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Abstract: In this paper, the tracking control problem of a class of fuzzy approximation-based non-
canonical nonlinear systems with hysteresis inputs is investigated, where the fuzzy weight matrix is
not available for measurement, and the hysteresis nonlinearities are modeled by the Prandtl–Ishlinskii
operator. Due to the coupling effects, the plant input containing hysteresis is unknown. To solve the
problem, two adaptive control schemes are developed. The first is a Lyapunov-based scheme, and
the second is a gradient-based scheme. For convenience, only the relative-degree-one case is taken
into account in design and analysis. With the proposed schemes, it can be proved that all signals in
the closed-loop system are bounded, and the tracking error converges to a small region around zero.
Simulation results show that the maximum steady-state error converges to [−0.0131, 0.0183] µm and
[−0.0139, 0.0161] µm with two control schemes, which confirms the obtained results.

Keywords: fuzzy logic systems; noncanonical nonlinear systems; hysteresis; adaptive control

MSC: 37M05

1. Introduction

A class of smart materials such as piezoactuators with the advantages of high preci-
sion, high energy conversion efficiency, and fast response has received a lot of attention
in the control field and has been used in many fields. In the application of high-precision
positioning, the control problem of smart piezoelectric materials has been a research area of
great interest. When using the piezoactuator for high-precision positioning, the nonlinear
hysteresis effect exhibited by piezoelectric smart materials severely limits the performance
of the piezoactuator, resulting in a loss of accuracy (as shown in [1–6]). A lot of research
work has been carried out to address the control problem of output tracking for a class of
systems with hysteresis inputs. It is common to model the system of a piezoactuator as a
system model cascaded by a hysteresis dynamics system and an internal dynamics (including
creep dynamics and vibration dynamics) system, and to construct the inverse of the model
by identifying the system plant [7–9]. Further, more adaptive control schemes [10–21] are
proposed to compensate for the hysteresis nonlinearity.

It is worth pointing out that the above solutions are proposed for a class of canonical-
form systems with a hysteresis operator. For the control problem of canonical-form non-
linear systems with explicit relative degrees, the solutions are usually constructed on a
Lyapunov-based backstepping design framework, whose main idea is to select appropriate
Lyapunov functions and virtual control signals for each order of subsystems to ensure
the stability of each subsystem, and then finally to derive and obtain the actual control
signal. Therefore, the Lyapunov-based backstepping control schemes have been widely
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used in the control of canonical nonlinear systems [22–27]. However, the Lyapunov-based
backstepping control scheme must first obtain the relative degree condition of the system,
so it is only applicable to nonlinear systems in canonical form (i.e., with a strict feedback
structure) or to a class of nonlinear systems that can be transformed into canonical form by
a diffeomorphism. When the system is modeled as a cascade model of a noncanonical-form
nonlinear system with a hysteresis operator, the design of a complete and effective adaptive
control scheme is still an unsolved problem that needs to be paid attention to and solved.

We found inspiring ideas in the following works. In [28], the relative degree normal
forms based on fuzzy approximation are established for a class of noncanonical nonlinear
systems, and a new control framework based on feedback linearization theory is proposed.
In [29], the Lyapunov-based and gradient-based feedback linearization techniques are
extended to a class of noncanonical neural network systems and demonstrated excellent
control results for such complex systems, which is enlightening. However, when the
hysteresis model coupled with nonlinear systems is described as a linear term and a
bounded disturbance-like term, the above solutions will not be applicable. On the one
hand, the Lyapunov-based feedback linearization technique mentioned in [29] does not
deal with the disturbance-like term presented in the output dynamic equation, resulting in
difficulties in stability analysis, and on the other hand, when a gradient adaptive control
scheme in the framework of the feedback linearization is used for updating adaptive
parameters in the nonlinear system, the lack of adaptive modification for the disturbance-
like term within the system will lead to a controller singularity problem and an accuracy
loss problem. When the system is modeled as a cascade of hysteresis operators with a
noncanonical nonlinear system, the design of a complete and efficient control scheme is an
unsolved problem.

Motivated by the above research and unsolved technical drawbacks, in this paper,
two different types of robust adaptive control schemes in the framework of feedback
linearization are proposed to deal with the output tracking control problem of fuzzy
approximation-based noncanonical nonlinear systems with unknown hysteresis inputs.
One is a new Lyapunov-based adaptive control scheme, which adds a disturbance compen-
sation term compared to the conventional scheme and can establish the whole performance
analysis of the system. The other is a new gradient-based adaptive control scheme, which
integrates the switching σ-modification to avoid the controller singularity problem and
establish and robustify the disturbance-like term generated by the hysteresis modeling.
Then, the proof procedure of the closed-loop signal boundedness for two schemes is given,
and the performance analysis is established to demonstrate that the asymptotic tracking
error converges to zero as time goes to infinity. A simulation example is given and the
validity of our scheme is verified through simulation results. In summary, the proposed
robust adaptive control schemes have the following technical contributions:

(1) For a class of noncanonical nonlinear systems cascaded by a hysteresis operator with
uncertain parameters, we use a fuzzy logic system to deal with the technical issues
caused by the unknown nonlinear part for reducing the influence of the unknown
nonlinear factors on the control system and develop a new control scheme based on
Lyapunov and feedback linearization techniques, such that the hysteresis disturbance
terms possessed within the system are compensated to obtain the desired output
tracking performance.

(2) A more general gradient-based adaptive parameter updating with integrated switch-
ing σ-modification compensation is developed, which can avoid the controller sin-
gularity and robustify the bounded disturbances generated by the hysteresis decom-
position. Our scheme based on fuzzy approximation can solve the output tracking
problem of noncanonical nonlinear systems with unknown hysteresis inputs. We
verify the output tracking performance of our scheme through the simulation results
and demonstrate the robustness of our scheme to disturbance.
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(3) We have performed the strict signal boundedness proof and system stability analysis
for both proposed control schemes, which ensures the reliability of the proposed
control schemes.

The rest of the paper is structured as follows. The control problem to be investigated
and basic knowledge will be given in the following section. In Section 3, we give the relative
degree normal forms for the noncanonical systems and the derivation procedure for the
stability of zero dynamic subsystem. In Section 4, we present two different adaptive control
schemes, Lyapunov-based and gradient-based, to address the output tracking problem of
the system with relative degree one. After that, the validity of our scheme is illustrated by
the simulation results presented in Section 5. The full paper is summarized in Section 6.
Then, we need to define some mathematical notations used in this paper. For a vector
signal ω(t) ∈ Rn:

• ||ω||t = sup0≤τ≤t ||ω(τ)|| ;
• ||ω(t)||p has the following form:

||ω(t)||p =

{
(∑n

i=1 |ωi(t)|p)1/p if p ∈ [1, ∞)
max1≤i≤n |xi(t)| if p = ∞

;

• ||ω||p, denoting Lp signal norm, has the following form:

||ω||p =

{
(
∫ ∞

0 ||ω(t)||pdt)1/p if p ∈ [1, ∞)
supt>0 ||ω(t)||∞ if p = ∞

.

2. Problem Formulation and Preliminaries

In this section, we investigate the control problem of the noncanonical form system
cascaded by the hysteresis operator and briefly review some basic knowledge about the
hysteresis operator and fuzzy approximation.

2.1. Plant Formulation

A class of noncanonical-form nonlinear systems cascaded by a hysteresis operator is
considered as follows:

ẋ(t) = φ f (x, t) + Bu(t),

y(t) = Cx(t), (1)

where φ f (x, t) ∈ Rn is an unparameterizable unknown smooth function; x(t) = [x1, . . . , xn] ∈ Rn,
y(t) ∈ R denote the system state vector and system output, respectively; B ∈ Rn and
C ∈ R1×n denote the unknown control matrix and output matrix; and u(t) = H(v(t)) ∈ R
applied directly to the system plant contains the actual control input v(t) ∈ R, which has
been cascaded by a hysteresis operator. The block diagram of the noncanonical nonlinear
system cascaded by the hysteresis model considered in this paper is shown in Figure 1.

Figure 1. The block diagram of the piezoactuator system.

Next, referring to [30], we present the basic operator and model describing the hystere-
sis nonlinearity. The classical hysteresis Prandtl–Ishlinskii (PI) model is a general model for
describing hysteresis effects and consists of play operator Op[v](t) and density function
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P(r). Firstly, we formulate the basic play operator (whose structure is shown in Figure 2)
as follows.

The play operator: Suppose the hysteresis inputs v(t) are monotone in each sub-time
domain [ti, ti+1] on [0, T]. Then, the operator Op[v](t) can be expressed as

Opj [v](t) =

{
fpj(v(t), Op[v](ti)), if 0 < ti ≤ t ≤ ti+1,

fpj(v(0), 0), if t = 0,
(2)

where fpj(v) = max{v− rj, min{v + rj, Opj [v](t− 1)}}, and rj is the jth operator threshold,
which is expressed as

rj =
j

m
max |v(t)|, 0 ≤ j ≤ N − 1, (3)

where m denotes the number of operators.

Figure 2. Play operator structure.

The PI model: The PI model, characterized by the play operator, can be modeled as
the following mathematical expression:

u(t) = H[v(t)] = P0v(t)−
∫ R

0
P(r)Op[v](t)dr, (4)

where P0 =
∫ R

0 P(r)dr is a constant. For facilitating further design and analysis, referring
to the conclusions derived from [31], the PI model can be formulated as

u(t) = P0v(t) + d0(t), (5)

where P0v(t) is the linear term, and another term d0(t) = −
∫ R

0 P(r)Op[v](t) denotes the
nonlinear part, which satisfies supt→0 |d0(t)| ≤ M with a bounded constant M. Figure 3 in-
dicates the hysteresis curve presented by PI model (5) with the inputs v(t) = sin(10t)e−0.5t,
density function P(r) = 0.1e−0.008r2

, and the number of the operators is 30.

Figure 3. Hysteresis curve.
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2.2. Noncanonical Fuzzy Approximation-Based Model

Since the unparameterizable function φ f (x, t) in the plant (1) is unknown, it is not
trivial to develop a control scheme for the system cascaded by a hysteresis operator. For
addressing this problem and guaranteeing the integrity of the original system performance
as much as possible, from the research of fuzzy approximation [32–34], a new controlled
plant can be approximated by the fuzzy logic system, which can be expressed as

ẋ(t) = Ax(t) + W∗S(x(t)) + BH(v(t)),

y(t) = Cx(t), (6)

where A ∈ Rn×n, W∗ ∈ Rn×l represents a desired weight matrix, and S(x) ∈ Rl is a vector
of fuzzy basis function constructed from

Si(x) = ∏n
τ=1 Giτ(xτ(t))

∑l
i=1 ∏n

τ=1 Giτ(xτ(t))
, (7)

where Giτ(xτ(t)) = exp[−(xi(t)− αiτ)
2/β2

iτ ] is a Gaussian fuzzy function with the con-
stants αiτ , βiτ , i = 1, 2, . . . , l, τ = 1, 2, . . . n.

2.3. Control Objective

The goal of our control scheme is to design the adaptive laws to generate a control
signal v(t) for system (6) with a hysteresis operator, ensuring the boundedness of all signals
and limt→∞ y(t)− ym(t) = 0 for any bounded desired signal ym(t).

Remark 1. When using the fuzzy system to approximate the system (1), there is an approximation
error δ(x(t)) of the model, which can theoretically be eliminated by higher-precision approximation,
but this will result in a larger computation. For the convenience of the subsequent analysis,
the performance of the fuzzy approximation-based system (6) is considered to be identical to the
original system (1), which means that the approximation error δ(x(t)) is neglected in the process of
using fuzzy logic approximation. Therefore, the case that the error δ(x(t)) exists in the process of
approximation should be further investigated.

3. Relative Degree Norms and the Stability of Zero Dynamics Subsystem

With the knowledge of feedback linearization, in this section, we define the relative
degree norms for noncanonical fuzzy approximation-based systems (6) and derive the
applicable conditions for different relative degree cases. Then, we perform the stability
analysis for dynamic subsystems within the system.

3.1. System Relative Degree Norms

Defining z(x) = B and q(x(t)) = Cx(t), with the approximation equation φ f (x, t)
derived above, the fuzzy approximation-based noncanonical system (6) is rewritten as

ẋ(t) = φ f (x, t) + z(x)H(v(t)),

y(t) = q(x(t)) (8)

which is a non-strict feedback system. Then, the relative degree norms based on the
system (8) can be established, and the applicable conditions of various forms are derived.

Definition 1. By iterating the time derivative of y(t), we derive the relative degree norms for
the fuzzy approximation-based system (8) with noncanonical-form until an explicit relationship
is established between ρ-order time derivatives y(i)(t) and the control input v(t). Specifically,
the nonlinear system (8) is regarded as having a relative degree ρ if the Lie-derivative satisfies
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LzLk
f q(x) = 0,

LzLρ−1
f q(x) 6= 0, (9)

where LzLk
f q(x) = (∂Lk

f q/∂x)z with Lk
f q = (∂Lk−1

f q/∂x) f for k = 0, 1, . . . , ρ− 2 denotes the

kth-order Lie derivative, and the LzLρ−1
f q(x) has the similar forms. Then, we derive the following

applicable conditions for different relative degree cases based on the above definition.

Lemma 1. The system (6) with the nonlinear hysteresis inputs has a relative degree ρ = 1 if

CBP0 6= 0, (10)

and the system (8) with CBP0 = 0 has a relative degree two if the system parameters satisfy

CABP0 + CW∗
∂S(x)

∂x
BP0 6= 0. (11)

Proof. Incorporated with (8) and CBP0 6= 0 in Definition 1, it can be derived that the
control signal v(t) is explicitly related to ẏ(t), which indicates that the system (8) has
a relative degree one. The conditions of higher relative degrees can be proven in the
same way.

3.2. Dynamics Subsystem

The feedback linearization technique can be applied to systems in which the state
variables match the relative degrees. However, when the relative degree ρ of the system (8)
is less than the state variable n, the feedback linearization technique is difficult to apply to
this system. In this case, the system (8) will involve a zero dynamics subsystem independent
of the control signal, which is expressed as

ż0(t) = ψ0(zd(t), z0(t)), (12)

where ψ0(t) is a nonlinear function; zd zd = Tc(x) = [q(x), L1
f q(x), . . . , Lρ−1

f q(x)] ∈ Rρ; and
z0 = Tz(x) ∈ Rn−ρ denotes the zero dynamic subsystem, which can be obtained from

∂Tz(x)
∂x

B = 0 and det(
∂T(x)

∂x
) 6= 0, (13)

where T(x) = [TT
c (x), TT

z (x)]T ∈ Rn. For the subsequent control design and analysis to
proceed successfully, the stability of the zero dynamics subsystem (12) without input signals
requires the following assumption to be guaranteed.

Assumption 1. The nonlinear function ψ0(zd(t), z0(t)) assumes that the partial derivative
∂ψ0(zd(t), z0(t))/∂zd(t) is bounded, and satisfies

zT
0 (t)ψ0(0, z0(t)) ≤ −ς0zT

0 (t)z0(t) + ς1(t), (14)

where ς0 is normally chosen to be a positive constant, and ς1(t) is seen as a bounded disturbance-
like term.

According to Assumption 1, we can derive that ||z0(t)|| ≤ A1||zd(t)||+ A2 for some
positive constants A1, A2. It is not difficult to conclude that the boundedness of z0(t) can
be guaranteed if zd(t) is bounded. The assumption and similar argument are described in
detail in [35].
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Remark 2. In the following parts, we focus on the relative degree one case, and develop two
different adaptive control schemes to settle the control problem of the fuzzy approximation-based
system (6) with the unknown hysteresis inputs. The case with higher relative degrees will involve
more preliminaries, and the stability analysis is very complicated. Therefore, the control problem for
the fuzzy approximation-based system cascaded by a hysteresis operator with higher relative degrees
needs to be further investigated.

4. Control Design for Fuzzy Approximation-Based System with Relative Degree One

Based on the above analysis, we mainly investigate the relative degree ρ = 1 case
and develop a Lyapunov-based adaptive control method with disturbance compensation
and a gradient-based method integrated switch σ-modification adaptive control scheme
in the framework of the feedback linearization to meet the desired output tracking perfor-
mance demands. The system block diagram of our scheme is shown in Figure 4.

Figure 4. The system block diagram of our control scheme.

4.1. Plant Description and Nominal Control Scheme

From Lemma 1 and the PI model (5) when CB 6= 0, the tracking dynamics of the
system (6) is represented as

ẏ(t) = CAx(t) + CW∗S(x(t)) + CBP0v(t) + D1(t), (15)

where D1(t) = CBd0(t) is an unknown modeling error, which can be considered as a
bounded disturbance-like term. When the system parameters A, B, C, W∗, and P0 are
known, we choose the nominal controller

v(t) =
1

ϕ∗3
(−ϕ∗T1 x(t)− ϕ∗T2 S(x(t))− D1(t) + ẏm(t)− ae(t)), (16)

where ϕ∗ = [CA, CW∗, CBP0]
T , e(t) = y(t)− ym(t) denotes the tracking error, and a is a

positive design parameter. However, the nominal controller (16) based on the feedback
linearization technique is not applicable when the system parameters are unknown, so it is
essential to design a new control scheme for updating the unknown parameters to achieve
the desired values. In this case, we need to parameterize the model (15), from which it
follows that

ẏ(t) = −ϕ∗Tµ(t) + D1(t), (17)
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where µ(t) = −[xT(t), ST(x(t)), vT(t)]T . It is notable that the parameterization technique
is important for the design of subsequent adaptive laws, especially in adaptive control for
the noncanonical uncertain system.

4.2. Lyapunov-Based Adaptive Control Scheme

We first describe the design of the Lyapunov-based adaptive law for updating ϕ(t)
and demonstrate that the tracking error is convergent.

4.2.1. Adaptive Update Law for ϕ(t)

The Lyapunov-based adaptive controller is designed as follows:

v(t) =
1

ϕ3(t)
(−ϕT

1 (t)x(t)− ϕT
2 (t)S(x(t)) + ẏm − ae(t))− d(t)e(t)√

e2(t) + $2(t)
, (18)

where ϕ1(t), ϕ2(t), ϕ3(t), and d(t) are the estimated values of CA, CW∗S, CBP0, and d∗ =
supt≥0 ||D1(t)|| in the nominal controller (17); $(t) > 0 is selected as an integrable signal.
Substituting the adaptive controller (18) into the parameterized model (17), the following
equation is established:

ė(t) + ae(t) = ϕ̃T(t)µ(t) + D1(t)−
d(t)e(t)√

e2(t) + $2(t)
, (19)

where ϕ̃(t) denotes the estimated error.

Remark 3. In the process of parameter updating, there is a lack of constraints on the parameter
adaptation range, and the case of ϕ3(t) being zero at some points may occur, resulting in a controller
singularity problem. To overcome this technical issue, a parameter projection method, described
in [36], is proposed to modify the parameter adaptive estimation of ϕ3(t). Due to limitations in the
length of this paper, the details of this procedure will be omitted.

To address the issue of adaptive updating of parameters, we propose the following
adaptive laws to update ϕ(t) and d(t):

ϕ̇(t) = −Γ1e(t)µ(t), (20)

ḋ(t) =
γ1e2(t)√
e2 + $2(t)

, (21)

where Γ1 = ΓT
1 > 0 and γ1 > 0 are adaptive gains.

4.2.2. Performance Analysis

The asymptotic tracking performance of the dynamic system (15) with the disturbance-
like term is established with the adaptive laws (20) and (21) and the tracking error Equa-
tion (19). For deriving the main results, we need to make the following assumption.

Assumption 2. The sign of CBP0 is known and generally positive.

With Assumption 2 holding, the problem of unknown control direction has been
circumvented. Then, the following results can be established.

Theorem 1. Considering the proposed adaptive controller (18) and adaptive parameter update
laws (20) and (21), under Assumptions 1 and 2, the signal boundedness of the noncanonical-form
fuzzy approximation-based system (6) with ρ = 1 can be guaranteed, and the tracking error e(t)
satisfies that e(t) = 0 as t→ ∞.
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Proof. The proper positive function is selected as

V(e, ϕ̃, d̃) =
1
2

e2(t) +
1
2

ϕ̃T(t)Γ−1
1 ϕ̃(t) +

1
2Γ1

d̃2(t), (22)

where d̃(t) = d(t)− d∗. Then, the first-order time derivatives V̇(e, ϕ̃, d̃) with (20) and (21)
can be further computed as

V̇ ≤ −ae2(t) + d∗$(t). (23)

Incorporating the fact that $(t) is integrable and d∗ = supt≥0 ||D1(t)|| is bounded, we ob-
tain V(t) ∈ L∞, which can further derive that e(t), y(t), and ϕ(t) belong to L∞. When zd(t) =
y(t) ∈ L∞, from Assumption 1, it implies that z0 ∈ L∞. Since T(x) = [zT

d (t), zT
0 (t)] ∈ L∞,

the state vector x(t) ∈ L∞, which can derive that the control signal v(t) ∈ L∞ by (18),
and we have the hysteresis output u(t) ∈ L∞ by (5). So far, we have verified the signal
stability of the system. Integrating both sides of (23) and combining the properties of
$(t) and V(t), we obtain that e(t) ∈ L2. We can also derive that ė(t) is bounded by (22).
Incorporated with Barbalat’s lemma, we obtain that e(t) = 0 as time t→ ∞.

4.3. Gradient-Based Adaptive Control Scheme

For achieving our control objective, another more general gradient algorithm for the
fuzzy approximation-based system (6) with ρ = 1 is developed to address the issue of
adaptive updating for unknown parameters.

4.3.1. Adaptive Update Law for ϕ(t)

When the parameters are unknown in the system (6), we develop the following
adaptive controller:

v(t) =
1

ϕ3(t)
(−ϕT

1 (t)x(t)− ϕT
2 (t)S(x(t)) + ẏm − ae(t)), (24)

where x(t), S(x(t)), and a denote the controller design parameters, and ϕ(t) is the adaptive
parameter, which are identical to that in (18). Substituting (24) into the parameterized
model (17), we have

ė(t) + ae(t) = ϕ̃T(t)µ(t) + D1(t). (25)

Ignoring the effect of the exponentially decaying term associated with the initial
response, we derive that

e(t) = Wm(s)[ϕ̃Tµ](t) + D1(t), (26)

where Wm(s) = 1/(s + p), and D1(t) = Wm(s)[D1](t), and it is not difficult to verify
D1(t) ∈ L∞ since Wm is stable and D1(t) is bounded by (15). For the design of the adaptive
laws, we establish the estimation error system

ε(t) = e(t) + ϕTζ(t)−Wm(s)[ϕTµ](t), (27)

with ζ(t) = Wm(s)[µ](t). Incorporated with the tracking error (26), we derive

ε(t) = ϕ̃T(t)ζ(t) + D1(t). (28)

Then, a gradient-based adaptive parameter update law with leakage term for updating
ϕ(t) is designed as

ϕ̇(t) = −Γ2ε(t)ζ(t)
m2(t)

+ M(t), (29)
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where Γ2 = ΓT
2 > 0 is a constant adaptation gain; m(t) =

√
1 + ζT(t)ζ(t); M(t) =

−Γ2σM(t)ϕ(t) denotes a leakage term with switching σ-modification function σM(t), which
is defined as

σM(t) =


0 if ||ϕ(t)||2 < N,

σd

(
||ϕ(t)||2/N − 1

)
if N ≤ ||ϕ(t)||2 ≤ 2N,

σd if ||ϕ(t)||2 > 2N,

(30)

where σd > and N > 0 are design parameters, and M0 should satisfy ||ϕ∗||2 ≤ N. For the
adaptive laws (29), we have

ϕ̃T(t)Γ−1
2 M(t) ≤ −σM(t)‖ϕ(t)‖2(‖ϕ(t)‖2 − ‖ϕ∗‖2) ≤ 0, (31)

which is crucial since it facilitates the subsequent performance analysis.

4.3.2. Properties of Estimated Parameters and Performance Analysis

The stability of the system with D1(t) = 0 is established in this part, while the case
of D1(t) ∈ L∞ can be demonstrated by applying our control scheme to a simulation
example to prove the robustness of this scheme. We first summarize the properties of the
gradient-based adaptive laws (29) to establish the complete performance analysis.

Proposition 1. The proposed adaptive parameter update law (29) ensures that the signals have the
following properties: ϕ(t) belongs to L∞, ϕ̇(t) ∈ L2 ∩ L∞, and ε(t)/m(t) ∈ L2 ∩ L∞.

Proof. We choose the proper positive function as

V(ϕ̃) =
1
2

ϕ̃TΓ−1
2 ϕ̃, (32)

whose first-order time derivatives V̇(ϕ̃) with the adaptive law (29) are derived as

V̇ = − ε2(t)
m2(t)

+
ε(t) · D1(t)

m2(t)
+ ϕ̃TΓ−1

2 M(t) ≤ − ε2(t)
m2(t)

(33)

with the inequality (31) and D1(t) = 0. It is not difficult to conclude that ϕ(t) and ϕ̇(t)
belong to L∞ from the result (33). Furthermore, based on (27) and m(t) defined in (29), we
obtain that

ε(t)
m(t)

≤ ||ϕ̃(t)||
2||ζ(t)||2

||m(t)||2 < ∞, (34)

which indicates ε(t)/m(t) ∈ L∞. In view of (29) and (34), we have

|ϕ̇(t)| ≤ ||Γ2||2||ζ(t)||2
m(t)

|ε(t)|
m(t)

, (35)

which implies ϕ̇(t) ∈ L∞. Integrating both sides of (33), we derive that

∫ t

0

ε2(τ)

m2(τ)
dτ = V(ϕ̃(0))−V(ϕ̃(t)) < V(ϕ̃(0)), (36)

from which it follows that ε(t)/m(t) ∈ L2 ∩ L∞ with the inequality (34). Furthermore, it is
not hard to verify ϕ̇(t) ∈ L2 based on (36).

Before giving the main results, the following assumptions need to be made.
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Assumption 3. The fuzzy basis function vector S(x), the time derivative dS(x)/dt, the partial
derivatives ∂S/∂x, and d(∂S/∂x)/dt are bounded.

Assumption 4. The sign of CABP0 and CW∗(∂S/∂x)BP0 are known and considered to be
positive generally.

Assumption 3 can derive that ∂S2
i (x)/∂xjxk with i = 1, . . . , l and j, k = 1, . . . , n are

bounded, which is essential for the subsequent stability analysis. And Assumption 4 means
that we can avoid the unknown direction problem in designing the controller.

With the above properties and under Assumptions 3 and 4, the following results can
be concluded.

Theorem 2. Suppose that Assumptions 3 and 4 hold, the gradient-based robust adaptive control
scheme ensures the signal boundedness of the system (6) with ρ = 1 and D1(t) = 0, and the
tracking error satisfies that e(t) = 0 as t→ ∞.

Proof. We first give the following notations before proceeding with the proof: g0, a proper
bounded constant; ϑ0(t) ∈ L2 ∩ L∞, a generic function; λ0(t) ∈ L2 ∩ L∞, a generic function
satisfying limt→∞ λ0(t) = 0. The expression of the stable transfer function Wm(s) is

Wm(s) = Cm(sI − Am)
−1Bm. (37)

Note that W1(s) = Cm(sI − Am)−1 and W2(s) = (sI − Am)−1Bm, from which it can
be derived that W1(s) and W2(s) are also stable transfer functions. Using the Swapping
Lemma in [35] for the last two terms in (27), we have

ϕTWm(s)[µ](t)−Wm(s)[ϕTµ](t) = −W1(s)[W2(s)[µT ]ϕ̇](t). (38)

Using the property that ϕ̇(t) ∈ L2 ∩ L∞ in Proposition 1 and the fact that W2(s) is a
stable transfer function, we have

||W2(s)[µT ](t)ϕ̇(t)|| ≤ ϑ0(t)||µ||t + ϑ0(t). (39)

Then, using Lemma A1 in Appendix A and the fact that W1(s) is a stable transfer
function, the following inequality is established

|ϕTWm(s)[µ](t)−Wm(s)[ϕTµ](t)| ≤ ϑ0(t)||µ||t + ϑ0(t). (40)

Recalling T(x) = [zT
d (t), zT

0 (t)]
T , we denote the state vector zd(t) = y(t). Then,

the tracking error Equation (26) with D1(t) = 0 is expressed as

zd(t) = Wm(s)[ϕ̃Tµ](t) + ym(t). (41)

Since ϕ(t) ∈ L∞ in Proposition 1, and the transfer function Wm(s) is strictly proper,
we obtain that

||zd||t ≤ g0||ϕ̃Tµ||t + g0. (42)

From Assumption 1, it implies that

||z0||t ≤ g0||ϕ̃Tµ||t + g0. (43)

Note that T(x) is a diffeomorphism with zd(t) and z0(t), and we have

||x||t ≤ g0||ϕ̃Tµ||t + g0, (44)
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and it is not derived that

||ẋ||t ≤ g0||ϕ̃Tµ||t + g0. (45)

Incorporated with the boundedness of ϕ̃(t), we can derive

||x||t ≤ g0||µ||t + g0, ||ẋ||t ≤ g0||µ||t + g0. (46)

Since the components of µi(t), i = 1, 2, 3 are shown as (17), and under Assumption 3,
the µ(t) and µ̇(t) satisfy that

||µ||t ≤ g0||x||t + g0, ||µ̇||t ≤ g0||x||t + g0. (47)

Incorporated with (46), the regular signal µ(t) satisfies that

||µ̇||t ≤ g0||µ||t + g0. (48)

Since ζ(t) = Wm(s)[µ](t) with Wm(s) a strictly proper transfer function, using Lemma A2,
we have

||ζ̇||t ≤ g0||ζ||t + g0. (49)

Defining K0(t) = ||ζ||t + 1, similar to the proof of the property of ε(t)/m(t), we can
verify that

ε(t)/K0(t) ∈ L2 ∩ L∞, (50)

where K0(t) satisfies that m(t) ≤ K0(t). Then, we can derive that

ε(t)
K0(t)

=
ϕ̃T(t)µ(t)
||ζ||t + 1

. (51)

Incorporated with ϕ(t), ϕ̇(t) being bounded and (49), there exists a ϑ0(t) satisfying
ϑ0(t) = ϕ̃T(t)µ(t)/(||ζ||t + 1). Then, it is not difficult to derive that

ε(t) = ϑ0(t)||ζ||t + ϑ0(t). (52)

From Lemma A1 and the properties of Wm(s), it follows that ||ζ||t ≤ ϑ0(t)||µ||t + ϑ0(t),
and further

|ε(t)| ≤ ϑ0(t)||µ||t + ϑ0(t). (53)

In view of (27), (40), and (53), the following result can be derived

|e(t)| ≤ ϑ0(t)||µ||t + ϑ0(t), |e(t)| ≤ ϑ0(t)||ϕ̃Tµ||t + ϑ0(t). (54)

From (44) and the first inequality of (47), we establish that

||µ||t ≤ g0||ϕ̃Tµ||t + g0. (55)

Since e(t) = Wm(s)[ϕ̃Tµ](t), the following inequalities are established:

||ϕ̃Tµ||t ≤ g0||e||t + g0, (56)

and

||µ||t ≤ g0||e||t + g0. (57)
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Incorporated with (54) and (56), we have

|e(t)| ≤ ϑ0(t)||e||t + ϑ0(t). (58)

Since the ϑ0(t) satisfying limt→∞ ϑ0(t) = 0, along with (58), we can verify that
limt→∞ e(t) = 0, which implies e(t) ∈ L∞. Then, it is not difficult to derive that ϕ̃Tµ(t) is
bounded by the inequality (56). Incorporated with (42)–(44), we obtain that zd(t), z0(t),
and x(t) are bounded, which can derive µ(t) ∈ L∞. In summary, all signals in the
system (15) have been verified to belong to L∞, and the tracking performance has
been established.

5. Simulation Results

For demonstrating the performance of our scheme, we applied this scheme to a
simulation example. First, we consider the system as a second-order system with ρ = 1,
which follows CB 6= 0. Then, the origin system parameters are set in the system (1) as

φ f (x, t) =
[

x2
1/(1 + x5

1)
x2

2/(1 + x5
2)

]
, B =

[
1
−2

]
, C = [1,−1]. (59)

The fuzzy approximation-based noncanonical nonlinear system (6) can be substituted
for the system (1) when the system performance is considered to meet the requirements.
Then, by referring to the fuzzy approximation algorithm in [37], we can define the weight
matrix W∗ and the fuzzy basis function S(x) as

W∗ =
[

1.50 1.00
2.00 1.00

]
, S(x) =

[
3/(1 + e−x1)− 2
2/(1 + e−x2) + 1

]
, (60)

and the matrix A is chosen as the following form to satisfy Hurwitz stability:

A =

[
−4 0
0 −2

]
. (61)

It is noted that the system parameters A, B, C, W∗, and S(x) are considered to be
unknown, and the values within W∗ and S(x) may not be optimal choices, but they can
meet the simulation performance requirements.

5.1. Simulation Results of Lyapunov-Based Control Scheme

Considering the controller (18), we set the x(0) = [0, 0], S(x(0)) = [−0.5, 2]T and
controller design parameters a = 1, $ = 1. We set the initial values of the adaptive
parameters as φ(0) = [−177, 231,−36, 10,−51]T , d(0) = 30, and a desired signal is selected
as ym(t) = 0.5sin(6πt) + 0.5sin(3πt) + 2.5. For the choices of adaptive gains Γ1 and γ1, we
set Γ1 = iI5×5, γ1 = i, i = 2, 4, 6, 8, and the results of tracking error corresponding to each
adaptive gain are shown in Figure 5. Figure 5 shows that the interval of tracking error can
converge as the adaptive gains increase, but when the gains increase to some certain value
(e.g., Γ1 = 8I5×5, γ1 = 8), the problem of controller singularity occurs, resulting in a poor
control effect. Therefore, after several parameter adjustments, we choose the appropriate
adaptive gains Γ1 = 6I5×5, γ1 = 6, and Figure 6 presents the system tracking performance
and the steady-state error converges to [−0.0131, 0.0183] µm.
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Figure 5. Tracking error (in the second half of the time) corresponds to different adaptive gains.

Figure 6. (a) Tracking performance of the system (1) with the Lyapunov-based control scheme.
(b) Controller output. (c) Tracking error. (d) Tracking error in the second half of the time.

5.2. Simulation Results of Gradient-Based Control Scheme

For more reasonably verifying the validity of the gradient-based control scheme, we
use the same reference signal, system states, and fuzzy basic function as in Section 5.1. In
the setting of the parameters, we find that if N in (30) is small, the controller singularity
problem (as seen in Figure 5) will occur. In order to avoid the possible singularity problem
in the adaptive parameter updating of the controller, we find a suitable set of switch σ-
modification design parameters σd = 3, N = 2000 after several adjustments. Then, we
set the controller design parameter a = 1 and the adaptive gain Γ2 = 8I5×5 after several
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parameter adjustments. The initial values of ϕ(t) are set as ϕ(0) = [−27, 27,−29, 25,−209]T .
Figure 7 shows the system tracking performance with the gradient-based adaptive law
for updating the adaptive parameters, and the tracking error can converge to a very small
interval [−0.0139, 0.0161] µm, which implies that Proposition 1 is confirmed.

From the above results, it can be seen that for two different types of adaptive control
schemes, the output of the system (6) with hysteresis inputs can track the bounded desired
signals asymptotically, which indicates the efficiency and robustness of our scheme.

Figure 7. (a) Tracking performance of the system (1) with the gradient-based control scheme. (b) Con-
troller output. (c) Tracking error. (d) Tracking error in the second half of the time.

Remark 4. The reason for setting the controller design parameters a = 1, $ = 1 in Section 5.1 is
that in the simulation, we find that the dominant effect on the controller output is −ϕT

1 (t)x(t)−
ϕT

2 (t)S(x(t)) in Equation (18), and we try to increase a and $, but the tracking effect changes little,
and finally, we set them as 1. In Section 5.2, the reason for setting a = 1 is similar.

6. Conclusions

We investigate the control problem of a class of hysteresis dynamics system coupled
with an unknown noncanonical nonlinear system and the compensation problem of the
disturbance term presented by the hysteresis formulation, and propose a Lyapunov-based
method with error modification adaptive control scheme and a gradient-based method
with integrated switch σ-modification control scheme in the framework of the feedback
linearization. In our solution, all signals in the fuzzy approximation-based system with a
hysteresis operator are guaranteed to be bounded, and the system can achieve the desired
performance, which indicates the robustness of our scheme to L∞ disturbance. Through
simulation, the above results improve the tracking accuracy by 65.91% compared to the
minimum steady-state error ±0.044 µm achieved by another adaptive control scheme [38].
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Appendix A

Some lemmas required in the proof of the above stability analysis are given in the
Appendix, and the details of their proof are given in [35]. The notations g0, ϑ0(t), and λ0(t)
defined in the text are used in this part.

Lemma A1. Let y(t) = W(s)[u](t) with a stable transfer function Wm(s). If

||u||t ≤ ϑ0(t)||µ||t + ϑ0(t), (A1)

then

||y||t ≤ ϑ0(t)||µ||t + ϑ0(t). (A2)

Furthermore, if Wm(s) is strictly a proper transfer function, we have

||y||t ≤ λ0(t)||µ||t + λ0(t). (A3)

Lemma A2. Let y(t) = W(s)[u](t) with a stable transfer function Wm(s). If y(t), u(t), u̇(t) ∈
L∞e, and u(t) satisfies

||u̇||t ≤ g0||u||t + g0, (A4)

then we have

||ẏ||t ≤ g0||y||t + g0. (A5)
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