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Abstract: The individuals of real-world networks participate in various types of connections, each
forming a layer in multiplex networks. Link prediction is an important problem in multiplex
network analysis owing to its wide range of practical applications, such as mining drug targets,
recommending friends in social networks, and exploring network evolution mechanisms. A key issue
of link prediction within multiplex networks is how to estimate the likelihood of potential links in
the predicted layer by leveraging both interlayer and intralayer information. Several studies have
shown that incorporating interlayer topological information can improve the performance of link
prediction in the predicted layer. Therefore, this paper proposes the Link Prediction based on Global
Relevance of Interlayer (LPGRI) method to estimate the likelihood of potential links in the predicted
layer of multiplex networks, which comprehensively utilizes both types of information. In the
LPGRI method, the contribution of interlayer information is determined using the global relevance
(GR) index between layers. Experimental studies on six real multiplex networks demonstrate the
competitive performance of our method.

Keywords: complex network; link prediction; multiplex network; interlay relevance

MSC: 05C82

1. Introduction

Networks are very useful tools for studying various real-world systems, such as com-
puter communications, social systems, technological systems, and biological systems. In
these networks, nodes represent individuals, and edges (or links) reflect the interactions be-
tween nodes. Traditionally, complex systems are structured as monolayer networks, where
the interactions between nodes are of the same type. For example, in social networks, nodes
represent individuals and edges indicate friendships; in biological networks, nodes may
represent genes or proteins while edges represent regulatory relationships. However, recent
studies [1–4] have shown that there exist different interactions among individuals within
the same group. Such systems can be described as multiplex networks, where individuals
interact with each other in different types. For example, transportation between cities
may involve air and rail networks, while interpersonal communication may occur through
mobile phones, email, and WeChat. Each type of connection between cities or individuals
mentioned above can be considered a distinct layer within the corresponding multiplex
networks. Multiplex networks are often employed to describe multiple relationships within
a fixed group of individuals [5].

The study of networks has attracted significant attention in recent decades and the
large number of studies in the literature demonstrates the development of this topic [6–10].
Among them, an important problem in network research is link prediction. The aim
of link prediction is to estimate the connection probability of missing or forthcoming
links by leveraging the observed information of networks. For a detailed description of
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link prediction, we refer the interested reader to [10–12]. The problem of link prediction
has drawn extensive attention from researchers in various disciplines. On the one hand,
link prediction bears important theoretical significance. It can reveal the generation and
evolution mechanism of a network structure. On the other hand, it has a wide range
of applications, such as recommending friends in online social networks, identifying
interacting genetic pairs in genetic networks, and analyzing signal propagation in complex
networks [13], etc.

Link prediction methods for monolayer networks can be categorized into the following
types. The first is based on various similarity measures. Most of these methods treat
link prediction as a ranking problem, assigning similarity scores to pairs of unconnected
nodes, where higher scores indicate a higher likelihood of an edge [14]. Similarity scores
can be calculated using node features or network structure. Typical similarity measures
leveraging network structure include local and global similarity indices. The Common
Neighbor index [15], the Jaccard index [10], the Adamic–Adar index [16], the Resource
Allocation index [17], and the weighted forms of these indices [18] are all local indices.
Global indices include the Katz index [19], Local Path index [11], and SimRank [20].
For more metrics, please refer to reference [11]. The second type of approach considers
the organizational principles of the network when predicting links. For example, the
hierarchical structure model [21] and the stochastic block model [22]. Another type of
link prediction approaches involves probabilistic models for incomplete networks, such as
probabilistic relational models [23], the probabilistic entity relationship model [24] and the
stochastic relational model [25]. Comprehensive reviews of these methods can be referred
to [10,11]. Additionally, ensemble learning, matrix completion, and network embedding
techniques are also utilized in link prediction research, interested readers can refer to the
review literature [26,27].

Recently, several studies have engaged in the link prediction problem of multiplex
networks. Chen et al. [28] proposed the SimBins method, which leverages the effect of
overlapping links between layers to enhance the quality of link predictions. Davis et al. [29]
introduced a novel measure, an extension of the probabilistically weighted Adamic–Adar
index, for link prediction in multiplex networks. Desislava et al. [30] investigated the
geo-social properties of multiplex links and proposed a variant of the Jaccard index as an
extended neighborhood of nodes in multiplex networks to the problem of link prediction.
Li et al. [31] introduced a new similarity measure based on local random walk measures
on reliable paths and weighted networks. This method utilizes pure random walks to
capture the network structure for computing similarity and discovering unknown links.
Based on deep learning, Cao et al. [32] proposed a novel framework called LPSMN for
link prediction in multiplex social networks. It leveraged the information from external
layers to predict links in a monolayer network. The literature considers a two-layer social
network and proposes a meta-path-based algorithm for link prediction. Jalili et al. [33]
developed a meta-path-based algorithm incorporating three classical classifiers, i.e., the
naive Bayes, the support vector machines and the k-nearest neighbor for predicting the
links in multiplex networks. Their experimental results demonstrated that incorporating
cross-layer information can significantly improve prediction performance. Bacco et al. [34]
designed a probabilistic model and expectation maximization algorithms for link prediction
in multiplex networks. Yang et al. [35] proposed a novel probabilistic method called
Multi-Relational Influence Propagation for heterogeneous networks with multiple types of
links. This method uses temporal-related features to improve link prediction performance.
Different from the above method, Sharma et al. [36,37] proposed a method based on
the structure similarity of multiplex networks. The likelihood of links in the predicted
layer is assigned as a weighted combination of scores from other layers, with the weights
determined by checking the link correspondence between the two layers. Yao et al. [38]
combined intralayer and interlayer information for link prediction by calculating interlayer
similarity. Najari [39] derived a more complex combination of similar index, where the
utilization of interlayer information for link prediction in the predicted layer depends
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on whether the node pairs have edges in other layers. These methods employed various
approaches to measure the correlation between layers. However, they did not incorporate
corresponding interlayer relevance measures based on the structural characteristics of
directed multiplex networks. Additionally, they did not fully exploit intralayer information
when making link predictions. For instance, they relied on similarity-based methods such
as CN, AA, etc., to measure the similarity between nodes in the same layer. As is well
known, a limitation of similarity-based approaches is that they often trade-off accuracy for
computational efficiency.

Traditional link prediction methods typically consider only the topological information
derived from single-layer networks, referred to as intralayer information, while disregard-
ing the additional information originating from other layers in multiplex networks, known
as interlayer information. Therefore, a key issue in link prediction within multiplex net-
works is how to effectively leverage both intralayer and interlayer information. To this end,
we aim to discover an effective method that integrates intralayer and interlayer information
to enhance the accuracy of link prediction. In this paper, we introduce the Link Prediction
based on Global Relevance of Interlayer (LPGRI) method to estimate the likelihood of
potential links in the predicted layer of multiplex networks. The LPGRI method effectively
leverages interlayer information by utilizing the global relevance (GR) index between
layers. The steps to achieve the main contribution of this paper are as follows. First, we
propose a novel index called the GR index to measure the correlation between layers in
undirected and directed multiplex networks. The GR index is obtained by measuring
the average similarity of the connection modes between corresponding nodes in different
layers. It reflects the correlation between the two layers of the multiplex network from the
perspective of connection patterns. Specifically, for directed multiplex networks, the GR in-
dex can measure the correlation between layers according to their corresponding structural
characteristics. Second, we estimate the likelihood of potential links in predicted layers
by effectively utilizing both intralayer and interlayer information. The LPGRI method
combines the two types of information using the GR index for target layer prediction. The
experimental results show that incorporating information from other layers improves the
prediction performance to some extent. Third, the experimental results also demonstrate
that the LPGRI method can handle the cold-start problem and solve the problem of sparse
networks. Due to the comprehensive utilization of information from other layers in the
multiplex network, the LPGRI method achieves enhanced prediction accuracy, even in
cases where the predicted layer contains limited valuable information.

The rest of this paper is organized as follows: In Section 2, we detail the framework of
the LPGRI approach. The datasets and performance evaluation metric are introduced in
Section 3. Experiment analysis is presented in Section 4. Lastly, concluding remarks are
provided in Section 5.

2. Methodology

We consider a multiplex network with N nodes and L layers, denoted by G =
(G(1), G(2), · · · , G(L)). The notations used in this paper and their explanations are pro-
vided in Table 1. Here, the set of nodes is the same across all layers in a multiplex network,
i.e., |V(1)| = |V(2)| = · · · = |V(L)| = N. Then, G(α) can be written as G(α) = (V, E(α)),
where |V| = N. The adjacency matrix A(α) = (A(α)

ij )N×N is defined as

A(α)
ij =

{
1 if there is an edge from i to j in the layer α,
0 otherwise.

Typically, the predicted layer in the multiplex network is referred to as the target layer
and each of the remaining layers in the multiplex network is regarded as an auxiliary layer.

In a multiplex network, the task of link prediction is to estimate the likelihood of
potential links between nodes that are currently unconnected in the target layer, utilizing
the information from both the target layer itself and the other auxiliary layers. Previous
research [40] showed that similarity in interlayer structural features can enhance link pre-
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diction performance in multiplex networks using the layer reconstruction method and
experimental analysis on real-world multiplex networks from various domains. Tang
et al. [5] introduced a semi-supervised learning method that considers interlayer structural
information to predict links in the target layer of a multiplex network. Experimental results
on both simulated and real-world multiplex networks demonstrate that the proposed
method outperforms prediction methods that solely rely on single-layer network infor-
mation. These studies indicate that incorporating interlayer topological information can
improve the performance of link prediction in the target layer. This implies that the con-
nections between pairs of nodes in the target layer may be correlated with the connections
between corresponding node pairs in other layers. Consequently, if the correlation between
the target layer and the auxiliary layers can be accurately measured, the information from
the auxiliary layers can be effectively utilized to improve the performance of link prediction
in the target layer. Motivated by this, we propose a metric called the global relevance (GR)
index to quantify the correlation between layers. A higher GR index between the target
layer and auxiliary layer implies a stronger correlation in the network structure between
the two layers. This suggests that the auxiliary layer may provide more useful information
for link prediction in the target layer. Specifically, for a given node pair i and j in the
target layer G(T), the likelihood of an edge existing between them is influenced by both
the intralayer structure information of the target layer G(T) and the interlayer information
from the auxiliary layers G(l)(l = 1, 2, · · · , L, l 6= T). By utilizing the GR index, we can
effectively incorporate the information from auxiliary layers into the prediction task. In the
following sections, we will introduce the GR index first, followed by the presentation of
the prediction method LPGRI for multiplex networks.

Table 1. Notation definitions.

Notations Explanations

V(α) the set of nodes in the α-th layer (α = 1, 2, · · · , L)
E(α) the set of edges in the α-th layer
G(α) = (V(α), E(α)) the layer α

A(α) ∈ RN×N the adjacency matrix of G(α)

G(T) the target layer
A(α)

i· the i-th row of the adjacency matrix of layer α

A(α)
·i the i-th column of the adjacency matrix of layer α

Ā(α)
i· the mean value of A(α)

i·
σ(A(α)

i· ) the standard deviation of A(α)
i·

P(T)
ij probability of potential links between node pair (i, j) in the target layer

2.1. Measurement of Interlayer Correlation in Multiplex Networks

In monolayer network link prediction, Liao et al. [41] utilized the Pearson correlation
coefficient as the similarity of a node pair. Specifically, the vectors vx = (ax1, ax2, · · · , axn)
and vy = (ay1, ay2, · · · , ayn) represent the feature vectors of node x and y, respectively.
vx can be set as Ax·, which denotes the x-th row of the monolayer network adjacency
matrix. The similarity between nodes x and y is then defined as the Pearson correlation
coefficient of vectors vx and vy. Inspired by this, we calculate the average correlation
between corresponding nodes across interlayers to measure the relevance between layers
in multiplex networks. Initially, the correlation between corresponding nodes in different
layers is computed using the Pearson correlation coefficient, which reflects the degree
of similarity in connection patterns between corresponding nodes across different layers.
Subsequently, the average correlation of all nodes is utilized as the global relevance index
between different layers, which reflects the overall similarity in connection patterns between
the two layers. The GR index between undirected layers α and β is defined as



Mathematics 2023, 11, 3256 5 of 15

GRun
αβ =

1
N

N

∑
i=1

(A(α)
i· − Ā(α)

i· )(A(β)
i· − Ā(β)

i· )′

σ(A(α)
i· )σ(A(β)

i· )
, (1)

and the GR index between directed layers α and β is

GRdir
αβ =

1
2N

N

∑
i=1

{
(A(α)

i· − Ā(α)
i· )(A(β)

i· − Ā(β)
i· )′

σ(A(α)
i· )σ(A(β)

i· )
+

(A(α)
·i − Ā(α)

·i )′(A(β)
·i − Ā(β)

·i )

σ(A(α)
·i )σ(A(β)

·i )

}
, (2)

where A(α)
i· and A(α)

·i represent the i-th row and column of the adjacency matrix of layer α.
They reflect the connection pattern of node i and the connection pattern to node i in layer α,
respectively.

Remark 1. In the study presented in [41], the authors considered link prediction on the monolayer
network. The Pearson correlation coefficient was used to calculate the similarity score of the features of two
nodes. This similarity score was then utilized as a measure of similarity between the two nodes. Based on
the ranking of these scores, link predictions can be made. However, the GR index is obtained by averaging
the Pearson correlation coefficient of the connection patterns between corresponding nodes across two
layers (i.e., calculating the Pearson correlation coefficient between A(α)

i· and A(β)
i· ). The GR index defines

interlayer correlations in both undirected and directed multiplex networks by considering the connection
patterns between corresponding nodes across layers.

2.2. Probability Estimation of Potential Links in Multiplex Networks

To estimate the probability of potential connections in the target layer by leveraging
the information both from the target layer and auxiliary layers, we propose a method called
Link Prediction based on Global Relevance of Interlayer (LPGRI) for link prediction in
multiplex networks.

Similar to the study presented in [39], for the target layer, the ultimate probability of a
potential link between the pair of nodes (i, j) is defined as

Pij = (1− λ)P(T)
ij + λ

L

∑
l=1
l 6=T

GRlT P(l)
ij , (3)

where λ ∈ [0, 1] is the tunable parameter. It controls the amount of information provided by
all auxiliary layers for the link prediction of the target layer. P(l)

ij represents the probability

of potential links between node pair (i, j) in the auxiliary layer G(l). These probabilities
are calculated using the NBS method [42], which has better predictive performance in
monolayer networks. The ultimate probability of a potential link between the nodes (i, j)
in the target layer is represented by Pij. The index GRlT , which represents the correlation
between layers G(l) and G(T), can be viewed as the weight of information provided by each
auxiliary layer G(l) for link prediction in the target layer. It is defined by Equation (1) for
undirected layers and Equation (2) for directed layers.

Equation (3) reveals that the prediction outcome of the potential link probability in the
target layer depends on the information derived from both the target layer and auxiliary
layers. The first term represents the contribution of intralayer information obtained from
the target layer, while the second term represents the contribution of interlayer information
derived from all auxiliary layers. The extent of the utilization of these two types of infor-
mation is controlled by the parameter λ. A higher λ value indicates that more information
is provided by all auxiliary layers for the prediction, and vice versa. Specifically, when λ
equals 0, only the information from the target layer is utilized in the LPGRI method. In this
case, the LPGRI method degenerates to the prediction problem of a monolayer network.
When λ equals 1, only the information from all auxiliary layers is employed in the proposed
method. When λ takes a value between 0 and 1, information from both intralayer and
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interlayer sources is combined. The tunable parameter λ needs to be optimized for each
multiplex network.

Equation (3) is used to calculate the final connection probability in our paper. Similar
formulas have also appeared in [38,39]. Compared to these studies, the LPGRI method has
two advantages. First, the GR index in the LPGRI method measures interlayer relevance
from the perspective of connection patterns and provides different measurement methods
for undirected and directed networks. Second, the calculation of within-layer connection
probabilities utilizes NBS instead of local metrics such as CN or AA. It is well known that
although local metrics offer higher computational efficiency, they are limited by their lower
calculation accuracy.

3. Data Description and Evaluation Metric
3.1. Datasets

To verify the validation of the proposed method, we conduct experiments on six
real datasets from various fields, including biological networks, social networks, etc. The
descriptions of these datasets are provided below.

• Lazega [43]: The dataset consists of a multiplex network representing corporate law
partnerships among employees. It contains three kinds of relationships, namely advice,
co-work, and friendship. There are a total of 71 nodes, with the number of active
nodes in each layer being 71, 70, and 69, respectively.

• C. elegans [44]: The Caenorhabditis elegans dataset comprises three layers that corre-
spond to different synaptic junctions, namely electric links, chemical monadic links,
and chemical polyadic links. The multiplex network consists of 279 nodes in total.
Each layer has a different number of active nodes, with 253, 260, and 278 nodes,
respectively.

• Kapferer [45]: The Kapferer tailor shop dataset describes the interactions in a tailor
shop in Zambia over a period of ten months. The four layers of the network are gener-
ated by two different types of interaction. The first two layers, TS1 and TS2, represent
“sociational” interactions, specifically friendship and socioemotional connections. The
last two layers, TI1 and TI2, record “instrumental” interactions related to work and
assistance at two different time points. The multiplex network consists of 39 nodes,
with the number of active nodes in each layer being 39, 39, 35, and 37, respectively.

• Vicker [46]: This dataset is a multiplex social network depicting the relationships
between 29 Grade 7 students in a school in Victoria, Australia. It consists of three
layers, with each layer corresponding to different types of relationships, namely
getting on, best friends, and preferring working together. There are 29 nodes in total.
The number of active nodes in each layer is also 29.

• CKM [47]: This dataset constitutes a multiplex network that captures the interaction
among physicians during the adoption of a new drug. It consists of three layers that
represent different types of relationships: friendship, discussion, and asking for advice.
There are 245 nodes in total. The number of active nodes in each layer is 215, 231, and
227, respectively.

• Rattus [48]: This dataset provides a multiplex network of genetic and protein interac-
tions in Rattus Norvegicus. The raw data comprise 2640 nodes and 6 layers. In order to
remove uninformative layers, we exclude those with only a few dozen edges. Within
the paper, the multiplex network is analyzed using three layers: physical association,
direct interaction, and colocalization. There are a total of 2538 nodes, with 1948, 979,
and 149 active nodes in each layer, respectively.

Among the datasets, the first three datasets are undirected multiplex networks and the
others are directed multiplex networks. Table 2 provides a summary of the basic topological
features of these multiplex networks. In each multiple network, L represents the number
of layers, N denotes the number of nodes, N(α) indicates the number of active nodes (A
node is considered active in a layer if it has at least one link in this layer.) in each layer,
k(α) represents the layer sequence number of the layer α and E(α) represents the number
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of edges in the layer. Additionally, D represents the layer density, which is calculated as
2E(α)

N(N−1) for undirected networks and E(α)

N(N−1) for directed networks.

Table 2. Summarized statistics of the six multiplex networks.

Network Type Dataset L N N(α) k(α) Layer Name E(α) D

undirected

Lazega 3 71 71 1 advice 717 0.298
70 2 work 378 0.152
69 3 friend 399 0.161

C. elegans 3 279 253 1 electric 514 0.013
260 2 mono 888 0.023
278 3 poly 1703 0.044

Kapferer 4 39 39 1 TS1 158 0.213
39 2 TS2 223 0.301
35 3 TI1 76 0.103
37 4 TI2 95 0.128

directed

Vicker 3 29 29 1 get on 361 0.445
29 2 friend 181 0.223
29 3 co-work 198 0.244

CKM 3 245 215 1 advice 480 0.008
231 2 discussion 565 0.009
227 3 friend 504 0.008

Rattus 3 2538 1948 1 physical association 2894 0.00052
979 2 direct interaction 1024 0.00018
149 3 colocalization 119 0.00002

3.2. Evaluation Metric

Considering a target layer G(T) = (V, E(T)), we define U(T) as the universal set, which
contains all N(N − 1)/2 edges in the target layer. To test the accuracy of the proposed
method, the edge set E(T) is randomly divided into two sets: the training set E(T)

t , which is

treated as known information, and the test set E(T)
p , which is used for testing and considered

to contain no information for prediction. Obviously, E(T)
t ∪ E(T)

p = E(T) and E(T)
t ∩ E(T)

p = ∅.
In our experiments, the proportion of edges contained in the probe set and the training set
is set to d and 1− d, respectively. This means we randomly select a certain proportion of
the observed edges, denoted as 1− d, as the training set, and the remaining proportion of
the observed edges, d, as the test set in a layer.

Considering that the area under the receiver operating characteristic curve (AUC) [49]
provides a comprehensive assessment of algorithm performance, is not sensitive to the
balance of the dataset, and has a relatively simple and interpretable nature, we adopt it as
a metric to evaluate the accuracy of link prediction approaches in this paper. It evaluates
the performance of a method based on the ranking of predicted links. Given the rank of
all non-observed links, the AUC can be interpreted as the probability that a randomly
chosen missing link from E(T)

p is assigned a higher score (In this paper, the score refers to
the probability of a link.) than a randomly chosen nonexistent link from U(T) − E(T). If
among n independent comparisons, n1 times the missing link has a high score and n2 times
is the same, the calculation of AUC can be written as follows:

AUC =
n1 + 0.5n2

n
. (4)

AUC is one of the most widely used indices for measuring link prediction accuracy. If
all scores are generated from an independent and identical distribution, the AUC value
is approximately 0.5. In practice, AUC values range from 0.5 to 1, with larger values
indicating higher prediction accuracy.
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4. Experimental Analysis

In this section, we begin by employing the GR index to calculate the interlayer corre-
lation within each multiplex network. Secondly, we discuss the influence of the tunable
parameter λ on the predictive performance of the LPGRI method. Next, we study the dif-
ferent contribution of each auxiliary layer to the prediction performance of the target layer
in the multiplex networks. Finally, we conduct experiments to evaluate the performance
of the LPGRI method in comparison to other competitive methods. All experiments are
conducted using R 4.2.2.

4.1. Correlation Between Layers in Real Datasets

In this section, we analyze the correlation between layers in each multiplex network.
Figure 1 shows the correlation between layers in the multiplex networks, as calculated by
the GR index. Compared with other multiplex networks, the Vicker and Rattus networks
exhibit a higher correlation between their layers. The values of GR between layers range
from 0.513 to 0.705 for the Vicker network and 0.429 to 0.756 for the Rattus network,
excluding autocorrelation among layers. This indicates that each pair of layers within these
two multiplex networks share considerable similarities. According to Equation (3), the
auxiliary layer that is more similar to the target layer will provide more information for link
prediction. As for the remaining multiplex networks, the maximum GR value is around 0.5.
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Figure 1. Layer relevance of six multiplex networks. The heat map illustrates the interlayer relevance
within various multiplex networks. Each subfigure represents the outcome of a specific multiplex
network, quantified by the GR index.

4.2. Tunable Parameter Analysis

As mentioned in Section 2.2, the tunable parameter λ needs to be optimized in the
multiplex networks. Therefore, we now investigate how the parameter λ influences the
prediction performance of the LPGRI method by varying the ratio of training sets from 90%
to 50%, and select the optimal value of λ, denoted by λ∗, for each multiplex network shown
in Table 2. In this experiment, we consider three different values for d, which represents
the proportion of edges in the test set. Specifically, for each target layer, we set d to be
0.1, 0.3, and 0.5, which corresponds to training sets containing 90%, 70%, and 50% of the
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edges, respectively. In each training set, the AUC values are calculated by the varying
of parameter λ from 0 to 1. It is important to note that when calculating the GRlT value,
we incorporate all available information from the auxiliary layer G(l) and the training set
information from the target layer G(T). Figure 2 illustrates the prediction performance
variation of the LPGRI method with changes in the λ parameter.

From Figure 2, we can observe that the information from the auxiliary layers is helpful
for link prediction in the target layer. The performance of the LPGRI method exhibits similar
variation characteristics across different multiplex networks as parameter λ changes. With
the increase in λ, the AUC values of the LPGRI method first increase and then tend to
plateau in each target layer. This indicates that a moderate utilization of auxiliary layer
information can enhance the prediction performance. However, when λ is close to 1, the
AUC values begin to decrease in most target layers. This may be due to the noise from the
auxiliary layers affecting the prediction performance of the target layer. On the other hand,
when λ = 0, i.e., only the target layer information is used, the AUC values are minimal in
most cases. Notably, when λ = 0.1, indicating that a small amount of information from
the auxiliary layers is added, the AUC values significantly improve the most in target
layers. This result further illustrates that, in comparison to solely relying on target layer
information, the incorporation of auxiliary layer information can enhance the prediction
performance to a certain extent.
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Figure 2. Variation in AUC values as a function of parameter λ in six multiplex networks. Each
subfigure shows how the prediction performance of the LPGRI method changes with the parameter
λ. Different colors of the curves in each subfigure represent the variation in AUC for different target
layers. For the same target layer, three different values of d are considered, namely 0.1, 0.3, and 0.5.
Each result is obtained by averaging 30 experiments.

Second, from Figure 2, we also observe that the AUC values corresponding to λ = 1
are consistently higher than the AUC values corresponding to λ = 0 in multiplex networks
such as Kapferer, Vicker, and CKM. This finding is helpful for addressing the cold-start
problem. For example, in a recommender system, it is difficult to obtain sufficient topology
information to predict the potential connections for new members or commodities. In other
words, the cold-start problem arises when valuable information regarding new or low-
degree nodes is unavailable in a monolayer network. In comparison, multiplex networks
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capture diverse relationships among individuals. Thus, the auxiliary layers based on the
behavior or background of new individuals can assist in predicting the topology of these
individuals in the target layer.

Third, the experimental results under different values of d show that the LPGRI
method effectively addresses the network sparsity problem. Taking the CKM network as
an example, when λ changes from 0 to 0.1, the AUC values of the first target layer increase
by 14.08%, 19.88% and 25.71%, corresponding to a d value of 0.1, 0.3 and 0.5, respectively.
Similar results are observed in other target layers of CKM. The reasons for this phenomenon
are as follows. A larger value of d indicates that the training set contains less information
for prediction. As mentioned before, λ = 0 implies that only the information from target
layer is used for prediction, while when λ = 0.1, this indicates that in addition to the
information from the target layer, the information from the auxiliary layers is also used
for prediction. When the target layer contains limited useful information (i.e., d = 0.5), the
likelihood of potential links is mostly assigned to 0 when only the target layer information
is considered (i.e., λ = 0). It becomes challenging to distinguish between nonexistent
links in U(T) − E(T) and observed links in E(T)

p . As a result, the prediction performance is
poor. However, when the information from the auxiliary layers is simultaneously taken
into account (i.e., λ = 0.1), the distinction between them becomes evident, leading to a
significant improvement in prediction accuracy. In summary, the experimental results
demonstrate that even in sparse networks where the target layer contains limited useful
information (i.e., d = 0.5), the LPGRI method can still enhance prediction accuracy with
the assistance of auxiliary layer information. This indicates that the LPGRI method can
achieve improved prediction accuracy even in sparse networks. A similar phenomenon
can be observed in Figure 2 for other multiplex networks.

Finally, we will discuss the selection of optimal values for λ in different multiplex
networks. According to the results shown in Figure 2, it can be observed that the optimal
values of λ for different layers within the same multiplex network are generally consistent.
Specifically, the optimal values of λ are approximately 0.5 for the Lazega network, and 0.7
for the C.elegans, Kapferer, and Vicker networks. Furthermore, the CKM network exhibits
optimal values of λ close to 0.8. For the Rattus network, when λ falls within the range of
[0.1, 0.5], the AUC values show minimal variation. Based on the preceding discussion, the
optimal value of λ, denoted as λ∗, varies across the multiplex networks analyzed in this
paper. Specifically, in the Lazega network, λ∗ is determined to be 0.5. For the C.elegans,
Kapferer, and Vicker networks, λ∗ is set to 0.7. In the CKM network, λ∗ is determined to be
0.8, while for the Rattus network, λ∗ is found to be 0.2.

4.3. Analysis of the Influence of Auxiliary Layers on Prediction Performance

In this section, we discuss the different contributions of each auxiliary layer to the
prediction performance of the target layer in multiplex networks. Specifically, we study
the GR index in the LPGRI method, which allows us to understand the distinct impacts of
interlayer relevance on prediction performance. To uncover these effects, we analyze the
changes in prediction performance by gradually eliminating the contributions of auxiliary
layers. This elimination process is performed in descending order based on the GR values
assigned to each auxiliary layer. To be specific, for a given target layer G(T), we remove
the contribution of each auxiliary layer G(l)(l = 1, 2, · · · , l 6= T) to the target layer step by
step through setting the GRlT to 0 in descending order. This process is stopped when the
prediction results only depend on the target layer. In this case, GRlT = 0 for all auxiliary
layers, indicating that the second term in Equation (3) has no impact on the prediction
results. Consequently, Equation (3) solely comprises the first term. The results are shown
in Figure 3.
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Figure 3. Variation in AUC values with changes in auxiliary layers in six multiplex networks. Each
subfigure shows how the LPGRI method’s prediction performance for the target layer is affected by
the gradual removal of auxiliary layers in descending order of GR value. For each multiplex network,
λ is equal to λ∗. Each result is obtained by averaging 30 realizations with a training set containing
90% edges.

As depicted in Figure 3, the prediction performance of the target layer consistently de-
clines as auxiliary layers are gradually removed. In particular, in most multiplex networks,
removing the auxiliary layer that exhibits a high relevance to the target layer leads to a
more significant decrease in predictive performance. For example, take the first layer of
the Lazega multiplex network as the target layer. According to Figure 1, the GR values for
the first layer and the other two layers are GR12 = 0.483 and GR13 = 0.418, respectively.
We first set GR12 = 0 in Equation (3), which means the second layer is removed from
the LPGRI method. The performance of the LPGRI method drops from 0.8513 to 0.8180,
corresponding to a rate of decline of 3.91%. However, when the third layer is removed
from the LPGRI method (i.e., setting GR13 to 0), the performance of the LPGRI method
decreases from 0.8180 to 0.8091, with a decline rate of 1.09%. Similar patterns emerge in
other multiplex networks. Experimental results demonstrate that the higher the correlation
between the auxiliary layer and the target layer, the more useful the auxiliary layer is in
predicting the target layer.

4.4. Comparison of LPGRI with Other Methods

In this section, we perform experiments to evaluate the performance of the LPGRI
method and compare it with other competitive methods: NSILR [38], LPIS [39], NBS [42]
and LPPON [50]. The first two of these methods are designed for predicting links in
multiplex networks and the second two are designed for predicting links in a monolayer
network.

Table 3 presents a comparison of prediction accuracy quantified by AUC. Note that,
the parameters in LPIS and LPPON are tuned to their optimal values subject to maximal
AUC. From Table 3, it is evident that the LPGRI method outperforms the other methods
in three multiplex networks: Kapferer, Vicker, and Rattus. On the other hand, the LPIS
method works the best in the third layer of the C.elegans network, while the NSILR method
achieves the best results for the third layer of the Lazega network, the first layer of the
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C.elegans network, the fourth layer of the Kapferer network, and the third layer of the CKM
network. Furthermore, the LPGRI method demonstrates a strong capability in handling
directed multiplex networks, as it performs the best in two out of the three multiplex
networks: Vicker and Rattus. For the directed multiplex network CKM, the LPGRI method
performs better in the first two layers. In most cases, the predictive performance of the
methods utilizing the auxiliary layers information is better than that of those methods
designed solely for predicting links in monolayer networks.

Table 3. Mean of AUC for six multiplex networks. For each target layer, λ is equal to λ∗ and the
training set contains 90% of the edges. Each result is obtained by averaging 30 realizations. The
maximum value of AUC in each layer is emphasized in bold.

Type Dataset Layer Name
Method

RI
LPGRI NSILR LPIS NBS LPPON

undirected

Lazega advice 0.8513 0.8498 0.8417 0.8245 0.8011 0.18%
work 0.8407 0.8101 0.7625 0.7983 0.7788 0.38%
friend 0.8664 0.8769 0.8639 0.8245 0.8011 −0.12%

C. elegans electric 0.8141 0.8522 0.7901 0.7011 0.7441 −4.47%
mono 0.8880 0.8648 0.8047 0.7585 0.8139 2.68%
poly 0.8527 0.8493 0.8571 0.8292 0.7952 −0.51%

Kapferer TS1 0.7922 0.7875 0.7289 0.7540 0.7212 0.60%
TS2 0.7899 0.7786 0.7554 0.7391 0.7148 1.45%
TI1 0.8042 0.7914 0.7561 0.7096 0.7072 1.62%
TI2 0.8225 0.8225 0.7685 0.7330 0.7517 0.00%

directed

Vicker get on 0.8253 0.7755 0.8046 0.7576 0.7256 2.57%
friend 0.8448 0.8026 0.8208 0.7585 0.7889 2.92%
co-work 0.8906 0.7924 0.8443 0.7741 0.7926 5.48%

CKM advice 0.8225 0.7117 0.5913 0.6792 0.7006 15.57%
discussion 0.7816 0.7667 0.5791 0.6022 0.6848 1.94%
friend 0.6897 0.7397 0.5875 0.5442 0.5971 −6.76%

Rattus physical association 0.6830 0.5458 0.5464 0.6647 0.5872 2.75%
direct interaction 0.6702 0.5175 0.5601 0.6229 0.5923 7.59%
colocalization 0.7252 0.5742 0.5938 0.5588 0.5757 22.13%

In order to draw some further comparisons, we also calculate the ratio of improvement,
defined as

RI(LPGRI,B) =
AUC of LPGRI − AUC of B

AUC of B
× 100%, (5)

where B represents the method with the best prediction performance among all methods
except the LPGRI method in each target layer. The RI value quantifies the degree of
improvement of the LPGRI method compared to method B. A positive RI value indicates
that the LPGRI method performs better than B, and vice versa. The RI values can be found
in the last column of Table 3.

From Table 3, it is clear that the LPGRI method exhibits the highest ratio of improve-
ment compared to method B, especially in the case of directed multiplex network. For
example, when compared to other methods, the LPGRI method achieves over 15% im-
provement in the first layer of CKM. In contrast, the largest improvement made by other
methods on the LPGRI method is only up to 6.76% in the third layer of CKM. Additionally,
we observe that the LPGRI method has a higher improvement rate in sparse multiplex
networks such as CKM and Rattus (the layer density of multiplex networks is shown in
Table 2), indicating its ability to effectively handle sparse problems in networks. These
results are consistent with the conclusions in Section 4.2.

In summary, according to the results based on the metric of AUC, the LPGRI approach
exhibits superior overall performance for link prediction, particularly in the context of
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directed multiplex networks. This can be attributed to the effectiveness of the GR index
employed by the LPGRI method, which accurately measures the relevance between layers
not only in undirected multiplex networks but also in directed multiplex networks.

5. Conclusions

Link prediction represents an important problem in network analysis, with its purpose
being to estimate the missing edges or forthcoming edges in the network by using the
observed topology structure or node attributes of the network. In the real world, individuals
participate in various types of connections within networks, with each type of connection
forming a layer. Multiplex networks are employed to represent multiple relationships
within a defined set of objects. In this paper, we studied the link prediction problem of
multiplex networks. A key issue of link prediction in multiplex networks is estimating
the likelihood of potential edges in the target layer by leveraging information from both
the target layer and the auxiliary layers. To address this, we introduce the LPGRI method.
This approach combines information from the target layer and all auxiliary layers using a
tuning parameter λ, where the contribution of each auxiliary layer is determined by the
GR index. We evaluate the performance of the LPGRI method on six multiplex networks,
including both undirected and directed networks. The experimental results show that the
LPGRI method can be applied for friend recommendations in social networks as well as
the discovery of interacting gene pairs in biological networks.

In the LPGRI method, the parameter λ is used to regulate the degree of utilization
of information between the target layer and auxiliary layers in link prediction. Moveover,
it needs to be optimized in different multiplex networks. When the network contains
a large number of layers, parameter optimization becomes a challenging task. For this
reason, finding a more flexible approach to select the extent of interlayer information’s
influence on predicting links in the target layer is an area that can be further explored in
this work. Additionally, interlayer relevance can be measured from multiple perspectives,
and ways to measure the reliability of these indices, including the GR index, is a direction
for future research.
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