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Abstract: Aiming at the problem of multimodal transport path planning under uncertain environ-
ments, this paper establishes a multi-objective fuzzy nonlinear programming model considering
mixed-time window constraints by taking cost, time, and carbon emission as optimization objectives.
To solve the model, the model is de-fuzzified by the fuzzy expectation value method and fuzzy
chance-constrained planning method. Combining the game theory method with the weighted sum
method, a cooperative game theory-based multi-objective optimization method is proposed. Finally,
the effectiveness of the algorithm is verified in a real intermodal network. The experimental results
show that the proposed method can effectively improve the performance of the weighted sum method
and obtain the optimal multimodal transport path that satisfies the time window requirement, and the
path optimization results are better than MOPSO and NSGA-II, effectively reducing transportation
costs and carbon emissions. Meanwhile, the influence of uncertainty factors on the multimodal
transport route planning results is analyzed. The results show that the uncertain factors will sig-
nificantly increase the transportation cost and carbon emissions and affect the choice of route and
transportation mode. Considering uncertainty factors can increase the reliability of route planning
results and provide a more robust and effective solution for multimodal transportation.

Keywords: multimodal transport; uncertainty; path planning; game theory

MSC: 90C11; 90B06; 91A12; 68T01

1. Introduction

In recent years, with the rapid growth of commodity consumption, the market envi-
ronment and industrial structure have changed greatly, and the logistics and transportation
problems have become more and more complex. The logistics industry is facing a major
challenge of reducing logistics and transportation costs and improving transportation
efficiency, and the traditional single transportation method has been difficult to meet the
multifaceted needs of the market. Multimodal transport relies on two or more modes of
transport and integrates the characteristics of various modes of transport, which can im-
prove transport efficiency and reduce transport costs, and has become the focus of scholars’
research [1]. The core problem of multimodal transport is the optimization of transport
routes and the choice of transport mode, which restrict each other and profoundly affect
the interests of logistics enterprises and customers through transportation cost and time.
Therefore, it is of great practical significance for the development of the logistics industry
to study the problem of multimodal transportation route planning and provide effective
solutions.

Aiming at the multimodal transportation route planning problem, scholars at home
and abroad have conducted much research [2,3]. However, most research conducted by
scholars focuses on multimodal transportation path planning in deterministic environments,
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and there is less research in uncertain environments. In practice, the process of cargo
transportation will be affected by various uncertain factors. For example, the uncertainty
of transportation and transfer time caused by road conditions and road section damage,
the lack of effective information communication between customers and carriers, or the
enterprise’s demand prediction to determine the cargo transportation plan, but the forecast
results can hardly accurately reflect the demand uncertainty caused by the fluctuation of
cargo demand [4]. If these uncertainties are not taken into account, transportation costs
and risks will increase, and the quality of transportation services will be affected. Although
some scholars have considered the uncertainty of the transportation process, these models
involve only one source of uncertainty. Considering multiple uncertainties at the same
time better reflects the actual transportation scenarios, thus improving the reliability of
multimodal route optimization results [5]. This paper combines the uncertainty of customer
demand and the uncertainty of transportation time to model multimodal transportation to
provide more reliable multimodal transportation path solutions.

Demand uncertainty can be described by fuzzy programming and stochastic program-
ming [6,7]. However, stochastic programming requires a large amount of historical order
data to fit probability distributions of uncertain parameters [8]. In most cases, there are not
enough or unreliable data to model multimodal transport using stochastic programming.
In practice, decision-makers are more likely to give their estimates of uncertain parameters,
and it is more feasible to use fuzzy programming to solve uncertainty. Therefore, this
paper uses fuzzy programming to represent the uncertainty of demand. In terms of time
uncertainty, scholars have also done a lot of research. For example, Adil et al. [9] used fuzzy
stochastic programming to describe transportation time and established a fuzzy stochastic
optimization model for multimodal transportation. Demir et al. [10] used sampling averag-
ing to represent the uncertainty in transportation time and demonstrated the advantages of
the stochastic approach in achieving robust transportation plans. In addition, the uncer-
tainty of transport time and transshipment time can also be fitted through common random
distribution [11], and the modelling difficulty is lower than other methods. To facilitate the
solution of the model, this paper uses normal and uniform distributions to describe the
uncertainty of transportation time and transshipment time, respectively.

Improving transportation efficiency is an important goal for carriers to fulfil trans-
portation orders, which can improve the service level by enhancing the timeliness of
transportation. The time window is an effective way to seek on-time delivery and reduce
transportation costs in transportation planning. Most of the literature constructs a hard
time window constraint [12,13]; that is, the completion of a transportation order must fall
within its time window. Otherwise, it is regarded as a failure. However, the hard time
window may cause the problem to be difficult to solve, or the optimal solution cannot be
found [14], so it is more appropriate to establish a soft time window. In this case, there is an
inventory cost for early arrival and a penalty cost for late arrival. In addition, considering
only the time window of the destination simplifies the model research, but in practice, each
intermediate node may have different time window requirements [15]. The multimodal
routes can be better optimized if the time windows of the nodes in the multimodal network
are considered. Therefore, this paper introduces a mixed-time window constraint, i.e., the
intermediate node time window is set as a soft time window, which allows goods to arrive
earlier or later, while the endpoint is set as a hard time window, in which goods must arrive
within the range, making the model more consistent with the actual situation.

Many studies have planned multimodal transport routes to minimize cost and time
without considering the impact of carbon emissions. As green transportation is getting
more and more attention from the government, the issue of carbon emission has become
a hot topic of research in recent years. Compared with a single mode of transportation,
multimodal transportation can significantly reduce carbon emissions. Incorporating carbon
emissions into multimodal transport route planning can further stimulate its potential.
According to the current research, carbon emissions can be combined into the total cost
through carbon tax [16] or optimized as an independent target in the model [17]. However,
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Sun et al. [18] pointed out that carbon tax is not applicable in practice and will lead to
relatively high emission costs in some paths. Therefore, it is more reliable to optimize
carbon emission as an independent objective [19]. Moreover, multi-objective optimization
can balance sub-objectives to meet actual needs and has been widely used in decision-
making [20]. Therefore, this paper establishes a multi-objective optimization model with
transportation cost, time, and carbon emission as the objectives.

The multi-objective optimization models usually have infinitely many Pareto optimal
solutions and need to combine the user preferences for each objective to determine a
single suitable solution [21]. The weighted sum method is a classical method for multi-
objective optimization [22], and its effectiveness in solving multi-objective optimization
models, especially preference models, has been verified [23]. Therefore, this paper chooses
the weighted sum method to solve the multimodal transport model. The weighted sum
method solves the multi-objective model by converting the multi-objective optimization
problem into a single-objective problem by assigning the corresponding weights to different
objectives and solving it by an optimization algorithm [23]. However, the setting of weight
coefficients is highly subjective, and it is difficult to determine the appropriate weights
for each objective based on preferences [24]. Fixed weights tend to discard the optimal
solution of the whole system and cause unnecessary losses. It is necessary to automatically
adjust the weights of each objective during the optimization process by an appropriate
and effective method to seek the relevant equilibrium among the objectives and converge
to the optimal solution in dynamic optimization. Game theory is an effective method to
deal with the interaction of multiple objectives and has been widely used in some complex
optimization problems between various fields [25]. Therefore, this paper combines the
game theory method with the weighted sum method to propose a cooperative game theory-
based multi-objective optimization method for multimodal transportation. In the process of
algorithm optimization, each objective is as far away from its worst result as possible, and
the weights of each objective are dynamically adjusted in the optimization process by the
game theory method without prior knowledge to obtain the best multimodal transportation
path scheme.

After the weight of each object is dynamically updated by the cooperative game theory
method, it can be solved by the optimization algorithm. The multi-objective optimiza-
tion model of multimodal transport established in this paper involves many intermediate
variables and is a typical NP-hard problem [26], which is computationally intensive and
not suitable for solving using mathematical planning and exact solution methods [11].
The excellent performance of the heuristic algorithm in combinatorial optimization makes
it widely used in multimodal cargo transportation optimization [27]. Among them, the
particle swarm algorithm (PSO) has the characteristics of fast convergence ability and
computational simplicity [28,29] and has some advantages over other evolutionary algo-
rithms in terms of implementation difficulty, algorithm parameter setting, and optimization
search [30]. Therefore, in this paper, PSO is chosen as the solution algorithm for the
multimodal transport model.

In this study, our main contributions are:

1. To solve the problem of multimodal transport path planning under uncertain environ-
ments, a multi-objective fuzzy nonlinear programming model considering mixed-time
window constraints is established.

2. To make the model solvable, the fuzzy expected value method and the fuzzy chance-
constrained programming method are used to de-fuzzify the established multi-
objective fuzzy programming model and obtain the deterministic parameters of
the model.

3. Combining the game theory method with the weighted sum method, a multi-objective
optimization method of multimodal transport based on cooperative game theory is
proposed. The weights of each objective are dynamically adjusted in the algorithm
optimization process through cooperative game theory to obtain the optimal path of
multimodal transportation.
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This paper is organized as follows: Section 2 develops a multi-objective optimization
model for multimodal transportation considering multiple uncertainty factors under a
mixed-time window constraint. Section 3 defuzzifies the multi-objective fuzzy program-
ming model and presents the algorithms used to solve the multimodal multi-objective
model. The model and algorithm proposed in this paper are verified in a real combined
transport network in Section 4, and the relevant results are analyzed. Section 5 summarizes
the full work and provides an outlook for future work.

2. Problem Description and Model Formulation

In this section, the studied multimodal route planning problem is introduced, and a
multimodal multi-objective optimization model considering multiple uncertainties under a
mixed-time window constraint is constructed.

2.1. Description of Multimodal Transport Path Planning Problem

The multimodal transport route optimization problem studied in this paper can be
described as follows: in a certain multimodal network, a batch of goods is transported
from the origin to the destination in a specified time window, and the resulting path
has the lowest transportation cost and the lowest transportation carbon emission. In the
process of transportation, goods will pass through several intermediate transportation
nodes, between which the goods can be transported by road, rail, or air. The speed,
transportation cost, and transportation carbon emissions of different transportation modes
vary. In addition to the origin and destination, each transport node enables the transfer of
goods between different transport modes. In addition, due to inaccurate communication
information between the customer and the carrier, or if the operator’s demand forecast
of the cargo transportation plan is not accurate, the cargo transportation volume has
a certain uncertainty. Meanwhile, the transportation process is inevitably subjected to
some unexpected situations, such as traffic jams and road damage, leading to uncertainty
in transportation time and transshipment time. The schematic diagram of multimodal
transportation is shown in Figure 1.
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The purpose of this study is to take transportation cost, transportation time, and trans-
portation carbon emission as optimization objectives under the uncertain transportation
environment and consider the mixed-time window constraint. In the specified time win-
dow, the obtained transportation path with the combination of nodes and transportation
modes in the whole transportation process has the least total cost and the least carbon
emission to provide a reliable path transportation scheme for multimodal transportation.

2.2. Fuzzy Demand Modeling

In this paper, fuzzy programming is used to describe the uncertainty of demand. The
commonly used fuzzy numbers in fuzzy programming include triangular fuzzy number
and trapezoidal fuzzy number. Compared with triangular fuzzy, trapezoidal fuzzy is more
flexible in decision-making and can better match the actual decision-making situation [31].
Therefore, in this paper, the trapezoidal fuzzy number is used to represent the uncertainty
of demand.

The trapezoidal fuzzy number uses four parameters to describe the uncertainty d̃ =(
dmin, dL, dU , dmax), as shown in Figure 2 [8]. Where dmin is the most pessimistic estimate

and is unlikely to happen in practice, but it could happen if things go badly. The interval[
dL, dU] indicates the lower and upper bounds of the most likely demand, corresponding to

the most realistic scenario. dmax is the most optimistic estimate, and like dmin, it’s unlikely
to happen in practice, but it’s possible when conditions are good.
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According to the four parameters of a trapezoidal fuzzy number, membership function
µ
(

d̃
)

of trapezoidal fuzzy number d̃ can be obtained, as shown in Equation (1) [32].

µ
(

d̃
)
=


d̃−dmin

dL−dmin , if dmin ≤ d̃ ≤ dL

1, if dL ≤ d̃ ≤ dU

d̃−dmax

dU−dmax , if dU ≤ d̃ ≤ dmax

0, otherwise

(1)

With the membership function of a trapezoidal fuzzy number, we can use it to describe
the uncertainty of demand. In addition, the parameters of the membership function can be
adjusted according to specific conditions to meet the requirements of actual application
scenarios.

2.3. Multi-Objective Optimization Modeling of MULTIMODAL Transport
2.3.1. Parameter and Variable Definitions

In this paper, the parameters and variables defined in Table 1 are used to construct a
multi-objective optimization model for multimodal transportation considering multiple
uncertainty factors under a mixed-time window constraint.
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Table 1. Symbols and their representations.

Sets

N Transport node set
K Transport mode set
H Transshipment node set

Parameters

d̃ Fuzzy demand of customer orders, d̃ =
(
dmin, dL, dU , dmax)

Qk
ij The maximum transport capacity between transport node i and j using transport mode k

Qkl
h

The maximum transshipment capacity at transshipment node h where the mode of transport is
converted from k to l

ck Unit transportation cost of transport mode k
ckl

h Unit transshipment cost of converting transport mode k to l at transshipment node h
cs Unit storage cost of early arrival of goods
cp Unit penalty cost for late arrival of goods
ek Unit transportation carbon emissions for transportation mode k
ekl

h Unit transshipment carbon emissions of converting transport mode k to l at transshipment node h
Dk

ij Transportation distance by transport mode k between transport node i and j
νk The average travel speed of transport mode k
tk
ij Transportation time by transport mode k between transport node i and j

tkl
h The transshipment time at transshipment node h where the mode of transport is converted from k to l
ti Time of arrival of goods at place i

[TLi, TUi]
The soft time window of cargo expiration that can be accepted at place i, TLi and TUi are the lower

and upper bounds of the time window, respectively

[Tmin, Tmax]
The hard time window for the expiration of the customer’s shipping order, Tmin and Tmax are the

lower and upper bounds of the time window, respectively

Decision Variables

Xk
ij Binary variable with a value of 1 if the transport mode k is selected from node i to j, and 0 otherwise

Ykl
h

Binary variable with a value of 1 if the transport mode is converted from i to j at transshipment node
h, and 0 otherwise

2.3.2. Multi-Objective Optimization Model Construction Considering Mixed-Time
Windows

To simplify the solution and optimization of the model, it is necessary to make some
reasonable assumptions about the multimodal transport problem:

Assumption 1. Goods can only be carried in a whole batch by one mode of transport between nodes
and cannot be transported in parts.

Assumption 2. The transfer of goods only takes place at the node city, and the mode of transport is
changed at most once.

Assumption 3. The path is acyclic, i.e., the same transport node can be passed at most once.

Assumption 4. The transport time only considers the time between city nodes, not the micro time
of intra-city transport.

Assumption 5. The transport time tk
ij obeys a normal distribution, i.e., tk

ij ∼ N
(

µk
ij, σk

ij

)
, where

µk
ij is the average travel time between nodes i and j, i.e., µk

ij = Dk
ij/νk, and σk

ij denotes the standard
deviation of the travel time between nodes i and j.

Assumption 6. The transshipment time tkl
h at the transshipment node obeys a uniform distribution,

i.e., tkl
h ∼ U

(
mkl

h , nkl
h

)
, where mkl

h and nkl
h denote the minimum and maximum values of the

distribution, respectively.
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Assumption 1 ensures that only one mode of transportation can be used during the
transportation of goods and that no increase or decrease of goods will be generated; As-
sumption 2 ensures that at most one mode of transport changeover takes place when a
transshipment of cargo occurs; Assumption 3 avoids repeated passage through the same
node in the middle during path planning, which is consistent with the actual transportation
situation; Assumption 4 makes the problem under study more concerned with path plan-
ning and simplifies the model processing; Assumption 5 describes the transportation time
as a random variable following different normal distributions; Assumption 6 describes
the transshipment time as a random variable following a uniform distribution to simulate
realistic road conditions, weather, and other uncertainty factors.

These are the assumptions used in this paper, which simplify the model processing
and problem-solving, and are closer to the actual transportation situation. Next, we will
build a multi-objective optimization model for multimodal transportation based on these
assumptions to solve the route planning problem considering multiple uncertainties under
mixed time window constraints.

1. Model objective function

The multimodal transport model established in this paper considers three optimization
objectives: transportation cost, transportation time, and transportation carbon emission.
Specifically, the total transportation cost includes transportation process cost, transshipment
cost when a transshipment occurs, storage cost for early arrival, and penalty cost for late
arrival, where the storage cost and penalty cost are caused by the violation of the soft
time window of the intermediate node. Therefore, the transportation cost function can be
expressed as:

min C = d̃ ∑
i∈N

∑
j∈N

∑
k∈K

ckDk
ijX

k
ij + d̃ ∑

h∈H
∑
k∈K

∑
l∈K

ckl
h Ykl

h + d̃cs

N

∑
i=1

max(TLi − ti, 0) + d̃cp

N

∑
i=1

max(ti − TUi, 0) (2)

The total transportation time includes the transportation process time and the trans-
shipment time when transshipment occurs. Among them, the transport time tk

ij obeys

normal distribution, and the transshipment time tkl
h at the transshipment node obeys uni-

form distribution. Therefore, the transport time function can be expressed by the following
equation:

min T = ∑
i∈N

∑
j∈N

∑
k∈K

tk
ijX

k
ij + ∑

h∈H
∑
k∈K

∑
l∈K

tkl
h Ykl

h (3)

Transport carbon emissions are composed of carbon emissions in the transport pro-
cess and transport carbon emissions during transport. The objective function of carbon
emissions can be expressed as:

min E = d̃ ∑
i∈N

∑
j∈N

∑
k∈K

ekDk
ijX

k
ij + d̃ ∑

h∈H
∑
k∈K

∑
l∈K

ekl
h Ykl

h (4)

Equations (2)–(4) are the objective functions of the multi-objective optimization model
of multimodal transport established in this paper.

2. Model Constraints

To ensure the correctness of the multimodal transport model solution results, some
constraints must be imposed on the model. In this paper, the following constraints are set
on the model:

(I) Time window constraint
In order to ensure the transportation time efficiency of cargo, reduce the cost, and

improve the utilization of transportation resources, time window constraints need to be
added to the model. In this paper, a mixed time window constraint is introduced, i.e., the
time window of the intermediate node is set as a soft time window, which allows the cargo
to arrive early or late, while the endpoint is set as a hard time window, in which the cargo
must arrive within the range so that the model is more in line with the actual situation.
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Constraint (5) represents the time for goods to arrive at place i should satisfy the time
window constraint at place i. This is a soft time window constraint, where early arrival
incurs storage costs and late arrival incurs penalty costs.

TLi ≤ ti ≤ TUi (5)

Constraint (6) is a hard time window constraint, which indicates that the total trans-
portation time of the goods from the origin to the destination should be within the specified
hard time window of the customer’s transportation order. Violation of this constraint is
deemed as the transportation path is not feasible.

Tmin ≤ T ≤ Tmax (6)

(II) Capacity constraints on transport and transshipment processes
When transporting between nodes, the volume of freight cannot exceed the range of

transport capacity of the selected transport mode:

d̃Xk
ij ≤ Qk

ij, ∀i, j ∈ N, k ∈ K (7)

When transshipment occurs at a node, the volume of freight cannot exceed the trans-
shipment capacity between the corresponding two modes of transport:

d̃Ykl
h ≤ Qkl

h , ∀h ∈ H, k, l ∈ K (8)

(III) Decision variable constraints
During transportation, only one mode of transportation can be selected between two

adjacent nodes:
∑
k∈K

Xk
ij ≤ 1, ∀i, j ∈ N (9)

When a node transshipment occurs, at most one transshipment occurs:

∑
k∈K

∑
l∈K

Ykl
h ≤ 1, ∀h ∈ H (10)

Equations (2)–(10) construct a multi-objective optimization model for the multimodal
transportation problem considering multiple uncertainty factors under the mixed time
window constraint. The algorithm for solving this model will be presented in the next
section of this paper.

3. Solution Method
3.1. Model Defuzzification

In Section 2, a fuzzy mixed-integer nonlinear programming model is developed in
this paper, where the objective functions (2) and (4) and the constraints (7) and (8) carry
trapezoidal fuzzy numbers indicating uncertain demands. Due to the uncertainty of
these parameters, the model cannot be solved directly to obtain an optimal solution [23].
Therefore, to provide feasible route planning, the model needs to be de-fuzzified to obtain
a clear model [4]. The process of defuzzification mainly includes two parts: defuzzification
of objective function and defuzzification of fuzzy constraint.

3.1.1. Defuzzification of the Objective Function

The fuzzy expectation value model approach is an effective method for dealing with
objective functions with fuzzy parameters [33]. The method uses the expected value of a
fuzzy set to convert the fuzzy objective into a clear objective and achieves the objective
de-fuzzification by minimizing or maximizing the expected value. By using the fuzzy
expectation model, we can obtain a clear objective function that can better guide the actual
decision.
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In this paper, the objective functions (2) and (4) both involve the trapezoidal fuzzy
number of uncertain demands, which makes it impossible to solve the objective function
directly. Therefore, this paper uses the fuzzy expectation value model approach to defuzzify
the objective functions (2) and (4) and rewrite them as Equations (11) and (12) to obtain a
clear objective function.

min C = EV


d̃ ∑

i∈N
∑

j∈N
∑

k∈K
ckDk

ijX
k
ij + d̃ ∑

h∈H
∑

k∈K
∑

l∈K
ckl

h Ykl
h +

d̃cs
N
∑

i=1
max(TLi − ti, 0) + d̃cp

N
∑

i=1
max(ti − TUi, 0)

 (11)

min E = EV

[
d̃ ∑

i∈N
∑
j∈N

∑
k∈K

ekDk
ijX

k
ij + d̃ ∑

h∈H
∑
k∈K

∑
l∈K

ekl
h Ykl

h

]
(12)

where EV[] denotes the fuzzy expectation value of the fuzzy numbers in [ ]. Further,
according to the linear property of the expected value operator, the Equations (11) and (12)
can be converted to (13) and (14):

min C = EV
[
d̃
]

∑
i∈N

∑
j∈N

∑
k∈K

ckDk
ijX

k
ij + EV

[
d̃
]

∑
h∈H

∑
k∈K

∑
l∈K

ckl
h Ykl

h

+EV
[
d̃
]
cs

N
∑

i=1
max(TLi − ti, 0) + EV

[
d̃
]
cp

N
∑

i=1
max(ti − TUi, 0)

(13)

min E = EV
[
d̃
]
∑
i∈N

∑
j∈N

∑
k∈K

ekDk
ijX

k
ij + EV

[
d̃
]

∑
h∈H

∑
k∈K

∑
l∈K

ekl
h Ykl

h (14)

For a trapezoidal fuzzy number d̃ =
(
dmin, dL, dU , dmax), its fuzzy expected value can

be expressed as [34]:

EV
[
d̃
]
=

dmin + dL + dU + dmax

4
(15)

Therefore, the objective function after defuzzification can be obtained by substituting
Equation (15) into Equations (13) and (14), as shown in Equations (16) and (17):

min C = dmin+dL+dU+dmax

4

[
∑

i∈N
∑

j∈N
∑

k∈K
ckDk

ijX
k
ij + ∑

h∈H
∑

k∈K
∑

l∈K
ckl

h Ykl
h +

cs
N
∑

i=1
max(TLi − ti, 0) + cp

N
∑

i=1
max(ti − TUi, 0)

] (16)

min E =
dmin + dL + dU + dmax

4

[
∑
i∈N

∑
j∈N

∑
k∈K

ekDk
ijX

k
ij + ∑

h∈H
∑
k∈K

∑
l∈K

ekl
h Ykl

h

]
(17)

Equations (16) and (17) are the de-fuzzy transportation cost and transportation time
functions of the multimodal transport model. Compared with the original expressions
(2) and (3), the defuzzification objective function is clearer and can be directly used for
optimization and decision-making, allowing us to evaluate each route more accurately and
thus provide a more feasible route planning solution.

3.1.2. Defuzzification of the Fuzzy Constraint

There are also two fuzzy constraints (7) and (8) in the model constraints constructed
in Section 2. To solve these fuzzy constraints, we adopt a method that is widely used
for fuzzy constraint problems in path planning, which is the fuzzy chance constraint
planning method. By constructing the fuzzy chance constraint form, the fuzzy constraints
are de-fuzzified, and finally, the de-fuzzified objective function is obtained.

In the fuzzy chance constraint planning method, the fuzzy measures of fuzzy events
need to be determined first. Currently, there are three main fuzzy measures for modeling
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fuzzy chance constraints: possibility measure, necessity measure, and credibility mea-
sure [35]. Compared with the possibility and necessity measures, the credibility measure
can more fully express the uncertainty, adapt to more complex solution scenarios, and
has the property of self-dual, which provides convenience for the inverse operation of
constraints often needed in practical problems. Therefore, this paper constructs a fuzzy
chance constraint based on credibility measures. Based on the credibility measure, the
fuzzy chance constraints of constraints (7) and (8) can be expressed as:

Cr
{

d̃Xk
ij ≤ Qk

ij

}
≥ β1, ∀i, j ∈ N, k ∈ K (18)

Cr
{

d̃Ykl
h ≤ Qkl

h

}
≥ β2, ∀h ∈ H, k, l ∈ K (19)

where Cr{} represents the credibility of the fuzzy event in { }; β1, β2 (β1 ∈ [0, 1], β2 ∈ [0, 1])
is the confidence level set subjectively by the decision maker in the decision process based
on knowledge, experience, and preference; and the fuzzy chance constraint ensures that
the credibility of the fuzzy event should not be less than the confidence level. However,
the description of the fuzzy events in { } is still related to the fuzzy parameters, and
therefore still cannot be solved directly using the algorithm. The literature [36] provides a
clear expression to measure the confidence that the trapezoidal fuzzy number is not less
than the deterministic number. For a trapezoidal fuzzy number b̃ = (b1, b2, b3, b4) and a
deterministic number a, when a fuzzy credibility measure is used, there is the following
relation:

Cr
{

b̃ ≤ a
}
=



0, if a ≤ b1

a−b1
2(b2−b1)

, if b1 ≤ a ≤ b2

1
2 , if b2 ≤ a ≤ b3

a−2b3+b4
2(b4−b3)

, if b3 ≤ a ≤ b4

1, a ≥ b4

(20)

In practical decision-making, the confidence level is usually set in the [0.5, 1] inter-
val [37], and therefore, based on the segmented linear relationship of the confidence
measure (Figure 3), Cr

{
b̃ ≤ a

}
≥ λ(λ ∈ [0.5, 1]) can be rewritten as:

Cr
{

b̃ ≤ a
}
≥ λ⇔ a− 2b3 + b4

2(b4 − b3)
≥ λ⇔ a ≥ 2(1− λ)b3 + (2λ− 1)b4 (21)

According to (21), the equivalently clear form of the chance constraint of Equations
(18) and (19) can be obtained as follows:

Qk
ij ≥ 2(1− β1)dUXk

ij + (2β1 − 1)dmaxXk
ij, ∀i, j ∈ N, k ∈ K, β1 ∈ [0.5, 1] (22)

Qkl
h ≥ 2(1− β2)dUYkl

h + (2β2 − 1)dmaxYkl
h , ∀i, j ∈ N, k ∈ K, β2 ∈ [0.5, 1] (23)

After the fuzzy object and fuzzy constraint are de-fuzzified, clear and explicit objective
functions and constraints are obtained, which makes the model solution more specific
and easier. Next, the algorithm used to solve the multi-objective model of multimodal
transportation will be introduced in this paper.
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3.2. Design of Multimodal Transport Route Optimization Algorithm

The multimodal transport model proposed in this paper is a multi-objective optimiza-
tion model, which needs to integrate users’ preferences for each objective to determine a
single suitable solution. The weighted sum method is a classical algorithm to deal with
multi-objective models, especially preference models, and its effectiveness in solving multi-
objective models has been proven. This method combines the user’s preferences for various
targets, converts the multi-objective model to the single objective model by specifying
the weight of the target, and keeps the weights constant to obtain a suitable solution by
algorithmic solution. In this paper, since the objective functions (2), (3), and (4) contain
variables of different units, respectively, they must be dimensionless before converting
them to single objective functions [38]:

C∗ = C−Cmin
Cmax−Cmin

T∗ = T−Tmin
Tmax−Tmin

E∗ = E−Emin
Emax−Emin

(24)

where Cmax, Tmax, Emax are the maximum values of the total cost, total time, and carbon
emission, respectively. Cmin, Tmin, Emin are the minimum values of the total cost, total time,
and carbon emissions, respectively. The dimensionless multi-objective model can then be
weighted and summed to a single-objective model by Equation (25):

minZ = ω1C∗ + ω2T∗ + ω3E∗,
3

∑
i=1

ωi = 1 (25)

where Z represents the generalized cost function weighted by each objective. ωi represents
the weighting factors of different objectives.

3.2.1. Dynamic Optimization of Multi-Objective Weights Based on Game Theory Approach

The weighted sum method can transform the multi-objective model into a single-
objective model, which is convenient for the algorithm to solve. However, it is often
difficult to avoid subjectivity in setting the weight coefficient of multiple objectives, and
it is difficult to determine the appropriate weight of different objectives according to
preferences. The fixed weight makes the optimal solution of optimization abandon the
benefits of the whole system, causing unnecessary losses. Therefore, this paper proposes a
multi-objective optimization method for multimodal transportation based on cooperative
game theory, which makes each objective as far as possible from the worst value of all
individual objectives and seeks the equilibrium weights between each objective without
a priori knowledge through cooperative game theory [39]. In the optimization process of
using the algorithm, the weight of each object is constantly adjusted dynamically to obtain
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the best multimodal transportation routing solution. The dynamic optimization process of
multi-objective weights based on the cooperative game theory approach is as follows:

Firstly, each optimization objective is minimized separately, and the values of each
objective under the optimal solution obtained when minimizing each objective are recorded.
From all the recorded values, determine the minimum fi,min and worst values fi,wst of
objective i.

Next, the model is solved using the optimization algorithm, and the value fi of each
objective obtained by each optimization algorithm is normalized using Equation (26).
The normalized value of 0 indicates that the objective reaches its optimal value, and the
normalized value of 1 indicates that the objective reaches its worst value.

fni =
fi − fi,min

fi,wst − fi,min
(26)

Finally, define the combined objective F (Equation (27)) and update the weights ωi of
all objectives optimized by minimizing the combined objective F.

F( f1, f2, f3) =
3

∑
i=1

ωi· fni − S (27)

where f1, f2, f3 represent the cost, time, and carbon emission objectives optimized in the

model, respectively, and S =
3

∏
i=1

(1− fni) is a supernormal value introduced as a penalty

to avoid each objective being too close to its worst case.
Through the above method, the weights of each object in the method can be dynam-

ically adjusted in the process of algorithm optimization. The weights of each objective
are set as equal at the initialization and then updated dynamically and iteratively by the
cooperative game theory method.

3.2.2. Solving Multimodal Transport Models Based on PSO Optimization

After the weight of each object is updated dynamically by the cooperative game theory
method, the PSO algorithm is used to optimize the multimodal transport model. The
PSO algorithm adjusts two properties of itself: position (P) and velocity (V), based on
the individual extremes value (pbest) and global extremes value (gbest) of the particle
trajectories in the search space, and converges to the global optimal solution through
continuous iterative updates. In this paper, each particle represents a transport path.
Assuming that the particle search space is D dimension, the velocity and position update
formula of each particle in dimension d in the n-th iteration is as follows:

Vd(n) = χVd(n− 1) + ϕ1r1(pbestd − Pd(n− 1)) + ϕ2r2(gbest− Pd(n− 1)) (28)

Pd(n) = Pd(n− 1) + Vd(n) (29)

where χ is the inertia factor, r1 and r2 are random numbers on the interval [0, 1], and ϕ1 and
ϕ2 are the learning factors, which are set to 2.05 and 2.05, respectively [40]. To balance the
global and local search performance of PSO and reduce the number of iterations, the linear
decreasing weight strategy (LDW) [41] is used in this paper to update the inertia factor χ.

χk = (χini − χend)(kmax − k)/kmax + χend (30)

where χini is the initial inertia weight, χend is the inertia weight at the maximum number
of iterations, k is the current number of iterations, and kmax is the maximum number of
iterations. According to the literature [42], χini = 0.9 and χend = 0.4 are taken.
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In summary, the specific implementation steps of the cooperative game theory-based
multi-objective optimization method for multimodal transport proposed in this paper are
as follows:

Step 1: Minimize each objective separately and obtain the optimal value fi,min and the
worst value fi,wst for the i-th objective.

Step 2: Initialize the weights and convert the multi-objective problem to a single-
objective problem using the weighted sum method.

Step 3: Z in Equation (25) is used as the cost function of the PSO, the current optimal
solution is obtained by optimization, and the value of each objective fi is recorded.

Step 4: The values of each objective obtained from the solution of the optimization
algorithm are normalized, and the weights of each objective are dynamically adjusted by
the cooperative game theory method using Equation (27).

Step 5: Determine whether the termination condition is satisfied (the maximum
number of iterations G is reached). If not, return to Step 3 to continue optimization; if yes,
obtain the optimal path by comparing all the recorded paths.

During the iterative process, the objective weights are dynamically adjusted by the
cooperative game theory approach, and the solution space is extensively searched. The
PSO algorithm is used to optimize the solution, optimize the value of the objective function,
and select the best solution while under the guidance of the cooperative game theory
method. The algorithm finds the optimal path for the multimodal transportation model in
the tradeoffs exploration and exploitation described above.

The flow chart of the designed cooperative game theory-based multi-objective dynamic
optimization method for multimodal transport is shown in Figure 4.
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4. Empirical Case Study
4.1. Case Description

In this section, a study is conducted with a real intermodal network of KYE Company
in China to verify the effectiveness of the proposed method and further discuss the impact
of uncertain demand and time on multimodal route optimization problems with time
windows. Through case studies, practical path-planning suggestions and options are
provided for decision-makers.

KYE is a large modern, integrated express transportation company mainly engaged
in “limited time express” service and has established a strong logistics business system
in China with rich transportation experience and advantages of land and air resources.
Considering the geographical and economic distributions, this paper selects part of its
intermodal network in mainland China for research, and the transportation network is
shown in Figure 5. As an important logistics distribution node, Guangzhou is selected as
an intermodal originating city to transport a batch of cargo to Beijing, a northern city in
China. According to the investigation of KYE’s operation data, the cargo demand in this
paper is expressed by trapezoidal fuzzy numbers as d̃ = (8t, 12t, 18t, 22t).
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Figure 5. Multimodal transportation network in the empirical case.

According to the actual situation, there are three modes of transportation in this
multimodal transportation network: highway, railway, and airway. The transportation
distances of different transportation modes between nodes are shown in Table 2. Among
them, the road distance is obtained through Gaode Map (One of the most popular map
service providers in China), the railroad distance is obtained through the website of China
Railway 12306, and the air distance is derived by referring to the flight mileage of Southern
Airlines.
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Table 2. Transportation distance between transportation nodes.

Adjacent Node
Distance (km)

Highway Railway Airway

(1,2) 632 757 515
(1,4) 670 707 562
(1,5) 780 1049 667
(2,3) 259 316 —
(2,5) 636 688 —
(3,7) 868 937 665
(3,8) 770 883 609
(4,5) 336 342 —
(4,6) 340 362 —
(5,6) 342 — —
(5,7) 587 838 —
(6,9) 513 536 —

(6,10) 855 1226 729
(7,8) 297 — —

(7,10) 622 667 579
(8,10) 813 912 739
(9,10) 446 — —
(9,11) 419 408 —
(10,11) 316 — —
(10,12) 320 301 —
(11,12) 311 292 —
(11,13) 292 281 —
(12,13) 134 — —

The average speed, unit transportation cost, and unit transportation carbon emission
of various transportation modes are shown in Table 3. The data are obtained from studies
in the literature [14,43,44] and others. The transport time obeys a normal distribution of
tk
ij ∼ N

(
µk

ij, σk
ij

)
, where µk

ij is the average travel time between nodes i and j, i.e.,µk
ij = Dk

ij/νk,

taking the standard deviation σk
ij = 0.1µk

ij.

Table 3. Transport-related parameters.

Transportation Mode Average Speed (km/h) Transportation Cost
(¥/(t·km))

Transportation Carbon
Emission (kg/(t·km))

Highway 90 0.35 0.12
Railway 60 0.165 0.025
Airway 600 0.6 1.05

The unit transshipment cost and carbon emission per unit transshipment between
various transportation modes are shown in Table 4, with data referenced from the lit-
erature [14,44] and actual operational data from KYE. The transshipment time between
the various modes of transportation obeys a uniform distribution tkl

h ∼ U
(

mkl
h , nkl

h

)
and

(nkl
h −mkl

h )/2 = 1h.
The transport capacity between each node and the transfer capacity between different

modes at the transshipment nodes are shown in Tables 5 and 6.
In China, packages usually arrive within three days. In this paper, the upper limit of

the hard time window of shipping time is set to 72 h. For the convenience of modeling and
calculation, the planning range from 0:00 on day 1 to 24:00 on day 3 is converted to the
range [0, 72 h]. Therefore, the time window constraints for each node are shown in Table 7.

According to KYE’s survey data, the unit storage cost incurred by the early arrival of
goods is CNY 30/(t·h), and the unit penalty cost for late arrival is CNY 50/(t·h). In addition,
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the confidence level in the fuzzy chance constraint has a significant effect on the multimodal
optimization results, and according to [5,34] et al., the confidence degree β1 = β2 = 0.8 is
taken. Next, this paper will verify the effectiveness of the proposed algorithm in this real
intermodal network case and further discuss the impact of uncertainties on multimodal
route optimization.

Table 4. Transshipment parameters.

Transshipment
Highway Railway Airway

Cost (¥/t) Carbon
Emission (kg/t) Cost (¥/t) Carbon

Emission (kg/t) Cost (¥/t) Carbon
Emission (kg/t)

Highway — — 10 1.56 12 3.12
Railway 10 1.56 — — 15 6
Airway 12 3.12 15 6 — —

Table 5. Transport capacity between nodes (Unit: t).

Origin Destination Highway Railway Airway

1 2 20 25 15
1 4 28 22 25
1 5 19 21 20
2 3 20 25 —
2 5 32 26 —
3 7 18 24 20
3 8 22 20 26
4 5 20 15 —
4 6 24 28 —
5 6 30 — —
5 7 21 24 —
6 9 24 26 —
6 10 28 24 22
7 8 25 — —
7 10 24 24 20
8 10 20 25 26
9 10 20 — —
9 11 30 24 —
10 11 26 — —
10 12 28 25 —
11 12 24 26 —
11 13 19 24 —
12 13 22 — —

Table 6. Transfer capacity at the nodes (Unit: t).

Node Highway—Railway Railway—Airway Highway—Airway

1 — — —
2 20 25 21
3 25 20 18
4 24 30 22
5 30 25 15
6 24 22 25
7 18 21 20
8 20 25 22
9 28 — —
10 30 25 26
11 24 — —
12 22 — —
13 — — —
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Table 7. Time window of the nodes (Unit: h).

Node Lower Limit of Soft
Time Window

Upper Limit of Soft
Time Window

Upper Limit of Hard
Time Window

1 0 72 72
2 7 15 72
3 11 20 72
4 7 14 72
5 8 20 72
6 12 23 72
7 20 30 72
8 25 36 72
9 26 35 72
10 30 40 72
11 32 40 72
12 35 42 72
13 30 50 72

4.2. Result Analysis

In this section, the effectiveness of the cooperative game theory-based multi-objective
optimization method for multimodal transportation is verified by the case in 4.1, and the
impact of uncertainty on path planning is discussed. All algorithms are based on MATLAB
R2021b running under Windows 10 (64-bit) with a Core i5 CPU and 8 GB RAM.

4.2.1. Algorithm Validity

To verify the effectiveness of cooperative game theory in dynamically adjusting the
weights of each objective in the process of algorithm optimization, this paper compares the
weighted sum method based on cooperative game theory with the weighted sum method
using fixed weights. Using the fixed-weight weighted sum method, four different weight
combinations are tested:

I. (1, 1, 1).
II. (0.8, 0.1, 0.1).
III. (0.1, 0.8, 0.1).
IV. (0.1, 0.1, 0.8).
In brackets, cost, time, and carbon emission weighting factors are in order. The four

combinations represent equal weight, cost preference, time preference, and carbon emission
preference, respectively. The weighted sum method based on cooperative game theory is
represented by V. For each combination of weights, the PSO algorithm population size is
20, and the maximum number of iterations is 200, and the results of the runs are obtained
as shown in Table 8. Better results in the table are shown in bold. Also, to visually compare
the optimization results of each objective when using different weights, the data in Table 8
are represented in Figure 6.

Table 8. Comparison results of different weighting combinations.

Weighting
Combination Cost/CNY Time/h Carbon

Emission/kg
Transportation

Path Transportation Mode

I 12,974.0 33.6 2706.9 1-4-6-9-11-13 Railway-Highway-Highway-
Highway-Railway

II 8005.9 44.7 1515.2 1-5-6-9-11-13 Railway-Highway-Railway-
Railway-Railway

III 45,156.0 16.9 21,903.0 1-4-6-10-12-13 Airway-Highway-Airway-
Highway-Highway

IV 8234.7 46.2 1238.1 1-4-6-10-12-13 Railway-Railway-Railway-
Railway-Highway

V 5679.2 38.3 860.3 1-4-6-9-11-13 Railway-Railway-Railway-
Railway-Railway
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According to the results in Table 8 and Figure 6, it can be seen that the results of
dynamically adjusting the weight of each objective through cooperative game theory are
better than those of using fixed weight combinations on the whole. Each objective is well
away from its worst result and effectively finds the optimal solution. This proves that the
method of dynamically adjusting weights by cooperative game theory effectively improves
the performance of the weighted sum method.

Meanwhile, under the multi-objective model, different combinations of objective
weights can lead to different transportation solutions, and an inappropriate setting of an
objective weight can damage the whole system. For example, with the enhanced preference
for the time objective (weight combination III), although transport time is greatly reduced,
transport costs and transport carbon emissions increase sharply, which seriously harms the
interests of carriers and the environment and is not in line with the green transportation
concept.

In this paper, we set the maximum number of update iterations G = 200 for dynamically
adjusting the weights of each objective using game theory, and the process of dynamically
adjusting the weights is shown in Figure 7. It can be seen that during the optimization
process, the weights of each objective are dynamically updated and stabilized in a certain
range; that is, the weighted sum method based on cooperative game theory has cost,
time, and carbon emission weighting factors varying in the range of (0.20~0.45, 0.36~0.70,
0.07~0.27), showing the relevant equilibrium among the objectives of the game process,
and the algorithm has the optimal solution in this dynamic optimization.
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In addition, the weighted sum method based on cooperative game theory (CGT-WSM)
is compared with multi-objective particle swarm optimizer (MOPSO) and non-dominated
sorting Genetic Algorithm-II (NSGA-II) to verify the effectiveness of the proposed method
in solving multi-objective optimization models for multimodal transport. Where the
population size of the MOPSO algorithm is 50, the maximum number of iterations is
200, the learning factors are both 2.05, the initial and final inertia weights are 0.9 and 0.4,
respectively, and the Pareto solution set library is 30. The population size of the NSGA-II
algorithm is 50, the maximum number of iterations is 200, and the crossover rate is 0.7,
which is used to control the probability that an offspring individual inherits genes from
a parent individual. A higher crossover rate helps maintain population diversity and
facilitates global search. A variation rate of 0.4 is used to introduce randomness and help
jump out of local optima. A higher variation rate helps to explore the search space and
potentially discover new solutions. The set of Pareto optimal solutions obtained by the
three methods is shown in Figures 8–10.
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The Pareto optimal solution of the model obtained using MOPSO and NSGA-II is a
non-dominated set of solutions, so it is also necessary to combine the decision maker’s pref-
erences for each objective to determine the final solution. As mentioned in Section 2.1, the
purpose of this study is to obtain the transportation path with the least total transportation
cost and the least carbon emission in the uncertain transportation environment within the
specified time window. According to the analysis of the Pareto optimal solution sets of
MOPSO and NSGA-II, it is found that the total transportation time of all solutions is within
the specified time window (72 h), and all of them are feasible solutions. Therefore, the
total cost and carbon emissions are further analyzed, and the optimal solutions of MOPSO
and NSGA-II algorithms are finally determined, as shown in the blue points in Figures 8
and 9. The comparison of the results obtained with the weighted sum method based on
cooperative game theory (CGT-WSM) is shown in Table 9. Better results in the table are
shown in bold.

Table 9. Comparison of algorithm optimization results.

Algorithm Cost/CNY Time/h Carbon
Emission/kg

Transportation
Path Transportation Mode

MOPSO 10,106.0 35.6 2268.2 1-4-6-9-11-13 Highway-Railway-Railway-
Railway-Highway

NSGA-II 7694.4 38.2 1629.5 1-4-6-9-11-13 Railway-Railway-Highway-
Railway-Railway

CGT-WSM 5679.2 38.3 860.3 1-4-6-9-11-13 Railway-Railway-Railway-
Railway-Railway

According to the algorithm comparison results, it can be seen that the paths obtained
by the three methods are the same, but the transportation modes are different. In the
specified time window, the proposed weighted sum method based on cooperative game
theory requires a lower cost compared to MOPSO and NSGA-II and can combine the
decision maker’s preference for the objective well to obtain the optimal path that satisfies
the time window requirement. The effectiveness of the weighted sum method in the
multi-objective preference model is further proved.

To further compare the performance of the three algorithms, this paper compares the
hypervolume (HV) and inverted generational distance (IGD) [22] of the MOPSO, NSGA-
II, and CGT-WSM algorithms for multimodal path optimization problems to assess the
differences between these algorithms in terms of diversity, distributivity, and approximation
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of the true frontier. Each algorithm is executed independently 20 times to collect statistics,
and the results obtained are shown in Table 10. Better results in the table are shown in bold.

Table 10. Mean and sd of HV and IGD of MOPSO, NSGA-II, and CGT-WSM.

Algorithm
HV IGD

Mean sd Mean sd

MOPSO 2.61 × 1010 4.5 × 109 1409.80 762.91
NSGA-II 3.15 × 1010 1.28 × 109 2252.94 404.31

CGT-WSM 2.3 × 1010 5.74 × 108 261.34 20.58

Table 10 shows that the CGT-WSM algorithm is slightly lower than the MOPSO and
NSGA-II algorithms in terms of the mean value of HV, but its standard deviation of HV
and the mean and standard deviation of IGD are smaller than the other two algorithms.
These results show that the solution set of the CGT-WSM algorithm performs well in
approximating the optimal solution while ensuring good diversity and performs better in
the distribution consistency of the solution set and approximating the real frontier. The
above results imply that the CGT-WSM algorithm maintains a good balance between
exploration and exploitation. Although the HV value of its solution set is slightly smaller,
its better stability and performance close to the real frontier enable the CGT-WSM algorithm
to provide better approximate solutions in problem-solving.

To determine if there is a significant difference in performance between these algo-
rithms, we chose to perform a non-parametric hypothesis test at the 5% significance level.
In this paper, Kruskal–Wallis one-way ANOVA [45] is used as a nonparametric hypothesis
testing method because of its applicability in comparing the equality of distributions of
multiple independent samples. The following research hypotheses are first proposed:

H0 (null hypothesis): there is no significant difference between the three multi-objective algo-
rithms.

H1 (Alternative hypothesis): there is a significant difference between the performance of the three
multi-objective algorithms.

By performing the Kruskal–Wallis test, we calculated p = 1.63 × 10−5, which is much
less than the significance level. Therefore, it means that at a 5% level of significance, we can
reject the null hypothesis and conclude that there is a significant difference between the
three multi-objective algorithms.

4.2.2. Analysis of the Impact of Uncertainty

To analyze the impact of uncertainty factors on multimodal transport route planning,
the following four transport scenarios are considered in this paper:

Scenario I. Determined demand and determined time.
Scenario II. Uncertain demand and determined time.
Scenario III. Determined demand and uncertain time.
Scenario IV. Uncertain demand and uncertain time.
When using the weighted sum method to optimize each transportation scenario,

to facilitate the comparison of the influence of uncertain factors on optimization results,
the weight of each objective is taken as the average value of the dynamic optimization
process of game theory, namely ωi = (0.33, 0.57, 0.10). The optimization results of various
transportation scenarios are shown in Table 11.
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Table 11. Optimization results for different transportation scenarios.

Transport
Scenario Cost/CNY Time/h Carbon

Emission/kg
Transportation

Path Transportation Mode

I 10,712.0 32.9 2627.5 1-4-6-9-11-13 Railway-Railway-Highway-
Highway-Highway

II 14,890.0 30.1 3522.1 1-4-6-9-11-13 Highway-Railway-Highway-
Highway-Highway

III 11,494.0 33.9 2780.5 1-4-6-10-11-13 Railway-Railway-Highway-
Highway-Highway

IV 12,445.0 34.4 2935.4 1-5-6-9-11-13 Highway-Highway-Railway-
Railway-Highway

Figure 11 shows the results of the comparison of cost, time, and carbon emissions for
four different transportation scenarios.
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The specific analysis of the results in Table 11 and Figure 11 is as follows:

(1) When the conditions of time factor are the same, the uncertainty of demand will lead
to an increase in transportation cost and carbon emission and have some influence on
the transportation time. When the time factors are determined, the cost of Scenario
II increases by 39.0%, the carbon emission increases by 34%, and the time decreases
by 9.44% compared to Scenario I. When the time factors are uncertain, Scenario IV
increases the cost by 8.27%, carbon emission by 5.57%, and time by 1.74% compared
to Scenario III.

(2) When the demand factor conditions are the same, the uncertainty of time leads to a
slight increase in transportation time and has some impact on transportation costs and
carbon emissions. When the demand factors are deterministic, Scenario III increases
costs by 7.30%, carbon emissions by 5.82%, and time by 2.85% compared to Scenario I.
When the demand factors are uncertain, Scenario IV has 16.42% less cost, 16.66% less
carbon emissions, and 14.52% more time than Scenario II.

(3) According to the analysis of the results in (1) and (2), demand uncertainty has a more
significant impact on the optimization results of the multimodal transport model.
When the time factors are determined, demand uncertainty increases transportation
costs and carbon emissions significantly, whereas when the demand factors are deter-
mined, time uncertainty increases the transportation time but has insignificant effects
on transportation costs and carbon emissions.

According to the above analysis, uncertain factors will increase transportation costs
and carbon emissions and affect the choice of routes and transportation modes. Therefore,
it is necessary to consider the uncertainty factor in the model when performing multimodal
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transport route planning. By taking uncertainties into account, the robustness and accuracy
of route planning results can be improved, thus providing a more reliable and efficient
solution for multimodal transport services.

5. Conclusions and Future Work

In this paper, a multi-objective fuzzy nonlinear programming model considering
mixed time window constraints is established to solve the problem of multimodal trans-
port path planning under an uncertain environment, taking cost, time, and carbon emis-
sion as optimization objectives. Then, the fuzzy expected value method and the fuzzy
chance-constrained programming method are used to de-fuzzify the multi-objective fuzzy
programming model, and the deterministic parameters of the model are obtained. To
solve the model, a multi-objective optimization method of multimodal transport based
on cooperative game theory is proposed. The game theory method is combined with the
weighted sum method, and the weight of each objective is dynamically adjusted in the
algorithm optimization process through cooperative game theory to obtain the optimal
multimodal transport path. Finally, the effectiveness of the proposed algorithm is verified
in a real combined transport network.

The experiment results show that the method of dynamically adjusting weights by
cooperative game theory effectively improves the performance of the weighted sum method,
and the obtained results are overall better than those using a fixed combination of weights.
In addition, compared with MOPSO and NSGA-II, the proposed algorithm has a better
optimization effect and can combine the decision-makers’ preference for the goal well
to obtain the optimal path that meets the requirements of the time window, effectively
reducing transportation costs and carbon emissions and promoting the development of
green transportation. The effectiveness of the weighted sum method in the multi-objective
preference model is further proved.

Finally, this paper analyzes the influence of uncertainty factors on multimodal route
planning results. The results show that demand uncertainty has a more obvious influence
on the optimization results of the multimodal transport model than time uncertainty. It is
necessary to consider the uncertainty factor in the model when performing multimodal
transport route planning. By taking uncertainties into account, the robustness and accuracy
of route planning results can be improved, thus providing a more reliable and efficient
solution for multimodal transport services.

In addition, through the analysis of route optimization results, it can be seen that
railway transportation plays a significant role in reducing transportation costs and carbon
emissions. Therefore, in future work, we will further explore the impact of the railway on
the multimodal transport structure, and we will consider more uncertainty factors in the
model to better simulate the real transportation environment, as well as find other methods
to solve the multi-objective problem and provide more reliable multimodal transportation
path solutions.
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