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Abstract: Three contributions are proposed. Firstly, a novel hybrid classifier (HHO-SVM) is intro-
duced, which is a combination between the Harris hawks optimization (HHO) and a support vector
machine (SVM) is introduced. Second, the performance of the HHO-SVM is enhanced using the
conventional normalization method. The final contribution is to improve the efficiency of the HHO-
SVM by adopting a parallel approach that employs the data distribution. The proposed models are
evaluated using the Wisconsin Diagnosis Breast Cancer (WDBC) dataset. The results show that the
HHO-SVM achieves a 98.24% accuracy rate with the normalization scaling technique, outperforming
other related works. On the other hand, the HHO-SVM achieves a 99.47% accuracy rate with the
equilibration scaling technique, which is better than other previous works. Finally, to compare the
three effective scaling strategies on four CPU cores, the parallel version of the proposed model
provides an acceleration of 3.97.
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1. Introduction

Breast cancer is the most common disease in men and women of all ages, accounting
for 11.7 percent of all cancer cases in 2020 [1]. It is the most common cancer in women
worldwide, accounting for 24.5 percent of all new cases diagnosed in 2020. Breast cancer
must be detected early in order to receive appropriate treatment and to reduce the number
of fatalities caused by the disease.

Expert systems and artificial intelligence techniques can aid breast cancer detec-
tion professionals in avoiding costly mistakes. These expert systems can review med-
ical data in less time and provide assistance to junior physicians. Breast cancer has
been detected with excellent accuracy using a variety of artificial intelligence techniques.
Marcano-Cedeo et al. [2] proposed the artificial metaplasticity MLP (AMMLP) method
with a 99.26 percent accuracy. An RS-SVM classifier for breast cancer diagnosis was used
by Chen et al. [3] and achieved 100% and 96.87% for the highest and average accuracy,
respectively. Hui-Ling Chen et al. [4] obtained a 99.3% accuracy using a PSO-SVM. For the
breast cancer dataset, Liu and Fu [5] presented the CS-PSO-SVM model, which merged
a support vector machine (SVM), particle swarm optimization (PSO), and cuckoo search
(CS) and obtained an accuracy of 91.3% versus 90% for both the PSO-SVM and GA-SVM
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models. Bashir, Qamar, and Khan [5] achieved a 97.4% accuracy with ensemble learning
algorithms. Tuba et al. [6] proposed an adjusted bat algorithm to optimize the parameters
of a support vector machine and showed that compared to the grid search, it led to a
96.49% better classifier versus 96.31% for the WDBC dataset. Shokoufeh Aalaei et al. [7]
introduced a feature selection strategy based on GA, which achieved a 96.9% accuracy. In
S. Mandal [8], different cancer classification models (naïve Bayes (NB), logistic regression
(LR), decision tree (DT)) were compared to find the smallest subset of features that could
warrant a high-accuracy classification of breast cancer. The author concluded that logistic
regression classifier was the best classifier with the highest accuracy of 97.9%. The particle
swarm optimization (PSO) algorithm was used as a feature option and to improve the C4.5
algorithm by Muslim et al. [9]. The accuracy of C4.5 was 95.61% versus 96.49% for the PSO
C4.5 algorithm for the WBC dataset. Liu et al. [10] suggested an improved cost-sensitive
support vector machine classifier (ICS-SVM), which took into consideration the unequal
misclassification costs of breast cancer intelligent diagnosis and tested the approach on
the (WBC) and (WDBC) breast cancer datasets. They scored 98.83% on the WDBC dataset.
Agarap [11] performed a comparison of six ML techniques and obtained a 99.04% accuracy
rate. The fruit fly optimization algorithm (FOA) enhanced by the Levy flight (LF) strategy
(LFOA) was proposed by Huang et al. [12] to optimize the best parameters of an SVM
and build an LFOA-based SVM for breast cancer diagnosis. Xie et al. [13] introduced a
new technique based on an SVM, with a combined RBF and polynomial kernel functions,
and the dragonfly algorithm (DA-CKSVM). Harikumar and Chakravarthy [14] proposed
a model that applied two machine learning (ML) algorithms, a decision tree (DT) and
the K-nearest neighbors (KNN) algorithm to the WDBC dataset after a feature selection
using a principal component analysis (PCA), and the results of the comparative analysis
indicated that the KNN classifier outperformed the DT classifier. Habib [15] used genetic
programming and machine learning algorithms and achieved a 98.24% classification accu-
racy. Hemeida et al. [16] proposed four distinct optimization strategies for the classification
of two datasets, the Iris dataset and the Breast Cancer dataset, using ANN. Telsang and
Hegde [17] presented a prediction of breast cancer using various machine learning algo-
rithms and compared the accuracy of their predictions using the WDBC dataset. After
analysis, the SVM model had an accuracy of 96.25 percent. Umme and Doreswamy [18]
proposed a hybrid diagnostic model that combined the bat method, gravitational search
algorithm (GSA), and a feed-forward neural network (FNN). When training and testing,
the accuracy on the WDBC dataset was found to be 94.28 percent and 92.10 percent, respec-
tively. Singh et al. [19] proposed the grey wolf–whale optimization algorithm, a hybrid
metaheuristic-swarm-intelligence-based SVM classifier (GWWOA-SVM). The hyperparam-
eters of the SVM were tuned using the WOA and GWO. The WDBC dataset was used to
test the effectiveness of the GWWOA-SVM. The model obtained a classification accuracy
of 97.721 percent. Badr et al. [20] proposed three contributions. They used a recent grey
wolf optimizer (GWO) to improve the performance of an SVM for diagnosing breast cancer
utilizing efficient scaling strategies in contrast to the traditional normalization technique.
They made use of a parallel technique that used task allocation to boost GWO’s efficiency.
The suggested model was tested on the WDBC dataset and obtained an accuracy rate of
98.60 percent with normalization scaling, and using scaling strategies also resulted in a fast
convergence and a 99.30 percent accuracy rate. On four CPU cores, the parallel version of
the proposed model provided a speedup of 3.9.

Scaling strategies can help classifiers become more accurate. For the SVM optimization,
Elsayed Badr et al. [21] presented ten efficient scaling approaches. For linear programming
approaches, these scaling techniques were effective [22–31]. On the WDBC dataset, they
utilized the arithmetic mean and de Buchet scaling techniques for three cases (p = 1, 2, ∞),
and the equilibration, geometric mean, IBM MPSX, and Lp-norm scaling techniques for
three cases (p = 1, 2, ∞).

The parallel swarm technique was created by the authors of [32] for two-sided bal-
ancing problems. In [33], a parallel approach was applied to data testing in order to
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achieve massive passing. The authors of [34] introduced and discussed parallel dynamic
programming methods. Reference [35] gives a survey of numerous strategies for paral-
lelizing algorithms. Reference [36] introduces a parallel approach to constraint-solving
methods. Polap et al. [37] proposed three strategies for improving traditional procedures
that reduced the solution space by using a neighborhood search. The second was to reduce
the calculation time by limiting the number of possible solutions. In addition, the two
procedures indicated above were combined. Metaheuristic algorithms such as ABC, FPA,
BA, PSO, and MFO have been used to optimize SVMs and extreme learning machines,
allowing them to readily overcome local minima and overfitting difficulties. The reader can
refer to [38,39], which present the advantages and disadvantages of traditional machine
learning methods such as SVMs and deep learning methods.

Three achievements are presented in this work. The first is a new hybrid classifier
(HHO-SVM) that combines the Harris hawks optimization (HHO) and support vector
machine (SVM) techniques. In order to increase the HHO-SVM performance, the sec-
ond contribution compares three efficient scaling algorithms with the usual normalizing
methodology. The final contribution is to improve the efficiency of the HHO-SVM by
adopting a parallel approach that employs the data distribution. The proposed models are
tested on the Wisconsin Diagnosis Breast Cancer (WDBC) dataset. The results show that
the HHO-SVM achieves a 98.24% accuracy rate with the normalization scaling technique
outperforming the results in [6–8,15,17–19]. On the other hand, the HHO-SVM achieves
a 99.47% accuracy rate with the equilibration scaling technique, better than the results
in [6–8,10,11,15,17–20]. Finally, the parallel version of the suggested model achieves a
speedup of 3.97 on four CPU cores.

The sections that follow are grouped as such: Section 2 delves into SVM and HHO.
Section 3 contains an explanation of the suggested model. Section 4 provides a complete
study of three unique scaling methods: the equilibration, arithmetic, and geometric means.
Section 5 explains the parallel version of the HHO-SVM. Section 6 has an experimental de-
sign that includes data descriptions, experimental setup, performance evaluation measures,
and a comparative analysis. The experimental results and discussion are found in Section 7.
Finally, Section 8 provides a conclusion as well as future work.

2. Preliminaries

Support vector machines (SVM) and the Harris hawks optimization (HHO) are intro-
duced and studied in this section.

2.1. Support Vector Machine (SVM)

The goal of an SVM is to find an N-dimensional hyperplane that classifies the available
data vectors with the least amount of error. An SVM employs convex quadratic program-
ming to avoid local minima [40]. If we assume a binary classification problem and have a
training dataset with a class label: (x1, y1) . . . (xn, yn), xi ∈ Rd and yi ∈ (−1,+1) where
xi is the class label and yi is the input or feature vector, the best hyperplane is as follows:

wxT + b = 0 (1)

such that w, x, and b indicate the weight, input vector, and bias, respectively. The letters w
and b fulfill the following requirements:

wxT
i + b ≥ +1 i f yi = 1 (2)

wxT
i + b ≤ −1 i f yi = −1 (3)

The goal of the SVM model training is to find the w and b that maximize the margin 1
‖w‖2 .

Nonlinearly separable problems are common. To transform the nonlinear problem to
a linear one, the input space is converted into a higher-dimensional space.



Mathematics 2023, 11, 3251 4 of 25

Kernel functions [41] could be used to extend the data’s dimensions and turn the prob-
lem into a linear one. The linear and nonlinear SVMs are depicted in Figure 1. Furthermore,
kernel functions may be useful in speeding up calculations in high-dimensional space. For
example, in the extended feature space, the linear kernel can be used to compute the dot
product of two features. The most frequent SVM kernels are RBF and polynomial. They
can be expressed as:

K
(
xi, xj

)
= e−γ‖xi−xj‖2

(4)

K
(
xi, xj

)
=
(

1 + xT
i xj

)p
(5)

such that the parameters γ and p are the width of the Gaussian kernel and the polynomial
order, respectively. Setting proper model parameters has been demonstrated to increase the
accuracy of SVM classification [42]. The adjustment of SVM parameters is a very delicate
process. These parameters are C, gamma, and the SVM kernel function which finds the
mapping from the nonlinear to linear problem by increasing the dimension.
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2.2. Harris Hawks Optimization (HHO)

Heidari et al. [43] developed an algorithm called HHO (Harris hawks optimization). It
derives from the hunting style and cooperation of Harris’s hawks. Some hawks cooperate
when attacking their prey from different directions to surprise and disable it. Furthermore,
to aid in the selection of different hunting strategies, it is dependent on various sceneries
and kinds of prey flying. Exploring a prey, transitioning from exploration to exploitation,
and exploitation are the three primary phases of the HHO. In this diagram, all phases of
the HHO are depicted (Figure 2). The following is a diagram of each phase:
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2.2.1. Exploration Phase

This phase is mathematically modeled primarily for waiting, searching, and prey
detection. Harris’s hawks are the alternative or best at every step. Harris’s hawks’ position
X(i + 1) can be formulated according to Equation (6):

X(i + 1) =
{

(X rand(i))− r1|Xrand(i)− 2r2X(i)| i f q ≥ 0.5
(Xrabbit(i)− Xm(i))− badrr3(LB + r4(UB− LB)) i f q < 0.5

(6)

where i is the current iteration, Xrabbit is the rabbit’s position, Xrand is a randomly chosen
hawk at the current population, rj, j = 1, 2, 3, 4, q are random numbers between 0 and 1,
and Xm is the average position of the hawks, which can be calculated by:

Xm(i) =
1
N ∑N

j=1 Xj(i) (7)

where the vector Xj denotes the position of each hawk j, and N is the number of hawks.

2.2.2. Transition from Exploration to Exploitation

The HHO alternates between exploration and exploitation depending on the rabbit’s
escaping energy. Moreover, the rabbit’s energy can be calculated using the formula below:

E = 2E0

(
1− i

T

)
(8)

where E indicates the rabbit’s escaping energy, T denotes the maximum size of the iterations,
and E0 ∈ (−1, 1) presents the initial energy at each step.

E0 = 2 rand( ) − 1 (9)

The HHO can determine the state of a rabbit based on the direction of E0 (the HHO
enters the exploration phase in order to locate the prey when |E| ≥ 1, otherwise, during
the exploitation steps, this strategy seeks to exploit the solutions’ proximity).

2.2.3. Exploitation Phase

At this phase, hawks besiege the prey from all directions to hunt it, and this siege is
hard or soft according to the remaining prey’s energy. During this siege, the prey’s escape
depends on the chance r (it succeeds in escaping if r < 0.5). Moreover, if |E| ≥ 0.5, the
HHO is besieging softly, otherwise, it is besieging hard. According to the phenomenon
of prey escape and hawks–hawks’ strategies in pursuit, the HHO implements four attack
strategies: a soft siege, a hard siege, a soft siege with progressive rapid dives, a hard
siege with progressive rapid dives. In particular, the rabbit has enough energy to escape
if |E| ≥ 0.5; however, the prey’s ability to escape or not depends on both values of |E| and r.

Soft Siege (r ≥ 0.5 and |E| ≥ 0.5)

This procedure can be written as:

X(i + 1) = ∆X(i)− E|JXrabbit(i)− X(i)| (10)

∆X(i) = Xrabbit(i)− X(i) (11)

where ∆X(i) indicates the difference between the rabbit’s current location and the rabbit’s
location vector at the i iteration, J = 2(1− r5) is the intensity of the rabbit’s random
jumping during the escape process, and r5 ∈ (0, 1) is a random number.
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Hard Siege (r ≥ 0.5 and |E| < 0.5)

In this strategy, current positions can be updated with the following formula:

X(i + 1) = Xrabbit(i)− E|∆X(i)| (12)

Soft Siege with Progressive Rapid Dives (|E| ≥ 0.5 and r < 0.5)

As for the soft siege, hawks decide their next move with the following equation:

Y = Xrabbit(i)− E|JXrabbit(i)− X(i)| (13)

The hawks dive according to the following rules based on the LF-based patterns:

Z = Y + S× LF(D) (14)

in which D indicates the dimension of problem, and S1×D denotes a random vector.
The levy flight (LF) can be calculated by Equation (15):

LF(D) = 0.01× µ× σ

|v|
1
β

, σ =

 Γ(1 + β)sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

, β = 1.5 (15)

where µ and v represent a range of random numbers between 0 and 1. As a result, Equation (16)
can be used to describe the final strategy of this phase, which is to update the positions of
the hawks:

X(i + 1) =
{

Y i f F(Y) < F(X(i))
Z i f F(Z) < F(X(i))

(16)

Hard Siege with Progressive Rapid Dives (|E| < 0.5 and r < 0.5)

The hawk is always in close proximity to the prey during this step. The following is a
model of the behavior:

X(i + 1) =
{

Y i f F(Y) < F(X(i))
Z i f F(Z) < F(X(i))

(17)

The following formulas can be used to calculate Y and Z:

Y = Xrabbit(i)− E|JXrabbit(i)− Xm(i)| (18)

Z = Y + S× LF(D) (19)

where Xm(i) =
1
N

N

∑
i=1

Xi(i) (20)

The main purpose of this study was to employ new scaling approaches to scale breast
cancer data, compute the SVM parameter using the HHO algorithm to efficiently classify
breast tumors, and use a parallel approach to reduce the proposed model’s execution time.

3. The Proposed HHO-SVM Classification Model

The HHO-SVM system is implemented in two stages. The HHO algorithm determines
the SVM parameters automatically for the first phase. The optimized SVM algorithm
diagnoses a breast tumor as benign or malignant in the second phase. To obtain the best
accurate result, a ten-fold cross-validation (CV) is used. To test the SVM parameters, the
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HHO-SVM model applies the root-mean-square error (RMSE) as the fitness function. The
following formula is used to calculate the RMSE:

RMSE =

√
∑N

i=1( Predictedi − Actuali)

N
(21)

such that N is the number of entities in the test dataset.
In the HHO-SVM algorithm for breast cancer, the population size is set to N, and each

hawk represents Xi (i = 1, 2, . . . , N), the maximum number of iterations is set to T, the
number of dimensions is set to dim, the upper bound is set to ub, the lower bound is set to
lb, and the boundary of positions is set to Xrabbit. Xrabbit is the position of the rabbit, and
all hawks update their positions. After that, random values are used to form the initial
population (N*dim). After the data have been loaded, we use one of the scaling strategies to
modify it. It uses a k-fold cross-validation and conducts several procedures for each fold
to evaluate the model’s efficiency. If the number of iterations does not equal T, the model
repeats the steps below for each iteration.

To begin, it passes each bird through two specified functions and sets its output to
the SVM (C and γ) parameters, then trains the SVM and classifies the test set. Then, it
calculates the fitness function (RMSE) from Equation (21), updates Xrabbit, according to the
smallest fitness value, and update the initial energy E0, jump strength J, and the position of
the current hawk according to the Xrabbit, E0 , J, E, and r values, where r is a random value
and E is the energy. Then, the algorithm checks whether ( |E| ≥ 1); if it is, then it enters
the exploration phase and updates the location vector using Equation (6); if ( |E| < 1),
then it enters the exploitation phase, which may be a soft siege, hard siege, soft siege with
progressive rapid dives or a hard siege with progressive rapid dives.

Therefore, the algorithm checks whether ( |E| ≥ 0.5 and r ≥ 0.5); if true, then it is a soft
siege, and the location vector is updated using Equation (10). If ( |E| < 0.5 and r ≥ 0.5), then it
is a hard siege, and the location vector is updated using Equation (12). If ( |E| ≥ 0.5 and r < 0.5),
then it is a soft siege with progressive rapid dives and the location vector is updated using
Equation (16), F(Y) and F(Z) are calculated by passing Y or Z to two particular functions,
and the parameters of the SVM (C and γ) are equal to its output. Then, the algorithm trains
the SVM and classifies the test set. It computes the RMSE from Equation (21) as the value
of F(Y) or F(Z). If ( |E| < 0.5 and r < 0.5), then it is a hard siege with progressive rapid
dives. The location vector is updated using Equation (17), F(Y) and F(Z) are calculated
by passing Y or Z to two particular functions, and the parameters of the SVM (C and γ)
are equal to its output; then, the algorithm trains the SVM and classifies the test set. It
computes the RMSE from Equation (21) as the value of F(Y) or F(Z). Then, if the number
of iterations does not surpass T, it goes back to step 4 in the process (Algorithm 1). We
move on to the next fold and return to step 3 if T is satisfied. If T and the fold number k
are equal, we proceed to step 5. Finally, we compute the averages of the RMSE and the
accuracy of the k folds and return them.
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Algorithm 1: HHO-SVM Algorithm

Input: N The population size
T Maximum number o f Iterations
lb Lower_Bound
ub Upper_Bound
dim No. o f dimensions
k No. o f f olds

Output: Average RMSE: Average classi f ication accuracy rates

1. Initialize the random population Xi (i = 1, 2, . . . , N)
2. Apply one of the scaling techniques after loading the data.
3. for (each fold j) do

Divide the data into train and test subsets randomly
4. while (t < T) do

for (each hawk (Xi)) do
Pass Xi to particular functions
Set function’s output to parameter of SVM (C, γ)
Train and test the SVM model
Evaluate the fitness Xi with EQ (21)
Update Xrabbit as the position of the rabbit (best position based on the fitness value)

end (for)
for (every hawk (Xi)) do

Update E0 and J (initial energy and jump strength)
Update the E by EQ (8)
if (|E| ≥ 1) then . Exploration phase
Update the position vector by EQ (6)
if (|E| < 1) then . Exploration phase
if (r ≥ 0.5 and |E| ≥ 0.5) then . Soft siege
Update the position vector by EQ (10)

else if (r ≥ 0.5 and |E| < 0.5) then . Hard siege
Update the position vector by EQ (12)

else if (r < 0.5 and |E| ≥ 0.5) then
. Soft siege with PRD
Update the position vector by EQ (16)
.F(Y), F(Z) and F(Xi) calculated by using RMSE
else if (r < 0.5 and |E| < 0.5) then . Hard siege with PRD

Update the position vector by EQ (17)
end (for)
t=t+1

end (while)
t=0

end (for)

5. Return averages of RMSE and classification accuracy for all folds

4. Scaling Techniques

Before introducing the scaling techniques, some of the necessary mathematical sym-
bols should be presented. We treat the breast cancer data as a matrix and present some
mathematical symbols as shown in Table 1. The final scaled matrix is denoted by RAS,
where R = diag (r1, . . . , rm) and S = diag (s1, . . . , sn).
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Table 1. Some mathematical terms for scaling techniques.

Term Meaning

A
(

aij

)
m× n matrix (with m entities and n attributes)

ri The scaling factor of row i

sj The scaling factor of row j

R R = diag
(

r1, . . . , rm) (diagonal matrix)

S S = diag
(

s, . . . , sn) (diagonal matrix)

Ni Ni = {j|Aij 6= 0}, such that 1 ≤ i ≤ m

Mj Mj = {i|Aij 6= 0}, such that 1 ≤ j ≤ n

ni The cardinality of the set Ni

mj The cardinality of the set Mj

AR(a R
ij

)
The scaled matrix by row R scaling factor

ARS(a RS
ij

)
The scaled matrix in its final form.

All of the scaling approaches presented in this section scale the rows first, then the
columns. Equations (22) and (23) show the steps for scaling the matrix.

AR = RA (22)

ARS = ARS (23)

(1) Arithmetic mean:

The variance between nonzero entries in the coefficient matrix A is reduced using
the arithmetic mean scaling technique. As shown in Equation (24), the rows are scaled by
dividing each row by the mean of the absolute value of the nonzero values:

ri =
ni

∑
j∈Ni

aij
(24)

Each column (attribute) is scaled by dividing the modulus value of the nonzero items
in that column by the mean of the modulus of the nonzero entries in that column as shown
in Equation (25):

sj =
mi

∑
i∈Mj

aij
R (25)

(2) Equilibration scaling technique:

This scaling method’s cornerstone is the largest value in absolute value. The row
scaling is done by dividing every row (instance) of matrix A by the absolute value of the
row’s largest value. Then, we divide every column of the matrix by the absolute value of
the largest value in that column, which is scaled by the row factor. The final scaled matrix
A has a range of [−1, 1].

(3) Geometric mean:

To begin, Equation (26) depicts the scaling of the rows, in which every row is split by
the geometric mean of the nonzero elements in that row.

ri =

(
max
j∈Ni

aij min
j∈Ni

aij

)−1/2
(26)
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Second, Equation (27) represents the column scaling where every column is divided
by the geometric mean of the modulus of the nonzero elements in that column.

sj =

(
max
j∈Mj

aR
ij min

j∈Mj
aR

ij

)−1/2

(27)

(4) Normalization [−1, 1]:

Equation (28) represents the normalization within the range [−1, 1] where a, a′, maxk,
and mink are the initial value, the scaled value, the maximum value, and the minimum
value of feature k, respectively.

.
a =

(
a−mink

maxk −mink

)
× 2− 1 (28)

5. The Parallel Metaheuristic Algorithm

We implemented a parallel metaheuristic algorithm based on the population, where the
population is divided into different parts that are easy to exchange, that evolve separately,
and that are then later combined. In this paper, the parallel approach was implemented by
dividing the population into several sets on different cores. The number of cores, Nc, was
identified. The starting population consisted of n particles randomly initialized. The group
size was calculated as follows:

ng =
[ n

Nc

]
(29)

The proposed model steps are shown in Algorithm 2.

Algorithm 2: Parallel Approach

1: Begin
2: Identify Nc (no. of cores);
3: Randomly initialize the population;
4: Compute ng particles with Equation (20);
5: Make Nc sets;
6: Distribute the particles on cores.

7: Run the HHO-SVM model on each core
8: Choose the optimal particles from all cores;

9: Update the model’s parameters and particle positions;
10: For all folds, return the average accuracy.

11: End

The ceil function was used to obtain an integer number of particles to be distributed
on the cores. The basic algorithm steps were executed for all sets in a standalone thread. Nc
best particles were chosen as a solution for the optimization problem when these phases
were completed. Moreover, these particles were combined to obtain the best particles in
general on all cores and update the position according to them.

6. Experimental Design

This part contains a description of the data, a performance evaluation measure, as
well as a comparative study.

6.1. Data Description

The proposed model was tested on the Wisconsin diagnostic Breast Cancer (WDBC)
dataset, which is available at the University of California, Irvine Machine Learning Repos-
itory [44]. There are 569 examples in the dataset, which are separated into two groups
(malignant and benign). There are 357 cases of malignant tumors and 212 cases of benign
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tumors, respectively. Each database record has thirty-two attributes. Table 2 lists the
thirty-two qualities.

Table 2. Description of dataset.

No Attribute Name Description

3 Radius The range between the center and point on
the perimeter

4 Texture Gray-scale values’ standard deviation

5 Perimeter The total distance between the points that
make up the nuclear perimeter

6 Area The average of the cancer cell areas

7 Smoothness
The distance between a radial line’s length
and the mean length of the lines that
surround it.

8 Compactness Perimeter2/area− 1.0

9 Concavity The severity of the contour’s concave parts

10 Concave points The number of concave contour parts

11 Fractal dimension (“coastline approximation”—1)

12 Symmetry
In both directions, the length difference
between lines perpendicular to the major axis
and the cell boundary.

6.2. Experimental Setup

MATLAB was used to create the suggested HHO-SVM detection method. Chang and
Lin [45] created the SVM method, and their implementation was improved. The computing
environment for the experiment is described in Table 3.

Table 3. Computational environment.

Center Processing Unit Intel (R) Core (TM) i5—7200U CPU@ 2.70 GHz

RAM size 4 GB RAM

MATLAB ver. R2015a

The k-fold CV was proposed by Salzberg [46], and it was used to ensure that the results
were genuine. k = 10 in this study. The following are the HHO-SVM’s detailed settings:
1000, 19, 25, and 10 were the values for the iterations, search agents, dimensions, and k-fold,
respectively. The [lb, ub] lower and upper bounds were set to [−5, 5].

6.3. Performance Metrics

Six metrics, sensitivity, specificity, accuracy, precision, G-mean, and F-score, were used
to assess the efficacy of the suggested HHO-SVM model. These metrics are defined as
follows according to the confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (30)

Sensitivity =
TP

TP + FN
× 100 (31)

Speci f icity =
TN

TN + FP
× 100 (32)
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Precision =
TP

TP + FP
× 100 (33)

Gmean =
√

Sensitivity× Speci f icity (34)

Fmeasure = 2× Precision× Sensitivity
Precision + Sensitivity

(35)

If the dataset has two classes (“M” for malignant and “B” for benign), then the true
positives (TP) are the total number of cases with classification result “M” when they are
actually “M” in the dataset; the true negatives (TN) are the total number of cases with
classification result “B” when they are actually “B” in the dataset; the false positives (FP)
are the total number of cases with classification result “M” when they are “B” in the dataset;
and the false negatives (FN) are the total number of cases with classification result “B”
when they are “M” in the dataset.

6.4. Comparative Study

In this study, the efficiency of the presented HHO-SVM algorithm was compared to
the SVM algorithm with the grid search technique. Figure 3 shows how the SVM algorithm
works with the grid search technique
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7. Empirical Results and Discussion

In this study, the abbreviations S0, S1, S2, S3, and S4 are used to denote no scaling, a
normalization in [−1, 1], the arithmetic mean, the geometric mean, and the equilibration
scaling techniques, respectively. Experiments on the WBCD dataset were used to assess the
efficacy of the proposed HHO-SVM model for breast cancer against the SVM algorithm with
a grid search technique. First and foremost, our findings show the value of the grid search
methodologies, the usefulness of the HHO-SVM model that was developed sequentially,
and the superiority of the most recent scaling strategies over the previous normalizing
methodology. Finally, the results show that the parallel version of the proposed model
achieves a speedup of 3.97 for four cores.

Tables 4–6 demonstrate a comparison of the SVM classification accuracies using the
grid search algorithm with S0, S1, S2, S3, and S4. Tables 4 and 5 show that the average
accuracy rates obtained by the SVM using S3 (98.59%) are higher than those produced by
the SVM using S1 (96.66%) (98.59%). On the other hand, the S4 technique outperforms
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all other scaling techniques with an accuracy of 98.95% compared to that obtained by the
SVM.

Table 4. SVM using S0 and S1.

Fold
(S0) (S1)

C γ Accuracy % C γ Accuracy %

1 23 2−13 94.76 211 21 94.64

2 27 2−15 91.59 215 21 92.98

3 215 2−13 100 213 21 100

4 25 2−13 97.18 213 21 98.25

5 21 2−11 96.23 215 21 96.49

6 2−1 2−9 91.29 215 2−1 96.49

7 211 2−15 97.59 213 21 100

8 29 2−15 98.60 215 21 96.49

9 29 2−15 97.59 213 21 94.74

10 215 2−9 96.23 213 2−1 96.49

Avg. 6877.9 0.00049 96.10 17408 1.7 96.66

Time 52.62167 19.208797

Table 5. SVM using S2 and S3.

Fold
(S2) (S3)

C γ Accuracy % C γ Accuracy %

1 23 2−7 100.00 21 2−5 100

2 215 2−9 98.25 29 2−5 98.25

3 29 2−5 96.49 29 2−5 96.49

4 2−1 2−5 96.49 2−1 2−5 96.49

5 29 2−9 100.00 29 2−9 100

6 25 2−5 98.25 27 2−5 98.25

7 27 2−7 98.25 23 2−3 100.00

8 2−1 2−3 98.25 215 2−3 98.25

9 29 2−9 100.00 29 2−9 100

10 215 2−9 98.25 25 2−3 98.25

Avg. 6724 0.024 98.42 3498.7 0.0535 98.59

Time 7.237509 6.822561

Table 6. SVM using S4.

Fold
(S4)

C γ Accuracy %

1 25 2−1 100.00

2 23 21 98.25

3 25 2−1 100.00

4 215 21 98.25
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Table 6. Cont.

Fold
(S4)

C γ Accuracy %

5 21 2−1 100.00

6 29 2−1 98.25

7 215 21 100.00

8 215 21 100.00

9 23 21 94.74

10 23 21 100.00

Avg. 9890.6 1.4 98.95

CPU Time 6.066946

Tables 7–11 and Figure 4 show the importance of the data scaling techniques in
improving classification accuracy, with the average classification accuracy rate without
scaling the data (89.11%) being lower than the average classification accuracy rate when
using any other scaling technique, and when comparing the normalization and other scaling
techniques, we found that the novel scaling techniques outperformed the normalization
in terms of both accuracy rates and CPU time. It is obvious that the HHO-SVM with the
arithmetic mean scaling approach (98.25) achieved higher average accuracy rates than the
HHO-SVM with normalization and the scaling strategy in the range [−1, 1] (98.24%). With
an accuracy of 99.47 percent, the equilibration scaling technique outperforms all the other
scaling strategies, including the HHO-SVM.

Table 7. Grid-SVM accuracy with S0, S1, S2, S3, and S4.

No Symbol Accuracy CPU Time

1 (S4) 98.95 6.066946

2 (S3) 98.59 6.822561

3 (S2) 98.42 7.237509

4 (S1) 96.66 19.208797

6 (S0) 96.10 52.62167

Table 8. Different metrics for the HHO-SVM model with S0.

Fold

HHO-SVM (S0)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

1 91.07 90.48 91.43 91.07

2 98.98 81.82 100 98.98

3 100 100 100 100

4 96.49 95.24 97.22 96.49

5 63.16 0 100 63.16

6 92.98 80.95 100 92.98
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Table 8. Cont.

Fold

HHO-SVM (S0)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

7 96.49 95.24 97.22 96.49

8 63.16 0 100 63.16

9 96.49 95.24 97.22 96.49

10 98.25 100 97.22 98.25

Avg. 89.11 73.90 98.03 89.11

CPU Time 1.88 × 104

Table 9. Different metrics for the HHO-SVM model with S0.

Fold

HHO-SVM (S0)

Recall
%

F-Score
%

G-Mean
% RMSE

1 90.48 90.95 0.2988 90.48

2 81.82 90.45 0.2649 81.82

3 100 100 0.00 100

4 95.24 96.23 0.1873 95.24

5 0.00 0.00 0.6070 0.00

6 80.95 89.97 0.2649 80.95

7 95.24 96.23 0.1873 95.24

8 0.00 0.00 0.6070 0.00

9 95.24 96.23 0.1873 95.24

10 100 98.60 0.1325 100

Avg. 73.90 75.87 0.2737 73.90

CPU Time 1.88 × 104

Table 10. Different metrics for the HHO-SVM model with S1.

Fold

HHO-SVM (S1)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

1 94.64 95.24 94.29 90.91

2 98.25 100 97.14 95.65

3 96.49 100 94.29 91.67

4 100 100 100 100

5 98.25 95.24 100 100

6 100 100 100 100

7 100 100 100 100
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Table 10. Cont.

Fold

HHO-SVM (S1)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

8 94.74 85.71 100 100

9 100 100 100 100

10 100 100 100 100

Avg. 98.24 97.62 98.57 97.82

CPU Time 1.13 × 105

Table 11. Different metrics for the HHO-SVM model with S1.

Fold
HHO-SVM (S1)

Recall % F-Score % G-Mean % RMSE

1 95.24 93.02 94.76 0.2315

2 100 97.78 98.56 0.1325

3 100 95.65 97.1 0.1873

4 100 100 100 0

5 95.24 97.56 97.59 0.1325

6 100 100 100 0

7 100 100 100 0

8 85.71 92.31 92.58 0.2294

9 100 100 100 0

10 100 100 100 0

Avg. 97.62 97.63 98.06 0.0913

CPU Time 1.13 × 105
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Tables 8–17 show the importance of the data scaling techniques in improving the
classification accuracy, with the average classification accuracy rate without scaling the
data (89.11 percent) being lower than the average classification accuracy rate when using
any other scaling technique, and when comparing the normalization and other scaling
techniques, we found that the novel scaling techniques outperformed the normalization
in terms of both accuracy rates and CPU time. The HHO-SVM with the arithmetic mean
scaling approach (98.25) clearly outperformed the HHO-SVM with the normalization
scaling strategy in the range [−1, 1] (98.24%). With an accuracy of 99.47%, S4 outperformed
all other scaling procedures.

Table 12. Different metrics for the HHO-SVM model with S2.

Fold

HHO-SVM (S2)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

1 100 100 100 100

2 100 100 100 100

3 94.74 90.91 97.14 95.24

4 98.25 95.24 100 100

5 100 100 100 100

6 100 100 100 100

7 100 100 100 100

8 94.74 90.48 97.22 95

9 98.25 95.24 100 100

10 96.49 90.48 100 100

Avg. 98.25 96.23 99.44 99.02

CPU Time 2.20 × 104

Table 13. Different metrics for the HHO-SVM model with S2.

Fold
HHO-SVM (S2)

Recall % F-Score % G-Mean % RSME

1 100 100 100 0

2 100 100 100 0

3 90.91 93.02 93.97 0.2294

4 95.24 97.56 97.59 0.1325

5 100 100 100 0

6 100 100 100 0

7 100 100 100 0

8 90.48 92.68 93.79 0.2294

9 95.24 97.56 97.59 0.1325

10 90.48 95 95.12 0.1873

Avg. 96.23 97.58 97.81 0.0911

CPU Time 2.20 × 104
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Table 14. Different metrics for the HHO-SVM model with S3.

Fold

HHO-SVM (S3)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

1 96.43 90.48 100 100

2 100 100 100 100

3 96.49 90.91 100 100

4 100 100 100 100

5 96.49 90.48 100 100

6 100 100 100 100

7 96.49 95.24 97.22 95.24

8 98.25 100 97.22 95.45

9 98.25 95.24 100 100

10 100 100 100 100

Avg. 98.24 96.23 99.44 99.07

Time 2.71 × 104

Table 15. Different metrics for the HHO-SVM model with S3.

Fold
HHO-SVM (S3)

Recall % F-Score % G-Mean % RSME

1 90.48 95 95.12 0.1890

2 100 100 100 0

3 90.91 95.24 95.35 0.1873

4 100 100 100 0

5 90.48 95 95.12 0.1873

6 100 100 100 0

7 95.24 95.24 96.23 0.1873

8 100 97.67 98.60 0.1325

9 95.24 97.56 97.59 0.1325

10 100 100 100 0

Avg. 96.23 97.57 97.80 0.1016

CPU Time 2.71 × 104

Table 16. Different metrics for the HHO-SVM model with S4.

Fold
HHO-SVM (S4)

Accuracy % Sensitivity % Specificity % Precision %

1 100 100 100 100

2 96.49 90.91 100 100

3 100 100 100 100

4 100 100 100 100

5 100 100 100 100
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Table 16. Cont.

Fold
HHO-SVM (S4)

Accuracy % Sensitivity % Specificity % Precision %

6 100 100 100 100

7 100 100 100 100

8 100 100 100 100

9 100 100 100 100

10 98.25 95.24 100 100

Avg. 99.47 98.61 100 100

CPU Time 8.14 × 103

Table 17. Different metrics for the HHO-SVM model with S4.

Fold
HHO-SVM (S4)

Recall % F-Score % G-Mean % RMSE

1 100 100 100 0

2 90.91 95.24 95.35 0.1873

3 100 100 100 0

4 100 100 100 0

5 100 100 100 0

6 100 100 100 0

7 100 100 100 0

8 100 100 100 0

9 100 100 100 0

10 95.24 97.56 97.59 0.1325

Avg. 98.61 99.28 99.29 0.0320

CPU Time 8.14 × 103

The results of all scaling strategies obtained by the HHO-SVM in terms of accuracies
and CPU times are summarized in Table 18 and Figures 5 and 6. In terms of accuracy
and CPU time, the equilibration scaling technique clearly outperformed all other scaling
techniques. In terms of precision, however, the equilibration scaling technique was the
least accurate. According to CPU time, the normalization scaling in the range [−1, 1] was
the greatest.

Table 18. The accuracy of the HHO-SVM model with S1, S2, S3, and S4.

No Symbol Accuracy CPU Time

1 (S0) 89.11 18,800

1 (S1) 98.24 113,000

2 (S2) 98.25 22,000

3 (S3) 98.24 27,100

4 (S4) 99.47 8140
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The accuracy rate of the proposed HHO-SVM model was compared to that of the
conventional SVM employing a grid search technique in Table 19. For the scaling procedures
S4, S2, S3, and S1, the accuracy rates of the proposed HHO-SVM model were 99.47, 98.25,
98.24, and 98.24, respectively. For the scaling approaches S4 and S1, the accuracy rates of
the classic SVM with a grid search algorithm were 98.95 and 96.49, respectively.
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Table 19. Accuracy comparison between HHO-SVM and Grid-SVM.

Symbol Scaling Techniques HHO-SVM Accuracy Grid-SVM Accuracy

(S1) Normalization [−1, 1] 98.24 96.49

(S2) Arithmetic mean 98.25 98.42

(S3) Geometric mean 98.24 98.59

(S4) Equilibration 99.47 98.95

The parallel version of the HHO-SVM algorithm was provided to reduce its running
time. CPU timings for all scaling strategies produced by the HHO-SVM on different cores
are shown in Table 20 and Figure 7.

Table 20. CPU time comparison between HHO-SVM and Grid-SVM.

Symbol Scaling
Techniques

HHO-SVM

Core1 Core2 Core4

(S1) Normalization
[−1, 1] 91,600 47,461.14 23,073.04

(S2) Arithmetic mean 8560 4703.30 2338.80

(S3) Geometric mean 11,000 5820.11 2941.18

(S4) Equilibration 3500 2023.12 980.39
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In addition, Table 21 and Figure 8 show the speedup obtained by the HHO-SVM for
all scaling strategies.
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Table 21. Speedup on the WBCD database using the HHO-SVM with S1, S2, S3, and S4.

Symbol
HHO-SVM

Core1 Core2 Core4

(S1) 1 1.93 3.97

(S2) 1 1.82 3.66

(S3) 1 1.89 3.74

(S4) 1 1.73 3.57
For the scaling techniques S4, S3, S2, and S1, the speedups for four cores were 3.57, 3.74, 3.66, and 3.97, respectively.
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Table 22 shows that the performance of the presented HHO-SVM model against other
related models developed in the literature, demonstrating the usefulness of our method.
Table 22 shows that the classification accuracy of our created HHO-SVM diagnostic system
is equivalent to or better than that of existing classifiers on the WBCD database.

Table 22. A comparison between related works against to our model.

Study Year Method Accuracy (%)

Tuba et al. [6] (2016) ABA-SVM 96.49 %

Aalaei et al. [7] (2016) GA-ANN 97.30%

S. Mandal [8] (2017) Logistic regression 97.90%

Liu et al. [10] (2018) ICS-SVM 98.83%

Agarap [11] (2018) GRU-SVM 93.80%

Dhahri et al. [15] (2019) GA-AB 98.23%

Telsang et al. [17] (2020) SVM 96.25%

Umme et al. [18] (2020) BATGSA-FNN 92.10%

Singh et al. [19] (2020) GWWOA-SVM 97.72%

Badr et al. [20] (2021) GWO-SVM 99.3%

Our study (2023) HHO-SVM 99.47%

8. Conclusions

Three achievements were proposed. The first achievement was a novel hybrid classifier
(HHO-SVM), which was a combination of the Harris hawks optimization (HHO) and a
support vector machine (SVM). In order to increase the HHO-SVM performance, the second
goal was to compare three efficient scaling algorithms to the old normalizing methodology.
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The final contribution was to improve the efficiency of the HHO-SVM by adopting a
parallel approach that employed the data distribution. On the Wisconsin Diagnosis Breast
Cancer (WDBC) dataset, the proposed models were tested. The results showed that the
HHO-SVM achieved a 98.24% accuracy rate with the normalization scaling technique, thus
outperforming the results in [6–8,11,15,17–19]. On the other hand, the HHO-SVM achieved
a 99.47% accuracy rate with the equilibration scaling technique, outperforming the results
in [6–8,10,11,15,17–20]. Finally, on four CPU cores, the parallel HHO-SVM model delivered
a speedup of 3.97. The proposed approach will be evaluated in various medical datasets in
future research. In addition, we are attempting to incorporate various measuring techniques
that will reduce the running time and improve the proposed diagnostic system’s efficiency.
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