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Abstract: Harvesting is one of the ways for humans to realize economic interests, while unrestricted
harvesting will lead to the extinction of populations. This paper proposes a predator–prey model with
impulsive diffusion and transient/nontransient impulsive harvesting. In this model, we consider
both impulsive harvesting and impulsive diffusion; additionally, predator and prey are harvested
simultaneously. First, we obtain the subsystems of the system in prey extinction and predator
extinction. We obtain the fixed points of the subsystems by the stroboscopic map theories of impulsive
differential equations and analyze their stabilities. Further, we establish the globally asymptotically
stable conditions for the prey/predator-extinction periodic solution and the trivial solution of the
system, and then the sufficient conditions for the permanence of the system are given. We also
perform several numerical simulations to substantiate our results. It is shown that the transient and
nontransient impulsive harvesting have strong impacts on the persistence of the predator–prey model.

Keywords: impulsive diffusion; transient and non-transient impulsive harvesting; predator–prey
model; permanence

MSC: 34A37; 34D05; 34D23; 34E05; 37M05

1. Introduction

In nature, species cannot exist alone; they always interact with other species, such as in
competition, predator–prey, or reciprocity. As one of them, the predator–prey relationship
is widespread and very important. It is also a main research topic in population dynamics.
In the 1940s, Lotka and Volterra proposed the classic predator–prey system. Afterward,
the classic predator–prey model has been followed and developed in much literature [1–8],
and the study of the dynamics of the predator–prey model has been observed widely in
applied mathematics. There are many factors, for example, weather, food supply, mating
habits or harvesting, by which the dynamics of the predator–prey population are affected.
In [1], Brauer studied the following system:{

x′ = x f (x, y)− F,

y′ = yg(x, y),
(1)

where prey population x(t) is harvested at a constant time rate F, and f(x,y) and g(x,y)
denote the per capita growth rates of prey population x(t) and predator population y(t),
respectively. Similar to reference [1], the activities of harvesting are usually assumed
to be continuous in formerly published results. Kumar and Kharbanda [2] studied a
predator–prey model with nonlinear harvesting. Lv et al. [3] investigated a prey–predator
model with continuous harvesting, and the stability of the model is discussed from both
local and global perspectives. Although it is preferable from the point of view of both
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maximizing harvest and sustainability, continuous harvesting is not always realistic, be-
cause the harvesting is seasonal or occurs in regular pulses for most species. In [4], a
logistic system with impulsive perturbations was investigated. The specific form of the
model is as follows: {

x′(t) = x(t)(r(t)− a(t)x(t)), t 6= tk,

∆x(t) = bkx(t), t = tk,
(2)

when bk < 0, the perturbation means harvesting, ∆x(tk) = x(tk
+) − x(tk). Recently,

predator–prey models with impulsive harvesting have been intensively researched. Tian
and Gao [5] discussed an instantaneous harvest fishery model. Liu et al. [6] considered
a predator–prey model in which predator and prey species are harvested independently
with proportion. Wei et al. [7] proposed a ratio-dependent prey–predator model with
state-dependent impulsive harvesting. Especially, Jiao [8] mentioned that transient and
nontransient pulse harvesting constitute the whole harvesting process in the reality of
biological resource management and presented the following model with impulsive effects:

dx1(t)
dt

= −(c1 + d1)x1(t),

dx2(t)
dt

= c1x1(t)− d2x2(t),

t ∈ (nτ, (n + l)τ],

∆x1(t) = −u1x1(t),

∆x2(t) = −u2x2(t),

}
t = (n + l)τ,

dx1(t)
dt

= −(c2 + d3)x1(t)− E1x1(t),

dx2(t)
dt

= c2x1(t)− d4x2(t)− E2x2(t),

t ∈ ((n + l)τ, (n + 1)τ],

∆x1(t) = x2(t)(a− bx2(t)),

∆x2(t) = 0,

}
t = (n + 1)τ,

(3)

where the transient impulsive harvesting rate is denoted by ui(i = 1, 2) and the nontransient
impulsive harvesting coefficient is denoted by Ei(i = 1, 2). The biological significance
of other parameters refer to [5]. In [5–8], and scholars have studied the persistence and
extinction of the investigated predator–prey models. All results show that through proper
pulse control, the population will coexist, and then, the purpose of maintaining the balance
of the ecosystem can be achieved.

The diffusion of populations is very common in nature and affects the dynamics
of the system and the ecological balance. Modern biologists believe that dispersion and
migration become necessary for populations due to seasonal changes, lack of food, breeding,
or avoidance of predators [9–12]. Paying attention to species living in patches of the
environment, Takeuchi [13] considered the following general single-population system
with diffusion:

ẋi = xigi(xi) +
n

∑
j=1

Dij(xj − xi), x(0) > 0, i = 1, 2, . . . n, (4)

where xi is the population density in patch i, gi(xi) is the natural growth rate, and Dij
is the dispersal rate. Initially, researchers assumed that diffusion between patches was
continuous or discrete; however, many species only diffuse over a single period of time in
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practice. In [14], a model describing the dynamics of single species with impulsive diffusion
was given by 

dx1(t)
dt

= x1(t)(a1 − b1x1(t)),

dx2(t)
dt

= x2(t)(a2 − b2x2(t)),

t 6= nτ,

∆x1(t) = d1(x2(t)− x1(t)),

∆x2(t) = d2(x1(t)− x2(t)),

}
t = nτ,

(5)

where di (i = 1, 2) is the dispersal rate in the i-th patch, and the dispersal behavior of
species occurs every τ period. Other examples specific to diffusion models can be seen
in [15–17]. Cui [15] studied a time-varying logistic population growth model with diffusion.
Zhong et al. [16] proposed a fishery model with impulsive diffusion; they assumed that the
system consists of two paths connected by diffusion and that the inshore subpopulation is
harvested at fixed moments in time. In [17], a predator–prey model assuming diffusion and
harvesting occurring at different fixed times was studied by Jiao et al. They considered the
case of harvesting both prey and predator populations and performed a dynamic analysis
of the model.

Most of the previous research focused only on impulsive harvesting or impulsive
diffusion and carried out unilateral harvesting of predators or prey. There still has been no
investigation of the predator–prey model with transient/nontransient impulsive harvest-
ing considering both pulse harvesting and diffusion in the literature. In addition, pulse
harvesting consists of transient and nontransient impulsive harvesting; predator and prey
may also be harvested at the same time. The transient impulsive harvesting process is
extremely short, which will cause sudden changes in the population. The nontransient
pulse harvesting depends on the current state and will last for a while, which is crucial to
the entire process of system development and cannot be ignored in both theoretical analysis
and practical application.

2. The Model
Higher-order predators such as tigers are able to create territories. They will not

interfere with other areas and only prey in their own territories [18–20]. In this paper, we
assume predator species are restricted to a single patch, and prey species diffuse between
two patches at a fixed moment of time for foraging, breeding, or avoiding predators. From
the above point of view and considering transient and nontransient impulsive harvesting
exist in populations of both prey and predator, we propose a new predator–prey model
with pulse effects, defined as

dx1(t)
dt

= x1(t)(a1 − b1x1(t)),

dx2(t)
dt

= −d1x2(t)− β1x2(t)y(t),

dy(t)
dt

= y(t)(a2 − b2y(t)) + k1β1x2(t)y(t),


t ∈ (nσ, (n + ξ)σ],

∆x1(t) = −m1x1(t),

∆x2(t) = −m2x2(t),

∆y(t) = −m3y(t),

t = (n + ξ)σ,

dx1(t)
dt

= x1(t)(a3 − b3x1(t))− h1x1(t),

dx2(t)
dt

= −d2x2(t)− h2x2(t)− β2x2(t)y(t),

dy(t)
dt

= y(t)(a4 − b4y(t))− h3y(t) + k2β2x2(t)y(t),


t ∈ ((n + ξ)σ, (n + 1)σ],

∆x1(t) = d(x2(t)− x1(t)),

∆x2(t) = d(x1(t)− x2(t)),

∆y(t) = 0,

t = (n + 1)σ.

(6)
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where x1(t) is the population density of prey in patch 1. x2(t) and y(t) are the population
densities of prey and predator in patch 2, respectively. The parameters a1, b1 denote
the intrinsic growth rate and intraspecific competition coefficient of x1, respectively, on
(nσ, (n + ξ)σ]. d1 is the natural death rate of x2, β1 is the prey captured rate by y, and k1 is
the rate of conversion of nutrients into the reproduction rate of y, on (nσ, (n + ξ)σ]. a2, b2
denote the intrinsic growth rate and intraspecific competition coefficient of y, respectively,
on (nσ, (n + ξ)σ]. m1, m2, and m3 represent the transient impulsive harvesting rate of
x1, x2, and y at time t = (n + ξ)σ, respectively. a3, b3 are the intrinsic growth rate and
intraspecific competition coefficient of x1, respectively, on ((n + ξ)σ, (n + 1)σ]. h1, h2, and
h3 represent the nontransient impulsive harvesting rate of x1, x2, and y, respectively, on
((n + ξ)σ, (n + 1)σ]. d2 is the natural death rate of x2, β2 is the prey captured rate by
y, and k2 represents the rate of conversion of nutrients into the reproduction rate of y
on ((n + ξ)σ, (n + 1)σ]. a4, b4 are the intrinsic growth rate and intraspecific competition
coefficients of y, respectively, on ((n + ξ)σ, (n + 1)σ]. 0 < d < 1 denotes the dispersal
rate of the prey between two patches. ((n + ξ)σ, (n + 1)σ] is the nontransient impulsive
harvesting interval. The pulse diffusion and impulsive harvesting occur every σ period.
All the parameters are assumed to be positive for biological considerations.

3. Some Lemmas

Denote U(t) = (x1(t), x2(t), y(t))T as the solution of system (6). It is a piecewise con-
tinuous function U : R+ → R3

+ and continuous on (nσ, (n + ξ)σ] × R3
+ and

((n + ξ)σ, (n + 1)σ] × R3
+, respectively, where R+ = [0, ∞), R3

+ = {(x1, x2, y) : x1 ≥
0, x2 ≥ 0, y ≥ 0}. The global existence and uniqueness of solutions of system (6) is guaran-
teed by the smoothness properties of f = ( f1, f2, f3), which denotes the mapping defined
by the right side of system (6) [21].

Lemma 1. There exists a constant M0 > 0 such that x1(t) ≤ M0, x2(t) ≤ M0, y(t) ≤ M0 for
each solution (x1(t), x2(t), y(t)) of system (6) with a t large enough.

Proof. Define V(t) = x1(t)+ kx2(t)+ y(t), and choose k = max{k1, k2}, dL = min{d1, d2 +
h2}. Then, we have

D+V(t) + dLV(t) = (a1 + dL)x1(t)− b1x1
2(t)− (k− k1)β1x2(t)y(t)− k(d1 − dL)x2(t)

+(a2 + dL)y(t)− b2y2(t) ≤ γ1, t ∈ (nσ, (n + ξ)σ],

V(t+) ≤ V(t), t = (n + ξ)σ,

D+V(t) + dLV(t) = [(a3 − h1) + dL]x1(t)− b3x1
2(t)− (k− k2)β2x2(t)y(t) + kdLx2(t)

−k(d2 + h2)x2(t) + [(a4 − h3) + dL]y(t)− b4y2(t) ≤ γ2, t ∈ ((n + ξ)σ, (n + 1)σ],

V(t+) ≤ (1− d + kd +
d
k
)V(t), t = (n + 1)σ,

(7)

here, γ1 =
(a1 + dL)

2

4b1
+

(a2 + dL)
2

4b2
, γ2 =

[(a3 − h1) + dL]
2

4b3
+

[(a4 − h3) + dL]
2

4b4
. Take

γ = max{γ1, γ2}, when t 6= (n + ξ)σ, t 6= (n + 1)σ, we obtain
D+V(t) + dLV(t) ≤ γ,

V(t+) ≤ (1− d + kd +
d
k
)V(t), t = (n + 1)τ.

(8)

With reference to [11], we obtain

V(t) ≤ V(0+)(1− d + kd +
d
k
)e−dLt +

γ

dL
(1− d + kd +

d
k
)(1− e−dLt) (9)
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→ γ

dL
(1− d + kd +

d
k
) as t→ ∞.

Hence, V(t) is uniformly ultimately bounded. By the definition of V(t), there exists a
constant M0 > 0 such that x1(t) ≤ M0, x2(t) ≤ M0, y(t) ≤ M0 for a t large enough.

Considering the subsystem of system (6) with y(t)=0, we have:

dx1(t)
dt

= x1(t)(a1 − b1x1(t)),

dx2(t)
dt

= −d1x2(t),

t ∈ (nσ, (n + ξ)σ],

∆x1(t) = −m1x1(t),

∆x2(t) = −m2x2(t),

}
t = (n + ξ)σ,

dx1(t)
dt

= x1(t)(a3 − b3x1(t))− h1x1(t),

dx2(t)
dt

= −d2x2(t)− h2x2(t),

t ∈ ((n + ξ)σ, (n + 1)σ],

∆x1(t) = d(x2(t)− x1(t)),

∆x2(t) = d(x1(t)− x2(t)),

t = (n + 1)σ.

(10)

By calculation, we obtain the analytic solution of system (7) between pluses:

x1(t) =



a1ea1(t−nσ)x1(nσ+)

a1 + b1(ea1(t−nσ) − 1)x1(nσ+)
, t ∈ (nσ, (n + ξ)σ],

(a3 − h1)e(a3−h1)(t−(n+ξ)σ)x1((n + ξ)σ+)

(a3 − h1) + b3(e(a3−h1)(t−(n+ξ)σ) − 1)x1((n + ξ)σ+)
,

t ∈ ((n + ξ)σ, (n + 1)σ],

x2(t) =

{
e−d1(t−nσ)x2(nσ+), t ∈ (nσ, (n + ξ)σ],

e−(d2+h2)(t−(n+ξ)σ)x2((n + ξ)σ+), t ∈ ((n + ξ)σ, (n + 1)σ],

(11)

and the stroboscopic map of system (10):
x1((n + 1)σ+) =

(1− d)ABx1(nσ+)

B + Cx1(nσ+)
+ dDx2(nσ+),

x2((n + 1)σ+) =
dABx1(nσ+)

B + Cx1(nσ+)
+ (1− d)Dx2(nσ+),

(12)

here, A = (1− m1)ea1ξσ+(a3−h1)(1−ξ)σ > 0, B = a1(a3 − h1), C = b1(a3 − h1)(ea1ξσ − 1) +
a1b3(1−m1)ea1ξσ(e(a3−h1)(1−ξ)σ − 1), 0 < D = (1−m2)e−d1ξσ−(d2+h2)(1−ξ)σ < 1. It is easy
to see that system (12) has two fixed points (0, 0) and (x∗1 , x∗2), where

x∗1 =
B{(1− d)(A + D)− [1 + (1− 2d)AD]}

C[1− (1− d)D]
,

x∗2 =
dB{(1− d)(A + D)− [1 + (1− 2d)AD]}

C[1− (1− d)D][(1− d)− (1− 2d)D]
,

(13)

with condition (1− d)(A + D) > [1 + (1− 2d)AD].

Lemma 2. (i) If (1− d)(A + D) < [1 + (1− 2d)AD] and (1− 2d)AD < 1, the fixed point
(0, 0) is locally stable,

(ii) If (1− d)(A + D) > [1 + (1− 2d)AD] and (1− 2d)AD < 1, the positive fixed point
(x1
∗, x2

∗) is locally stable.

Proof. Denote (x1
n, x2

n) = (x1(nσ+), x2(nσ+)).
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(i) The linearized equation of (12) around (0, 0) is(
x1

n+1

x2
n+1

)
= M1

(
x1

n

x2
n

)
, (14)

where

M1 =

(
(1− d)A dD

dA (1− d)D

)
. (15)

Apparently, the near dynamics of the fixed point (0, 0) are determined by linear
system (14). The stability of the fixed point (0, 0) is determined by the eigenvalues of M1
less than 1. This is true only if M1 satisfies the three Jury conditions [22]:

1− det M1 > 0,

1 + trM1 + det M1 > 0,

1− trM1 + det M1 > 0.

. (16)

By (15) and Conditions for (i) in Lemma 2, it is clear that trM1 = (1− d)A+(1− d)D >
0. Hence, 1 + trM1 + det M1 > 0 holds, if 1− trM1 + det M1 > 0 is true. Calculating

1− detM1 = 1− [(1− d)2 AD− d2 AD] = 1− (1− 2d)AD > 0.

1− trM1 + detM1 = 1− [(1− d)A + (1− d)D] + [(1− d)2 AD− d2 AD]

= 1 + (1− 2d)AD)− (1− d)(A + D) > 0.

. (17)

Therefore, the fixed point (0, 0) is locally stable.
(ii) Similarly, we can study the local stability of positive fixed point (x1

∗, x2
∗) by

Jury conditions. In the neighborhood of (x1
∗, x2

∗), system (12) is controlled by the
linearization of (

x1
n+1 − x1

∗

x2
n+1 − x2

∗

)
= M2

(
x1

n − x1
∗

x2
n − x2

∗

)
, (18)

where

M2 =


(1− d)AB2

(B + Cx1
∗)2 dD

dAB2

(B + Cx1
∗)2 (1− d)D

. (19)

Obviously, trM2 =
(1− d)AB2

(B + Cx1
∗)2 + (1− d)D > 0. Hence, 1 + trM2 + det M2 > 0

holds, if 1− tr2M + det M2 > 0 is true. Calculating

1− detM2 = 1− [
(1− d)2 AB2D

(B + Cx1
∗)2 −

d2 AB2D

(B + Cx1
∗)2 ]

= 1− (1− 2d)AD
B2

(B + Cx1
∗)2 > 0.

1− trM2 + detM2 = 1− [
(1− d)AB2

(B + Cx1
∗)2 + (1− d)D] + [

(1− d)2 AB2D

(B + Cx1
∗)2 −

d2 AB2D

(B + Cx1
∗)2 ]

= 1− (1− d)D− AB2[(1− d) + (2d− 1)D]

(B + Cx1
∗)2

=
[1− (1− d)D]{(1− d)(A + D)− [1 + (1− 2d)AD]}

A[(1− d)− (1− 2d)D]
> 0.

(20)

Therefore, the positive fixed point (x1
∗, x2

∗) is locally stable.
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Lemma 3. (i) If (1− d)(A + D) < [1 + (1− 2d)AD] and (1− 2d)AD < 1, the fixed point
(0, 0) is globally asymptotically stable,

(ii) If (1− d)(A + D) > [1 + (1− 2d)AD] and (1− 2d)AD < 1, the positive fixed point
(x1
∗, x2

∗) is globally asymptotically stable.

Proof. In lemma 2, we proved that the two fixed point are locally stable under the corre-
sponding conditions, respectively. Next, we only need to prove the global attractiveness.
According to Theorem 2.2 in reference [23], we rewrite system (12) as a map T : R2

+ → R2
+:

T1(x1, x2) =
(1− d)ABx1

B + Cx1
+ dDx2,

T2(x1, x2) =
dABx1

B + Cx1
+ (1− d)Dx2.

(21)

For any (x1, x2) > 0, it is obvious that T : R2
+ → R2

+ is continuous, and C1 in int(R2
+)

and T(0, 0) = 0. Since

DT(x1, x2) =


∂T1

∂x1

∂T1

∂x2

∂T2

∂x1

∂T2

∂x2

 =


(1− d)AB2

(B + Cx1)2 dD

dAB2

(B + Cx1)2 (1− d)D

, (22)

then DT(0, 0) = M1 and limxi→0,xi>0(i=1,2) DT(x1, x2) = DT(0, 0). Moreover,
(a) DT(x1, x2) > 0 for (x1, x2) > 0,
(b) If 0 < (x1, x2) < (x̂1, x̂2), then DT(x̂1, x̂2) ≤ DT(x1, x2)( 6≡ DT(x1, x2)).
Let λ∗ = ρ(DT(0, 0)); due to DT(0, 0) = M1 , we have λ∗ < 1 for (1− d)(A + D) <

[1 + (1 − 2d)AD], while λ∗ > 1 for (1 − d)(A + D) > [1 + (1 − 2d)AD]. According
to theorem 2.2 in reference [23] and boundedness of solutions, we can see that for any
(x1, x2) > 0, if (1 − d)(A + D) < [1 + (1 − 2d)AD], then limn→∞ Tn(x1, x2) = (0, 0),
and there is a unique nonzero fixed point q = (q1, q2) of T(x1, x2); if (1− d)(A + D) >
[1 + (1− 2d)AD], then limn→∞ Tn(x1, x2) = (q1, q2).

From the above discussion, we know that q = (x1
∗, x2

∗). Hence, for (1− d)(A + D) >
[1 + (1 − 2d)AD] and (1 − 2d)AD < 1, system (12) has a unique positive fixed point
(x1
∗, x2

∗) and it is globally asymptotically stable.

Similarly to Refs. [8,17], we can obtain the next lemma.

Lemma 4. (i) If (1− d)(A + D) < [1 + (1− 2d)AD] and (1− 2d)AD < 1, the trivial periodic
solution (0, 0) of system (10) is globally asymptotically stable,

(ii) If (1− d)(A + D) > [1 + (1− 2d)AD] and (1− 2d)AD < 1, the periodic solution
(x̃1(t), x̃2(t)) of system (10) is globally asymptotically stable, where

x̃1(t) =


a1x1

∗ea1(t−nσ)

a1 + b1x1
∗(ea1(t−nσ) − 1)

, t ∈ (nσ, (n + ξ)σ],

(a3 − h1)x1
∗∗e(a3−h1)(t−(n+ξ)σ)

(a3 − h1) + b3x1
∗∗(e(a3−h1)(t−(n+ξ)σ) − 1)

, t ∈ ((n + ξ)σ, (n + 1)σ],

x̃2(t) =

{
x2
∗e−d1(t−nσ), t ∈ (nσ, (n + ξ)σ],

x2
∗∗e−(d2+h2)(t−(n+ξ)σ), t ∈ ((n + ξ)σ, (n + 1)σ],

(23)

here, x1
∗, x2

∗ (see (13)) and x1
∗∗, x2

∗∗ are determined as x1
∗∗ =

(1−m1)a1ea1ξσx1
∗

a1 + b1x1
∗(ea1ξσ − 1

) ,

x2
∗∗ = (1−m2)e−d1ξσx2

∗.
(24)
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Considering another subsystem of system (6) with xi(t) = 0(i = 1, 2), we have

dy(t)
dt

= y(t)(a2 − b2y(t)), t ∈ (nσ, (n + ξ)σ],

∆y(t) = −m3y(t), t = (n + ξ)σ,
dy(t)

dt
= y(t)(a4 − b4y(t))− h3y(t), t ∈ ((n + ξ)σ, (n + 1)σ],

∆y(t) = 0, t = (n + 1)σ.

(25)

By calculation, we obtain the analytic solution of system (25) between pluses:

y(t) =



a2ea2(t−nσ)z(nσ+)

a2 + b2(ea2(t−nσ) − 1)z(nσ+)
, t ∈ (nσ, (n + ξ)σ],

(a4 − h3)e(a4−h3)(t−(n+ξ)σ)z((n + ξ)σ+)

(a4 − h3) + b4(e(a4−h3)(t−(n+ξ)σ) − 1)z((n + ξ)σ+)
,

t ∈ ((n + ξ)σ, (n + 1)σ],

(26)

and the stroboscopic map of system (25):

y((n + 1)σ+) =
a2(a4 − h3)Azy(nσ+)

a2(a4 − h3) + Bzy(nσ+)
, (27)

where

Az = (1−m3)ea2ξσ+(a4−h3)(1−ξ)σ > 0,

Bz = b2(a4 − h3)(ea2ξσ − 1) + a2b4(1−m3)ea2ξσ(e(a4−h3)(1−ξ)σ − 1).
(28)

Two fixed points of system (27) are obtained as y0 and y∗, where

y∗ =
a2(a4 − h3)(Az − 1)

Bz
(29)

with condition Az > 1.

Lemma 5. (i) If Az < 1, the fixed point y0 is globally asymptotically stable.
(ii) If Az > 1, the positive fixed point y∗ is globally asymptotically stable.

Proof. Denote yn = y(nσ+) , then (27) can be written as

F(yn) =
a2(a4 − h3)Azyn

a2(a4 − h3) + Bzyn
, (30)

then
dF(yn)

dyn
=

a2
2(a4 − h3)

2 Az

(a2(a4 − h3) + Bzyn)2 . (31)

(i) If Az < 1, y0 is the unique fixed point of (27),

dF(yn)

dyn

∣∣
yn=0 =

a2
2(a4 − h3)

2 Az

(a2(a4 − h3))2 = Az < 1. (32)

Therefore, if y0 is locally stable, then it is globally asymptotically stable.
(ii) If Az > 1, y0 is unstable, y∗ exists, and

dF(yn)

dyn

∣∣
yn=y∗ =

a2
2(a4 − h3)

2 Az

(a2(a4 − h3)) + Bzy∗)2 =
a2

2(a4 − h3)
2

a22(a4 − h3)2 Az =
1

Az
< 1. (33)
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Therefore, if y∗ is locally stable, then it is globally asymptotically stable.

Similarly to Ref. [24], we can obtain the next lemma.

Lemma 6. (i) If Az < 1, the trivial periodic solution of system (25) is globally asymptotically
stable.

(ii) If Az > 1, the periodic solution ỹ(t) of system (25) is globally asymptotically stable, where

ỹ(t) =


a2y∗ea2(t−nσ)

a2 + b2y∗(ea2(t−nσ) − 1)
, t ∈ (nσ, (n + ξ)σ],

(a4 − h3)y∗∗e(a4−h3)(t−(n+ξ)σ)

(a4 − h3) + b4y∗∗(e(a4−h3)(t−(n+ξ)σ) − 1)
, t ∈ ((n + ξ)σ, (n + 1)σ],

(34)

and

y∗∗ =
(1−m3)a2ea2ξσy∗

a2 + b2(ea2ξσ − 1)y∗
. (35)

4. The Dynamics

Firstly, we study the global asymptotic stability of the boundary periodic solutions

(x̃1(t), x̃2(t), 0), (0, 0, ỹ(t)) and the trivial solution (0, 0, 0) of system (6).

Theorem 1. If
(1− d)(A + D) > [1 + (1− 2d)AD], (36)

and
(1− 2d)AD < 1, (37)

and
(1− d)(AE + D) < 1, (38)

and

ln
1

1−m3
> a2ξσ + (a4 − h3)(1− ξ)σ +

k1β1(1− e−d1ξσ)

d1
x2
∗

+
k2β2(1− e−(d2+h2)(1−ξ)σ)

(d2 + h2)
x2
∗∗

(39)

hold, the predator-extinction periodic solution (x̃1(t), x̃2(t), 0) of system (6) is globally asymptoti-

cally stable, where E = e−
∫ ξσ

0 2b1 x̃1(s)ds−
∫ σ

ξσ 2b3 x̃1(s)ds, x2
∗ and x2

∗∗ see (13) and (24).

Proof. Firstly, define z1(t) = x1(t)− x̃1(t), z2(t) = x2(t)− x̃2(t), z3(t) = y(t), we obtain
the following linearly similar system for system (6):


dz1(t)

dt
dz2(t)

dt
dz3(t)

dt

 =

 a1 − 2b1 x̃1(t) 0 0

0 −d1 −β1 x̃2(t)
0 0 a2 + k1β1 x̃2(t)


 z1(t)

z2(t)
z3(t)

, t ∈ (nσ, (n + ξ)σ], (40)

and
dz1(t)

dt
dz2(t)

dt
dz3(t)

dt

 =

 (a3 − h1)− 2b3 x̃1(t) 0 0

0 −(d2 + h2) −β2 x̃2(t)
0 0 (a4 − h3) + k2β2 x̃2(t)


 z1(t)

z2(t)
z3(t)

, (41)
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t ∈ ((n + ξ)σ, (n + 1)σ].

For t ∈ (nσ, (n + ξ)σ] and t ∈ ((n + ξ)σ, (n + 1)σ], it is easy to obtain the fundamental
solution matrixes:

φ1(t) =

 e
∫ t

nσ a1−2b1 x̃1(s)ds 0 0
0 e−d1(t−nσ) †1

0 0 e
∫ t

nσ a2+k1β1 x̃2(s)ds

, (42)

and

φ2(t) =

 e
∫ t
(n+ξ)σ (a3−h1)−2b3 x̃1(s)ds 0 0

0 e−(d2+h2)(t−(n+ξ)σ) †2

0 0 e
∫ t
(n+ξ)σ (a4−h3)+k2β2 x̃2(s)ds

. (43)

As †1, †2 are not required for the following analysis, its exact form is not necessary to
obtain. The linearization of the fourth, fifth and sixth equations of system (6) is z1((n + ξ)σ+)

z2((n + ξ)σ+)
z3((n + ξ)σ+)

 =

 1−m1 0 0
0 1−m2 0
0 0 1−m3

 z1((n + ξ)σ)
z2((n + ξ)σ)
z3((n + ξ)σ)

. (44)

The linearization of the tenth, eleventh and twelfth equations of system (6) is z1((n + 1)σ+)
z2((n + 1)σ+)
z3((n + 1)σ+)

 =

 1− d d 0
d 1− d 0
0 0 1

 z1((n + 1)σ)
z2((n + 1)σ)
z3((n + 1)σ)

. (45)

The stability of (x̃1(t), x̃2(t), 0) is determined by the eigenvalues of

L =

 1−m1 0 0
0 1−m2 0
0 0 1−m3

φ1(ξσ)

 1− d d 0
d 1− d 0
0 0 1

φ2(σ), (46)

which are

λ1 = (1−m3)e
∫ ξσ

0 a2+k1β1 x̃2(s)ds+
∫ σ

ξσ (a4−h3)+k2β2 x̃2(s)ds,

λ2 =
(1− d)(AE + D)−

√
(1− d)2(AE + D)2 − 4(1− 2d)ADE

2

=
(1− d)(AE + D)−

√
(1− d)2(AE− D)2 + 4d2 ADE

2

<
(1− d)(AE + D)− (1− d)(AE− D)

2
= (1− d)D,

λ3 =
(1− d)(AE + D) +

√
(1− d)2(AE + D)2 − 4(1− 2d)ADE

2

=
(1− d)(AE + D) +

√
d2(AE + D)2 + (1− 2d)(AE− D)2

2

<
(1− d)(AE + D) +

√
d2(AE + D)2 + (1− 2d)(AE + D)2

2
= (1− d)(AE + D).

(47)
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Here 0 < E = e−
∫ ξσ

0 2b1 x̃1(s)ds−
∫ σ

ξσ 2b3 x̃1(s)ds
< 1. If conditions (38) and (39) hold, we

can deduce that |λi| < 1(i = 1, 2, 3). According to the Floquet theory [25], the predator-

extinction periodic solution (x̃1(t), x̃2(t), 0) of system (6) is locally stable.
Next, we prove the global attraction. If (38) holds, that is

λ1 = (1−m3) ∗ e
∫ ξσ

0 a2+k1β1 x̃2(s)ds+
∫ σ

ξσ (a4−h3)+k2β2 x̃2(s)ds
< 1,

then we can take an ε > 0 small enough such that

ζ1 = (1−m3)e
∫ ξσ

0 a2+k1β1(x̃2(s)+ε)ds+
∫ σ

ξσ (a4−h3)+k2β2(x̃2(s)+ε)ds
< 1. (48)

From the second and eighth equations of system (6), we have

dx2(t)
dt

≤ −d1x2(t), (49)

and
dx2(t)

dt
≤ −(d2 + h2)x2(t). (50)

Considering the following comparison equation:

dH11(t)
dt

= H11(t)(a1 − b1H11(t)),

dH21(t)
dt

= −d1H21(t),

t ∈ (nσ, (n + ξ)σ],

∆H11(t) = −m1H11(t),

∆H21(t) = −m2H21(t),

}
t = (n + ξ)σ,

dH11(t)
dt

= H11(t)[(a3 − h1)− b3H11(t)],

dH21(t)
dt

= −(d2 + h2)H21(t),

t ∈ ((n + ξ)σ, (n + 1)σ],

∆H11(t) = d(H21(t)− H11(t)),

∆H21(t) = d(H11(t)− H21(t)),

}
t = (n + 1)σ,

(51)

from Lemma 3 and the comparison theorem of impulsive differential equations [25], we

have x1(t) ≤ H11(t), x2(t) ≤ H21(t), and H11(t)→ x̃1(t), H21(t)→ x̃2(t) as t→ ∞. Then,{
x1(t) ≤ H11(t) ≤ x̃1(t) + ε,

x2(t) ≤ H21(t) ≤ x̃2(t) + ε,
(52)

for a t large enough. For convenience, we assume (52) holds for all t ≥ 0. From system (6)
and (52), we have

dy(t)
dt
≤ a2y(t) + k1β1(x̃2(t) + ε)y(t), t ∈ (nσ, (n + ξ)σ],

∆y(t) = −m3y(t), t = (n + ξ)σ,
dy(t)

dt
≤ (a4 − h3)y(t) + k2β2(x̃2(t) + ε)y(t), t ∈ ((n + ξ)σ, (n + 1)σ],

∆y(t) = 0, t = (n + 1)σ,

(53)

and

y((n + 1)σ) ≤ (1−m3)y(nσ+)e
∫ (n+ξ)σ

nσ a2+k1β1(x̃2(s)+ε)ds+
∫ (n+1)σ
(n+ξ)σ

(a4−h3)+k2β2(x̃2(s)+ε)ds, (54)

hence, y(nσ) ≤ y(0+)ζ1
n, so y(nσ)→ 0 as n→ ∞. Therefore, y(t)→ 0 as t→ ∞.
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Then, we prove that x1(t) → x̃1(t), x2(t) → x̃2(t), as t → ∞. For an ε1 > 0 small
enough, there exists t0 > 0, such that 0 < y(t) < ε1 for all t > t0. Without loss of generality,
we assume that 0 < y(t) < ε1 for all t ≥ 0, so we have

−d1x2(t)− β1ε1x2(t) ≤
dx2(t)

dt
≤ −d1x2(t), (55)

and

−(d2 + h2)x2(t)− β2ε1x2(t) ≤
dx2(t)

dt
≤ −(d2 + h2)x2(t), (56)

and H12(t) ≤ x1(t) ≤ H13(t), H22(t) ≤ x2(t) ≤ H23(t) and H12(t) → H̃12(t), H13(t) →
x̃1(t), H22(t)→ H̃22(t), H23(t)→ x̃2(t) as t→ ∞; here, (H12(t), H22(t)) and (H22(t), H23(t))
are the solutions of

dH12(t)
dt

= H12(t)(a1 − b1H12(t)),

dH22(t)
dt

= −d1H22(t)− β1ε1H22(t),

t ∈ (nσ, (n + ξ)σ],

∆H12(t) = −m1H12(t),

∆H22(t) = −m2H22(t),

}
t = (n + ξ)σ,

dH12(t)
dt

= H12(t)[(a3 − h1)− b3H12(t))],

dH22(t)
dt

= −(d2 + h2)H22(t)− β2ε1H22(t),

t ∈ ((n + ξ)σ, (n + 1)σ],

∆H12(t) = d(H22(t)− H12(t)),

∆H22(t) = d(H12(t)− H22(t)),

}
t = (n + 1)σ,

(57)

and 

dH13(t)
dt

= H13(t)(a1 − b1H13(t)),

dH23(t)
dt

= −d1H23(t)

t ∈ (nσ, (n + ξ)σ],

∆H13(t) = −m1H13(t),

∆H23(t) = −m2H23(t),

}
t = (n + ξ)σ,

dH13(t)
dt

= H13(t)[(a3 − h1)− b3H13(t))],

dH23(t)
dt

= −(d2 + h2)H23(t),

t ∈ ((n + ξ)σ, (n + 1)σ],

∆H13(t) = d(H23(t)− H13(t)),

∆H23(t) = d(H13(t)− H23(t)),

}
t = (n + 1)σ,

(58)

respectively. Similarly to Lemma 4, the periodic solution of (57) is globally asymptotically
stable, and it can be expressed as

H̃12(t) =



a1H12
∗ea1(t−nσ)

a1 + b1H12
∗(ea1(t−nσ) − 1)

, t ∈ (nσ, (n + ξ)σ],

(a3 − h1)H12
∗∗e(a3−h1)(t−(n+ξ)σ)

(a3 − h1) + b3H12
∗∗(e(a3−h1)(t−(n+ξ)σ) − 1)

,

t ∈ ((n + ξ)σ, (n + 1)σ],

H̃22(t) =

{
H22

∗e−(d1+β1ε1)(t−nσ), t ∈ (nσ, (n + ξ)σ],

H22
∗∗e−(d2+h2+β2ε1)(t−(n+ξ)σ), t ∈ ((n + ξ)σ, (n + 1)σ],

(59)
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here 
H12

∗ =
B{(1− d)(D1 + A)− [1 + (1− 2d)AD1]}

C[1− (1− d)D1]
,

H22
∗ =

dB{(1− d)(D1 + A)− [1 + (1− 2d)AD1]}
C[1− (1− d)D1][(1− d)− (1− 2d)D1]

,
(60)

with condition (1− d)(D1 + A) > [1 + (1− 2d)AD1],

D1 = (1−m2)e−(d1+β1ε1)ξσ−(d2+h2+β2ε1)(1−ξ)σ < 1

and  H12
∗∗ =

(1−m1)a1ea1ξσ H12
∗

a1 + b1(ea1ξσ − 1)H12
∗ ,

H22
∗∗ = (1−m2)e−(d1+β1ε1)ξσ H22

∗.
(61)

Therefore, we obtain the following results. For any ε > 0, there exists a t1 > 0, t > t1
such that {

H̃12(t)− ε < x1(t) < H̃13(t) + ε,

H̃22(t)− ε < x2(t) < H̃23(t) + ε.
(62)

Let ε1 → 0, so we have{
x̃1(t)− ε < x1(t) < x̃1(t) + ε,

x̃2(t)− ε < x2(t) < x̃2(t) + ε,
(63)

for a t large enough, then x1(t)→ x̃1(t) and x2(t)→ x̃2(t) as t→ ∞.

Theorem 2. If
Az > 1, (64)

and
(1− d)(A + DEz) < 1, (65)

and

ln
1

1−m3
> a2ξσ + (a4 − h3)(1− ξ)σ− a2 + b2(ea2ξσ − 1)y∗

a2

− a4 − h3 + b4(e(a4−h3)(1−ξ)σ − 1)y∗∗

a4 − h3

(66)

hold, the prey-extinction periodic solution (0, 0, ỹ(t)) of system (6) is globally asymptotically stable,

where Ez = e
∫ ξσ

0 −β1 ỹ(s)ds+
∫ σ

ξσ −β2 ỹ(s)ds, y∗ and y∗∗ see (29) and (35).

Theorem 3. If
Az < 1, (67)

and
(1− d)(A + D) < 1 (68)

hold, the trivial solution (0, 0, 0) of system (6) is globally asymptotically stable.

Because the proofs of Theorems 2 and 3 are similar to Theorem 1, we omit it here. In
the last part of this section, we study the permanence of system (6).
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Theorem 4. If (36), (37) and

ln
1

1−m3
< a2ξσ + (a4 − h3)(1− ξ)σ +

k1β1(1− e−d1ξσ)

d1
x2
∗

+
k2β2(1− e−(d2+h2)(1−ξ)σ)

(d2 + h2)
x2
∗∗

(69)

hold, the system (6) is permanent, where x2
∗ and x2

∗∗ see (13) and (24).

Proof. By Lemma 1, x1(t) ≤ M0, x2(t) ≤ M0, y(t) ≤ M0 for all ts large enough. We
assume that x1(t) ≤ M0, x2(t) ≤ M0, y(t) ≤ M0 for t ≥ 0. Therefore,

dx1(t)
dt

≥ −d1x2(t)− β1M0x2(t), (70)

and
dx2(t)

dt
≥ −(d2 + h2)x2(t)− β2M0x2(t), (71)

and x1(t) ≥ H14(t), x2(t) ≥ H24(t), and H14(t)→ H̃14(t), H24(t)→ H̃24(t) as t→ ∞; here,
(H14(t), H24(t)) is the solution of the following comparison equation:

dH14(t)
dt

= H14(t)(a1 − b1H14(t)),

dH24(t)
dt

= −d1H24(t)− β1M0H24(t),

t ∈ (nσ, (n + ξ)σ],

∆H14(t) = −m1H14(t),

∆H24(t) = −m2H24(t),

}
t = (n + ξ)σ,

dH14(t)
dt

= H14(t)[(a3 − h1)− b3H14(t))],

dH24(t)
dt

= −(d2 + h2)H24(t)− β2M0H22(t),

t ∈ ((n + ξ)σ, (n + 1)σ],

∆H14(t) = d(H24(t)− H14(t)),

∆H24(t) = d(H14(t)− H24(t)),

}
t = (n + 1)σ,

(72)

with

H̃14(t) =


a1H14

∗ea1(t−nσ)

a1 + b1H14
∗(ea1(t−nσ) − 1)

, t ∈ (nσ, (n + ξ)σ],

(a3 − h1)H14
∗∗e(a3−h1)(t−(n+ξ)σ)

(a3 − h1) + b3H14
∗∗(e(a2−h1)(t−(n+ξ)σ) − 1)

, t ∈ ((n + ξ)σ, (n + 1)σ],

H̃24(t) =

{
H24

∗e−(d1+β1 M0)(t−nσ), t ∈ (nσ, (n + ξ)σ],

H24
∗∗e−(d2+h2+β2 M0)(t−(n+ξ)σ), t ∈ ((n + ξ)σ, (n + 1)σ],

(73)
here 

H14
∗ =

B{(1− d)(D2 + A)− [1 + (1− 2d)AD2]}
C[1− (1− d)D2]

,

H24
∗ =

dB{(1− d)(D2 + A)− [1 + (1− 2d)AD2]}
C[1− (1− d)D2][(1− d)− (1− 2d)D2]

,
(74)

with condition (1− d)(D2 + A) > [1 + (1− 2d)AD2],

D2 = (1−m2)e−(d1+β1 M0)ξσ−(d2+h2+β2 M0)(1−ξ)σ < 1 (75)
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and  H14
∗∗ =

(1−m1)a1ea1ξσ H14
∗

a1 + b1(ea1ξσ − 1)H14
∗ ,

H24
∗∗ = (1−m2)e−(d1+β1 M0)ξσ H24

∗.
(76)

Therefore, for any ε2 > 0, we have{
x1(t) > H̃14(t)− ε2,

x2(t) > H̃24(t)− ε2,
(77)

for a t large enough. So,

x1(t) ≥
a1ea1ξσ H14

∗

a1 + b1(ea1ξσ − 1)H14
∗ +

(a3 − h1)e(a3−h1)(1−ξ)σ H14
∗∗

(a3 − h1) + b3(e(a3−h1)(1−ξ)σ − 1)H14
∗∗ − ε2 = Mx,

x2(t) ≥ e−(d1+β1 M0)ξσ H24
∗ + e−(d2+h2+β2 M0))(1−ξ)σ H24

∗∗ − ε2 = My.

(78)

We only need to find mz > 0, such that y(t) ≥ mz for a t large enough. We select
mz1 > 0, ε3 > 0 small enough, such that

ζ2 = (1−m3)e
∫ (n+ξ)σ

nσ a2−b2mz1+k1β1(Hy(t)−ε3)ds
∫ (n+1)σ
(n+ξ)σ

(a4−h3)−b4mz1+k2β2(Hy(t)−ε3)ds
> 1. (79)

Next, we prove that y(t) < mz1 cannot hold for all t ≥ 0, otherwise

dx1(t)
dt

= x1(t)(a1 − b1x1(t)),

dx2(t)
dt

≥ −d1x2(t)− β1mz1 x2(t),

t ∈ (nσ, (n + ξ)σ],

∆x1(t) = −m1x1(t),

∆x2(t) = −m2x2(t),

}
t = (n + ξ)σ,

dx1(t)
dt

= x1(t)[(a3 − h1)− b3x1(t))],

dx2(t)
dt

≥ −(d2 + h2)x2(t)− β2mz1 x2(t),

t ∈ ((n + ξ)σ, (n + 1)σ],

∆x1(t) = d(x2(t)− x1(t)),

∆x2(t) = d(x1(t)− x2(t)),

}
t = (n + 1)σ.

(80)

By Lemma 3, we have x1(t) ≥ Hx(t), x2(t) ≥ Hy(t) and Hx(t) → Hx(t), Hy(t) →
Hy(t) as t→ ∞; here, (Hx(t), Hy(t)) is the solution of the following comparison equation:

dHx(t)
dt

= Hx(t)(a1 − b1Hx(t)),

dHy(t)
dt

= −d1Hy(t)− β1mz1 Hy(t),

t ∈ (nσ, (n + ξ)σ],

∆Hx(t) = −m1Hx(t),

∆Hy(t) = −m2Hy(t),

}
t = (n + ξ)σ,

dHx(t)
dt

= Hx(t)[(a3 − h1)− b3Hx(t))],

dHy(t)
dt

= −(d2 + h2)Hy(t)− β2mz1 Hy(t),

t ∈ ((n + ξ)σ, (n + 1)σ],

∆Hx(t) = d(Hy(t)− Hx(t)),

∆Hy(t) = d(Hx(t)− Hy(t)),

}
t = (n + 1)σ,

(81)
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with 

Hx(t) =



a1Hx
∗ea1(t−nσ)

a1 + b1Hx
∗(ea1(t−nσ) − 1)

, t ∈ (nσ, (n + ξ)σ],

(a3 − h1)Hx
∗∗e(a3−h1)(t−(n+ξ)σ)

(a3 − h1) + b3Hx
∗∗(e(a3−h1)(t−(n+ξ)σ) − 1)

,

t ∈ ((n + ξ)σ, (n + 1)σ],

Hy(t) =

 Hy
∗e−(d1+β1mz1 )(t−nσ), t ∈ (nσ, (n + ξ)σ],

Hy
∗∗e−(d2+h2+β2mz1 )(t−(n+ξ)σ), t ∈ ((n + ξ)σ, (n + 1)σ],

(82)

here 
Hx
∗ =

B[(1− A + dA)(D3 − 1)− dD3(1− A)]

C[1− (1− d)D3]
,

Hy
∗ =

dB[(1− A + dA)(D3 − 1)− dD3(1− A)]

C[1− (1− d)D3][(1− d) + (2d− 1)D3]
,

(83)

with (1− A + dA)(D3 − 1) > dD3(1− A),

D3 = (1−m2)e−(d1+β1mz1 )ξσ−(d2+h2+β2mz1 )(1−ξ)σ < 1 (84)

and  Hx
∗∗ =

(1−m1)a1ea1ξσ Hx
∗

a1 + b1(ea1ξσ − 1)Hx
∗ ,

Hy
∗∗ = (1−m2)e−(d1+β1mz1 )ξσ Hy

∗.
(85)

There exists a T1 > 0 such that for t ≥ T1,{
x1(t) ≥ Hx(t) ≥ Hx(t)− ε3,
x2(t) ≥ Hy(t) ≥ Hy(t)− ε3,

(86)

and

dy(t)
dt
≥ a2y(t)− b2mz1 y(t) + k1β1(Hy(t)− ε3)y(t), t ∈ (nσ, (n + ξ)σ],

∆y(t) = −m3y(t), t = (n + ξ)σ,
dy(t)

dt
≥ (a4 − h3)y(t)− b4mz1 y(t) + k2β2(Hy(t)− ε3)y(t), t ∈ ((n + ξ)σ, (n + 1)σ],

∆y(t) = 0, t = (n + 1)σ.

(87)

Let N1 ∈ N and N1τ > T1, integrating system (87) on (nσ, (n + 1)σ], n ≥ N1, and we
have

y((n + 1)σ) ≥ (1−m3)y(nτ)e
∫ (n+ξ)σ

nτ a2−b2mz1+k1β1(Hy(t)−ε3)ds+
∫ (n+1)σ
(n+ξ)σ

(a4−h3)−b4mz1+k2β2(Hy(t)−ε3)ds

= y(nσ)ζ2,
(88)

then z((N1 + k)σ) ≥ z(N1σ)ζ2
k → ∞ as k→ ∞, which is in contradiction to the bounded-

ness of y(t). Hence, there exists a t1 > 0 such that y(t1) ≥ mz1 . If y(t) ≥ mz1 , which holds
for all t > t1, then we are done. Otherwise, y(t) < mz1 for some t > t1 .

Let t∗ = inf
t≥t1
{y(t) < mz1}; there are two possible cases for t∗.

Case1 t∗ = (n1 + ξ)σ, n1 ∈ Z+, we have y(t) ≥ mz1 for t ∈ [t1, t∗]. Since y(t) is continuous,
we can obtain y(t∗) = mz1 . Select n2, n3 ∈ Z+, such that

(1−m3)
n2 en2ρσζ2

n3 > (1−m3)
n2 e(n2+1)ρσζ2

n3 > 1, (89)

here ρ = min{a2 − b2mz1 , a4 − b4mz1 − h3} < 0. By setting T′ = (n2 + n3)σ, it can be
claimed that there exists t2 ∈ (t∗, t∗ + T′] such that y(t2) ≥ mz1 . Otherwise, y(t) < mz1 ,
t ∈ (t∗, t∗ + T′]. Consider (4.46) with initial value Hx(t∗+) = x1(ξ

+), Hy(t∗+) = x2(ξ
+);
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we have x2(t) ≥ Hy(t) ≥ Hy(t)− ε3 for t∗ + n2σ ≤ t ≤ t∗ + T′. And this implies that (87)
will hold for t ∈ [t∗ + n2σ, t∗ + T′], then

y(t∗ + T′) ≥ y(t∗ + n2σ)ζ2
n3 . (90)

From system (6), we have dy(t)
dt
≥ ρy(t), t 6= (n + ξ)σ,

∆y(t) = −m3y(t), t = (n + ξ)σ.
(91)

Integrating (91) on [t∗, t∗ + n2σ], we have

y(t∗ + n2σ) ≥ (1−m3)
n2 mz1 en2ρσ. (92)

Then, by (90) and (92), we have

y(t∗ + T′) ≥ (1−m3)
n2 mz1 en2ρσζ2

n3 > mz1 , (93)

which contradicts the priori condition of y(t) < mz1 .
Let t = inf

t>t∗
{y(t) ≥ mz1}, then y(t) = mz1 . Since (87) holds for t ∈ (t∗, t] and to

integrate in (t∗, t] , we obtain

y(t) ≥ y(t∗+)eσ(t−t∗) ≥ (1−m3)
n2+n3 mz1 e(n2+n3)ρσ , m̃. (94)

Since y(t) ≥ m̃ for t ∈ (t∗, t], and the same argument can be continued for t > t,
y(t) ≥ m̃ for all t > t1.
Case2 t∗ 6= (n1 + ξ)σ, n ∈ Z+, then y(t) ≥ mz1 for t ∈ [t1, t∗) and y(t∗) = mz1 . Sup-
pose t∗ ∈ ((n1

′ + ξ)σ, (n1
′ + ξ + 1)σ), n1

′ ∈ Z+, then there are two possible cases for
t ∈ (t∗, (n1

′ + ξ + 1)σ).
Case2a y(t) ≤ mz1 for all t ∈ (t∗, (n1

′ + ξ + 1)σ). Similar to Case 1, we can prove that there
must be a t2

′ ∈ [(n1
′ + ξ + 1)σ, (n1

′ + ξ + 1)σ + T′], such that y(t2
′) > mz1 .

Let t̃ = inf
t>t∗
{y(t) > mz1}, then y(t) ≤ mz1 for t ∈ (t∗, t̃) and y(t̃) = mz1 . Note that (66)

holds for
t ∈ (t∗, t̃), so we have

y(t) ≥ eρ(t−t∗) ≥ (1−m3)
n2+n3 mz1 e(n2+n3+1)ρσ , m̃′ < m̃. (95)

And the same argument can be continued for t > t̃, since y(t̃) ≥ mz1 .
Case2b There is a t∗ ∈ (t∗, (n1

′ + ξ + 1)σ), such that y(t) > mz1 . Let t̂ = inf
t>t∗
{y(t) > mz1},

then y(t) ≤ mz1 for t ∈ [t∗, t̂) and y(t̂) = mz1 . (91) holds for t ∈ [t∗, t̂), and integrating it
on [t∗, t̂), we have

y(t) ≥ y(t∗)eρ(t−t∗) ≥ mz1 eρ(t−t∗) ≥ mz1 eρσ > m̃. (96)

Because y(t̂) ≥ mz1 , the same arguments can be continued for t > t̂. Hence, y(t) ≥ m̃
for all t ≥ t1.

5. Numerical Simulations and Discussion

This section is devoted to confirming the theoretical results obtained in the above
sections through numerical simulations. Since the theoretical results depend on harvesting,
the simulations are implemented by considering different values of transient impulsive
harvesting rate mi(i = 1, 2, 3) and nontransient impulsive harvesting rate hi(i = 1, 2, 3).
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Example 1. For biological considerations, all the parameters are assumed to be positive. And
referring to references [26,27], the model parameters are set to a1 = 0.7, b1 = 0.65, d1 = 0.3,
β1 = 0.3, a2 = 0.4, b2 = 0.35, k1 = 0.4, m1 = 0.2, m2 = 0.2, m3 = 0.4, a3 = 0.8, h1 = 0.1,
b3 = 0.5, d2 = 0.3, h2 = 0.1, β2 = 0.6, a4 = 0.6, h3 = 0.1, b4 = 0.4, k2 = 0.5, d = 0.55,
l = 0.56, σ = 2. Then, (1 − d)(A + D) = 1.6408 > 0.8696 = 1 + (1 − 2d)AD, (1 −
2d)AD = −0.1304 < 1, ln 1

1−m3
= 0.5108 < 0.9966 = a2ξσ + (a4 − h3)(1 − ξ)σ +

k1β1(1−e−d1ξσ)
d1

x2
∗ + k2β2(1−e−(d2+h2)(1−ξ)σ)

(d2+h2)
x2
∗∗, the conditions of Theorem 4, are satisfied with ini-

tial value x1(0) = 1, x2(0) = 1, y(0) = 0.5, and system (6) is permanent (see Figure 1). That is,
the prey and predator populations will coexist.

(a) (b)

0 10 20 30 40 50 60 70 80

t

0

0.2

0.4

0.6

0.8

1

x
1
(t

)

0 10 20 30 40 50 60 70 80

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2
(t

)

(c) (d)

0 10 20 30 40 50 60 70 80

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
(t

)

Figure 1. Dynamical behavior of the permanence of system (6): (a–c) time series of populations x, y,
and z; (d) phase portrait of system (6).

5.1. The Effect of the Transient Impulsive Harvesting on Populations

Example 2. Let m3 = 0.7 and keep fixed the values of other parameters, as in Figure 1. Then,
(1 − d)(A + D) = 1.6408 > 0.8696 = 1 + (1 − 2d)AD, (1 − 2d)AD = −0.1304 < 1,
(1− d)(AE + D) = 0.5682 < 1, ln 1

1−m3
= 1.2040 > 0.9966 = a2ξσ + (a4 − h3)(1− ξ)σ +

k1β1(1−e−d1ξσ)
d1

x2
∗ + k2β2(1−e−(d2+h2)(1−ξ)σ)

(d2+h2)
x2
∗∗, and conditions (36)–(39) hold. From Theorem 2,

the predator-extinction periodic solution (x̃1(t), x̃2(t), 0) of system (6) is globally asymptotically
stable (see Figure 2).
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Figure 2. Dynamical behavior of system (6) on predator-extinction periodic solution with
m3 = 0.7: (a–c) time series of populations x, y, and z; (d) phase portrait of system (6).

Example 3. Let m1 = 0.6, m2 = 0.5, and keep fixed the values of other parameters, as in
Figure 1. Then, Az = 1.4582 > 1, (1− d)(A + DEz) = 0.7991 < 1, ln 1

1−m3
= 0.5108 >

−1.8039 = a2ξσ + (a4 − h3)(1− ξ)σ− a2+b2(ea2ξσ−1)y∗
a2

− a4−h3+b4(e(a4−h3)(1−ξ)σ−1)y∗∗
a4−h3

, and con-

ditions (64)–(66) hold. From Theorem 2, the prey-extinction periodic solution (0, 0, ỹ(t)) of sys-
tem (6) is globally asymptotically stable (see Figure 3).
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Figure 3. Cont.
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Figure 3. Dynamical behavior of system (6) on prey-extinction periodic solution with m1 = 0.6,
m2 = 0.5: (a–c) time series of populations x, y, and z; (d) phase portrait of system (6).

Example 4. Let m1 = 0.6, m2 = 0.5, m3 = 0.7, and keep fixed the values of other parameters, in
as Figure 1. Then, Az = 0.7291 < 1, (1− d)(A + D) = 0.8430 < 1, and conditions (67) and
(68) hold. From Theorem 3, the trivial solution (0, 0, 0) of system (6) is globally asymptotically
stable (see Figure 4).
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Figure 4. Dynamical behavior of system (6) on trivial solution with m1 = 0.6, m2 = 0.5,
m3 = 0.7 : (a–c) time series of populations x, y, and z; (d) phase portrait of system (6).

Comparing Figures 1 and 2, we can know that when m3 = 0.4, the prey and predator
populations coexist, while when m3 = 0.7, the predator population goes extinct. Comparing
Figures 1 and 3, we can know that when m1 = 0.2, m2 = 0.2, the prey and predator
populations coexist, while when m1 = 0.6, m2 = 0.5, the prey populations go extinct. From
Figure 4, we can see that all the populations go extinct as m1 = 0.6, m2 = 0.5, m3 = 0.7.
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5.2. The Effect of Nontransient Impulsive Harvesting on Populations

Example 5. Let h3 = 0.9, and keep fixed the values of other parameters, as in Figure 1. Then,
(1 − d)(A + D) = 1.6408 > 0.8696 = 1 + (1 − 2d)AD, (1 − 2d)AD = −0.1304 < 1,
(1− d)(AE + D) = 0.5682 < 1, ln 1

1−m3
= 0.5108 > 0.2926 = a2ξσ + (a4 − h3)(1− ξ)σ +

k1β1(1−e−d1ξσ)
d1

x2
∗ + k2β2(1−e−(d2+h2)(1−ξ)σ)

(d2+h2)
x2
∗∗, and conditions (36)–(39) hold. From Theorem 2,

the predator-extinction periodic solution (x̃1(t), x̃2(t), 0) of system (6) is globally asymptotically
stable (see Figure 5).
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Figure 5. Dynamical behavior of system (6) on predator-extinction periodic solution with
h3 = 0.9: (a–c) time series of populations x, y, and z; (d) phase portrait of system (6).

Example 6. Let h1 = 0.9, h2 = 0.9, and keep fixed the values of other parameters, as in
Figure 1. Then Az = 1.4582 > 1, (1− d)(A + DEz) = 0.7768 < 1, ln 1

1−m3
= 0.5108 >

−1.8039 = a2ξσ + (a4 − h3)(1− ξ)σ− a2+b2(ea2ξσ−1)y∗
a2

− a4−h3+b4(e(a4−h3)(1−ξ)σ−1)y∗∗
a4−h3

, and con-

ditions (64)–(66) hold. From Theorem 2, the prey-extinction periodic solution (0, 0, ỹ(t)) of
system (6) is globally asymptotically stable (see Figure 6).

Example 7. Let h1 = 0.9, h2 = 0.9, h3 = 0.9, and keep fixed the values of other parameters, as in
Figure 1. Then, Az = 0.7212 < 1, (1− d)(A + D) = 0.8115 < 1, and conditions (67) and (68)
hold. From Theorem 3, the trivial solution (0, 0, 0) of system (2.1) is globally asymptotically stable
(see Figure 7).
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Figure 6. Dynamical behavior of system (6) on prey-extinction periodic solution with h1 = 0.9,
h2 = 0.9: (a–c) time series of populations x, y, and z; (d) phase portrait of system (6).

Comparing Figures 1 and 4, we can know that when h3 = 0.1, the prey and predator
populations coexist, while when h3 = 0.9, the predator population go extinct. Comparing
Figures 1 and 5, we can know that when h1 = 0.1, h2 = 0.1, the prey and predator
populations coexist, while when h1 = 0.9, h2 = 0.9, the prey populations go extinct. From
Figure 7, we can see that all the populations go extinct as h1 = 0.9, h2 = 0.9, h3 = 0.9.

Figures 1–7 show the global asymptotic stability of the boundary periodic solutions
and the permanent extinction of system (6) under the control of the transient/nontransient
impulse harvesting rate, respectively. It is clear that with increasing transient/ nontransient
impulsive harvesting rate, predator or prey populations cannot survive due to higher
harvesting rate. The values of m3, h3, will not only directly affect the survival of the
predator but also have an indirect effect on the prey. When m3 or h3 keeps increasing and
exceeding the threshold, the predator population goes extinct and the population density of
the prey populations increase accordingly. Similarly, The decrease in the density of predator
population is observed as the prey populations go extinct, which is biologically reasonable.
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Figure 7. Dynamical behavior of system (6) on trivial solution with h1 = 0.9, h2 = 0.9,
h3 = 0.9: (a–c) time series of populations x, y, and z; (d) phase portrait of system (6).

6. Conclusions

In this paper, we propose a new predator–prey model to study the effects of tran-
sient/nontransient harvesting and pulse diffusion between prey on the prey and predator’s
survival. Here, the predators live in their territory, which is patch 2, but the prey can impul-
sively diffuse between two patches. We focus on analyzing the dynamics of the investigated
system generated by transient and nontransient impulsive harvesting to understand how
predator and prey populations change when the system has an effect of harvesting. The
main results of the present study are provided below:

1. All solutions of system (6) are uniformly ultimately bounded.

2. If (36)–(39) hold, the solution (x̃1(t), x̃2(t), 0) of system (6) is globally asymptotically
stable.

3. If (64)–(66) hold, the solution (0, 0, ỹ(t)) of system (6) is globally asymptotically stable.
4. If (67)–(68) hold, the trivial solution of system (6) is globally asymptotically stable.
5. The permanent conditions of system (6) have also been established, that is

(1− d)(A + D) > [1 + (1− 2d)AD], (1− 2d)AD < 1,

and

ln
1

1−m3
< a2ξσ + (a4 − h3)(1− ξ)σ +

k1β1(1− e−d1ξσ)

d1
x2
∗

+
k2β2(1− e−(d2+h2)(1−ξ)σ)

(d2 + h2)
x2
∗∗.

In addition, from numerical simulations and theorems, we can deduce that there exist
a predator transient impulsive harvesting threshold m3

∗ and a nontransient impulsive
harvesting threshold h3

∗. When m3 > m3
∗ or h3 > h3

∗, the predator population z goes
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extinct. When m3 < m3
∗ or h3 < h3

∗, system (6) is permanent. In addition, there must exist
thresholds m1

∗, m2
∗ and h1

∗, h2
∗. When m1 > m1

∗ and m2 > m2
∗, or h1 > h1

∗ and h2 > h2
∗,

the prey populations x and y go extinct. When m1 < m1
∗ and m2 < m2

∗, or h1 < h1
∗ and

h2 < h2
∗, system (6) is permanent. Therefore, we must choose a suitable harvesting rate

smaller than the value of the harvesting threshold when hunting both prey and predator for
economic interest. Reducing the amount of transient or nontransient impulsive harvesting
is significant for preventing population extinction so as to maintain ecological balance.

In future work, we can continue to study the optimal harvest strategy of system (6) to ex-
plore the maximum sustainable yield and the corresponding harvest effort of system (6) [28,29].
We can also consider impulsive delayed harvesting or stage structure of prey/predator
populations, which will lead to richer dynamics [30]. In addition, trying to solve system
(6) using an intelligent computational solver, or different numerical methods such as the
Galerkin method or Legendre wavelet algorithm will also be interesting work [31–33].
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