations [41,42]. By using
the idea of the SP algorithm, in this paper, we introduce an inertial viscosity modified SP
algorithm (IVMSPA) for obtaining a common fixed point for {Tn} as follows.

The following theorem establishes strong convergence for the proposed algorithm.

Theorem 1. A sequence {xn} generated by Algorithm 1 converges strongly to an element ă ∈ Γ,
where ă = PΓS(ă), provided that the sequences {αn}, {βn}, {γn} and {τn} satisfy the follow-
ing conditions:

(C1) 0 < a1 ≤ βn ≤ a2 < 1;
(C2) 0 < αn, γn < 1, limn→∞ αn = 0 and ∑∞

n=1 αn = ∞;
(C3) limn→∞ τn = 0.

Algorithm 1 An Inertial Viscosity Modified SP Algorithm (IVMSPA)

Initialization: Let {αn}, {βn}, {γn} and {τn} be sequences of positive real numbers.
Take x0, x1 ∈ H arbitrarily.
Iterative steps: For n ≥ 1, calculate xn+1 as follows:
Step 1. Compute an inertial parameter

θn =

 min
{

pn−1
pn+1

, αnτn
‖xn−xn−1‖

}
if xn 6= xn−1,

pn−1
pn+1

otherwise,

where p1 = 1 and pn+1 =
1+
√

1+4p2
n

2 .
Step 2. Compute

yn = xn + θn(xn − xn−1),
zn = (1− αn)yn + αnS(yn),
wn = (1− βn)zn + βnTnzn,
xn+1 = (1− γn)wn + γnTnwn.

Proof. Let ă = PΓS(ă). Then, ă ∈ ⋂∞
n=1 F(Tn). First of all, we show that {xn} is bounded.

From Algorithm 1, we have

‖wn − ă‖ ≤ (1− βn)‖zn − ă‖+ βn‖Tnzn − ă‖
≤ (1− βn)‖zn − ă‖+ βn‖zn − ă‖
= ‖zn − ă‖ (9)

and

‖xn+1 − ă‖ ≤ γn‖wn − ă‖+ (1− γn)‖Tnwn − ă‖
≤ γn‖wn − ă‖+ (1− γn)‖wn − ă‖
= ‖wn − ă‖
≤ ‖zn − ă‖. (10)

From the definition of yn and zn, we obtain

‖zn − ă‖ ≤ αn‖S(yn)− ă‖+ (1− αn)‖yn − ă‖
≤ αn‖S(yn)− S(ă)‖+ αn‖S(ă)− ă‖+ (1− αn)‖yn − ă‖
≤ αnk‖yn − ă‖+ αn‖S(ă)− ă‖+ (1− αn)‖yn − ă‖

=
[
1− αn(1− k)

]
‖yn − ă‖+ αn‖S(ă)− ă‖
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≤
[
1− αn(1− k)

][
‖xn − ă‖+ θn‖xn−1 − xn‖

]
+ αn‖S(ă)− ă‖

≤
[
1− αn(1− k)

]
‖xn − ă‖+ αn

(
θn

αn
‖xn−1 − xn‖+ ‖S(ă)− ă‖

)
.

From (C3), we have

θn

αn
‖xn−1 − xn‖ → 0 as n→ ∞. (11)

From Equation (11), we know that there exists M > 0 such that θn
αn
‖xn−1 − xn‖ ≤ M for all

n ≥ 1. Thus,

‖zn − ă‖ ≤
[
1− (1− k)αn

]
‖xn − ă‖+ (1− k)αn

(
‖S(ă)− ă‖+ M

1− k

)
≤ max

{
‖xn − ă‖, ‖S(ă)− ă‖+ M

1− k

}
.

From Equation (10) and the above inequality, we obtain

‖xn+1 − ă‖ ≤ max
{
‖xn − ă‖, ‖S(ă)− ă‖+ M

1− k

}
.

Using mathematical induction, we have

‖xn − ă‖ ≤ max
{
‖x1 − ă‖, ‖S(ă)− ă‖+ M

1− k

}
for all n ≥ 1. It follows that {xn} is bounded and, hence, {zn} is bounded. According to
part (3) of Lemma 2, we obtain

‖xn+1 − ă‖2 = γn‖Tnwn − ă‖2 + (1− γn)‖wn − ă‖2 − (1− γn)γn‖wn − Tnwn‖2

≤ (1− γn)‖wn − ă‖2 + γn‖wn − ă‖2

= ‖wn − ă‖2 (12)

and

‖wn − ă‖2 = βn‖Tnzn − ă‖2 + (1− βn)‖zn − ă‖2 − (1− βn)βn‖zn − Tnzn‖2

= ‖zn − ă‖2 − (1− βn)βn‖zn − Tnzn‖2. (13)

Using Lemma 2, we obtain

‖zn − ă‖2 ≤ ‖(1− αn)(yn − ă) + αn(S(yn)− S(ă))‖2 + 2αn〈S(ă)− ă, zn − ă〉
≤ (1− αn)‖yn − ă‖2 + αn‖S(yn)− S(ă)‖2 + 2αn〈S(ă)− ă, zn − ă〉
≤ (1− αn)‖yn − ă‖2 + αnk‖yn − ă‖2 + 2αn〈S(ă)− ă, zn − ă〉

=
[
1− αn(1− k)

]
‖yn − ă‖2 + 2αn〈S(ă)− ă, zn − ă〉 (14)

and

‖yn − ă‖2 ≤ ‖xn − ă‖2 + 2θn‖xn − ă‖‖xn−1 − xn‖+ θ2
n‖xn−1 − xn‖2. (15)

From Equations (12)–(15), we obtain
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‖xn+1 − ă‖2 ≤ ‖zn − ă‖2 − (1− βn)βn‖zn − Tnzn‖2

=
[
1− (1− k)αn

]
‖yn − ă‖2 + 2αn〈S(ă)− ă, zn − ă〉

− (1− βn)βn‖zn − Tnzn‖2

≤
[
1− (1− k)αn

]
‖xn − ă‖2 + 2θn‖xn − ă‖‖xn−1 − xn‖+ θ2

n‖xn−1 − xn‖2

+ 2αn〈S(ă)− ă, zn − ă〉 − (1− βn)βn‖zn − Tnzn‖2 (16)

=
[
1− (1− k)αn

]
‖xn − ă‖2 − (1− βn)βn‖zn − Tnzn‖2 + (1− k)αnbn,

where

bn =
1

1− k

[
2〈S(ă)− ă, zn − ă〉+ θn‖xn−1 − xn‖

(
θn

αn
‖xn−1 − xn‖

)
+2‖xn − ă‖

(
θn

αn
‖xn−1 − xn‖

)]
.

It follows that

(1− βn)βn‖zn − Tnzn‖2 ≤ ‖xn − ă‖2 − ‖xn+1 − ă‖2 + (1− k)αnB
′
, (17)

where B
′
= sup{bn : n ∈ N}.

We next show that {xn} converges strongly to ă. To apply Lemma 3, we set
an := ‖xn − ă‖2 and tn := αn(1− k). From Equation (16), we obtain

an+1 ≤ (1− tn)an + tnbn.

Suppose that {ani} is a subsequence of {an} such that lim infi→∞(ani+1 − ani ) ≥ 0. Using
Equation (17) and (C2), we obtain

lim sup
i→∞

βni (1− βni )‖zni − Tni zni‖
2 ≤ lim sup

i→∞

(
ani − ani+1 + αni (1− k)B

′)
= lim sup

i→∞
(ani+1 − ani )

≤ 0. (18)

From (C1) and Equation (18), we obtain

lim
i→∞
‖zni − Tni zni‖ = 0. (19)

Next, we show that lim supi→∞ bni ≤ 0. Obviously, it suffices to show that

lim sup
i→∞

〈S(ă)− ă, zni − ă〉 ≤ 0.

Since {zni} is bounded, there exists a subsequence {znij
} of {zni} and y ∈ H such that

znij
⇀ y as j→ ∞ and

lim sup
i→∞

〈S(ă)− ă, zni − ă〉 = lim
j→∞

〈
S(ă)− ă, znij

− ă
〉

.

Since {Tn} satisfies the condition (Z) and Equation (19), we obtain y ∈ Γ. Using ă = PΓS(ă),
we get

lim
j→∞

〈
S(ă)− ă, znij

− ă
〉
≤ 0.
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So, we have
lim sup

i→∞
〈S(ă)− ă, zni − ă〉 ≤ 0.

Thus, in view of Lemma 3, {xn} converges to ă as required.

We next establish our inertial bilevel gradient modified SP algorithm (IBiG-MSPA)
to solve the convex bilevel optimization problems in Equations (1) and (2) by applying
Algorithm 1 and present its strong convergence. We use the following assumptions in order
to solve this problem:

• f : H → R is a convex and differentiable function such that∇ f is Lipschitz-continuous
with constant f > 0 and g : H → (−∞, ∞] are proper, lower-semicontinuous and
convex functions;

• ω : Rn → R is strongly convex with a parameter σ such that ∇ω is Lω-Lipschitz
continuous and s ∈ (0, 2

Lω+σ ).

Our IBiG-MSPA algorithm is defined as follows.
The following useful result was proved by Sabach and Shtern [26].

Proposition 1. Suppose that ω : Rn → R is strongly convex with σ > 0 and ∇ω is Lipschitz-
continuous with constant Lω . Then, the mapping defined by Ss = I − s∇ω is a contraction for all
s ∈ (0, 2

σ+Lω
). Thus,

‖x− s∇ω(u)− (v− s∇ω(v))‖ ≤

√
1− 2sσLω

σ + Lω
‖u− v‖

for all u, v ∈ Rn.

Combining Theorem 1 and Proposition 1, we obtain the following result.

Theorem 2. Let Λ be the set of all solutions to Equation (1) and ă = PS∗(I − s∇ω)(ă) and let
(C1)–(C3) in Theorem 1 hold. Then, {xn} generated by Algorithm 2 converges strongly to ă ∈ Λ.

Algorithm 2 An Inertial Bilevel Gradient Modified SP Algorithm (IBiG-MSPA)

Initialization: Let {αn}, {βn}, {γn}, {τn} and {cn} be sequences of positive real num-
bers. Take x0, x1 ∈ H arbitrarily.
Iterative steps: For n ≥ 1, calculate xn+1 as follows:
Step 1. Compute an inertial parameter

θn =

 min
{

pn−1
pn+1

, αnτn
‖xn−xn−1‖

}
if xn 6= xn−1,

pn−1
pn+1

otherwise,

where p1 = 1 and pn+1 =
1+
√

1+4p2
n

2 .
Step 2. Compute

yn = xn + θn(xn − xn−1),
zn = (1− αn)yn + αn(I − s∇ω)yn,
wn = (1− βn)zn + βn proxcng(I − cn∇ f )zn,
xn+1 = (1− γn)wn + γn proxcng(I − cn∇ f )wn.

Proof. Set S = I − s∇ω and Tn = proxcng(I − cn∇ f ). Then, according to Proposition 1,
S is a contraction mapping. We also know that Tn is nonexpansive. Using Theorem 1,
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we can conclude that xn → ă ∈ Γ, where ă = PΓS(ă). It can be noted that, in this case,
Γ =

⋂∞
n=1 F(Tn) = S∗. Then, for all x ∈ S∗, we have

0 ≥ 〈S(ă)− ă, x− ă〉 = 〈ă− s∇ω(ă)− ă, x− ă〉 = 〈−s∇ω(ă), x− ă〉.

Dividing the above inequalities by −s, we obtain

〈∇ω(ă), x− ă〉 ≥ 0

for all x ∈ S∗. Then, xn → ă ∈ Λ. This completes the proof.

Using our main results (Theorems 1 and 2), we apply the IBiG-MSPA in the next
section to solve a classification problem.

4. Applications with Classification Problems

There are several mathematical models used for the classification of datasets. For this
paper, we use the extreme learning machine model and present the advantages of this
model as follows.

The advantages of feedforward neural networks have led to their widespread use in
diverse fields over the past few decades. Stated concisely, feedforward neural networks
allow for the approximation of complex nonlinear mappings directly from input samples
and provide models for numerous natural and artificial phenomena that are difficult to deal
with using classical parametric techniques. However, the rendering of feedforward neural
networks is time-consuming due to the dependence of the parameters of the different layers
and the requirement to configure all of the parameters. One of the widely used feedforward
neural networks is the single hidden layer feedforward neural network (SLFN). It has been
widely studied in terms of both theory and application because of its learning ability and
anti-error ability (see [43–45] for more detail).

In order to increase the effectiveness of SLFNs, a development model of a neural
learning algorithm called the extreme learning machine (ELM) [46] was recently established.
The advantage of the ELM is that hidden node learning parameters, such as input weights
and biases, are generated at random and do not need to be adjusted, whereas the output
weights can be obtained analytically by using a simply generalized inverse operation. The
ELM has been effectively used in several real-world applications, including regression and
classification problems [47,48].

We next examine some aspects of the ELM regarding the classification of data.
Let {(xl , tl) : xl ∈ Rn, tl ∈ Rm, l = 1, 2, . . . , N} be a set of training data taken

from different samples with a total sample size N, where xl = [xl1, xl2, . . . , xln] ∈ Rn

and tl = [tl1, tl2, . . . , tlm] ∈ Rm are the input data and target data, respectively. The
mathematical formula for an ELM with M hidden nodes is as follows:

M

∑
r=1

KrE(〈vr, xs〉+ ar) = os, s = 1, . . . , N,

where E(x) represents the activation function, Kr = [Kr1, Kr2, . . . , Krm]T is the weight that
links the r-th output node and the hidden node, vr = [vr1, vr2, . . . , vrn]T is the weight that
links the r-th input nodes and the hidden node and ar is a bias.

The purpose of SLFNs is the prediction of N output nodes that satisfy
∑N

s=1 ‖os − ts‖ = 0. This means that there exist Kr, vr and ar such that

M

∑
r=1

KrE(〈vr, xs〉+ ar) = ts, s = 1, . . . , N.

From the above system of linear equations, we can rewrite the following:

HK = T,
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where

H =

E(〈v1, x1〉+ a1) · · · E(〈vM, x1〉+ aM)
...

. . .
...

E(〈v1, xN〉+ a1) · · · E(〈vM, xN〉+ aM)

,

K = [KT
1 , . . . , KT

M]Tm×M, and T = [tT
1 , . . . , tT

N ]
T
m×N .

As the Moore–Penrose generalized inverse H̆ of H exists, K can be obtained from
K = H̆T (see [46]). If H̆ does not exist, then it could be impossible to find K using this
approach. To solve this issue, we determine K as a minimizer of the ordinary least squares
minimization problem (OLS):

min
K
‖HK− T‖2

2, (20)

where H ∈ RN×M is called the hidden layer output matrix, K ∈ RM×m is the weight of
the output layer, T ∈ RN×m is the training data target matrix, M is the number of hidden
nodes and N is the number of training samples.

However, in a real situation, the use of OLS (Equation (20)) may cause an overfitting
problem. To overcome such problems, the output weight K can be approximated with the
least absolute shrinkage and selection operator (lasso) (see [49]):

min
K
‖HK− T‖2

2 + λ‖K‖1, (21)

where λ is a regularization parameter. Now, let S∗ be the set of all solutions to Equation (21).
Among the solutions in S∗, we would like to select a solution K∗ ∈ S∗ in such a way that
K∗ is a minimizer of

min
K∈S∗

1
2
‖K‖2. (22)

Our aim in the next section is to employ the IBiG-MSPA to solve the convex bilevel
optimization problems in Equations (21) and (22) and to use the obtained optimal weight for
classification of the Diabetes [50], Heart Disease UCI [51] and Iris datasets [52]. These databases
are widely used as benchmarks in many research works in the area of data classification.

5. Numerical Experiments

In this section, we present the experimental results from applying our proposed
algorithm to classify the Diabetes, Heart Disease UCI and Iris datasets.

We employed our algorithm (IBiG-MSPA) to solve the convex bilevel optimization
problems in Equations (21) and (22) by setting ω(K) = 1

2‖K‖2
2, f (K) = ‖HK− T‖2

2, g(K) =
λ‖K‖1 and E(x) as sigmoid.

The parameters selected for this experiment are shown in Table 1, where L f = 2‖H‖2.
We measured the efficiency of each algorithm using the output data accuracy as follows:

accuracy = 100× correct prediction
total cases

.

Next, we used the Diabetes, Heart Disease UCI and Iris datasets for classification, as
described below.

Diabetes dataset [50]: There are nine features in the dataset. We categorized two data
classes in this dataset.

Heart Disease UCI dataset [51]: The dataset has 14 features. Patients’ heart disease
data are presented in this dataset. We wanted to categorize the data into two groups.

Iris dataset [52]: The dataset contains four features and three classes. We aimed to
classify the data into three types of iris plants.

Testing and training data are shown in Table 2.
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Table 1. Parameter selection for the IBIG-MSPA, BiG-SAM, iBiG-SAM and aiBiG-SAM.

Methods Settings

IBiG-MSPA s = 0.01, cn = 1
L f

, αn = 1
50n , βn = γn = 0.5, τn = 1020

n

BiG-SAM λ = 0.01, c = 1
L f

, γn = 2(0.1)

1−
2+cL f

4

iBiG-SAM
λ = 0.01, c = 1

L f
, α = 3, γn = 2(0.1)

1−
2+cL f

4

, βn = γn
n0.01

θn =

{
min

{
n

n+α−1 , βn
‖xn−xn−1‖

}
if xn 6= xn−1,

n
n+α−1 otherwise.

aiBiG-SAM
λ = 0.01, c = 1

L f
, γn = 2(0.1)

1−
2+cL f

4

, βn = γn
n0.01

θn =

{
min

{
n

n+α−1 , βn
‖xn−xn−1‖

}
if xn 6= xn−1,

n
n+α−1 otherwise.

Table 2. Diabetes, Heart Disease UCI and Iris datasets, with 30% of each dataset used for testing and
70% for training.

Datasets Features
Sample

Testing Set Training Set

Diabetes 9 230 538

Heart Disease UCI 14 90 213

Iris 4 45 105

For each dataset, the numbers of iterations and hidden nodes were determined as
follows Table 3:

Table 3. Numbers of iterations and hidden nodes specified for each data collection.

Datasets Number of Iterations ( Ī) Number of Hidden Nodes (M)

Diabetes 200 100

Heart Disease UCI 100 60

Iris 300 30

The number of iterations for each dataset was chosen to produce the best results for
each method under consideration, as can be seen in Table 2.

We conducted experiments to compare the efficiency of the IBiG-MSPA with other
algorithms under consideration; namely, the BiG-SAM, iBiG-SAM and aiBiG-SAM.

As representations of the accuracy of testing and training, we use the terms Ac.Test
and Ac.Train, respectively, in Table 4.

Table 4. Accuracy of predictions using various algorithms.

Dataset
IBiG-MSPA BiG-SAM iBiG-SAM aiBiG-SaM

Ac.Train Ac.Test Ac.Train Ac.Test Ac.Train Ac.Test Ac.Train Ac.Test

Diabetes 77.11 81.08 71.98 76.13 72.34 76.58 70.88 73.42

Heart
Disease

UCI
85.71 83.87 74.76 74.19 82.38 78.49 83.81 79.57

Iris 99.05 100.00 94.29 95.56 94.29 95.56 94.29 95.56

The results from Table 4 show that our proposed method, the IBiG-MSPA, performed
better than the BiG-SAM, iBiG-SAM and aiBiG-SAM in terms of training and testing
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accuracy for each dataset. Therefore, based on our study, the IBiG-MSPA could classify the
chosen datasets with greater accuracy than the other methods.

We can observe that, for the Heart Disease UCI dataset, the accuracies of the existing
algorithms were around 70%, while our proposed algorithm achieved accuracy over 80%. In
a practical scenario, even small improvements in classification accuracy can have significant
effects. For instance, in the case of medical diagnoses, for which the Heart Disease UCI
dataset is often used as a benchmark, a slight increase in accuracy can lead to more reliable
predictions and better patient outcomes. It may help identify more individuals at risk or
improve the overall efficiency of the classification process, leading to appropriate treatments.
This observation applies equally well to the other two datasets and datasets similar to them.

6. Conclusions

We first introduced an inertial viscosity modified SP algorithm (IVMSPA). Then, the
strong convergence of the IVMSPA was proved under mild conditions with the control
sequence. Next, we proposed the inertial bilevel gradient modified SP algorithm (IBiG-
MSPA) to solve the convex bilevel optimization problem. Finally, we applied our method
to classifying the Diabetes, Heart Disease UCI and Iris datasets. The numerical experiments
showed that the IBiG-MSPA had higher efficiency than the BiG-SAM, iBiG-SAM and
aiBiG-SAM.

The performances of the algorithms discussed in this paper depend in part on the
characteristics of the datasets. In order to improve the accuracy, one needs to address issues
related to the preprocessing of the data, such as feature selection, missing data and dataset
imbalances. The goal of our future research is to develop new techniques or processes that
can improve the efficiency of algorithms in classifying imbalanced and big datasets.
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